JP2007024442A - Cooling method and cooling facility - Google Patents

Cooling method and cooling facility Download PDF

Info

Publication number
JP2007024442A
JP2007024442A JP2005209858A JP2005209858A JP2007024442A JP 2007024442 A JP2007024442 A JP 2007024442A JP 2005209858 A JP2005209858 A JP 2005209858A JP 2005209858 A JP2005209858 A JP 2005209858A JP 2007024442 A JP2007024442 A JP 2007024442A
Authority
JP
Japan
Prior art keywords
cold air
building
cooling
heat exchanger
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005209858A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kanao
英敏 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hachiyo Engineering Co Ltd
Original Assignee
Hachiyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hachiyo Engineering Co Ltd filed Critical Hachiyo Engineering Co Ltd
Priority to JP2005209858A priority Critical patent/JP2007024442A/en
Publication of JP2007024442A publication Critical patent/JP2007024442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cooling method and a cooling facility capable of cooling sufficiently and efficiently by fundamentally reexamining behavior of operational cold air. <P>SOLUTION: This invention is the method to cool and store an object A to be stored by setting storage equipment 2 of the object A to be stored and a cold air supplier 3 in a building 11 and supplying operation cold air C from the cold air supplier 3 into the building 11. A duct 32 of the cold air supplier 3 has a take-in port 33 for recovering operated cold air C1 opened near a ceiling of the building 11 and has a discharge port 34 for supplying the operation cold air C which is obtained by re-cooling recovered operated cold air C1 opened near a floor surface in the building 11. In the building 11, in accordance with operation of the operated cold air C1 moving up, a circulating flow for sequentially feeding new cold air C from below is formed and the object A to be stored is always kept surrounded by the operation cold air C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍、冷蔵等を行う冷却手法に関するものであって、特に倉庫建屋内に収容された大量の被保管物を、均一に且つ効率的に冷却する新規な冷却方法並びに、この方法を適用する冷却施設に係るものである。   The present invention relates to a cooling method for freezing, refrigeration, and the like, and in particular, a novel cooling method for uniformly and efficiently cooling a large amount of objects stored in a warehouse building, and this method. This applies to the cooling facility to be applied.

従来から冷凍倉庫、冷蔵倉庫等において倉庫建屋内を冷却するにあたっては、冷気を倉庫建屋内の上方、例えば天井近くから供給し、降下させながら被保管物と接触させ、このものを冷却した後、下方において回収し、循環利用に供する手法が採られていた。これは、冷気が、これより温度が高い空気と比べて重く、自然に下方に移動し、また底部に滞留する性質を有するためと考えられる。確かに、このような冷気の循環は、物理法則に則り、自然な動きではあるものの、実際の冷気の挙動としては、被保管物の個別の温度状況等に影響されるため、必ずしも全ての被保管物を万遍なく冷却することはできなかった。   Conventionally, when cooling a warehouse building in a refrigerated warehouse, a refrigerated warehouse, etc., cool air is supplied from above the warehouse building, for example, near the ceiling, brought into contact with the storage object while being lowered, and after cooling this thing, The method of recovering in the downward direction and using it for circulation was used. This is presumably because the cold air is heavier than air having a higher temperature, moves naturally downward, and stays at the bottom. Certainly, this kind of cold air circulation is a natural movement in accordance with the laws of physics, but the actual cold air behavior is affected by the individual temperature conditions etc. The stored items could not be cooled uniformly.

すなわち、冷気は、通常、建屋内にストックされた大量の被保管物の間を縫うように下降して行くが、被保管物の温度は必ずしも一定とは限らない。例えば新規に外部から被保管物が搬入された場合には、その場所の周辺温度が部分的に高まり、このため、その付近の空気(冷気)は押し上げられるようになり(いわゆる上昇気流)、また圧力も増すことになる。従って、自然に降下する冷気は、新規に搬入された被保管物の場所を避けるように、言い換えれば、既に冷却がなされた移動抵抗の少ない流路を選んで下降して行く傾向にある。このため自然に冷気を降下させる冷却手法では、冷気が回避した被保管物については、充分な冷却がなされず、希望した品質維持ができなくなるという現象が生じていた。   That is, the cold air usually descends so as to sew between a large amount of stored items stocked in the building, but the temperature of the stored items is not necessarily constant. For example, when newly stored items are brought in from the outside, the ambient temperature of the place is partially increased, so that the air (cold air) in the vicinity is pushed up (so-called updraft), and The pressure will also increase. Therefore, the naturally descending cold air tends to descend so as to avoid the place of the newly loaded storage object, in other words, a flow path with low movement resistance that has already been cooled. For this reason, in the cooling method that naturally cools down the air, there is a phenomenon in which the object to be stored that the cold air has avoided is not sufficiently cooled, and the desired quality cannot be maintained.

