JP2007024502A - Data processing apparatus, method, and program - Google Patents

Data processing apparatus, method, and program Download PDF

Info

Publication number
JP2007024502A
JP2007024502A JP2005202490A JP2005202490A JP2007024502A JP 2007024502 A JP2007024502 A JP 2007024502A JP 2005202490 A JP2005202490 A JP 2005202490A JP 2005202490 A JP2005202490 A JP 2005202490A JP 2007024502 A JP2007024502 A JP 2007024502A
Authority
JP
Japan
Prior art keywords
measurement
value
filter coefficient
data group
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005202490A
Other languages
Japanese (ja)
Other versions
JP4705815B2 (en
Inventor
Motonori Ogiwara
荻原元徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2005202490A priority Critical patent/JP4705815B2/en
Publication of JP2007024502A publication Critical patent/JP2007024502A/en
Application granted granted Critical
Publication of JP4705815B2 publication Critical patent/JP4705815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a data processing apparatus which can filter measured data which represents an unequality in intervals between measurement points. <P>SOLUTION: For a measured data group in which coordinate information of the measurement points distributed discretely and unequally and a measured value at each measurement point are combined, the data processing apparatus 10 for filtering the measured values on the coordinate space of the measurement points. The data processing apparatus comprises a filter coefficient determination means 20 which determines, for one measured value which is filtered, the positional relationship between the measurement point of the one measured value and each measurement point of the measured data group from the coordinate information and calculates each filter coefficient corresponding to each measurement point of the measured data group on the basis of the positional relationship and a processing means 22 which obtains a value which has been filtered for the one measured value on the basis of each measured value of the measured data group and each filter coefficient calculated by the filter coefficient determination means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はデータ処理装置、特に不等間隔データに対するフィルタ処理機構の改良に関する。   The present invention relates to a data processing apparatus, and more particularly to an improvement of a filter processing mechanism for unequal interval data.

三次元測定機等の表面性状測定機は、被測定物表面の変位情報を検知する測定子を被測定物に対して相対的に移動させ、測定子の位置情報を基に被測定物の表面形状等を計測するものである。例えば真円度測定では被測定物を回転、もしくは測定子を被測定物の周りに回転させ、半径方向の測定子の位置情報を一定のサンプリング時間間隔で取得する。こうして離散的に分布した測定点の座標(被測定物の中心を軸とした角度座標)と各測定点での測定値(半径方向の変位値)とを組とした測定データ群を得ることとなる。このような測定データ群に対し、ノイズ等の外乱成分を取り除く等の目的で各種フィルタ処理が施されることがある(例えば、特許文献1、2参照)。
特開2000−161983号公報 特開2004−333293号公報
The surface texture measuring machine such as a three-dimensional measuring machine moves the measuring element for detecting displacement information on the surface of the object to be measured relative to the object to be measured, and the surface of the object to be measured based on the position information of the measuring element. The shape is measured. For example, in roundness measurement, the object to be measured is rotated or the probe is rotated around the object to be measured, and the position information of the probe in the radial direction is acquired at regular sampling time intervals. In this way, a measurement data group is obtained by combining the coordinates of measurement points distributed in a discrete manner (angle coordinates with the center of the object to be measured as an axis) and the measurement values (displacement values in the radial direction) at each measurement point. Become. Various types of filter processing may be performed on such a measurement data group for the purpose of removing disturbance components such as noise (see, for example, Patent Documents 1 and 2).
Japanese Unexamined Patent Publication No. 2000-161983 JP 2004-333293 A

上記の空間デジタルフィルタ処理を行う場合、処理対象の測定データ群の測定点が座標空間で等間隔に分布する必要がある。例えば上記の真円度測定の例では、隣接する測定点の間隔、つまり隣接する測定点の角度座標の差が、どの隣接する測定点に対しても一定である必要がある。しかしながら、測定データ群を一定のサンプリング時間間隔で取得したとしても、必ずしも等間隔な測定点を有するデータとなるわけではない。例えば上記の真円度測定の場合、被測定物や測定子の回転運動の速度が変動することで隣接する測定点間の間隔(角度)が変動を受けたり、被測定物の一部が切り欠きや溝などのため一部の領域が欠損し、その領域の部分の測定データがない(測定点が存在しない)等といったことが生じる。
従来このような不等間隔データに対しフィルタ処理を行う際には、直線補間やスプライン補間等の補間法によってあらかじめ測定データ群の測定点を人工的に等間隔化し、それに対しフィルタ処理を行うという方法をとっていた。しかしながら、この補間処理によって測定データ群に意図しない情報が付加されてしまい、処理後のデータに対する信頼性の点で大きな問題があった。
本発明は上記課題に鑑みなされたものであり、その目的は測定点の間隔が一定間隔でない不等間隔の測定データに対し、フィルタ処理を行うことが可能なデータ処理装置を提供することにある。
When the above spatial digital filter processing is performed, the measurement points of the measurement data group to be processed must be distributed at equal intervals in the coordinate space. For example, in the above example of roundness measurement, the interval between adjacent measurement points, that is, the difference in angular coordinates between adjacent measurement points needs to be constant for any adjacent measurement point. However, even if the measurement data group is acquired at a constant sampling time interval, the data does not necessarily have data having measurement points at equal intervals. For example, in the case of the roundness measurement described above, the interval (angle) between adjacent measurement points is subject to fluctuations due to fluctuations in the rotational speed of the object to be measured or the measuring element, or a part of the object to be measured is cut. A part of the region is lost due to a notch or a groove, and there is no measurement data in the part (no measurement point exists).
Conventionally, when performing filtering processing on such unequal interval data, the measurement points of the measurement data group are artificially equally spaced in advance by an interpolation method such as linear interpolation or spline interpolation, and the filtering processing is performed on it. I was taking the way. However, unintentional information is added to the measurement data group by this interpolation processing, and there is a big problem in terms of reliability of the processed data.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a data processing apparatus capable of performing filter processing on measurement data at unequal intervals where the intervals between measurement points are not constant. .

上記目的を達成するため、本発明のデータ処理装置は、離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うデータ処理装置であって、フィルタ処理の対象となる一の測定値に対し、該一の測定値の測定点と前記測定データ群の各測定点との間の各位置関係を前記座標情報から求め、該各位置関係に基いて前記測定データ群の各測定点に対応した各フィルタ係数を算出するフィルタ係数決定手段と、前記測定データ群の各測定値と前記フィルタ係数決定手段にて算出した各フィルタ係数とに基いて、前記一の測定値に対するフィルタ処理された値を得る処理手段と、を備えることを特徴とする。   In order to achieve the above object, the data processing apparatus of the present invention is a measurement data group in which coordinate information of measurement points distributed discretely and at irregular intervals and measurement values at each measurement point are combined. A data processing apparatus for performing a filtering process on the measurement value in a coordinate space of a measurement point, and for each measurement value to be filtered, each measurement point of the one measurement value and each of the measurement data group Filter coefficient determining means for calculating each filter coefficient corresponding to each measurement point of the measurement data group based on each position relation, and obtaining each positional relation between the measurement points from the coordinate information; and the measurement data group And processing means for obtaining a filtered value for the one measured value based on each measured value and each filter coefficient calculated by the filter coefficient determining means.

