JP2022092083A - Product defect detection method - Google Patents

Product defect detection method Download PDF

Info

Publication number
JP2022092083A
JP2022092083A JP2020204640A JP2020204640A JP2022092083A JP 2022092083 A JP2022092083 A JP 2022092083A JP 2020204640 A JP2020204640 A JP 2020204640A JP 2020204640 A JP2020204640 A JP 2020204640A JP 2022092083 A JP2022092083 A JP 2022092083A
Authority
JP
Japan
Prior art keywords
cross
image
defect detection
sectional image
sectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020204640A
Other languages
Japanese (ja)
Inventor
敏明 佐藤
Toshiaki Sato
尚宏 植田
Naohiro Ueda
浩 松木
Hiroshi Matsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa eTec Co Ltd
Original Assignee
Meiwa eTec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa eTec Co Ltd filed Critical Meiwa eTec Co Ltd
Priority to JP2020204640A priority Critical patent/JP2022092083A/en
Publication of JP2022092083A publication Critical patent/JP2022092083A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a defect detection method which can detect a blow hole of a casting easily.SOLUTION: A defect detection method comprises the steps of: acquiring a cross section image obtained by cutting in round slices a prescribed number of same-shaped castings at the same position; calculating the average luminance obtained by averaging the luminance of each corresponding image area of the cross section images and generating a reference cross section image made of the respective image areas applied with the average luminance; acquiring a detection cross section image obtained by cutting in round slices a casting having the same shape as the casting becoming the defect detection object at the same position; calculating the difference luminance taking a difference in the luminance between each image area of the detection cross section image and each image area of the reference cross section image equivalent to each image area and generating a cross section image for defect detection made of the image areas applied with the difference luminance; and specifying a blow hole from the cross section image for defect detection.SELECTED DRAWING: Figure 8

Description

本発明は製品の欠陥検出方法に関し、特に鋳造品に生じる内部欠陥である鋳巣を検出するのに適した方法に関するものである。 The present invention relates to a method for detecting defects in a product, and more particularly to a method suitable for detecting cavities, which are internal defects occurring in a cast product.

製品の欠陥、例えば鋳造品に生じる鋳巣を検出するために輪切り断面画像が取得できるCT(computed tomography)を使用する試みがなされているが(特許文献1)、CT画像にはアーチファクトという特有のノイズが生じるため、これによる欠陥検出精度の低下が問題となる。そこで例えば特許文献2には医用CT画像においてこれに生じる金属アーチファクトを除去する方法が示されており、ここでは、金属領域のピクセル点を中心とする円形検出領域を設定し、当該円形検出領域内の上記金属領域と非金属領域の比がプリセット値以上となった場合に上記円形検出領域を境界領域として境界平滑化処理を実行することにより金属アーチファクトを除去している。 Attempts have been made to use CT (computed tomography), which can obtain sliced cross-sectional images to detect defects in products, for example, cavities that occur in castings (Patent Document 1), but CT images have a peculiarity of artifacts. Since noise is generated, the deterioration of defect detection accuracy due to this is a problem. Therefore, for example, Patent Document 2 shows a method for removing a metal artifact generated in a medical CT image. Here, a circular detection region centered on a pixel point of the metal region is set, and the inside of the circular detection region is set. When the ratio of the metal region to the non-metal region is equal to or higher than the preset value, the metal artifact is removed by executing the boundary smoothing treatment with the circular detection region as the boundary region.

特開2005-351875JP-A-2005-351875 特開2015-85198JP 2015-85198

しかし、上記従来のアーチファクト除去方法では複雑な演算を必要とするため、製品の欠陥検出を簡易に行うことができないという問題があった。 However, since the above-mentioned conventional artifact removing method requires complicated calculations, there is a problem that defect detection of a product cannot be easily performed.

そこで、本発明はこのような課題を解決するもので、CT画像からのアーチファクト除去の演算負担を軽減して、簡易に製品の欠陥検出を行うことが可能な欠陥検出方法を提供することを目的とする。 Therefore, the present invention solves such a problem, and an object of the present invention is to provide a defect detection method capable of easily detecting defects in a product by reducing the computational burden of removing artifacts from CT images. And.