しかしながら、従来は、冷気が自然に降下するという、疑いのない原則に捕らわれ、天井付近から冷気を供給して被保管物の冷却を行うことが、技術常識と考えられていたため、この手法に疑念が差し挟まれることは全くなかった。しかも、冷却がたとえ不充分な被保管物が存在したとしても、少なくとも荷役作業時においては表面に霜が付着するなど、見かけ上冷却がなされているかのように見えるため、所定の冷却がされているであろうとの見込みがされ、それ以上の確実さについては根本的な改良に意が払われることはなかった。   However, in the past, it was captured by the unquestionable principle that cold air naturally falls, and it was considered technical common sense to cool the stored items by supplying cold air from the vicinity of the ceiling. Was never caught. Moreover, even if there is an object to be stored that is insufficiently cooled, it seems that the surface has been cooled, such as frost on the surface, at least during cargo handling operations. No further attention was paid to the fundamental improvements for further certainty.

また自然に冷気を降下させる従来の冷却手法においては、上述したように、熱負荷の高い部分を回避して冷気が下りてくるため、この冷気を回収して再冷却に供しても、実際にはまだ冷たい、言い換えれば、まだ冷却能力を持っている冷気を再冷却することになり、従って、再冷却を担う熱交換器での冷却効率も良くなかった。   Also, in the conventional cooling method that naturally lowers the cold air, as described above, the cold air descends while avoiding the high heat load portion, so even if this cold air is collected and re-cooled, it is actually Is still cold, in other words, cold air still having cooling capacity is re-cooled, and therefore the cooling efficiency in the heat exchanger responsible for re-cooling is not good.

本発明は、このような背景を認識してなされたものであって、冷却に寄与する冷気の挙動を根本的に究明し、その知見に基づき、充分で且つ効率的な冷却作用が期待できる新規な冷却方法並びに冷却施設の開発を試みたものである。   The present invention has been made in view of such a background, and has fundamentally investigated the behavior of cold air that contributes to cooling, and based on that knowledge, a novel and effective cooling action can be expected. The development of a new cooling method and cooling facility.

すなわち請求項1記載の冷却方法は、建屋内に被保管物の格納設備と冷気供給装置とを設置し、冷気供給装置からの作用冷気により、建屋内を要求される低温雰囲気に保ち、被保管物を冷却保存する方法において、前記冷気供給装置は、建屋内での作用を終えた作用済冷気を、上方から取り込んで回収するとともに、これを再度冷却した作用冷気については、建屋内の床面近くの下方から吐き出すように形成され、これにより建屋内では、上昇移動する作用済冷気の作動に合わせて、その下方から順次新たな作用冷気を埋め込む循環流を形成し、被保管物の周囲を常に作用冷気によって取り囲むようにしたことを特徴として成るものである。   In other words, the cooling method according to claim 1 is provided with a storage facility for storage objects and a cold air supply device in the building, and the building is kept in a required low temperature atmosphere by the action cold air from the cold air supply device, and stored. In the method for cooling and preserving an object, the cold air supply device collects the collected cold air that has finished the action in the building from above and collects the action cold air that has been cooled again. It is formed so as to exhale from the lower part of the neighborhood, so that in the building, in accordance with the action of the working cold air that moves up and down, a circulating flow is formed in which new working cold air is sequentially embedded from the lower part, and the surroundings of the storage object are formed. It is characterized by being always surrounded by cold working air.

また請求項2記載の冷却施設は、建屋内に被保管物の格納設備と冷気供給装置とを設置し、冷気供給装置からの作用冷気により、建屋内を要求される低温雰囲気として、被保管物を冷却保存する施設において、前記冷気供給装置は、作用済冷気を再冷却する熱交換器と、熱交換器の前後に設けたダクトと、前記ダクト内に設けた送風ファンとを具えて成るものであり、また前記ダクトは、作用済冷気を回収する取込口が建屋内の天井近くに開口されるととともに、作用冷気を供給する吐出口が建屋内の床面近くに開口されるものであり、
これにより建屋内では、上昇移動する作用済冷気の作動に合わせて、その下方から順次新たな作用冷気を入れ込む循環流を形成し、被保管物の周囲を常に作用冷気によって取り囲むようにしたことを特徴として成るものである。
According to a second aspect of the present invention, there is provided a cooling facility in which a storage facility for storing objects and a cold air supply device are installed in the building, and the building has a low-temperature atmosphere required for the building by operating cold air from the cold air supply device. The cold supply device comprises a heat exchanger for recooling the operated cold air, a duct provided before and after the heat exchanger, and a blower fan provided in the duct. In addition, the duct is configured such that an intake port for collecting the operating cold air is opened near the ceiling in the building, and an outlet for supplying the operating cold air is opened near the floor in the building. Yes,
As a result, in the building, a circulation flow was introduced in which new working cold air was introduced sequentially from the bottom in accordance with the action of the working cold air that moved up and moved, so that the surroundings of the storage object were always surrounded by the working cold air. Is a feature.