上記のデータ処理装置において、前記フィルタ係数決定手段は、前記一の測定値の測定点の座標情報と前記測定データ群の各測定点の座標情報に基いて、前記一の測定値の測定点と前記測定データ群の各測定点との間の各距離を求める距離算出部と、前記測定データ群の各測定点に対応するフィルタ係数を前記距離算出部で算出した各距離に基いて求める係数算出部と、を備えることが好適である。   In the above data processing device, the filter coefficient determining means is configured to determine the measurement point of the one measurement value based on the coordinate information of the measurement point of the one measurement value and the coordinate information of each measurement point of the measurement data group. A distance calculation unit that calculates each distance between each measurement point of the measurement data group, and a coefficient calculation that calculates a filter coefficient corresponding to each measurement point of the measurement data group based on each distance calculated by the distance calculation unit It is suitable to provide a part.

上記のデータ処理装置において、前記処理手段は、前記フィルタ係数決定手段にて算出したフィルタ係数の合計値を求める係数合計部と、前記測定データ群の測定値と該測定値の測定点に対応した前記フィルタ係数とを乗算し、該乗算したものを前記測定データ群の各測定値に渡って合計する乗算値合計部と、該乗算値合計部で算出した合計値を前記係数合計部で算出したフィルタ係数の合計値で除算して前記一の測定値に対するフィルタ処理された値を求める除算部と、を備えることが好適である。
上記のデータ処理装置において、前記フィルタ係数決定手段は測定点間の距離が所定値以上の場合フィルタ係数を0とすることが好適である。
In the data processing apparatus, the processing means corresponds to a coefficient summation unit for obtaining a total value of filter coefficients calculated by the filter coefficient determination means, a measurement value of the measurement data group, and a measurement point of the measurement value. A multiplication value summation unit that multiplies the filter coefficients and sums the multiplications over the respective measurement values of the measurement data group, and a summation value calculated by the multiplication value summation part is calculated by the coefficient summation unit. It is preferable that a division unit that obtains a filtered value for the one measured value by dividing by a total value of filter coefficients is provided.
In the above data processing apparatus, it is preferable that the filter coefficient determination means sets the filter coefficient to 0 when the distance between the measurement points is a predetermined value or more.

また、本発明のデータ処理方法は、離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うデータ処理方法であって、フィルタ処理の対象となる一の測定値に対し、該一の測定値の測定点と前記測定データ群の各測定点との間の各位置関係を前記座標情報から求め、該各位置関係に基いて前記測定データ群の各測定点に対応した各フィルタ係数を算出するフィルタ係数決定工程と、前記測定データ群の各測定値と前記フィルタ係数決定工程で算出した各フィルタ係数とに基いて、前記一の測定値に対するフィルタ処理された値を得る処理工程と、を備えることを特徴とする。   Further, the data processing method of the present invention provides a coordinate space of measurement points with respect to a measurement data group in which coordinate information of measurement points distributed discretely and at irregular intervals and measurement values at each measurement point are paired. A data processing method for performing a filtering process on the measurement value above, wherein for one measurement value to be filtered, between the measurement point of the one measurement value and each measurement point of the measurement data group A filter coefficient determination step for calculating each filter coefficient corresponding to each measurement point of the measurement data group based on each position relation, and each measurement value of the measurement data group; And a processing step of obtaining a filtered value for the one measured value based on each filter coefficient calculated in the filter coefficient determination step.

また、本発明のデータ処理プログラムは、離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うデータ処理装置をコンピュータで構成し、フィルタ処理の対象となる一の測定値に対し、該一の測定値の測定点と前記測定データ群の各測定点との間の各位置関係を前記座標情報から求め、該各位置関係に基いて前記測定データ群の各測定点に対応した各フィルタ係数を算出するフィルタ係数決定工程と、前記測定データ群の各測定値と前記フィルタ係数決定工程で算出した各フィルタ係数とに基いて、前記一の測定値に対するフィルタ処理された値を得る処理工程と、をコンピュータに実行させることを特徴とする。   Further, the data processing program of the present invention provides a coordinate space of measurement points with respect to a measurement data group in which coordinate information of measurement points distributed discretely and at irregular intervals and measurement values at each measurement point are paired. A data processing apparatus that performs filtering on the measured values is configured by a computer, and for one measured value that is the target of the filtering process, a measurement point of the one measured value and each measured point of the measured data group A filter coefficient determination step for calculating each filter coefficient corresponding to each measurement point of the measurement data group based on each position relation, and each measurement of the measurement data group And a processing step of obtaining a filtered value for the one measured value based on the value and each filter coefficient calculated in the filter coefficient determination step.

本発明のデータ処理装置及び方法によれば、フィルタ処理の対象となる一の測定値に対し、その測定点と前記測定データ群の各測定点との間の位置関係を求め、該位置関係に基いてフィルタ係数を決定するように構成したため、測定点の間隔が不等間隔である測定データ群に対して測定点の位置情報を維持したまま、つまり不等間隔データのまま、フィルタ処理を行うことが可能となった。   According to the data processing apparatus and method of the present invention, the positional relationship between the measurement point and each measurement point of the measurement data group is obtained for one measurement value to be filtered, and the positional relationship is obtained. Since the filter coefficient is determined based on the filter coefficient, the filter processing is performed while maintaining the position information of the measurement points with respect to the measurement data group in which the measurement point intervals are unequal intervals, that is, the unequal interval data. It became possible.

本発明のデータ処理装置は、離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点上での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うためのものであり、以下に図面を参照してその好適な実施形態を説明する。
図1は本発明の実施形態にかかるデータ処理装置の概略構成図である。データ処理装置10はコンピュータ等で構成されており、測定系12から送られる測定データ群の処理をプログラムとして実行する。本実施形態では測定系12として三次元測定機を用いた場合を想定して説明を行うが、本発明のデータ処理装置10は三次元測定機からの測定データに限らず、他の表面性状測定装置もしくは他の測定装置によって測定した不等間隔な測定データ群に対しても、好適にフィルタ処理を施すことができる。
The data processing apparatus of the present invention provides a measurement data group in which coordinate information of measurement points distributed discretely and at irregular intervals and measurement values on each measurement point are paired on the coordinate space of the measurement points. In the following, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a data processing apparatus according to an embodiment of the present invention. The data processing device 10 is configured by a computer or the like, and executes processing of a measurement data group sent from the measurement system 12 as a program. In the present embodiment, description will be made assuming that a three-dimensional measuring machine is used as the measurement system 12. However, the data processing apparatus 10 of the present invention is not limited to the measurement data from the three-dimensional measuring machine, and other surface property measurement. Filter processing can be suitably performed even on nonuniformly spaced measurement data groups measured by the apparatus or other measurement apparatuses.