上記目的を達成するために、本第1発明では、所定数の同形製品を同一位置で輪切りした断面画像を取得し、これら断面画像の、対応する各画像領域の輝度を平均化した平均輝度を算出して、当該平均輝度を付与した前記各画像領域よりなる基準断面画像を生成し、一方、欠陥検出対象となる前記製品と同形の製品を前記同一位置で輪切りした検出断面画像を取得し、当該検出断面画像の各画像領域と当該各画像領域に相当する前記基準断面画像の各画像領域の輝度の差分をとった差分輝度を算出して、当該差分輝度を付与した画像領域よりなる欠陥検出用断面画像を生成して、当該欠陥検出用断面画像から欠陥を特定することを特徴とする。なお「画像領域」は一画素の領域でも良いし、所定の複数画素の領域でも良い。 In order to achieve the above object, in the first invention, a cross-sectional image obtained by cutting a predetermined number of products of the same shape into round slices at the same position is obtained, and the average brightness of these cross-sectional images obtained by averaging the brightness of each corresponding image region is obtained. A reference cross-sectional image consisting of the image regions to which the average brightness is applied is generated by calculation, while a detected cross-sectional image obtained by cutting a product having the same shape as the product to be a defect detection target at the same position is obtained. Defect detection consisting of an image region to which the differential brightness is imparted by calculating the differential brightness obtained by taking the difference between the brightness of each image area of the detected cross-sectional image and the brightness of each image area of the reference cross-sectional image corresponding to the image region. It is characterized in that a defect is generated and a defect is identified from the defect detection sectional image. The "image area" may be a one-pixel area or a predetermined plurality of pixel area.

本第1発明において、基準断面画像ではその画像領域に、所定数の同形製品を同一位置で輪切りした断面画像の対応する各画像領域の輝度を平均化した平均輝度が付与されているから、上記各製品の内部に局部的な欠陥があってこの部分で輝度が大きく変化していても、平均化によって欠陥による輝度変化は薄められて十分小さくなり、欠陥画像部分の無い基準断面画像が得られる。この際、上記各断面画像上のアーチファクトは、上記同形製品の設置位置・姿勢が同一であれば、常に同一位置に同一輝度で現れるから、上記のように輝度を平均化しても基準断面画像上にそのまま残存する。一方、検出断面画像上には、欠陥画像部分とこれに重畳して上記基準断面画像上と同様のアーチファクトが現れる。そこで、検出断面画像の各画像領域と当該各画像領域に相当する前記基準断面画像の各画像領域の輝度の差分をとった差分輝度を算出して、当該差分輝度を付与した画像領域よりなる欠陥検出用断面画像を生成すると、欠陥検出用断面画像ではアーチファクトは除去されて欠陥の画像のみが残るから、欠陥が容易かつ確実に特定できる。このようにして、本第1発明によれば、複雑な演算を要することなく輝度の平均化演算と輝度の差分演算のみの簡易な演算で、製品の欠陥検出を簡易に行うことができる。 In the first invention, in the reference cross-sectional image, the image region is provided with the average brightness obtained by averaging the brightness of each corresponding image region of the cross-sectional image obtained by cutting a predetermined number of products of the same shape at the same position. Even if there is a local defect inside each product and the brightness changes significantly in this part, the change in brightness due to the defect is diluted by averaging and becomes sufficiently small, and a reference cross-sectional image without a defect image part can be obtained. .. At this time, if the installation position and orientation of the same-shaped product are the same, the artifacts on each of the cross-sectional images always appear at the same position with the same brightness. Therefore, even if the brightness is averaged as described above, the artifacts are displayed on the reference cross-sectional image. It remains as it is. On the other hand, on the detected cross-sectional image, the defect image portion and the same artifact as on the reference cross-sectional image appear superimposed on the defect image portion. Therefore, a defect consisting of an image region to which the difference brightness is given is calculated by calculating the difference brightness obtained by taking the difference between the brightness of each image area of the detected cross-sectional image and the brightness of each image area of the reference cross-section image corresponding to the image area. When the cross-sectional image for detection is generated, the artifact is removed in the cross-sectional image for defect detection and only the image of the defect remains, so that the defect can be easily and surely identified. In this way, according to the first aspect of the present invention, it is possible to easily detect defects in a product by a simple operation of only a luminance averaging operation and a luminance difference calculation without requiring a complicated calculation.

本第2発明では、前記欠陥検出断面画像を前記製品の異なる輪切り位置で必要数生成して、これら欠陥検出用断面画像より欠陥検出用三次元画像を生成し、当該欠陥検出用三次元画像から欠陥を特定する。 In the second invention, a required number of defect detection cross-sectional images are generated at different round slice positions of the product, a defect detection three-dimensional image is generated from these defect detection cross-sectional images, and a defect detection three-dimensional image is generated from the defect detection three-dimensional image. Identify defects.

本第2発明によれば、欠陥検出用三次元画像が生成されるから、欠陥の大きさ(体積)や存在位置をさらに正確に検出でき、欠陥の特定をより確実に行うことができる。 According to the second invention, since the three-dimensional image for defect detection is generated, the size (volume) and the existence position of the defect can be detected more accurately, and the defect can be identified more reliably.