更にまた請求項3記載の冷却施設は、前記請求項2記載の要件に加え、前記熱交換器は、高元側をアンモニアサイクル、低元側を炭酸ガスサイクルで構成した二元冷凍サイクルによって作動させるものであり、
回収した作用済冷気を熱交換器によって再冷却するにあたっては、カスケードコンデンサにおいてアンモニア媒体で冷却した二酸化炭素媒体を、目的の蒸発器となる熱交換器に供給して、作用済冷気を冷却するようにしたことを特徴として成るものである。
Furthermore, in the cooling facility according to claim 3, in addition to the requirement according to claim 2, the heat exchanger is operated by a dual refrigeration cycle in which an ammonia cycle is formed on the high side and a carbon dioxide gas cycle is formed on the low side. It is what
In recooling the collected operating cold air with a heat exchanger, the carbon dioxide medium cooled with the ammonia medium in the cascade condenser is supplied to the heat exchanger that is the target evaporator so that the operating cold air is cooled. It is characterized by what has been done.

これら各請求項記載の発明の構成を手段として前記課題の解決が図られる。
すなわち請求項1または2記載の発明によれば、作用済冷気を建屋内の上方から回収するとともに、新たな作用冷気を建屋内の床面付近など下方から供給するため、建屋内では、作用済冷気の上昇に合わせて、その下方から新たな作用冷気を順次送り込むことができる。このため建屋内では、部分的に熱負荷が高い被保管物(コンテナ)が存在しても、その周囲を常に作用冷気で取り囲むことができ、被保管物の冷却が均一に且つ効率的に行える。
また、本発明では、作用を終え幾分温度が上がった作用済冷気を回収し、これを再冷却するため、ここでの冷却効率も良く、より効率的な運転が行える。
The above-described problems can be solved by using the configuration of the invention described in each of the claims.
That is, according to the first or second aspect of the invention, since the operating cold air is collected from above the building and new operating cold air is supplied from below such as near the floor of the building, As the cold air rises, new working cold air can be sequentially fed from below. For this reason, even in the building, even if there is a part to be stored (container) with a high heat load, the surroundings can always be surrounded by working cold air, and the stored object can be cooled uniformly and efficiently. .
Further, in the present invention, the operated cold air whose temperature has been somewhat raised after the operation is recovered and re-cooled, the cooling efficiency here is also good, and more efficient operation can be performed.

また請求項3記載の発明によれば、自然冷媒(自然作動媒体)を適用して成る二元冷凍サイクルによって建屋内の作用済冷気を再冷却するため、環境に優しく、熱効率としても良好な運転が行える。特に、炭酸ガスサイクルにおいては、カスケードコンデンサを熱交換器よりも高い位置、例えば建屋の屋上等に設置することにより、これらの間に二酸化炭素媒体の液ヘッド差を形成させ、これを利用して二酸化炭素媒体を自然に循環させることができるため、より一層、効率の良い運転が行える。   Further, according to the invention described in claim 3, since the chilled air in the building is re-cooled by the dual refrigeration cycle to which the natural refrigerant (natural working medium) is applied, the operation is friendly to the environment and has good thermal efficiency. Can be done. In particular, in a carbon dioxide gas cycle, a cascade condenser is installed at a position higher than the heat exchanger, for example, on the roof of a building, so that a liquid head difference of a carbon dioxide medium is formed between them, and this is utilized. Since the carbon dioxide medium can be circulated naturally, more efficient operation can be performed.

本発明の最良の形態は、以下の実施例に述べるとおりである。なお説明にあたっては、まず本発明施設である冷却施設1の一例について説明した後、その後、この冷却施設1による被保管物Aの冷却態様を説明しながら、併せて本発明方法である冷却方法について説明する。   The best mode of the present invention is as described in the following examples. In the description, first, an example of the cooling facility 1 which is the facility of the present invention will be described, and then the cooling method of the storage object A by the cooling facility 1 will be described, and the cooling method which is the method of the present invention will also be described. explain.

冷却施設1は、一例として図1の正面断面図に骨格的に示すように、実質的に建屋11によって構成され、この内部に、被保管物Aを冷却保存(低温保存)する格納設備2と、冷却作用を担う冷気(以下、作用冷気Cとする)を施設内に供給するための冷気供給装置3とが設けられる。なお、冷却施設1(建屋11)は、外壁等に充分な断熱作用を有する材料が適用されるものであり、通常は大量の被保管物Aを格納することから高層建物であることが多い。また冷却施設1は、主に冷気供給装置3の作用(温度設定)により、冷蔵庫または冷凍庫として機能させることができるものである。以下、格納設備2と冷気供給装置3について更に説明する。   The cooling facility 1 is substantially constituted by a building 11 as shown in a skeletal cross-sectional view in the front sectional view of FIG. 1 as an example, and a storage facility 2 that cools (stores at low temperature) the storage object A therein. A cold air supply device 3 is provided for supplying cold air that bears a cooling action (hereinafter referred to as working cold air C) into the facility. The cooling facility 1 (building 11) is made of a material having a sufficient heat insulating effect on the outer wall or the like, and usually stores a large amount of articles A to be stored, so it is often a high-rise building. The cooling facility 1 can function as a refrigerator or a freezer mainly by the action (temperature setting) of the cold air supply device 3. Hereinafter, the storage facility 2 and the cold air supply device 3 will be further described.