測定系12は、被測定物の表面を走査する測定子14と、測定子14を三次元的に移動させる移動手段16と、測定子14の位置情報を検知する検知手段18と、を備える。移動手段16により測定子14を所定の速度で被測定物の表面上を移動させ、所定のサンプリング時間間隔で測定子14の位置情報を検知手段18により取得する。この結果、離散的に分布した測定点の座標情報と各測定点での測定値とを組にした測定データ群が得られる。例えば、測定子14をX方向に走査し(Y方向の位置は固定)、被測定物のXY平面断面形状を測定する場合では、各サンプリング点における測定子14のX座標の値を測定点の座標情報、Z座標の値を各測定点での測定値として扱う。同様に倣い測定による真円度測定の場合(つまり測定子14を被測定物の周上を走査して、所定のサンプリング時間間隔で測定子の位置情報を検出する場合)は、各サンプリング点における測定子14の角度位置(被測定物の最小二乗円、もしくはその他の方式によって定められる円の中心を軸とした角度)を座標情報、半径方向の位置情報を測定値として扱う。また、表面粗さを測定する場合のように測定子を二次元方向(XY方向)に走査した場合は、各サンプリング点での測定子のXY座標が測定点の座標情報、各サンプリング点での測定子のZ方向の位置を測定値として扱えばよい。   The measuring system 12 includes a measuring element 14 that scans the surface of the object to be measured, a moving unit 16 that moves the measuring element 14 three-dimensionally, and a detecting unit 18 that detects position information of the measuring element 14. The moving unit 16 moves the measuring element 14 on the surface of the object to be measured at a predetermined speed, and the detecting unit 18 acquires position information of the measuring element 14 at predetermined sampling time intervals. As a result, a measurement data group is obtained in which the coordinate information of the measurement points distributed discretely and the measurement values at each measurement point are combined. For example, when the measuring element 14 is scanned in the X direction (the position in the Y direction is fixed) and the XY plane cross-sectional shape of the object to be measured is measured, the value of the X coordinate of the measuring element 14 at each sampling point is set to the measurement point. The coordinate information and the value of the Z coordinate are handled as measurement values at each measurement point. Similarly, in the case of roundness measurement by scanning measurement (that is, when the probe 14 is scanned over the circumference of the object to be measured and position information of the probe is detected at a predetermined sampling time interval), at each sampling point The angle position of the measuring element 14 (the least square circle of the object to be measured or an angle with the center of the circle determined by another method as an axis) is treated as coordinate information, and the position information in the radial direction is treated as a measured value. When the probe is scanned in the two-dimensional direction (XY direction) as in the case of measuring the surface roughness, the XY coordinate of the probe at each sampling point is the coordinate information of the measurement point, and at each sampling point. The position of the measuring element in the Z direction may be handled as a measured value.

図2は測定点の座標空間が一次元の場合の測定点の位置関係を示す模式図である。上記の例でいうと、測定子14をX方向に走査して被測定物のXY平面断面形状を測定する場合や真円度測定の場合に相当する。なお、座標空間とは測定点の位置を指定するための座標値パラメータの張る空間のことであり、また、座標空間の次元とは独立な座標値パラメータの個数のことをいう。被測定物に欠落部分がなく、また測定子の移動速度やサンプリング時間間隔が一定となるよう理想的に制御されていると仮定すると、図2(a)に示したように測定データ群に含まれる各測定点(図ではその座標の値をP(1)〜P(n)で示した)は等間隔に並ぶ。つまり、座標P(2)とP(1)の差ΔX、P(3)とP(2)の差ΔX、・・・、P(m)とP(m+1)の差ΔXは、それぞれ等しくなる(ΔX=ΔX=・・・=ΔX=・・・=一定)。 FIG. 2 is a schematic diagram showing the positional relationship of measurement points when the coordinate space of the measurement points is one-dimensional. In the above example, this corresponds to the case of measuring the XY plane cross-sectional shape of the object to be measured by scanning the measuring element 14 in the X direction or the case of measuring the roundness. Note that the coordinate space is a space provided by coordinate value parameters for designating the position of the measurement point, and the number of coordinate value parameters independent of the dimension of the coordinate space. Assuming that the measured object has no missing part and is ideally controlled so that the moving speed of the probe and the sampling time interval are constant, it is included in the measurement data group as shown in FIG. The measurement points (in the figure, the coordinate values are indicated by P (1) to P (n)) are arranged at equal intervals. That is, the difference ΔX 1 between the coordinates P (2) and P (1), the difference ΔX 2 between P (3) and P (2),..., The difference ΔX m between P (m) and P (m + 1) is Each becomes equal (ΔX 1 = ΔX 2 =... = ΔX m =... = Constant).

しかしながら実際の測定では、測定子の移動速度の変動や被測定物の欠落部分の存在等の理由のため、得られる測定データ群の測定点は上記のように等間隔には分布しない。つまり、図2(b)に示したように、座標P(2)とP(1)の差ΔX、P(3)とP(2)の差ΔX、・・・、P(m)とP(m+1)の差ΔX等は全てが互いに等しいわけではなく(つまり、少なくとも一つ、異なるものが存在する)、測定点は不等間隔に分布することになる。
同様に図3に測定点の座標空間が二次元の場合の測定点の位置関係を示す模式図を示す。これは測定子をXY方向(水平方向)に走査して、Z方向(高さ方向)の位置情報を取得し、被測定物の表面形状を測定する場合に相当する。理想的な状態を仮定すると、図3(a)に示すように、測定点は格子点上に整列し、隣接する測定点間の間隔はそれぞれ等しくなるはずである。しかしながら、実際の測定では図3(b)に示すように、測定点は格子点上に整列するとは限らず、隣接する測定点間の間隔はそれぞれ異なるものとなってしまう。
However, in actual measurement, the measurement points of the obtained measurement data group are not distributed at regular intervals as described above due to reasons such as fluctuations in the moving speed of the probe and the presence of missing portions of the object to be measured. That is, as shown in FIG. 2B, the difference ΔX 1 between coordinates P (2) and P (1), the difference ΔX 2 between P (3) and P (2),..., P (m) and P (m + 1) the difference [Delta] X m, etc. are not all equal to each other (i.e., at least one, different exists), the measurement points will be distributed at uneven intervals.
Similarly, FIG. 3 shows a schematic diagram showing the positional relationship of measurement points when the coordinate space of the measurement points is two-dimensional. This corresponds to a case where the measuring element is scanned in the XY direction (horizontal direction), position information in the Z direction (height direction) is acquired, and the surface shape of the object to be measured is measured. Assuming an ideal state, as shown in FIG. 3A, the measurement points should be aligned on the lattice points, and the intervals between adjacent measurement points should be equal. However, in actual measurement, as shown in FIG. 3B, the measurement points are not necessarily aligned on the grid points, and the intervals between adjacent measurement points are different.

このように、一般に得られる測定データ群は測定点が不等間隔に分布したものである。このような測定データ群に対してもノイズ除去等の目的で空間フィルタ処理を施したい場合があるが、従来のフィルタ処理は測定データ群の測定点が等間隔で並んでいることを前提としていた。   Thus, the measurement data group that is generally obtained is one in which measurement points are distributed at unequal intervals. There is a case where it is desired to apply spatial filtering to such a measurement data group for the purpose of noise removal or the like, but the conventional filter processing is based on the assumption that the measurement points of the measurement data group are arranged at equal intervals. .

本実施形態のデータ処理装置は従来の空間フィルタとは異なり、上記のような不等間隔データに対するフィルタ処理を可能にするものである。そのため、図1のデータ処理装置10は、不等間隔に分布した各測定点に対応する各フィルタ係数を決定するフィルタ係数決定手段20と、測定データ群の各測定値と上記の各フィルタ係数とに基いてフィルタ処理を行う処理手段22と、を備えている。ここでデータ処理装置10がコンピュータにより構成され、フィルタ係数決定手段20および処理手段22として機能するプログラムを組み込んでいることが好適である。測定系12からの測定データ群は各測定値とその測定点の座標情報とを関連付けてデータ処理装置10の記憶手段24の測定データ記憶部36に記憶されている。そして、測定データ群のうち少なくともフィルタ処理を行いたい測定値に対して、下記のように座標空間上でフィルタ処理を行う。フィルタ処理後の値は、測定点の座標情報と関連付けて記憶手段24の処理データ記憶部38に記憶される。   Unlike the conventional spatial filter, the data processing apparatus according to the present embodiment enables the filtering process for the unequal interval data as described above. Therefore, the data processing apparatus 10 in FIG. 1 includes a filter coefficient determination unit 20 that determines filter coefficients corresponding to measurement points distributed at unequal intervals, each measurement value of the measurement data group, and each filter coefficient described above. And processing means 22 for performing filtering processing based on the above. Here, it is preferable that the data processing apparatus 10 is configured by a computer and incorporates a program that functions as the filter coefficient determination means 20 and the processing means 22. A measurement data group from the measurement system 12 is stored in the measurement data storage unit 36 of the storage unit 24 of the data processing apparatus 10 in association with each measurement value and coordinate information of the measurement point. Then, at least a measurement value to be subjected to filter processing in the measurement data group is subjected to filter processing on the coordinate space as follows. The value after the filter processing is stored in the processing data storage unit 38 of the storage unit 24 in association with the coordinate information of the measurement point.