本第3発明では、前記所定数取得する各断面画像中から、明らかな欠陥を予め除いておく。 In the third invention, obvious defects are removed in advance from each of the cross-sectional images acquired in the predetermined number.

本第3発明によれば、自動あるいは目視等によって各断面画像中から明らかな欠陥が予め除かれるから、残る欠陥の特定の効率が向上する。 According to the third aspect of the present invention, since obvious defects are removed in advance from each cross-sectional image by automatic or visual inspection or the like, the efficiency of identifying the remaining defects is improved.

本第4発明では、前記製品は鋳物であり、前記欠陥は鋳巣である。 In the fourth invention, the product is a casting and the defect is a cavity.

以上のように、本発明の欠陥検出方法によれば、CT画像からのアーチファクト除去の演算負担が軽減されて、簡易に製品の欠陥検出を行うことができる。 As described above, according to the defect detection method of the present invention, the calculation burden of removing artifacts from the CT image is reduced, and the defect detection of the product can be easily performed.

本発明方法を実施するための装置の概略構成図である。It is a schematic block diagram of the apparatus for carrying out the method of this invention. 基準断面画像を生成するための手順を示すフローチャートである。It is a flowchart which shows the procedure for generating a reference cross-sectional image. 鋳造品のZ方向三位置における断面画像の一例を示す図である。It is a figure which shows an example of the cross-sectional image at three positions in the Z direction of a casting. 鋳造品のCAD三次元画像のZ方向三位置における断面画像の一例を示す図である。It is a figure which shows an example of the cross-sectional image at three positions in the Z direction of the CAD three-dimensional image of a cast product. 位置補正の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of position correction. CAD断面画像のコーナおよびCT断面画像のコーナ重心を示す図である。It is a figure which shows the corner of a CAD cross-sectional image, and the corner center of gravity of a CT cross-sectional image. 平均輝度算出の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of the average luminance calculation. 欠陥検出用断面画像を生成するための手順を示すフローチャートである。It is a flowchart which shows the procedure for generating the section image for defect detection. 差分輝度算出の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of the difference luminance calculation. エッジノイズ除去の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of edge noise removal. 鋳巣特定の詳細な手順を示すフローチャートである。It is a flowchart which shows the detailed procedure of cavities identification.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。 The embodiments described below are merely examples, and various design improvements made by those skilled in the art within the scope of the present invention are also included in the scope of the present invention.

図1には本発明方法を実施するための装置の一例を示す。製品として例えば鋳造品WがX-Y平面内で回転するテーブル(図示略)上に載置される。X-Y平面に平行な面内で、鋳造品Wを挟んで対向するようにCT(computed tomography)を構成するX線照射器1とラインセンサ2が位置しており、X線照射器1からコリメータ等によってビームを扁平に狭められた扇状に拡がるX線Rが鋳造品Wを輪切り状に透過してラインセンサ2に入力している。 FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. As a product, for example, a casting W is placed on a table (not shown) that rotates in an XY plane. The X-ray irradiator 1 and the line sensor 2 constituting the CT (computed tomography) are located in a plane parallel to the XY plane so as to face each other across the cast product W, from the X-ray irradiator 1. The X-ray R, in which the beam is narrowed flat by a collimator or the like and spreads in a fan shape, passes through the cast product W in a slice shape and is input to the line sensor 2.

ラインセンサ2からの出力はデジタルデータとして制御装置内のコンピュータ3に入力される。鋳造品Wをテーブル上で回転させることによって全方位からの透過X線がラインセンサ2に入力し、ラインセンサ2からのデジタルデータを入力したコンピュータ3で公知の方法によって、Z方向の所定位置での鋳造品Wの輪切り断面画像が得られる。 The output from the line sensor 2 is input to the computer 3 in the control device as digital data. By rotating the casting W on a table, transmitted X-rays from all directions are input to the line sensor 2, and digital data from the line sensor 2 is input by a method known to the computer 3 at a predetermined position in the Z direction. A sliced cross-sectional image of the cast product W of the above is obtained.

本実施形態では、鋳造品Wを載置したテーブルと、X線照射器1およびラインセンサ2は、Z方向へ相対移動可能であり、コンピュータ3内の演算によって、Z方向の複数位置で得られた断面画像から鋳造品Wの三次元画像を得ることができる。X線照射器1やテーブルの回転、Z方向への相対移動等はコンピュータ3からの出力信号で適宜行われる。なお、以下にフローチャートで説明する各手順は、コンピュータ3のプログラムによって実行される。 In the present embodiment, the table on which the casting W is placed, the X-ray irradiator 1 and the line sensor 2 are relatively movable in the Z direction, and are obtained at a plurality of positions in the Z direction by calculation in the computer 3. A three-dimensional image of the cast product W can be obtained from the cross-sectional image. Rotation of the X-ray irradiator 1 and the table, relative movement in the Z direction, and the like are appropriately performed by the output signal from the computer 3. Each procedure described in the flowchart below is executed by the program of the computer 3.

A.基準断面画像の生成
(断面画像の取得)
図2には基準断面画像を生成するための手順を示す。最初にステップ101で、鋳造品の所定のZ方向位置での断面画像を取得する。本実施形態では、一の鋳造品についてZ方向で複数位置の断面画像を取得する。これを図3に示し、図3のF1,F2,F3はそれぞれZ方向の3位置Z1,Z2,Z3で得られた鋳造品Wの断面画像の一例である。本実施形態では、一の鋳造品についてZ方向の複数(後述する三次元画像を得るのに必要な所定数)位置での断面画像を取得した後、同形の必要数の他の鋳造品についてもZ方向の同一位置でそれぞれ断面画像を取得する。
A. Generation of reference cross-section image (acquisition of cross-section image)
FIG. 2 shows a procedure for generating a reference cross-sectional image. First, in step 101, a cross-sectional image of the cast product at a predetermined position in the Z direction is acquired. In the present embodiment, cross-sectional images of a plurality of positions in the Z direction are acquired for one cast product. This is shown in FIG. 3, and F1, F2, and F3 in FIG. 3 are examples of cross-sectional images of the cast product W obtained at the three positions Z1, Z2, and Z3 in the Z direction, respectively. In the present embodiment, after acquiring cross-sectional images of one cast product at a plurality of positions in the Z direction (predetermined number required to obtain a three-dimensional image described later), the required number of other cast products having the same shape are also obtained. Cross-sectional images are acquired at the same position in the Z direction.

(断面画像の位置補正)
続いて図2のステップ102では、上記断面画像F1~F3の位置を補正する。これはテーブル上に載置される鋳造品の位置がその都度僅かにズレるからである。このズレは本実施形態では鋳造品がテーブル上に置かれていることによりZ方向には生じず、X-Y平面内でのみ生じる。なお、鋳造品が置かれる際の位置ズレが問題の無い程度に小さい場合には特に位置補正の必要はない。
(Position correction of cross-sectional image)
Subsequently, in step 102 of FIG. 2, the positions of the cross-sectional images F1 to F3 are corrected. This is because the position of the casting placed on the table is slightly displaced each time. In this embodiment, this deviation does not occur in the Z direction because the cast product is placed on the table, but occurs only in the XY plane. If the misalignment when the cast product is placed is small enough that there is no problem, there is no need to correct the position.

断面画像の上記位置補正は本実施形態では、別に用意された当該鋳造品のCAD三次元画像を利用して行う。図4にはCAD三次元画像W´の一例を示し、図中のF1´,F2´,F3´は、CAD三次元画像W´を上記3位置Z1,Z2,Z3と同一のZ方向位置Z1´,Z2´,Z3´で輪切りにしたCAD断面画像である。 In the present embodiment, the position correction of the cross-sectional image is performed by using the CAD three-dimensional image of the cast product prepared separately. FIG. 4 shows an example of the CAD three-dimensional image W', and F1', F2', and F3'in the figure indicate the CAD three-dimensional image W'at the same Z-direction position Z1 as the above three positions Z1, Z2, and Z3. It is a CAD cross-sectional image cut into round slices by', Z2', Z3'.

位置補正ステップ102の詳細を図5に示す。図5において、ステップ201では、CT断面画像データ(断面画像に対応)とこれに対応するCAD断面画像データ(CAD断面画像に対応)を切り出す。ステップ202ではCAD断面画像データをスキャンして四隅のコーナを検出する。CAD断面画像F1´で検出されたコーナC1´,C2´,C3´,C4´を図6(1)に示す。 The details of the position correction step 102 are shown in FIG. In FIG. 5, in step 201, CT cross-sectional image data (corresponding to the cross-sectional image) and CAD cross-sectional image data corresponding to the CT cross-sectional image data (corresponding to the CAD cross-sectional image) are cut out. In step 202, the CAD cross-sectional image data is scanned to detect the corners at the four corners. The corners C1', C2', C3', and C4' detected in the CAD cross-sectional image F1'are shown in FIG. 6 (1).

図5のステップ203では検出したコーナC1´~C4´の周辺に対応するCT断面画像データの縦方向及び横方向の微分値を算出し、微分値が一定量以上の重心を算出する(ステップ204)。図6(2)は、算出された重心C1,C2,C3,C4を断面画像F1上に示したものである。 In step 203 of FIG. 5, the vertical and horizontal differential values of the CT cross-sectional image data corresponding to the periphery of the detected corners C1'to C4' are calculated, and the center of gravity whose differential value is a certain amount or more is calculated (step 204). ). FIG. 6 (2) shows the calculated center of gravity C1, C2, C3, and C4 on the cross-sectional image F1.

図5のステップ205では、コーナC1´~C4´と重心C1~C4の相対位置関係よりCAD断面画像データに対するCT断面画像データの平行移動量と回転量を算出する。この算出は例えば、鋳造品のZ方向の複数位置Z1~Z3でそれぞれ検出ないし算出されたコーナC1´~C4´と重心C1~C4の相対位置関係を使って例えばその最小二乗誤差が最小になるような適当な平行移動量および回転角を求めることにより行う。ステップ206ではCT断面画像データを、算出された上記平行移動量および回転角だけ移動させて断面画像F1~F3の画像位置を補正する。 In step 205 of FIG. 5, the amount of translation and the amount of rotation of the CT cross-sectional image data with respect to the CAD cross-sectional image data are calculated from the relative positional relationship between the corners C1'to C4' and the center of gravity C1 to C4. This calculation uses, for example, the relative positional relationship between the corners C1'to C4'and the centers of gravity C1 to C4 detected or calculated at the multiple positions Z1 to Z3 in the Z direction of the cast product, for example, and the minimum squared error is minimized. This is done by obtaining an appropriate translation amount and rotation angle. In step 206, the CT cross-sectional image data is moved by the calculated translation amount and rotation angle to correct the image positions of the cross-sectional images F1 to F3.

(平均輝度の算出、基準断面画像の生成)
図2のステップ103では、位置補正された断面画像F1~F3について、各画像領域(本実施形態では画素)の平均輝度を算出する。この平均輝度の算出は、必要数の同形の鋳造品Wについて、Z方向の同一位置で輪切りにされた各断面画像の各画像領域の輝度の平均を算出するものである。このように平均を算出することによって、鋳造品の内部に局部的な欠陥としての鋳巣があってこの部分で輝度が大きく変化していても、この平均化によって鋳巣による輝度変化は薄められて十分小さくなる。
(Calculation of average brightness, generation of reference cross-sectional image)
In step 103 of FIG. 2, the average brightness of each image region (pixel in the present embodiment) is calculated for the position-corrected cross-sectional images F1 to F3. This calculation of the average brightness is to calculate the average brightness of each image region of each cross-sectional image sliced at the same position in the Z direction for the required number of cast products W having the same shape. By calculating the average in this way, even if there is a cavity as a local defect inside the casting and the brightness changes significantly in this part, this averaging dilutes the change in brightness due to the cavity. Is small enough.

一方、各断面画像のアーチファクトは常に同一位置に同一輝度で現れるから、上記のような輝度の平均を算出してもそのまま残存する。したがって、各画像領域の輝度を平均化し、このような平均輝度が付与された画像領域からなる基準断面画像を生成すると(ステップ104)、基準断面画像は、鋳巣が解消された鋳造品の断面画像にアーチファクトが重畳したものとなる。本実施形態では、このような基準断面画像を、鋳造品についてZ方向の複数(後述する三次元画像を得るのに必要な数)位置で生成しておく。 On the other hand, since the artifacts of each cross-sectional image always appear at the same position with the same brightness, they remain as they are even if the average of the above brightness is calculated. Therefore, when the brightness of each image region is averaged and a reference cross-section image consisting of the image regions to which such average brightness is given is generated (step 104), the reference cross-section image is a cross-section of the casting product in which the cavities are eliminated. The artifact is superimposed on the image. In the present embodiment, such a reference cross-sectional image is generated at a plurality of positions (the number required to obtain a three-dimensional image described later) in the Z direction for the cast product.

平均輝度算出ステップ103(図2)の詳細を図7に示す。図7のステップ301では基準断面画像データのCT値(輝度値に相当)を0にリセットしておく。続いてCT画像データのCT値を上記基準断面画像データに加算し(ステップ302)、この加算を必要数のCT断面画像データについて繰り返し(ステップ303)、ステップ304で基準断面画像データの全ての画素のCT値をCT断面画像データの個数(必要数)で除算する。 The details of the average luminance calculation step 103 (FIG. 2) are shown in FIG. In step 301 of FIG. 7, the CT value (corresponding to the luminance value) of the reference cross-sectional image data is reset to 0. Subsequently, the CT value of the CT image data is added to the reference cross-sectional image data (step 302), this addition is repeated for the required number of CT cross-sectional image data (step 303), and all the pixels of the reference cross-sectional image data are repeated in step 304. The CT value of is divided by the number of CT cross-sectional image data (necessary number).

なお、平均輝度の算出は必ずしも上述のような算術平均には限られず、必要に応じて加重平均等によっても良い。 The calculation of the average luminance is not necessarily limited to the arithmetic mean as described above, and may be a weighted average or the like, if necessary.

B.欠陥検出用断面画像の生成
(検出断面画像の取得)
図8には欠陥検出用断面画像を生成するための手順を示す。最初にステップ401で検出断面画像を取得する。検出断面画像は、欠陥検出の対象となる鋳造品をテーブル上に載置して前述したCTによって得られるZ方向の所定位置での輪切り断面画像である。欠陥検出の対象となる鋳造品は、基準断面画像を生成してある鋳造品と同形のものである。
B. Generation of cross-sectional image for defect detection (acquisition of detected cross-sectional image)
FIG. 8 shows a procedure for generating a cross-sectional image for defect detection. First, the detected cross-sectional image is acquired in step 401. The detected cross-sectional image is a round-cut cross-sectional image at a predetermined position in the Z direction obtained by the above-mentioned CT in which a cast product to be detected for defects is placed on a table. The casting that is the target of defect detection has the same shape as the casting that generated the reference cross-sectional image.

図8のステップ402では前述したと同様の手順(ステップ102、ステップ201~206参照)で検出断面画像の位置補正を行う。 In step 402 of FIG. 8, the position of the detected cross-sectional image is corrected by the same procedure as described above (see step 102 and steps 201 to 206).

(差分輝度の算出)
続いて図8のステップ403では、検出断面画像と基準断面画像の差分輝度を算出する。この場合の基準断面画像は、検出断面画像とZ方向の同一位置で鋳造品を輪切りして得られたものを使用する。ここで、検出断面画像は、鋳造品の断面画像にアーチファクトと鋳巣の画像(鋳巣がある場合には)が重畳したものとなっている。これに対して基準断面画像は、前述したように、鋳造品の断面画像部分にアーチファクトが重畳したものである。したがって、検出断面画像と基準断面画像の差分輝度を算出すれば、アーチファクトと、鋳造品の断面画像部分は除去されて、鋳巣の画像部分だけが残った欠陥検出用断面画像が得られることになる。
(Calculation of differential brightness)
Subsequently, in step 403 of FIG. 8, the difference luminance between the detected cross-sectional image and the reference cross-sectional image is calculated. As the reference cross-sectional image in this case, the one obtained by slicing the cast product at the same position in the Z direction as the detected cross-sectional image is used. Here, the detected cross-sectional image is an image of the artifact and the cavities (if there is a cavities) superimposed on the cross-sectional image of the casting. On the other hand, in the reference cross-sectional image, as described above, the artifact is superimposed on the cross-sectional image portion of the cast product. Therefore, if the difference brightness between the detected cross-sectional image and the reference cross-sectional image is calculated, the artifact and the cross-sectional image portion of the cast product are removed, and a cross-sectional image for defect detection is obtained in which only the image portion of the cavities remains. Become.

差分輝度算出ステップ403の詳細を図9に示す。図9のステップ501ではCT断面画像データ(検出断面画像に対応)のCT値から基準断面画像データのCT値を減算し、減算結果が正値である場合はこれを0に設定し(ステップ502)、減算結果が負値である場合は-1を乗算して正値にする(ステップ503)。鋳巣がある場合にはその部分の輝度は低下するから減算値は大きな負値になる。そこで、これを正値に変換しておく。 The details of the differential luminance calculation step 403 are shown in FIG. In step 501 of FIG. 9, the CT value of the reference cross-sectional image data is subtracted from the CT value of the CT cross-sectional image data (corresponding to the detected cross-sectional image), and if the subtraction result is a positive value, this is set to 0 (step 502). ), If the subtraction result is a negative value, multiply by -1 to obtain a positive value (step 503). If there is a cavity, the brightness of that part will decrease, so the subtraction value will be a large negative value. Therefore, this is converted to a positive value.

(低差分輝度領域の除去)
図8のステップ404では、ステップ403で得られた欠陥検出用断面画像中の、輝度が閾値よりも小さい部分をノイズとして除去する。
(Removal of low difference brightness area)
In step 404 of FIG. 8, a portion of the defect detection cross-sectional image obtained in step 403 whose brightness is smaller than the threshold value is removed as noise.

(エッジノイズの除去、欠陥検出用断面画像の生成)
図8のステップ405では、鋳造品の輪郭に沿って生じる欠陥検出用断面画像中の高輝度部分をエッジノイズとして除去して欠陥検出用断面画像を生成する(ステップ406)。図10には、エッジノイズ除去ステップ405の詳細を示す。図10において、ステップ601で境界距離を設定し、ステップ602では、当該欠陥検出断面画像データに対応するCAD断面画像データで認識できる鋳造品の輪郭部から境界距離以下の領域内に零でない差分データ(差分輝度値)がある場合にこれを0に設定する。
(Removal of edge noise, generation of cross-sectional image for defect detection)
In step 405 of FIG. 8, a high-intensity portion in the defect detection cross-sectional image generated along the contour of the casting is removed as edge noise to generate a defect detection cross-sectional image (step 406). FIG. 10 shows the details of the edge noise removal step 405. In FIG. 10, the boundary distance is set in step 601 and in step 602, the difference data that is not zero within the region below the boundary distance from the contour portion of the casting that can be recognized by the CAD cross-sectional image data corresponding to the defect detection cross-sectional image data. If there is (difference brightness value), set this to 0.

(欠陥検出用三次元画像の生成、鋳巣の特定)
図8のステップ407では、上記欠陥検出用断面画像を、鋳造品のZ方向の異なる輪切り位置で必要数取得して、欠陥検出用三次元画像を生成する。この欠陥検出用三次元画像は鋳巣部分(候補)のみが三次元空間に配置されたものとなる。そこで、続くステップ408では上記欠陥検出用三次元画像中の鋳巣候補から鋳巣を特定する。
(Generation of 3D image for defect detection, identification of cavities)
In step 407 of FIG. 8, a required number of the defect detection cross-sectional images are acquired at different round slice positions in the Z direction of the cast product, and a defect detection three-dimensional image is generated. In this three-dimensional image for defect detection, only the cavities (candidates) are arranged in the three-dimensional space. Therefore, in the following step 408, the cavities are specified from the cavities candidates in the defect detection three-dimensional image.

鋳巣特定ステップ408の詳細を図11に示す。図11のステップ701では、鋳巣判定基準(体積、長さ、存在位置)を設定する。ステップ702では、欠陥検出用三次元画像データにおいて連続した非零領域である鋳巣候補を検出する。続くステップ703では、検出された鋳巣候補の体積、長さ、存在位置を算出し、鋳巣判定基準を満たす場合は当該鋳巣候補を鋳巣と特定する(ステップ704からステップ705)。この手順を全ての鋳巣候補について行う(ステップ706)。 The details of the cavities specifying step 408 are shown in FIG. In step 701 of FIG. 11, the cavities determination criteria (volume, length, existence position) are set. In step 702, a casting cavity candidate which is a continuous non-zero region in the defect detection three-dimensional image data is detected. In the following step 703, the volume, length, and existing position of the detected cavities candidate are calculated, and if the cavities determination criteria are satisfied, the cavities candidates are identified as cavities (steps 704 to 705). This procedure is performed for all cavities candidates (step 706).

(その他の実施形態)
上記実施形態では欠陥検出用三次元画像で鋳巣を特定するようにしたが、二次元の欠陥検出用断面画像で特定するようにしても良い。
上記実施形態において、各断面画像中の明らかな欠陥を目視等によって予め除いておくようにすれば、残る欠陥の特定を効率的に行うことができる。
上記実施形態では鋳造品の鋳巣を検出するものとしたが、本発明は製品の欠陥の検出に広く適用できるものである。
(Other embodiments)
In the above embodiment, the cavities are specified by the defect detection three-dimensional image, but it may be specified by the two-dimensional defect detection cross-sectional image.
In the above embodiment, if obvious defects in each cross-sectional image are removed in advance by visual inspection or the like, the remaining defects can be efficiently identified.
In the above embodiment, the cavities of the cast product are detected, but the present invention can be widely applied to the detection of defects in the product.

1…X線照射器、2…ラインセンサ、3…コンピュータ、R…X線、W…鋳造品(製品)。 1 ... X-ray irradiator, 2 ... line sensor, 3 ... computer, R ... X-ray, W ... casting (product).

Claims (4)

所定数の同形製品を同一位置で輪切りした断面画像を取得し、これら断面画像の、対応する各画像領域の輝度を平均化した平均輝度を算出して、当該平均輝度を付与した前記各画像領域よりなる基準断面画像を生成し、一方、欠陥検出対象となる前記製品と同形の製品を前記同一位置で輪切りした検出断面画像を取得し、当該検出断面画像の各画像領域と当該各画像領域に相当する前記基準断面画像の各画像領域の輝度の差分をとった差分輝度を算出して、当該差分輝度を付与した画像領域よりなる欠陥検出用断面画像を生成して、当該欠陥検出用断面画像から欠陥を特定することを特徴とする製品の欠陥検出方法。 Cross-sectional images obtained by cutting a predetermined number of products of the same shape at the same position are obtained, and the average brightness obtained by averaging the brightness of each corresponding image area of these cross-sectional images is calculated, and the average brightness is given to each of the image areas. A reference cross-sectional image is generated, and on the other hand, a detected cross-sectional image obtained by cutting a product having the same shape as the product to be detected as a defect at the same position is obtained, and the detected cross-sectional image is divided into each image area and each image area. The differential brightness obtained by taking the difference in the brightness of each image region of the corresponding reference cross-sectional image is calculated to generate a defect detection cross-sectional image consisting of the image region to which the differential brightness is applied, and the defect detection cross-sectional image is generated. A product defect detection method characterized by identifying defects from. 前記欠陥検出断面画像を前記製品の異なる輪切り位置で必要数生成して、これら欠陥検出用断面画像より欠陥検出用三次元画像を生成し、当該欠陥検出用三次元画像から欠陥を特定する請求項1に記載の製品の欠陥検出方法。 A claim that a required number of defect detection cross-sectional images are generated at different round slice positions of the product, a defect detection three-dimensional image is generated from these defect detection cross-sectional images, and a defect is identified from the defect detection three-dimensional image. The product defect detection method described in 1. 前記所定数取得する各断面画像中から、明らかな欠陥を予め除いておく請求項1又は2に記載の製品の欠陥検出方法。 The defect detection method for a product according to claim 1 or 2, wherein obvious defects are removed in advance from each of the cross-sectional images to be acquired in a predetermined number. 前記製品は鋳物であり、前記欠陥は鋳巣である請求項1ないし3のいずれかに記載の製品の欠陥検出方法。 The method for detecting a defect in a product according to any one of claims 1 to 3, wherein the product is a casting and the defect is a cavity.
JP2020204640A 2020-12-10 2020-12-10 Product defect detection method Pending JP2022092083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020204640A JP2022092083A (en) 2020-12-10 2020-12-10 Product defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020204640A JP2022092083A (en) 2020-12-10 2020-12-10 Product defect detection method

Publications (1)

Publication Number Publication Date
JP2022092083A true JP2022092083A (en) 2022-06-22

Family

ID=82067904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020204640A Pending JP2022092083A (en) 2020-12-10 2020-12-10 Product defect detection method

Country Status (1)

Country Link
JP (1) JP2022092083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248573A1 (en) * 2022-06-24 2023-12-28 富士フイルム株式会社 Display control device, display control method, and display control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248573A1 (en) * 2022-06-24 2023-12-28 富士フイルム株式会社 Display control device, display control method, and display control program

Similar Documents

Publication Publication Date Title
EP3296726B1 (en) X-ray inspection apparatus and control method
US20160379370A1 (en) Information processing apparatus, information processing method, and storage medium
JP6591035B2 (en) Techniques for measuring the overlay between layers of multilayer structures.
JP5109598B2 (en) Article inspection method
US9224198B2 (en) Analysis of the digital image of the surface of a tyre and processing of non-measurement points
US20140307941A1 (en) Analysis of the digital image of the external surface of a tyre and processing of false measurement points
US10540765B2 (en) Image processing device, image processing method, and computer program product thereon
KR102493849B1 (en) Image acquisition device and image acquisition method, and image correction program
WO2013183758A1 (en) Defect determination device, radiography system, and defect determination method
US10481106B2 (en) Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
JP2022092083A (en) Product defect detection method
US20170061649A1 (en) Image measuring apparatus and non-temporary recording medium on which control program of same apparatus is recorded
Ametova et al. A tool for reducing cone-beam artifacts in computed tomography data
US8897534B2 (en) Method and evaluation device for determining the position of a structure located in an object to be examined by means of X-ray computer tomography
US20180047163A1 (en) Image processing apparatus, image processing method, and computer-readable recording medium
JP5012045B2 (en) X-ray CT system
JP2017062178A (en) Defect detection method for product
JP2019023664A (en) X-ray inspection processing apparatus and x-ray inspection method
JP6018802B2 (en) Dimension measuring device and computer program
JP6611415B2 (en) Internal defect detection method for industrial products
JP2004226202A (en) Image processor and recording medium
JP7267611B2 (en) Inspection device and inspection method
EP4125031A1 (en) Method and systems for removing anti-scatter grid artifacts in x-ray imaging
Lin et al. Cylinder fitting from a sinogram image for dimensional CT metrology
JP2008257333A (en) Three-dimensional imaging method and tomograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231127