まず格納設備2について説明する。このものは、建屋11内部において被保管物Aを保存する部位であり、その形態としては、図1に併せ示すような多段のラック21が好ましい。このラック21は、一例としてアングル材を適用した柱22に対して載置板23を組み合わせて成り、この載置板23上に、被保管物Aを収容したコンテナ24を載せて格納するものである。これにより必要に応じて、随時、任意のコンテナ24の搬入、搬出が容易となる。また、このようなコンテナ24の取り出し(ピッキング)等を能率的に行うべく、建屋11内には荷役用のクレーン25を配設することが好ましい。
なお、本実施例では、ラック21を多段状に構成し、このラック空間にコンテナ24を収容する形態を述べたが、被保管物Aの種類や建屋11の構造等によっては、ラック21を構成せず、コンテナ24を直接積み重ねる形態も採り得る。
First, the storage facility 2 will be described. This is a part for storing the article A to be stored in the building 11, and as a form thereof, a multistage rack 21 as shown in FIG. 1 is preferable. As an example, the rack 21 is configured by combining a mounting plate 23 with a column 22 to which an angle member is applied, and a container 24 that stores a storage object A is placed on the mounting plate 23 for storage. is there. Thereby, it becomes easy to carry in and carry out an arbitrary container 24 as needed. In order to efficiently take out (pick) such a container 24, it is preferable to dispose a crane 25 for cargo handling in the building 11.
In the present embodiment, the rack 21 is configured in a multi-stage shape and the container 24 is accommodated in the rack space. However, the rack 21 is configured depending on the type of the storage object A, the structure of the building 11, and the like. Instead, the container 24 may be directly stacked.

次に冷気供給装置3について説明する。このものは、冷却作用を直接担う熱交換器31を、一例として建屋11内の側壁面に沿って下垂(鉛直)状態に形成されたダクト32内に設けて成るものである。ダクト32は上側に取込口33が開口されるとともに、下側に吐出口34が開口される。また、熱交換器31の近傍には送風ファン35が設けられ、これによって建屋11内における作用冷気Cの循環を図っている。具体的には、冷却作用を終えて建屋11内(ラック空間)を上昇して来る冷気(以下、作用済冷気C1とする)を、上方から取り込んで回収し、ダクト32内の熱交換器31で再冷却した後、建屋11内の下方(床面近く)から作用冷気Cとして吐き出すものである。また、このような構成に因み、吐出口34には、作用冷気Cの風向や風量を調整するためのルーバ34Aを設けることが好ましい。   Next, the cold air supply device 3 will be described. In this example, a heat exchanger 31 that directly takes a cooling action is provided in a duct 32 formed in a suspended (vertical) state along a side wall surface in the building 11 as an example. The duct 32 has an intake port 33 on the upper side and a discharge port 34 on the lower side. In addition, a blower fan 35 is provided in the vicinity of the heat exchanger 31, thereby circulating the working cold air C in the building 11. Specifically, cold air that has finished the cooling operation and rises in the building 11 (rack space) (hereinafter referred to as “acted cold air C1”) is taken in from above and collected, and the heat exchanger 31 in the duct 32 is recovered. Then, after re-cooling, the cold air C is discharged from below the building 11 (near the floor). Further, due to such a configuration, it is preferable to provide a louver 34 </ b> A for adjusting the wind direction and the air volume of the working cold air C at the discharge port 34.

なお、本実施例では、熱交換器31や送風ファン35をダクト32内の床面近くに設け、例えば送風ファン35を交換する際の利便性(メンテナンス性)を向上させるものであるが、熱交換器31を設ける位置は必ずしも床面近くに限定されるものではない。特に、送風ファン35については、吐出口34近くに設けることも可能であるし、あるいは建屋11内の冷気(空気)の効果的な循環を考慮して、例えばダクト32の全域にわたって、適宜複数カ所に設けても、もとより差し支えない。
なお、吐出口34は、建屋11を平面から視て、側壁面の内側に一カ所設けることも可能であるし、放出された作用冷気Cが建屋11内に満遍なく拡がるように複数の側壁面の内側に設けることも可能である。更には、吐出位置を周壁面に沿うような床面近くに延長配置するようにしても差し支えない。
In the present embodiment, the heat exchanger 31 and the blower fan 35 are provided near the floor surface in the duct 32 to improve convenience (maintenance) when replacing the blower fan 35, for example. The position where the exchanger 31 is provided is not necessarily limited to the vicinity of the floor surface. In particular, the blower fan 35 can be provided near the discharge port 34, or in consideration of effective circulation of the cold air (air) in the building 11, for example, at a plurality of locations as appropriate over the entire area of the duct 32. Even if it is provided, it does not matter.
The discharge port 34 can be provided at one location on the inside of the side wall surface when the building 11 is viewed from a plane, and a plurality of side wall surfaces are arranged so that the discharged working cold C spreads uniformly in the building 11. It is also possible to provide it inside. Furthermore, the discharge position may be extended near the floor surface along the peripheral wall surface.