フィルタ係数決定手段20は、フィルタ処理の対象となる一の測定値に対し、その測定点と測定データ群の各測定点との間の位置関係を測定データ記憶部36に記憶された座標情報から求め、この位置関係に基いて測定データ群の各測定点に対応したフィルタ係数を算出する(図4参照)。まず、フィルタ係数決定手段20の距離算出部26は測定データ記憶部36に記憶された各測定点の座標情報を読み出し、フィルタ処理の対象となる一の測定値の測定点(図4(a)でP(i)で示される点)と測定データ群の各測定点(図4(a)のP(4)、P(i−1),P(i),P(i+1),P(i+2)等)との間の座標空間上での各距離(図4(a)のX4,i,Xi−1,i,Xi,i(=0),Xi+1,i,Xi+2,i等)を求める。なお、上記の「測定データ群の各測定点」にはフィルタ対象となる一の測定値の測定点のことも含まれる。次に係数算出部28では、測定データ群の各測定点に対応する各フィルタ係数(図4(a)のK4,i,Ki−1,i,Ki,i,Ki+1,i,Ki+2,i等)を距離算出部26にて算出した各距離に基いて算出する。こうして得られた各フィルタ係数は、対応する測定点に関連付けて記憶手段24の係数記憶部40に記憶される。ここでは、フィルタ係数を決定するために測定点間の距離のみを考慮した場合を示したが、所望のフィルタ特性を得るために測定点間の方向なども考慮に入れて決定するようにしてもよい(図4(b)参照)。さらに、フィルタ対象となる測定値の測定点から測った距離が一定値以上の場合フィルタ係数を0とすることも好適である。これにより、計算時間を短縮することができる。 The filter coefficient determination unit 20 determines the positional relationship between the measurement point and each measurement point of the measurement data group for one measurement value to be filtered from the coordinate information stored in the measurement data storage unit 36. The filter coefficient corresponding to each measurement point of the measurement data group is calculated based on this positional relationship (see FIG. 4). First, the distance calculation unit 26 of the filter coefficient determination unit 20 reads the coordinate information of each measurement point stored in the measurement data storage unit 36, and the measurement point of one measurement value to be filtered (FIG. 4A). P (i)) and each measurement point of the measurement data group (P (4), P (i-1), P (i), P (i + 1), P (i + 1) in FIG. 4A). ) Etc.) in the coordinate space (X4 , i , Xi -1, i , Xi , i (= 0), Xi + 1, i , Xi + 2, in FIG. i )). Note that the above-mentioned “each measurement point of the measurement data group” includes a measurement point of one measurement value to be filtered. Next, in the coefficient calculation unit 28, each filter coefficient corresponding to each measurement point of the measurement data group (K 4, i , K i−1, i , K i, i , K i + 1, i , K i + 2, i etc.) is calculated based on each distance calculated by the distance calculation unit 26. Each filter coefficient thus obtained is stored in the coefficient storage unit 40 of the storage unit 24 in association with the corresponding measurement point. Here, the case where only the distance between the measurement points is considered in order to determine the filter coefficient is shown. However, in order to obtain a desired filter characteristic, the direction between the measurement points may be taken into consideration. Good (see FIG. 4B). Furthermore, it is also preferable to set the filter coefficient to 0 when the distance measured from the measurement point of the measurement value to be filtered is a certain value or more. Thereby, calculation time can be shortened.

処理手段22は上記のようにして決定した各フィルタ係数と測定データ群の各測定値とに基いて、前記一の測定値に対するフィルタ処理された値を得る。つまり、処理手段22の係数合計部30では係数記憶部40に記憶された測定データ群の各測定点に対応したフィルタ係数を読み出し、その合計を求めて記憶手段24の係数合計値記憶部42に記憶する。乗算値合計部32では各フィルタ係数を係数記憶部40から読み出し、また各フィルタ係数に対応する測定点での測定値を測定データ記憶部36から読み出す。そして、読み出したフィルタ係数と測定値とを乗算して、該乗算したものを測定データ群の各測定点に渡って合計する。この乗算合計値は記憶手段24の乗算合計値記憶部44に記憶される。そして、除算部34では係数合計値記憶部42、乗算合計値記憶部44から係数合計値および乗算合計値を読み出し、乗算合計値を係数合計値で除算することで、前記一の測定値に対するフィルタ処理された値を求める。得られたフィルタ処理後の値は測定点の座標情報と関連付けて記憶手段24の処理データ記憶部38に記憶される。以上の処理をフィルタ処理の対象とする全ての測定値に対して行う。なお、各フィルタ係数を先に係数合計値で除算しておいてから、その値を各測定値に乗算して和をとることでフィルタ処理後の値を求めてもよい。
また、データ処理装置10は、ディスプレイ等で構成される表示手段46と、マウス、キーボード等の入力手段48とを備えており、フィルタ処理前、処理後の測定データ群の表示や、フィルタ条件の設定などを行うことができる。
The processing means 22 obtains a filtered value for the one measured value based on each filter coefficient determined as described above and each measured value of the measurement data group. That is, the coefficient summation unit 30 of the processing means 22 reads out the filter coefficients corresponding to each measurement point of the measurement data group stored in the coefficient storage section 40, obtains the sum, and stores it in the coefficient total value storage section 42 of the storage means 24. Remember. The multiplication value summation unit 32 reads out each filter coefficient from the coefficient storage unit 40 and reads out a measurement value at a measurement point corresponding to each filter coefficient from the measurement data storage unit 36. Then, the read filter coefficient is multiplied by the measured value, and the multiplied result is totaled over each measurement point of the measurement data group. The multiplication total value is stored in the multiplication total value storage unit 44 of the storage unit 24. The division unit 34 reads the coefficient total value and the multiplication total value from the coefficient total value storage unit 42 and the multiplication total value storage unit 44, and divides the multiplication total value by the coefficient total value, thereby filtering the one measurement value. Find the processed value. The obtained filtered value is stored in the processing data storage unit 38 of the storage unit 24 in association with the coordinate information of the measurement point. The above process is performed for all the measurement values to be filtered. In addition, after dividing each filter coefficient by the coefficient total value first, the value after filtering may be obtained by multiplying each measured value by each value and taking the sum.
Further, the data processing apparatus 10 includes a display means 46 constituted by a display and the like, and an input means 48 such as a mouse and a keyboard, and displays measurement data groups before and after the filtering process, and filter conditions. Settings can be made.

図5はデータ処理工程の流れを示した図である。ここで、測定データ群の測定値の個数はN個あるとし、測定点の位置座標をP(m)、その測定点での測定値をD(m)(ただし、m=1〜N)とする。
フィルタ係数決定工程ではフィルタ処理対象となる一の測定値に対し、測定データ群の測定点の座標情報を基にフィルタ係数を算出する。例えば、1個目の測定値D(1)をフィルタ処理の対象とした場合、その測定点P(1)と測定データ群の各測定点P(m)(m=1〜N)との位置関係(距離等)を求める。そして、算出した位置関係に基いて各フィルタ係数K1mを算出する。各フィルタ係数K1mはフィルタ対象となる測定値の測定点P(1)と各測定点P(m)とを変数とする関数K[P(m),P(1)]によって決められることになる。つまり、各フィルタ係数K1mは測定点P(1)から測った測定点P(m)までの距離および/または方向の関数として求まる。フィルタ処理の特性は関数K[P(m),P(1)]の関数形によって決まるため、データ処理の目的に応じて関数形を選択できるように構成しておくことが好適である。位置関係からのフィルタ係数の算出は上記の関数を計算するようにプログラムしておくか、もしくは位置関係とフィルタ係数とを対応させたテーブルとして記憶手段に記憶しておけばよい。
FIG. 5 shows the flow of the data processing process. Here, the number of measurement values in the measurement data group is N, the position coordinate of the measurement point is P (m), and the measurement value at the measurement point is D (m) (where m = 1 to N). To do.
In the filter coefficient determination step, the filter coefficient is calculated based on the coordinate information of the measurement points of the measurement data group for one measurement value to be filtered. For example, when the first measurement value D (1) is the target of the filter processing, the position between the measurement point P (1) and each measurement point P (m) (m = 1 to N) of the measurement data group. Find the relationship (distance, etc.). Then, each filter coefficient K 1m is calculated based on the calculated positional relationship. Each filter coefficient K 1m is determined by a function K [P (m), P (1)] having the measurement point P (1) of the measurement value to be filtered and each measurement point P (m) as variables. Become. That is, each filter coefficient K 1m is obtained as a function of the distance and / or direction from the measurement point P (1) to the measurement point P (m). Since the characteristics of the filter processing are determined by the function form of the function K [P (m), P (1)], it is preferable that the function form be selected according to the purpose of data processing. The calculation of the filter coefficient from the positional relationship may be programmed to calculate the above function, or may be stored in the storage means as a table in which the positional relationship and the filter coefficient are associated with each other.

次に処理工程では、上記で算出した各フィルタ係数K1mと測定データ群の各測定値D(m)(m=1〜N)とを基に、フィルタ対象となる測定値D(1)に対してフィルタ処理を行う。そのため、まず、算出した各測定値の測定点の位置P(m)に対応するフィルタ係数K1m=K[P(m),P(1)]を各測定点に渡って(つまり、mを1からNまで)合計した和SKを求める。つまり、和SKは次の式で表される。

Figure 2007024502
また、各測定値D(m)に対応したフィルタ係数K1mを乗算し、これを各測定点に渡って合計した和Sを求める。つまり、和Sは次の式で表される。
Figure 2007024502
このようにして求めた和Sを和SKで除算することで、フィルタ処理後の測定値D(1)’が次のように求められる。
Figure 2007024502
Next, in the processing step, based on each filter coefficient K 1m calculated above and each measurement value D (m) (m = 1 to N) of the measurement data group, the measurement value D (1) to be filtered is obtained. Filter processing is performed on the image. Therefore, first, the filter coefficient K 1m = K [P (m), P (1)] corresponding to the measurement point position P (m) of each measured value is passed over each measurement point (that is, m is set to m). from 1 to N) the sum SK 1, which is the sum. That is, the sum SK 1 is expressed by the following equation.
Figure 2007024502
Further, the filter coefficient K 1m corresponding to each measurement value D (m) is multiplied, and a sum S 1 obtained by summing the filter coefficient K 1m over each measurement point is obtained. That is, the sum S 1 is expressed by the following equation.
Figure 2007024502
By dividing the sum S 1 obtained in this way by the sum SK 1 , the measured value D (1) ′ after filtering is obtained as follows.
Figure 2007024502

そして、その他の測定値D(2),D(3),・・・,D(N)に対しても同様な処理を行うことで測定データ群に含まれる全ての(もしくはフィルタ処理を行いたい一部の)測定値に対してフィルタ処理が完了する。このようにして得られたフィルタ処理結果は表示手段などに出力される。また、各測定点に対応したフィルタ係数を求めるときに、必ずしも全ての測定値に対して求める必要はなく、例えばフィルタ対象とする測定値の測定位置から所定距離以内の測定点でのみフィルタ係数を求める(つまり、所定距離以上の測定点でのフィルタ係数を0とする)こととしてもよい。   Then, the same processing is performed on the other measurement values D (2), D (3),..., D (N) to perform all (or filter processing) included in the measurement data group. The filtering process is complete for some of the measurements. The filter processing result obtained in this way is output to a display means or the like. In addition, when obtaining the filter coefficient corresponding to each measurement point, it is not always necessary to obtain all the measurement values. For example, the filter coefficient is only obtained at a measurement point within a predetermined distance from the measurement position of the measurement value to be filtered. It may be determined (that is, the filter coefficient at a measurement point equal to or greater than a predetermined distance is set to 0).

次に上記実施形態にかかる装置を用いてシミュレーションを行った例を幾つか示す。ここでは真円度測定を行った場合、つまり複数の角度位置での被測定物の半径を測定した測定データ群に対してフィルタ処理を行う場合を想定している。測定点となる角度位置は、被測定物に対する測定子の相対速度の変動等により不等間隔となる。そこで不等間隔の測定データ(データ数:200個)を得るために、測定点の位置座標P(n)(n=1〜200)を、−π〜πまでの全周にわたってランダムに一様分布するという条件で生成した乱数によって与えた。また、各測定点での測定値D(n)(n=1〜200)を、分散が1で正規分布をするような条件で生成した乱数によって与えた。図6に、上記の条件で生成した不等間隔データのグラフを示す。図6(a)は直交座標表示のグラフ(横軸が測定点の座標(角度位置)、縦軸が測定値(半径方向の変位)を示している)を示し、図6(b)は極座標表示のグラフを示してる。ただし、図6(b)では極座標表示するために測定値Dに半径10のオフセットを加えている。   Next, some examples in which simulation is performed using the apparatus according to the above embodiment will be described. Here, it is assumed that the roundness measurement is performed, that is, the case where the filter processing is performed on the measurement data group obtained by measuring the radius of the object to be measured at a plurality of angular positions. The angular positions serving as measurement points are unevenly spaced due to fluctuations in the relative speed of the probe with respect to the object to be measured. Therefore, in order to obtain measurement data (number of data: 200) at unequal intervals, the position coordinates P (n) (n = 1 to 200) of the measurement points are uniformly uniform over the entire circumference from −π to π. It was given by random numbers generated under the condition of distribution. In addition, the measurement value D (n) (n = 1 to 200) at each measurement point was given by a random number generated under the condition that the variance is 1 and the distribution is normal. FIG. 6 shows a graph of unequal interval data generated under the above conditions. FIG. 6A shows a graph of orthogonal coordinate display (the horizontal axis shows the coordinates (angular position) of the measurement point, and the vertical axis shows the measured value (displacement in the radial direction)), and FIG. 6B shows the polar coordinates. The graph of the display is shown. However, in FIG. 6B, an offset having a radius of 10 is added to the measured value D in order to display polar coordinates.