また熱交換器31により作用済冷気C1を冷却するにあたっては、冷凍システムを作動させて行うものであり、以下、このシステムの一例について説明する。この冷凍システムは、例えば図2に示すように、高元側にアンモニアサイクル4A、低元側に炭酸ガスサイクル4Bを組み合わせた二元冷凍サイクル4が適用でき、上記熱交換器31は、炭酸ガスサイクル4B内において目的の冷却を行う蒸発器46(これについては後述する)として構成される。
アンモニアサイクル4Aは、一例として圧縮機41と、コンデンサ42と、膨張弁43と、カスケードコンデンサ44とを具えて成り、実質的に、このカスケードコンデンサ44によって、炭酸ガスサイクル4B内の二酸化炭素媒体を冷却する。一方、炭酸ガスサイクル4Bは、一例として上述したカスケードコンデンサ44の他、流量調整弁45、蒸発器46(熱交換器31)とを具えて成る。
なおカスケードコンデンサ44は、蒸発器46(熱交換器31)よりも高い位置、例えば建屋11の屋上等に設置し、これらの間に二酸化炭素媒体の液ヘッド差を形成することが好ましい。これは、炭酸ガスサイクル4Bにあっては、圧縮機を組み込まなくても、この液ヘッド差を利用して二酸化炭素媒体を言わば自然に循環させ、極めて効率の良い運転を行うためである。なお図中符号47は、熱交換器31に二酸化炭素媒体を流す冷媒配管である。
Further, the cooling of the applied cold air C1 by the heat exchanger 31 is performed by operating a refrigeration system. Hereinafter, an example of this system will be described. For example, as shown in FIG. 2, the refrigeration system can employ a dual refrigeration cycle 4 in which an ammonia cycle 4A is combined on the high element side and a carbon dioxide gas cycle 4B is combined on the low element side. It is configured as an evaporator 46 (which will be described later) that performs desired cooling in the cycle 4B.
The ammonia cycle 4A includes, as an example, a compressor 41, a condenser 42, an expansion valve 43, and a cascade condenser 44. By the cascade condenser 44, the carbon dioxide medium in the carbon dioxide gas cycle 4B is substantially supplied. Cooling. On the other hand, the carbon dioxide gas cycle 4B includes a flow rate adjusting valve 45 and an evaporator 46 (heat exchanger 31) in addition to the cascade condenser 44 described above as an example.
The cascade condenser 44 is preferably installed at a position higher than the evaporator 46 (heat exchanger 31), for example, on the rooftop of the building 11, and a liquid head difference of the carbon dioxide medium is formed therebetween. This is because in the carbon dioxide gas cycle 4B, a carbon dioxide medium is naturally circulated by using this liquid head difference and an extremely efficient operation is performed without incorporating a compressor. In the figure, reference numeral 47 is a refrigerant pipe for flowing a carbon dioxide medium through the heat exchanger 31.

ここで、上記二元冷凍サイクル4の作動状況について説明する。まずアンモニアサイクル4Aでは、圧縮機41によって圧縮された気体状のアンモニア媒体が、コンデンサ42を通るとき冷却水または空気によって冷やされ液体となる。そして液体となったアンモニア媒体は、膨張弁43によって必要な低温度に相当する飽和圧力まで膨張した後、カスケードコンデンサ44で蒸発して気体となる。このとき、アンモニア媒体は、炭酸ガスサイクル4B内の二酸化炭素媒体から熱を奪い、これを液化する。
一方、炭酸ガスサイクル4B内では、カスケードコンデンサ44によって冷やされて液化した液化炭酸ガスが、両部材間に形成された液ヘッド差によって自然に下降し、流量調整弁45を通って、目的の冷却を行う蒸発器46(熱交換器31)に入る。ここで液化炭酸ガスは、温められて蒸発し、この際、周囲から熱を奪い、作用済冷気C1を冷却する。また、作用済冷気C1を冷却した二酸化炭素媒体は、ガスとなって再びカスケードコンデンサ44に戻って行く。
なお図中符号48は、建屋11内に設けられた負荷センサであり、具体的には天井近くに設置された温度センサ等が適用され、その温度状況によって二元冷凍サイクル4の運転状況等を適宜補正して、最適な冷却環境が得られるようにするものである。
Here, the operation state of the above-described dual refrigeration cycle 4 will be described. First, in the ammonia cycle 4A, when the gaseous ammonia medium compressed by the compressor 41 passes through the condenser 42, it is cooled by cooling water or air to become a liquid. The ammonia medium that has become liquid is expanded to a saturation pressure corresponding to a necessary low temperature by the expansion valve 43 and then evaporated by the cascade condenser 44 to become a gas. At this time, the ammonia medium takes heat from the carbon dioxide medium in the carbon dioxide gas cycle 4B and liquefies it.
On the other hand, in the carbon dioxide cycle 4B, the liquefied carbon dioxide cooled and liquefied by the cascade condenser 44 naturally descends due to the liquid head difference formed between the two members, passes through the flow rate adjustment valve 45, and reaches the target cooling. Enter the evaporator 46 (heat exchanger 31). Here, the liquefied carbon dioxide gas is warmed and evaporated, and at this time, heat is taken from the surroundings to cool the worked cold air C1. In addition, the carbon dioxide medium that has cooled the operated cold air C <b> 1 returns to the cascade condenser 44 again as a gas.
Reference numeral 48 in the figure denotes a load sensor provided in the building 11. Specifically, a temperature sensor or the like installed near the ceiling is applied, and the operation status of the dual refrigeration cycle 4 is determined depending on the temperature status. It is corrected as appropriate so that an optimal cooling environment can be obtained.

本発明施設(冷却施設1)は、上述した基本構造を有するものであり、以下この冷却施設1による冷却態様について説明しながら、本発明方法(冷却方法)について説明する。
まず二元冷凍サイクル4を稼働させると、カスケードコンデンサ44によって冷却された冷媒配管47中の、例えば二酸化炭素媒体が、液化状態となって熱交換器31(蒸発器46)に至る。一方、冷却施設1内では、送風ファン35を駆動させることにより建屋11内の冷気を循環させる。
具体的には、例えば図3(a)に示すように、建屋11内に新規に搬入され、部分的に温かい被保管物A(コンテナ24)が存在した場合、その付近の作用冷気Cは被保管物Aを冷却しながら、自らは幾らか昇温し作用済冷気C1となり、ラック空間を上昇する。このようにして建屋11内の上方に至った作用済冷気C1は、ダクト32内で起動している送風ファン35の作用により、取込口33から回収され、ダクト32内を降下する。
The facility of the present invention (cooling facility 1) has the basic structure described above, and the method of the present invention (cooling method) will be described below while describing the cooling mode of the cooling facility 1.
First, when the dual refrigeration cycle 4 is operated, for example, a carbon dioxide medium in the refrigerant pipe 47 cooled by the cascade condenser 44 is liquefied and reaches the heat exchanger 31 (evaporator 46). On the other hand, in the cooling facility 1, the cool air in the building 11 is circulated by driving the blower fan 35.
Specifically, for example, as shown in FIG. 3 (a), when a newly stored object A (container 24) is newly brought into the building 11, the working cold air C in the vicinity thereof is covered. While cooling the stored item A, the temperature of the stored item A rises to some extent and becomes the cold air C1 that has been actuated, and the rack space is raised. In this way, the operated cold air C <b> 1 reaching the upper side in the building 11 is recovered from the intake port 33 by the action of the blower fan 35 activated in the duct 32 and descends in the duct 32.

その際、作用済冷気C1は、熱交換器31(例えばクーリングフィン等)を通過する間に冷却を受け、建屋11の床面近くの吐出口34から建屋11内(ラック空間)に供給される。なおダクト32内に回収される作用済冷気C1は、上述したように幾分温度が上がった状態であるため、これを熱交換器31により再冷却することは、熱交換器31における冷却効率の点からも好適と言える。また、回収した作用済冷気C1の再冷却に伴い、霜取り等が有効な場合には、そのような霜取装置等を適宜、ダクト32内に付設することは言うまでもない。   At that time, the applied cold air C1 is cooled while passing through the heat exchanger 31 (for example, a cooling fin), and is supplied into the building 11 (rack space) from the discharge port 34 near the floor of the building 11. . Since the operating cold air C1 recovered in the duct 32 is in a state in which the temperature has risen somewhat as described above, recooling the air by the heat exchanger 31 is effective for cooling efficiency in the heat exchanger 31. It can be said that it is preferable also from a point. Needless to say, such defrosting device or the like is appropriately provided in the duct 32 when defrosting or the like is effective in association with the recooling of the collected cold air C1.

一方、吐出口34からラック空間に供給された作用冷気Cは、図3(a)に併せて示すように、前記作用済冷気C1の上昇に合わせて、その移動空間を埋め込むように、下方から入り込む。この冷気の作動(循環)は、作用済冷気C1の上昇によって、あたかも新たな作用冷気Cが引っ張り込まれるかのように、同時的に進行する。このため、建屋11内では、部分的に熱負荷の高い新規搬入の被保管物Aが存在しても、図3(b)に示すように、その周り、ひいては建屋11内全体が、常に作用冷気Cによって埋め尽くされるものである。従って、単に冷気を上方から下降させる従来の冷却手法に比べると、作用冷気Cが熱負荷の高い所を避けることがなく、被保管物Aに対する冷却が万遍なく確実に行えるものである。   On the other hand, as shown in FIG. 3 (a), the working cold C supplied from the discharge port 34 to the rack space is viewed from below so as to embed the moving space in accordance with the rise of the working cold C1. Get in. The operation (circulation) of the cold air proceeds simultaneously as if the new working cold air C is pulled by the rise of the working cold air C1. For this reason, even if there is a newly stored article A having a high heat load in the building 11 as shown in FIG. 3B, the surrounding area and the entire inside of the building 11 always act as shown in FIG. It is filled with cold air C. Therefore, as compared with the conventional cooling method in which the cool air is simply lowered from above, the working cool air C does not avoid a place where the heat load is high, and the storage object A can be cooled uniformly and reliably.

本発明の冷却施設の一例を骨格的に示す正面断面図である。It is front sectional drawing which shows an example of the cooling facility of this invention skeletally. 冷気供給装置の熱交換器を蒸発器(冷却器)として作用させる二元冷凍サイクルの一例を示す説明図である。It is explanatory drawing which shows an example of the 2nd freezing cycle which makes the heat exchanger of a cold air supply apparatus act as an evaporator (cooler). 建屋内における冷気の循環の様子を段階的に示す正面断面図である。It is front sectional drawing which shows the mode of the circulation of the cool air in a building in steps.

符号の説明Explanation of symbols

1 冷却施設
2 格納設備
3 冷気供給装置
4 二元冷凍サイクル
4A アンモニアサイクル
4B 炭酸ガスサイクル
11 建屋
21 ラック
22 柱
23 載置板
24 コンテナ
25 クレーン
31 熱交換器
32 ダクト
33 取込口
34 吐出口
34A ルーバ
35 送風ファン
41 圧縮機
42 コンデンサ
43 膨張弁
44 カスケードコンデンサ
45 流量調整弁
46 蒸発器
47 冷媒配管
48 負荷センサ
A 被保管物
C 作用冷気
C1 作用済冷気
DESCRIPTION OF SYMBOLS 1 Cooling facility 2 Storage equipment 3 Cold air supply device 4 Dual refrigeration cycle 4A Ammonia cycle 4B Carbon dioxide gas cycle 11 Building 21 Rack 22 Pillar 23 Mounting plate 24 Container 25 Crane 31 Heat exchanger 32 Duct 33 Inlet 34 Outlet 34A Louver 35 Blower fan 41 Compressor 42 Condenser 43 Expansion valve 44 Cascade capacitor 45 Flow rate adjusting valve 46 Evaporator 47 Refrigerant piping 48 Load sensor A Storage object C Working cold C1 Working cold

Claims (3)

建屋内に被保管物の格納設備と冷気供給装置とを設置し、冷気供給装置からの作用冷気により、建屋内を要求される低温雰囲気に保ち、被保管物を冷却保存する方法において、
前記冷気供給装置は、建屋内での作用を終えた作用済冷気を、上方から取り込んで回収するとともに、これを再度冷却した作用冷気については、建屋内の床面近くの下方から吐き出すように形成され、
これにより建屋内では、上昇移動する作用済冷気の作動に合わせて、その下方から順次新たな作用冷気を埋め込む循環流を形成し、被保管物の周囲を常に作用冷気によって取り囲むようにしたことを特徴とする冷却方法。
In the method of installing the storage equipment and cold air supply device of the storage object in the building, keeping the building in the required low temperature atmosphere by the action cold air from the cold air supply device, and cooling and storing the storage object,
The cold air supply device takes in and collects the cold air that has finished working in the building from above and collects the cold air that has been cooled again, so that it is discharged from below the floor in the building. And
In this way, in the building, in accordance with the action of the working cold air that moves up and down, a circulating flow that embeds new working cold air sequentially from below is formed, and the surroundings of the storage object are always surrounded by the working cold air. A cooling method characterized.
建屋内に被保管物の格納設備と冷気供給装置とを設置し、冷気供給装置からの作用冷気により、建屋内を要求される低温雰囲気として、被保管物を冷却保存する施設において、
前記冷気供給装置は、作用済冷気を再冷却する熱交換器と、熱交換器の前後に設けたダクトと、前記ダクト内に設けた送風ファンとを具えて成るものであり、
また前記ダクトは、作用済冷気を回収する取込口が建屋内の天井近くに開口されるととともに、作用冷気を供給する吐出口が建屋内の床面近くに開口されるものであり、
これにより建屋内では、上昇移動する作用済冷気の作動に合わせて、その下方から順次新たな作用冷気を入れ込む循環流を形成し、被保管物の周囲を常に作用冷気によって取り囲むようにしたことを特徴とする冷却施設。
In facilities that store storage objects and cool air supply devices in the buildings, and cool and store the stored items as a low-temperature atmosphere required by the building cold air by the cold air supply devices,
The cold air supply device comprises a heat exchanger for recooling the action cold air, a duct provided before and after the heat exchanger, and a blower fan provided in the duct,
In addition, the duct has an intake port for collecting the action cold air being opened near the ceiling in the building, and a discharge port for supplying the action cold air is being opened near the floor in the building,
As a result, in the building, a circulation flow was introduced in which new working cold air was introduced sequentially from the bottom in accordance with the action of the working cold air that moved up and moved, so that the surroundings of the storage object were always surrounded by the working cold air. A cooling facility characterized by
前記熱交換器は、高元側をアンモニアサイクル、低元側を炭酸ガスサイクルで構成した二元冷凍サイクルによって作動させるものであり、
回収した作用済冷気を熱交換器によって再冷却するにあたっては、カスケードコンデンサにおいてアンモニア媒体で冷却した二酸化炭素媒体を、目的の蒸発器となる熱交換器に供給して、作用済冷気を冷却するようにしたことを特徴とする請求項2記載の冷却施設。
The heat exchanger is operated by a dual refrigeration cycle in which the high-end side is constituted by an ammonia cycle and the low-end side is constituted by a carbon dioxide gas cycle.
In recooling the collected operating cold air with a heat exchanger, the carbon dioxide medium cooled with the ammonia medium in the cascade condenser is supplied to the heat exchanger that is the target evaporator so that the operating cold air is cooled. The cooling facility according to claim 2, wherein
JP2005209858A 2005-07-20 2005-07-20 Cooling method and cooling facility Pending JP2007024442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209858A JP2007024442A (en) 2005-07-20 2005-07-20 Cooling method and cooling facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209858A JP2007024442A (en) 2005-07-20 2005-07-20 Cooling method and cooling facility

Publications (1)

Publication Number Publication Date
JP2007024442A true JP2007024442A (en) 2007-02-01

Family

ID=37785438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209858A Pending JP2007024442A (en) 2005-07-20 2005-07-20 Cooling method and cooling facility

Country Status (1)

Country Link
JP (1) JP2007024442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168288A (en) * 2008-01-11 2009-07-30 Hoshizaki Electric Co Ltd Cooling device
JP2013088080A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Binary refrigerating device
WO2014126005A1 (en) * 2013-02-12 2014-08-21 八洋エンジニアリング株式会社 Cooling mechanism for data center
JP5702508B2 (en) * 2013-06-17 2015-04-15 八洋エンジニアリング株式会社 Data center cooling mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110867A (en) * 1979-02-20 1980-08-26 Matsuhashi Reinetsu Kogyo Kk Differential pressure ventilating refrigerator
JPS5893768U (en) * 1981-12-20 1983-06-25 株式会社東洋製作所 Cold storage warehouse
JPH10325665A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Cooling device
WO2000050822A1 (en) * 1999-02-24 2000-08-31 Hachiyo Engineering Co., Ltd. Heat pump system of combination of ammonia cycle and carbon dioxide cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110867A (en) * 1979-02-20 1980-08-26 Matsuhashi Reinetsu Kogyo Kk Differential pressure ventilating refrigerator
JPS5893768U (en) * 1981-12-20 1983-06-25 株式会社東洋製作所 Cold storage warehouse
JPH10325665A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Cooling device
WO2000050822A1 (en) * 1999-02-24 2000-08-31 Hachiyo Engineering Co., Ltd. Heat pump system of combination of ammonia cycle and carbon dioxide cycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168288A (en) * 2008-01-11 2009-07-30 Hoshizaki Electric Co Ltd Cooling device
JP2013088080A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Binary refrigerating device
WO2014126005A1 (en) * 2013-02-12 2014-08-21 八洋エンジニアリング株式会社 Cooling mechanism for data center
CN105026845A (en) * 2013-02-12 2015-11-04 八洋工程株式会社 Cooling mechanism for data center
US10299414B2 (en) 2013-02-12 2019-05-21 Hidetoshi Kaneo Cooling mechanism for data center
JP5702508B2 (en) * 2013-06-17 2015-04-15 八洋エンジニアリング株式会社 Data center cooling mechanism

Similar Documents

Publication Publication Date Title
US20060266075A1 (en) Refrigerator
US10299414B2 (en) Cooling mechanism for data center
US20070214823A1 (en) Heat exchanging device for refrigerator
EP3862653B1 (en) Cooling system with vertical alignment
JP2007024442A (en) Cooling method and cooling facility
CN100520228C (en) Freezing system
US20070277539A1 (en) Continuously Operating Type Showcase
KR100907338B1 (en) Refrigerator car using cold storage material
CN107796157A (en) Freezer
JP5912891B2 (en) Power saving operation method and apparatus for refrigerated warehouse
JP4336664B2 (en) Windless cooling system
JP2006317079A (en) Freezer-refrigerator
JP6384042B2 (en) Refrigeration system
KR102306032B1 (en) Show case
JP2004170041A (en) Refrigerator
CN1304802C (en) Air refrigerating plant and control method for air conditionin gplant
JP5512198B2 (en) Food freezing method and apparatus
JP2005221144A (en) Refrigerator
CN101182959A (en) Two-phase changing temperature control device and method
JP2015152234A (en) Cold storage system
JP2005055079A (en) Thermosiphon cycle system
JP4761738B2 (en) Air conditioner for refrigerated fresh food
KR200475309Y1 (en) Condensing air conditioner
JP2005308346A (en) Refrigerant cooling circuit
KR101385173B1 (en) Cooling apparatus for refrigeration car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Effective date: 20091216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727

A521 Written amendment

Effective date: 20101021

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026