<実施例1>
フィルタ係数を決定する関数(以下、フィルタ係数決定関数と呼ぶ)として、測定点間の距離Xを変数とした、次の式で表されるガウス関数を用いた。

Figure 2007024502
ここで定数filter_Kは、
Figure 2007024502
とした。図7に数4のガウス関数のグラフを示す(ただし、グラフの最大値が1となるように縦軸のスケールを調整した)。上記数4で示したガウス関数をフィルタ係数決定関数として使用しているため、本実施例のフィルタ処理はガウシアンフィルタの特性を持つ。 <Example 1>
As a function for determining a filter coefficient (hereinafter referred to as a filter coefficient determination function), a Gaussian function represented by the following equation using a distance X between measurement points as a variable was used.
Figure 2007024502
Where the constant filter_K is
Figure 2007024502
It was. FIG. 7 shows a graph of the Gaussian function of Equation 4 (however, the vertical scale was adjusted so that the maximum value of the graph was 1). Since the Gaussian function expressed by the above equation 4 is used as the filter coefficient determination function, the filter processing of this embodiment has the characteristics of a Gaussian filter.

フィルタ係数Knmは上記数4のK(X)を用いて、Knm=K(||P(m)−P(n)||)と表される。ただし、||P(m)−P(n)||はP(m)とP(n)間の距離、つまり、min{|P(m)−P(n)|,2π−|P(m)−P(n)|}のことを表している。ここで、|・|は絶対値、min{・}は|P(m)−P(n)|と(2π−|P(m)−P(n)|)のうちの小さい値のことを表している。すると、測定位置P(n)におけるフィルタ後の値D(n)’は、次の式で表される。

Figure 2007024502
ここで、SK
Figure 2007024502
である。 The filter coefficient K nm is expressed as K nm = K (|| P (m) −P (n) ||) using K (X) of the above equation 4. However, || P (m) −P (n) || is the distance between P (m) and P (n), that is, min {| P (m) −P (n) |, 2π− | P ( m) −P (n) |}. Here, | · | is an absolute value, and min {·} is a small value of | P (m) −P (n) | and (2π− | P (m) −P (n) |). Represents. Then, the filtered value D (n) ′ at the measurement position P (n) is expressed by the following equation.
Figure 2007024502
Where SK n is
Figure 2007024502
It is.

上記のフィルタ処理をn=1から200までの全ての測定点で行った。その結果を図8、図9に示す。図8は直交座標表示(横軸が測定点の座標(角度位置)、縦軸が測定値(半径方向の変位))で表したグラフ、図9は極座標表示で表したグラフである。なお、図9では極座標表示するために半径10のオフセットを加えて表示してある。また、図8(a)、図9(a)がフィルタ処理前のデータであり、図8(b)、図9(b)がフィルタ処理後のデータである。   The above filtering process was performed at all measurement points from n = 1 to 200. The results are shown in FIGS. FIG. 8 is a graph represented by orthogonal coordinate display (the horizontal axis is the coordinate (angular position) of the measurement point, the vertical axis is the measured value (displacement in the radial direction)), and FIG. 9 is a graph represented by polar coordinate display. In FIG. 9, an offset with a radius of 10 is added to display polar coordinates. FIGS. 8A and 9A show data before the filtering process, and FIGS. 8B and 9B show data after the filtering process.

<実施例2>
次にフィルタ係数決定関数として次式で表される指数型関数を用いたフィルタ処理を行った。

Figure 2007024502
ここで、ABS(X)はXの絶対値を求める関数、また定数filter_Kは
Figure 2007024502
とした。図10に数8の指数型関数のグラフを示す(ただし、グラフの最大値が1となるように縦軸のスケールを調整した)。実施例2では上記の指数型関数をフィルタ係数決定関数として使用しているので、時定数=filter_Kのローパスフィルターの特性を持つこととなる。 <Example 2>
Next, filter processing using an exponential function expressed by the following equation as a filter coefficient determination function was performed.
Figure 2007024502
Here, ABS (X) is a function for obtaining the absolute value of X, and the constant filter_K is
Figure 2007024502
It was. FIG. 10 shows a graph of the exponential function of Equation 8 (however, the vertical scale was adjusted so that the maximum value of the graph was 1). In the second embodiment, since the above exponential function is used as the filter coefficient determination function, it has the characteristics of a low-pass filter with a time constant = filter_K.

数8のK(X)を用いて、実施例1と同様にフィルタ係数Knm=K(||P(m)−P(n)||)を求め、このフィルタ係数Knmを用いて実施例1と同様にn=1から200までの全ての測定値に対してフィルタ処理を行った。その結果を図11、図12に示す。図11は直交座標表示(横軸が測定点の座標(角度位置)、縦軸が測定値(半径方向の変位))で表したグラフ、図12は極座標表示で表したグラフである。なお、図12では極座標表示するために半径10のオフセットを加えて表示してある。また、図11(a)、図12(a)がフィルタ処理前のデータであり、図11(b)、図12(b)がフィルタ後のデータである。 The filter coefficient K nm = K (|| P (m) −P (n) ||) is obtained in the same manner as in the first embodiment using K (X) of Equation 8, and the filter coefficient K nm is used for the implementation. As in Example 1, all the measured values from n = 1 to 200 were filtered. The results are shown in FIGS. 11 is a graph represented by orthogonal coordinate display (the horizontal axis is the coordinate (angular position) of the measurement point, the vertical axis is the measured value (displacement in the radial direction)), and FIG. 12 is a graph represented by the polar coordinate display. In FIG. 12, an offset having a radius of 10 is added for polar coordinate display. Further, FIGS. 11A and 12A are data before filtering, and FIGS. 11B and 12B are data after filtering.

<実施例3>
フィルタ係数決定関数として次式で表される矩形関数を用いてフィルタ処理を行った。

Figure 2007024502
ここで、ABS(X)はXの絶対値を求める関数、また定数filter_Kは
Figure 2007024502
とした。図13に数10の矩形関数のグラフを示す(ただし、縦軸のスケールをグラフの最大値が1となるよう調整した)。実施例3では上記の矩形関数をフィルタ係数決定関数として使用しているので、区間=2・filter_Kの移動平均フィルタの特性を持つことになる。 <Example 3>
Filter processing was performed using a rectangular function represented by the following equation as a filter coefficient determination function.
Figure 2007024502
Here, ABS (X) is a function for obtaining the absolute value of X, and the constant filter_K is
Figure 2007024502
It was. FIG. 13 shows a graph of the rectangular function of Formula 10 (however, the scale of the vertical axis is adjusted so that the maximum value of the graph is 1). In the third embodiment, the above-described rectangular function is used as the filter coefficient determination function, so that the moving average filter characteristic of section = 2 · filter_K is obtained.

数10のK(X)を用いて、実施例1と同様に、フィルタ係数Knm=K(||P(m)−P(n)||)を求め、このフィルタ係数Knmを用いてn=1から200までの全ての測定値に対してフィルタ処理を行った。その結果を図14、図15に示す。図14は直交座標表示(横軸が測定点の座標(角度位置)、縦軸が測定値(半径方向の変位))で表したグラフ、図15は極座標表示で表したグラフである。なお、図15では極座標表示するために半径10のオフセットを加えて表示してある。図14(a)、図15(a)がフィルタ処理前のデータであり、図14(b)、図15(b)がフィルタ後のデータである。
以上のように、本実施形態のデータ処理装置および方法によれば、不等間隔の測定データ、例えば三次元測定機の倣い測定、真円度測定、形状測定等において測定されたデータに対し、測定点の位置情報を保持したままフィルタ処理を実現することができる。本方法は従来のように補間法によって測定データに人工的なデータを付加していないため、従来よりもより信頼性の高い結果が得られると期待される。
The filter coefficient K nm = K (|| P (m) −P (n) ||) is obtained using K (X) of Formula 10 in the same manner as in the first embodiment, and this filter coefficient K nm is used. Filtering was performed on all measured values from n = 1 to 200. The results are shown in FIGS. FIG. 14 is a graph represented by orthogonal coordinate display (the horizontal axis is the coordinate (angular position) of the measurement point, the vertical axis is the measured value (displacement in the radial direction)), and FIG. 15 is a graph represented by polar coordinate display. In FIG. 15, an offset having a radius of 10 is added for polar coordinate display. FIGS. 14A and 15A show the data before the filtering process, and FIGS. 14B and 15B show the data after the filtering process.
As described above, according to the data processing apparatus and method of the present embodiment, with respect to measurement data at unequal intervals, for example, data measured in three-dimensional measuring machine scanning measurement, roundness measurement, shape measurement, etc. Filter processing can be realized while maintaining the position information of the measurement points. Since this method does not add artificial data to the measurement data by the interpolation method as in the prior art, it is expected that more reliable results can be obtained than in the past.

本発明にかかる実施形態のデータ処理装置の概略構成図1 is a schematic configuration diagram of a data processing apparatus according to an embodiment of the present invention. 測定点の座標空間が一次元の場合の等間隔データ(図2(a))、不等間隔データ(図2(b))の例を示した説明図Explanatory drawing which showed the example of equidistant data (FIG. 2 (a)) and unequal interval data (FIG.2 (b)) in case the coordinate space of a measurement point is one-dimensional. 測定点の座標空間が二次元の場合の等間隔データ(図3(a))、不等間隔データ(図3(b))の例を示した説明図Explanatory drawing which showed the example of equidistant data (FIG. 3 (a)) and unequal interval data (FIG.3 (b)) in case the coordinate space of a measurement point is two-dimensional フィルタ係数の算出についての説明図Explanatory drawing about calculation of filter coefficient データ処理工程の説明図Illustration of data processing process 本発明にかかる実施例で用いた不等間隔データを示すグラフThe graph which shows the unequal interval data used in the Example concerning this invention 実施例1で使用するフィルタ係数を決定する関数(ガウス関数)を示すグラフThe graph which shows the function (Gauss function) which determines the filter coefficient used in Example 1 実施例1で行ったフィルタ処理の結果を直交座標で示したグラフ(図8(a)がフィルタ処理前、図8(b)がフィルタ処理後)The graph which showed the result of the filter process performed in Example 1 by the orthogonal coordinate (FIG. 8 (a) is before filter process, FIG.8 (b) is after filter process) 実施例1で行ったフィルタ処理の結果を極座標で示したグラフ(図9(a)がフィルタ処理前、図9(b)がフィルタ処理後)The graph which showed the result of the filter process performed in Example 1 by the polar coordinate (FIG. 9 (a) before filter process, FIG.9 (b) after filter process) 実施例2で使用するフィルタ係数を決定する関数(指数型関数)を示すグラフThe graph which shows the function (exponential type function) which determines the filter coefficient used in Example 2 実施例2で行ったフィルタ処理の結果を直交座標で示したグラフ(図11(a)がフィルタ処理前、図11(b)がフィルタ処理後)The graph which showed the result of the filter processing performed in Example 2 by the orthogonal coordinate (FIG. 11 (a) before filter processing, FIG.11 (b) after filter processing) 実施例2で行ったフィルタ処理の結果を極座標で示したグラフ(図12(a)がフィルタ処理前、図12(b)がフィルタ処理後)The graph which showed the result of the filter process performed in Example 2 by the polar coordinate (FIG. 12 (a) is before filter process, FIG.12 (b) is after filter process) 実施例3で使用するフィルタ係数を決定する関数(矩形型関数)を示すグラフA graph showing a function (rectangular function) for determining a filter coefficient used in the third embodiment 実施例3で行ったフィルタ処理の結果を直交座標で示したグラフ(図14(a)がフィルタ処理前、図14(b)がフィルタ処理後)The graph which showed the result of the filter process performed in Example 3 by the orthogonal coordinate (FIG. 14 (a) is before filter process, FIG.14 (b) is after filter process) 実施例3で行ったフィルタ処理の結果を極座標で示したグラフ(図15(a)がフィルタ処理前、図15(b)がフィルタ処理後)The graph which showed the result of the filter process performed in Example 3 by the polar coordinate (FIG. 15 (a) is before filter process, FIG.15 (b) is after filter process)

符号の説明Explanation of symbols

10 フィルタ処理装置
12 測定系
20 フィルタ係数決定手段
22 処理手段
DESCRIPTION OF SYMBOLS 10 Filter processing apparatus 12 Measurement system 20 Filter coefficient determination means 22 Processing means

Claims (6)

離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うデータ処理装置であって、
フィルタ処理の対象となる一の測定値に対し、該一の測定値の測定点と前記測定データ群の各測定点との間の各位置関係を前記座標情報から求め、該各位置関係に基いて前記測定データ群の各測定点に対応した各フィルタ係数を算出するフィルタ係数決定手段と、
前記測定データ群の各測定値と前記フィルタ係数決定手段にて算出した各フィルタ係数とに基いて、前記一の測定値に対するフィルタ処理された値を得る処理手段と、を備えることを特徴とするデータ処理装置。
Filter the measurement values in the coordinate space of the measurement points with respect to the measurement data group in which the coordinate information of the measurement points distributed discretely and at irregular intervals and the measurement values at the measurement points are combined. A data processing device,
For each measurement value to be filtered, each positional relationship between the measurement point of the one measurement value and each measurement point of the measurement data group is obtained from the coordinate information, and based on each positional relationship. Filter coefficient determining means for calculating each filter coefficient corresponding to each measurement point of the measurement data group;
Processing means for obtaining a filtered value for the one measured value based on each measured value of the measurement data group and each filter coefficient calculated by the filter coefficient determining means. Data processing device.
請求項1に記載のデータ処理装置において、
前記フィルタ係数決定手段は、前記一の測定値の測定点の座標情報と前記測定データ群の各測定点の座標情報に基いて、前記一の測定値の測定点と前記測定データ群の各測定点との間の各距離を求める距離算出部と、前記測定データ群の各測定点に対応するフィルタ係数を前記距離算出部で算出した各距離に基いて求める係数算出部と、を備えることを特徴とするデータ処理装置。
The data processing apparatus according to claim 1,
The filter coefficient determining means is configured to determine each measurement point of the one measurement value and each measurement data group based on the coordinate information of the measurement point of the one measurement value and the coordinate information of each measurement point of the measurement data group. A distance calculation unit for obtaining each distance between the points, and a coefficient calculation unit for obtaining a filter coefficient corresponding to each measurement point of the measurement data group based on each distance calculated by the distance calculation unit. Characteristic data processing device.
請求項1または2のいずれかに記載のデータ処理装置において、
前記処理手段は、前記フィルタ係数決定手段にて算出したフィルタ係数の合計値を求める係数合計部と、
前記測定データ群の測定値と該測定値の測定点に対応した前記フィルタ係数とを乗算し、該乗算したものを前記測定データ群の各測定値に渡って合計する乗算値合計部と、
該乗算値合計部で算出した合計値を前記係数合計部で算出したフィルタ係数の合計値で除算して前記一の測定値に対するフィルタ処理された値を求める除算部と、を備えることを特徴とするデータ処理装置。
The data processing apparatus according to claim 1 or 2,
The processing means includes a coefficient summation unit for obtaining a total value of filter coefficients calculated by the filter coefficient determination means,
Multiplying the measurement value of the measurement data group by the filter coefficient corresponding to the measurement point of the measurement value, and summing the multiplication over each measurement value of the measurement data group,
A division unit that divides the total value calculated by the multiplication value totaling unit by the total value of the filter coefficients calculated by the coefficient totaling unit to obtain a filtered value for the one measured value, Data processing device.
請求項1から3のいずれかに記載のデータ処理装置において、
前記フィルタ係数決定手段は測定点間の距離が所定値以上の場合フィルタ係数を0とすることを特徴とするデータ処理装置。
The data processing device according to any one of claims 1 to 3,
The data processing apparatus according to claim 1, wherein the filter coefficient determining means sets the filter coefficient to 0 when the distance between measurement points is equal to or greater than a predetermined value.
離散的かつ不等間隔に分布した測定点の座標情報と前記各測定点での測定値とを組にした測定データ群に対して、測定点の座標空間上で前記測定値にフィルタ処理を行うデータ処理方法であって、
フィルタ処理の対象となる一の測定値に対し、該一の測定値の測定点と前記測定データ群の各測定点との間の各位置関係を前記座標情報から求め、該各位置関係に基いて前記測定データ群の各測定点に対応した各フィルタ係数を算出するフィルタ係数決定工程と、
前記測定データ群の各測定値と前記フィルタ係数決定工程で算出した各フィルタ係数とに基いて、前記一の測定値に対するフィルタ処理された値を得る処理工程と、を備えることを特徴とするデータ処理方法。
Filter the measurement values in the coordinate space of the measurement points with respect to the measurement data group in which the coordinate information of the measurement points distributed discretely and at irregular intervals and the measurement values at the measurement points are combined. A data processing method,
For each measurement value to be filtered, each positional relationship between the measurement point of the one measurement value and each measurement point of the measurement data group is obtained from the coordinate information, and based on each positional relationship. And a filter coefficient determination step for calculating each filter coefficient corresponding to each measurement point of the measurement data group,
And a processing step of obtaining a filtered value for the one measurement value based on each measurement value of the measurement data group and each filter coefficient calculated in the filter coefficient determination step. Processing method.
請求項5記載のデータ処理方法をコンピュータに実行させることを特徴とするデータ処理プログラム。   A data processing program for causing a computer to execute the data processing method according to claim 5.
JP2005202490A 2005-07-12 2005-07-12 Data processing apparatus, data processing method, and data processing program Expired - Fee Related JP4705815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202490A JP4705815B2 (en) 2005-07-12 2005-07-12 Data processing apparatus, data processing method, and data processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202490A JP4705815B2 (en) 2005-07-12 2005-07-12 Data processing apparatus, data processing method, and data processing program

Publications (2)

Publication Number Publication Date
JP2007024502A true JP2007024502A (en) 2007-02-01
JP4705815B2 JP4705815B2 (en) 2011-06-22

Family

ID=37785492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202490A Expired - Fee Related JP4705815B2 (en) 2005-07-12 2005-07-12 Data processing apparatus, data processing method, and data processing program

Country Status (1)

Country Link
JP (1) JP4705815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038779A (en) * 2008-08-06 2010-02-18 Mitsutoyo Corp Measuring machine and filter device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189819A (en) * 1995-01-11 1996-07-23 Atr Tsushin Syst Kenkyusho:Kk Shape feature measuring apparatus and method
JP2001052039A (en) * 1999-08-11 2001-02-23 Sony Corp Device and method for processing information, device and method for display and recording medium
JP2002014025A (en) * 2000-06-30 2002-01-18 Canon Inc Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP2004101503A (en) * 2002-07-18 2004-04-02 Mitsutoyo Corp Signal processing method, signal processing program, recording medium recording signal processing program, and signal processing apparatus
JP2004333293A (en) * 2003-05-07 2004-11-25 Mitsutoyo Corp Signal processing device, signal processing method, signal processing program, recording medium for recording signal processing program and measuring machine
JP2005201870A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal processor, signal processing method, signal processing program, recording medium with signal processing program stored, and measuring machine
JP2005201869A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal-processing method, signal-processing program, recording medium with the program stored, and signal processing apparatus
JP2006064617A (en) * 2004-08-30 2006-03-09 Rozefu Technol:Kk Extraction method of roughness curve, and extraction method of three-dimensional surface roughness shape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189819A (en) * 1995-01-11 1996-07-23 Atr Tsushin Syst Kenkyusho:Kk Shape feature measuring apparatus and method
JP2001052039A (en) * 1999-08-11 2001-02-23 Sony Corp Device and method for processing information, device and method for display and recording medium
JP2002014025A (en) * 2000-06-30 2002-01-18 Canon Inc Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP2004101503A (en) * 2002-07-18 2004-04-02 Mitsutoyo Corp Signal processing method, signal processing program, recording medium recording signal processing program, and signal processing apparatus
JP2004333293A (en) * 2003-05-07 2004-11-25 Mitsutoyo Corp Signal processing device, signal processing method, signal processing program, recording medium for recording signal processing program and measuring machine
JP2005201870A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal processor, signal processing method, signal processing program, recording medium with signal processing program stored, and measuring machine
JP2005201869A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal-processing method, signal-processing program, recording medium with the program stored, and signal processing apparatus
JP2006064617A (en) * 2004-08-30 2006-03-09 Rozefu Technol:Kk Extraction method of roughness curve, and extraction method of three-dimensional surface roughness shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038779A (en) * 2008-08-06 2010-02-18 Mitsutoyo Corp Measuring machine and filter device

Also Published As

Publication number Publication date
JP4705815B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
CN110285754B (en) Workpiece positioning method, device and system based on laser scanning and storage medium
JP5054356B2 (en) Computer-implemented method and system for characterizing geometric parameters of edge abrupts in machined parts
JP4705815B2 (en) Data processing apparatus, data processing method, and data processing program
JP6599698B2 (en) Image measuring apparatus and control program therefor
JP2010243480A (en) Magnetic field measuring instrument device
JP2008116206A (en) Apparatus, method, and program for pattern size measurement
Seno et al. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting
JP6216498B2 (en) Robust peak finder for sample data
JP2004536300A5 (en)
JP2004164346A (en) Method and device for measuring feature point of waveform signal
EP1157253B1 (en) Specimen topography reconstruction
CN112102456B (en) Ceramic wafer height detection method and device and computer readable storage medium
JP2005312014A (en) Resolution converting method
Martišek 3D reconstruction of the surface using a standard camera
JP2006214870A (en) Shape measuring system, method, and program
CN113126172A (en) Static displacement correction method and device
JP2022092083A (en) Product defect detection method
US11335005B2 (en) Method and device for detecting corners
JPWO2017026051A1 (en) Image processing apparatus, image processing method, and image processing program
JP6667669B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP6872324B2 (en) Measurement system, measurement method and measurement program
US20200065958A1 (en) Method and device for multiple edge detection
JP2021518951A (en) Correction method and device for correcting image data
JP2004333293A (en) Signal processing device, signal processing method, signal processing program, recording medium for recording signal processing program and measuring machine
JP7125746B2 (en) Chatter vibration suppression method and chatter vibration suppression system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4705815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees