JP5912891B2 - Power saving operation method and apparatus for refrigerated warehouse - Google Patents

Power saving operation method and apparatus for refrigerated warehouse Download PDF

Info

Publication number
JP5912891B2
JP5912891B2 JP2012135324A JP2012135324A JP5912891B2 JP 5912891 B2 JP5912891 B2 JP 5912891B2 JP 2012135324 A JP2012135324 A JP 2012135324A JP 2012135324 A JP2012135324 A JP 2012135324A JP 5912891 B2 JP5912891 B2 JP 5912891B2
Authority
JP
Japan
Prior art keywords
cooling chamber
brine
air cooler
liquid
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012135324A
Other languages
Japanese (ja)
Other versions
JP2014001861A (en
Inventor
英世 浅野
英世 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2012135324A priority Critical patent/JP5912891B2/en
Publication of JP2014001861A publication Critical patent/JP2014001861A/en
Application granted granted Critical
Publication of JP5912891B2 publication Critical patent/JP5912891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の冷却室を有する冷蔵倉庫に好適な冷蔵倉庫及びその省電力運転方法に関する。   The present invention relates to a refrigerated warehouse suitable for a refrigerated warehouse having a plurality of cooling chambers and a power saving operation method thereof.

地球環境保全の観点から、自然冷媒を用いた冷凍装置が見直されている。自然冷媒のうち、NH3はオゾン破壊係数がゼロで、地球温暖化係数がほぼゼロであり、かつ冷媒としての性能が優れている。しかし、NH3は人体に毒性があるので、NH3を1次冷媒として用い、同じく自然冷媒であり、比較的安全で、熱を運ぶ媒体として優れた特徴をもつCO2を2次冷媒として用いた冷凍機が広く採用されている。特許文献1及び特許文献2には、かかる冷凍装置をショーケースの冷却や室内の空調等に用いたことが開示されている。   From the viewpoint of global environmental conservation, refrigeration equipment using natural refrigerants has been reviewed. Among natural refrigerants, NH3 has an ozone depletion coefficient of zero, a global warming coefficient of almost zero, and excellent refrigerant performance. However, since NH3 is toxic to the human body, NH3 is used as a primary refrigerant, it is also a natural refrigerant, a relatively safe, and a refrigerator using CO2 as a secondary refrigerant, which has excellent characteristics as a medium for carrying heat. Is widely adopted. Patent Literature 1 and Patent Literature 2 disclose that such a refrigeration apparatus is used for cooling a showcase, indoor air conditioning, or the like.

冷蔵倉庫にもかかる冷凍装置が用いられているが、冷蔵倉庫の経費の多くは、冷凍機を運転するために費やす電力料金である。そのため、省電力化を図ることでコストダウンを達成できる。また、夏場の電力消費量がピークとなる時間帯に電力供給不足を起こすおそれがあり、冷蔵倉庫の分野でも省電力化が求められている。そのため、現状では機器の効率向上や、こまめな運転管理などを行って省電力化に努めている。   Although the refrigeration apparatus is also used in the refrigerated warehouse, most of the expense of the refrigerated warehouse is a power charge spent for operating the refrigerator. Therefore, cost reduction can be achieved by saving power. In addition, there is a risk of power supply shortage during peak hours of summertime power consumption, and power saving is also required in the field of cold storage. Therefore, at present, efforts are being made to save power by improving the efficiency of the equipment and conducting frequent operation management.

NH3を1次冷媒とする冷凍装置によって冷却液化されたCO2ブラインは、一旦液溜器に貯留された後、導管を介して冷蔵倉庫に送られる。CO2ブライン液は、冷蔵倉庫に設けられた空気冷却器に供給され、空気冷却器で室内の空気を冷却する。そこで、一部がガス化し、導管を介して液溜器に戻る。複数の冷却室を有する冷蔵倉庫では、各冷却室の空気温度を検知し、設定温度を超えそうになったら、空気冷却器を稼働させ、室内空気を冷却する。この時、CO2配管系の圧力が上昇し設定値を超えたら、冷凍機を運転してCO2ブラインを冷却するようにしている。   The CO2 brine cooled and liquefied by the refrigeration apparatus using NH3 as a primary refrigerant is temporarily stored in a liquid reservoir and then sent to a refrigerated warehouse via a conduit. The CO2 brine solution is supplied to an air cooler provided in a refrigerated warehouse, and cools indoor air with the air cooler. There, part is gasified and returns to the reservoir via a conduit. In a refrigerated warehouse having a plurality of cooling chambers, the air temperature in each cooling chamber is detected, and when the set temperature is about to be exceeded, the air cooler is operated to cool the indoor air. At this time, if the pressure of the CO2 piping system rises and exceeds the set value, the refrigerator is operated to cool the CO2 brine.

一方、夏場での省電力化の一環として、夜間に各冷却室を十分冷却しておき、荷物や建物による蓄熱効果を利用して、電力ピークとなる昼間には冷凍機を休止させる工夫も行われている。   On the other hand, as part of energy saving in summer, the cooling rooms are sufficiently cooled at night, and the refrigerator is stopped during the daytime when the power peak occurs by using the heat storage effect of luggage and buildings. It has been broken.

特開2002−243350号公報JP 2002-243350 A 特開2011−196607号公報JP 2011-196607 A

しかし、このような方法は、昼間に荷物の出し入れが少ない保管型の冷蔵倉庫では有効な方法であるが、安全幅をみて、夜間に必要以上に冷却してしまい、省エネにならない場合がある。また、逆に昼間の負荷が大きくなって、冷却室の許容温度を超えてしまう場合がある。特に、最近増加してきている物流型冷蔵倉庫では、荷物の出し入れが激しいために、このような不具合いが起こりやすい傾向にある。   However, such a method is effective in a storage-type refrigerated warehouse with a small amount of luggage being taken in and out in the daytime. However, in view of the safety width, it may be cooled more than necessary at night, which may not save energy. On the other hand, the daytime load may increase to exceed the allowable temperature of the cooling chamber. In particular, logistics-type refrigerated warehouses, which have been increasing recently, tend to have such problems because of heavy loading and unloading.

本発明は、かかる従来技術の課題に鑑み、物流型冷蔵倉庫のように、被保冷品の出し入れが激しく、昼間の冷却負荷が大きい高負荷型冷却室を有する冷蔵倉庫においても、省電力化を達成でき、かつ昼間の電力ピーク時に、冷却室の設定温度を超えることなく、冷凍機を休止可能にすることを目的とする。   In view of the problems of the prior art, the present invention reduces power consumption even in a refrigerated warehouse having a high-load type cooling chamber in which the storage of cold-reserved items is intense and the daytime cooling load is large, such as a distribution-type refrigerated warehouse. An object of the present invention is to make it possible to stop the refrigerator without exceeding the set temperature of the cooling room at the time of daytime power peak.

かかる目的を達成するため、本発明の冷蔵倉庫の省電力運転方法は、被保冷品の出し入れが多い高負荷型冷却室と被保冷品の出し入れが少ない保管型冷却室とを含む複数の冷却室を有する冷蔵倉庫の省電力運転方法において、冷凍サイクルを構成する冷凍機でCO2ブライン液を製造する第1工程と、CO2ブライン液を各冷却室に夫々設けられた空気冷却器に供給して各冷却室を第1の設定温度に冷却する第2工程と、電力消費量がピークとなる時間帯以外の時間帯に前記冷凍機を運転し、第1の設定温度より低く、CO2ブラインを液化可能な第2の設定温度に各冷却室を冷却する第3工程と、電力消費量がピークとなる時間帯を含む時間帯に冷凍機の運転を停止し、第1の設定温度より高温となった高負荷型冷却室の空気冷却器に、保管型冷却室で冷却液化したCO2ブライン液を供給し、高負荷型冷却室の温度を第1の設定温度に戻す第4工程とからなるものである。   In order to achieve such an object, the power-saving operation method of the refrigerated warehouse according to the present invention includes a plurality of cooling chambers including a high-load type cooling chamber in which the cold-reserved product is frequently taken in and out and a storage-type cooling chamber in which the cold-reserved product is low in / out In the power-saving operation method of the refrigerated warehouse, each of the first steps of producing the CO2 brine liquid with a refrigerator constituting the refrigeration cycle, and supplying the CO2 brine liquid to an air cooler respectively provided in each cooling chamber The second step of cooling the cooling chamber to the first set temperature and the time when the refrigerator is operated in a time zone other than the time zone in which the power consumption reaches a peak, and the CO2 brine can be liquefied below the first set temperature. The third step of cooling each cooling chamber to the second set temperature, and the operation of the refrigerator was stopped in a time zone including a time zone in which the power consumption peaked, and the temperature became higher than the first set temperature. In the air cooler of the high load cooling room, Supplying cooled liquefied CO2 brine solution in the mold cooling chamber, it is made of a fourth step of returning the temperature of the high load type cooling chamber to the first set temperature.

本発明は、高負荷型冷却室及び保管型冷却室を含む複数の冷却室を有する冷蔵倉庫を対象とする。夜間など、電力消費量がピークとなる時間帯以外の時間帯に、例えば、夜間等の電力消費量が少ない時間帯に冷凍機を運転し、冷却室の通常の冷却温度である第1の設定温度より低く、CO2ブラインを液化可能な第2の設定温度となるように冷却室を冷却しておく。そして、昼間の電力消費量がピークとなる時間帯を含む時間帯に、冷凍機の運転を停止する。この間、高負荷型冷却室が第1の設定温度より高温となったときは、保管型冷却室の空気冷却器にCO2ブラインを供給し、保管型冷却室の蓄熱効果によって、CO2ブラインを冷却液化する。この冷却液化したCO2ブライン液を高負荷型冷却室に供給して冷却し、高負荷型冷却室を第1の設定温度に戻すようにする。   The present invention is directed to a refrigerated warehouse having a plurality of cooling chambers including a high-load cooling chamber and a storage-type cooling chamber. The first setting that is the normal cooling temperature of the cooling room when the refrigerator is operated in a time zone other than the time zone in which the power consumption is peak, such as at night, for example, in a time zone in which the power consumption is low such as at night The cooling chamber is cooled to a second set temperature lower than the temperature and capable of liquefying the CO2 brine. Then, the operation of the refrigerator is stopped in a time zone including a time zone in which daytime power consumption is at its peak. During this time, when the high load type cooling chamber becomes higher than the first set temperature, CO2 brine is supplied to the air cooler of the storage type cooling chamber, and the CO2 brine is cooled and liquefied by the heat storage effect of the storage type cooling chamber. To do. This cooled and liquefied CO2 brine solution is supplied to the high load type cooling chamber to be cooled, and the high load type cooling chamber is returned to the first set temperature.

これによって、冷凍機を停止した時でも、温度が上昇し易い高負荷型冷却室を含め、各冷却室を第1の設定温度に保持できる。また、保管型冷蔵倉庫の蓄熱効果を利用して高負荷型冷却室を冷却すると共に、第2の設定温度を冷やしすぎとならない温度に設定しているので、省電力化を達成できる。これによって、高負荷型冷却室を有する冷蔵倉庫においても、省電力化を可能にしながら、昼間の電力ピーク時に、冷凍機の運転を停止しながら、冷却室を第1の設定温度に保持できる。   Thereby, even when the refrigerator is stopped, each cooling chamber can be maintained at the first set temperature, including the high-load type cooling chamber whose temperature is likely to rise. In addition, the high load cooling chamber is cooled using the heat storage effect of the storage refrigerated warehouse, and the second set temperature is set to a temperature that is not overcooled, so that power saving can be achieved. As a result, even in a refrigerated warehouse having a high-load type cooling chamber, the cooling chamber can be maintained at the first set temperature while stopping the operation of the refrigerator at the daytime power peak while enabling power saving.

また、前記本発明方法の実施に直接使用可能な本発明の冷蔵倉庫は、被保冷品の出し入れが多い高負荷型冷却室と被保冷品の出し入れが少ない保管型冷却室とを含む複数の冷却室を有する冷蔵倉庫において、冷凍サイクルを構成する冷凍機と、該冷凍機で冷却されたCO2ブライン液を貯留するCO2液溜器と、各冷却室に夫々設けられた空気冷却器と、CO2液溜器から各空気冷却器にCO2ブライン液を供給するCO2循環路と、CO2液溜器から空気冷却器にCO2ブライン液を供給するCO2循環路の往路に設けられた液ポンプと、各冷却室に夫々設けられた温度センサと、CO2循環路から分岐し、保管型冷却室で冷却液化したCO2ブライン液を高負荷型冷却室に供給するCO2ブライン液供給路とを備えている。   Further, the refrigerated warehouse of the present invention that can be directly used for the implementation of the method of the present invention includes a plurality of cooling chambers including a high-load type cooling chamber with a large number of items to be taken in and out and a storage type cooling chamber with a few items to be taken in and out. In a refrigerated warehouse having a chamber, a refrigerator constituting a refrigeration cycle, a CO2 reservoir for storing the CO2 brine liquid cooled by the refrigerator, an air cooler provided in each cooling chamber, and a CO2 solution CO2 circulation path for supplying the CO2 brine liquid from the reservoir to each air cooler, a liquid pump provided in the forward path of the CO2 circulation path for supplying the CO2 brine liquid from the CO2 liquid reservoir to the air cooler, and each cooling chamber And a CO2 brine supply path for supplying the CO2 brine liquid branched from the CO2 circulation path and liquefied in the storage-type cooling chamber to the high-load cooling chamber.

本発明の冷蔵倉庫では、通常の冷却温度である第1の設定温度より低く、CO2ブラインを液化可能な第2の設定温度を設定し、電力消費量がピークとなる時間帯以外の時間帯に、例えば、夜間等の電力消費量が少ない時間帯に冷凍機を運転し、複数の冷却室を第2の設定温度まで冷却する。そして、昼間の電力消費量がピークとなる時間帯には、冷凍機の運転を停止し、この間、高負荷型冷却室が第1の設定温度を超えたら、他の保管型冷却室の蓄熱効果によって冷却液化したCO2ブラインを高負荷型冷却室に供給する。これによって、高負荷型冷却室を冷却し、第1の設定温度に戻す。そのため、冷凍機を停止した時でも、すべての冷却室を第1の設定温度に保持できる。   In the refrigerated warehouse of the present invention, a second set temperature that is lower than the first set temperature that is the normal cooling temperature and that can liquefy the CO2 brine is set, and in a time zone other than the time zone in which the power consumption peaks. For example, the refrigerator is operated in a time zone where the power consumption is small, such as at night, and the plurality of cooling chambers are cooled to the second set temperature. Then, during the time when the daytime power consumption is at its peak, the operation of the refrigerator is stopped. During this time, if the high-load cooling room exceeds the first set temperature, the heat storage effect of other storage-type cooling rooms The CO2 brine cooled and liquefied by is supplied to the high-load cooling chamber. Thereby, the high load type cooling chamber is cooled and returned to the first set temperature. Therefore, even when the refrigerator is stopped, all the cooling chambers can be maintained at the first set temperature.

このように、保管型冷蔵倉庫の蓄熱効果を利用すると共に、第2の設定温度を冷やしすぎが起らない温度に設定しているので、省電力化を達成できる。従って、高負荷型冷却室を有する冷蔵倉庫においても、省電力化を可能にしながら、昼間の電力ピーク時に、冷凍機の運転を停止しながら、冷却室を第1の設定温度に保持できる。   As described above, the heat storage effect of the storage-type refrigerated warehouse is used, and the second set temperature is set to a temperature that does not cause excessive cooling, so that power saving can be achieved. Therefore, even in a refrigerated warehouse having a high-load type cooling room, the cooling room can be maintained at the first set temperature while stopping the operation of the refrigerator at the time of daytime power peak while enabling power saving.

本発明において、高負荷型冷却室は保管型冷却室より下層の階にあり、CO2液溜器は各冷却室より下方に配置され、CO2ブライン液供給路は、保管型冷却室の空気冷却器のCO2流れ方向上流側部位でCO2循環路の往路から分岐し、CO2液溜器に接続されているとよい。これによって、保管型冷却室の蓄熱効果によって冷却液化したCO2ブライン液を重力によりCO2液溜器に自然流下させ、その後、CO2液溜器に流下したCO2ブライン液を液ポンプで高負荷型冷却室に送ることができる。そのため、CO2ブライン液を高負荷型冷却室に送るときだけ液ポンプを稼働させればよく、液ポンプの動力を節減できる。   In the present invention, the high load type cooling chamber is on a lower floor than the storage type cooling chamber, the CO2 liquid reservoir is disposed below each cooling chamber, and the CO2 brine liquid supply path is an air cooler of the storage type cooling chamber. The CO2 flow direction upstream of the CO2 circuit may be branched from the forward path of the CO2 circulation path and connected to the CO2 reservoir. As a result, the CO2 brine liquid cooled and liquefied by the heat storage effect of the storage-type cooling chamber is allowed to naturally flow down to the CO2 liquid reservoir by gravity, and then the CO2 brine liquid that has flowed down to the CO2 liquid reservoir is liquid-pumped by the high-load type cooling chamber. Can be sent to. Therefore, it is only necessary to operate the liquid pump only when the CO2 brine liquid is sent to the high load type cooling chamber, and the power of the liquid pump can be saved.

本発明において、高負荷型冷却室は他の冷却室より下層の階にあり、CO2液溜器は各冷却室より下方に配置され、CO2ブライン液供給路は、保管型冷却室の空気冷却器のCO2流れ方向上流側部位でCO2循環路の往路から分岐し、高負荷型冷却室の空気冷却器のCO2流れ方向上流側部位でCO2循環路の往路に接続しているとよい。これによって、保管型冷却室の蓄熱効果によって冷却液化したCO2ブライン液を重力により高負荷型冷却室に自然流入させ、また、高負荷型冷却室でガス化したCO2ブラインは、サーモサイフォン効果の原理でCO2循環路の復路を通って保管型冷却室へ戻すことができる。そのため、液ポンプを稼働させる必要がなく、液ポンプの動力を節減できる。   In the present invention, the high load type cooling chamber is on a lower floor than the other cooling chambers, the CO2 liquid reservoir is disposed below each cooling chamber, and the CO2 brine liquid supply path is an air cooler of the storage type cooling chamber. It is preferable to branch from the forward path of the CO2 circulation path at the upstream side portion in the CO2 flow direction and to be connected to the forward path of the CO2 circulation path at the upstream portion in the CO2 flow direction of the air cooler of the high load type cooling chamber. As a result, the CO2 brine liquid cooled and liquefied by the heat storage effect of the storage-type cooling chamber naturally flows into the high-load cooling chamber by gravity, and the CO2 brine gasified in the high-load cooling chamber is the principle of the thermosiphon effect. Can be returned to the storage-type cooling chamber through the return path of the CO2 circulation path. Therefore, it is not necessary to operate the liquid pump, and the power of the liquid pump can be saved.

本発明によれば、物流型冷蔵倉庫のように、高負荷型冷却室と保管型冷却室を有する冷蔵倉庫においても、省電力化を達成できると共に、昼間の電力ピーク時に、冷凍機の運転を停止しながら、冷却室を設定された冷却温度に保持できる。   According to the present invention, even in a refrigerated warehouse having a high load type cooling room and a storage type cooling room, such as a distribution type refrigerated warehouse, it is possible to achieve power saving and to operate the refrigerator at the time of daytime power peak. While stopping, the cooling chamber can be maintained at a set cooling temperature.

本発明方法の一実施形態に係る冷蔵倉庫の全体構成図である。It is a whole block diagram of the refrigerator warehouse which concerns on one Embodiment of this invention method. 本発明の冷蔵倉庫の第1実施形態に係る冷蔵倉庫の全体構成図である。It is a whole block diagram of the refrigerated warehouse which concerns on 1st Embodiment of the refrigerated warehouse of this invention. 前記第1実施形態に係る冷蔵倉庫の制御系のブロック線図である。It is a block diagram of the control system of the refrigerated warehouse which concerns on the said 1st Embodiment. 本発明の冷蔵倉庫の第2実施形態に係る冷蔵倉庫の全体構成図である。It is a whole block diagram of the refrigerator warehouse which concerns on 2nd Embodiment of the refrigerator warehouse of this invention.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(実施形態1)
本発明方法の一実施形態を図1及び図2に基づいて説明する。図1において、地面GLより上方に3階建ての冷蔵倉庫10が設けられ、冷蔵倉庫10の右隣りに半地下室12が設けられている。冷蔵倉庫10の各階には、1階から順に冷却室14a、14b及び14cが設けられ、各冷却室の左隣りに荷捌き室16a、16b及び16cが設けられている。荷捌き室16a〜cにはエレベータ18が設けられ、冷却室14a又は14bへの被保冷品24の搬出入は、エレベータ18を使って行うことができる。
(Embodiment 1)
An embodiment of the method of the present invention will be described with reference to FIGS. In FIG. 1, a three-story refrigerated warehouse 10 is provided above the ground GL, and a semi-basement 12 is provided on the right side of the refrigerated warehouse 10. On each floor of the refrigerated warehouse 10, cooling chambers 14a, 14b, and 14c are provided in order from the first floor, and cargo handling chambers 16a, 16b, and 16c are provided on the left side of each cooling chamber. The cargo handling chambers 16 a to 16 c are provided with an elevator 18, and the cooled article 14 can be carried into and out of the cooling chamber 14 a or 14 b using the elevator 18.

1階の荷捌き室16aには、搬出入戸口(ドック)が設けられ、輸送車22の荷台後部が該搬出入戸口に挿入され、被保冷品24の搬出入が行われる。荷捌き室16aには該搬出入戸口を覆うドックシェルタ20が設けられ、荷捌き室16aの空調空気が外部へ逃げたり、外気、雨風、湿気、塵、害虫等が荷捌き室16aに侵入するのを、ドックシェルタ20で防止している。   The loading / unloading doorway (dock) is provided in the cargo handling room 16a on the first floor, the rear part of the loading platform of the transport vehicle 22 is inserted into the loading / unloading doorway, and the cold-insulated product 24 is carried in and out. The handling chamber 16a is provided with a dock shelter 20 that covers the loading / unloading doorway. Air-conditioned air in the handling chamber 16a escapes to the outside, and outside air, rain wind, moisture, dust, pests, etc. enter the handling chamber 16a. This is prevented by the dock shelter 20.

半地下室12の内部に、アンモニア冷凍機26が設けられている。NH3が循環する1次冷媒回路28と、1次冷媒回路28に設けられた圧縮機30、凝縮器32、膨張弁34及び蒸発器36とで構成されている。に半地下室12の内部にCO2液溜器38が設けられている。CO2液溜器38と蒸発器36との間にCO2循環路40が設けられている。CO2液溜器38からCO2循環路40を経て蒸発器36に入ったガス状のCO2ブラインは、蒸発器36で冷却され液状となってCO2液溜器38に戻る。CO2液溜器38には、内部圧力を検出する圧力センサ42が設けられている。圧力センサ42の検出値は後述する制御装置60に送られる。   An ammonia refrigerator 26 is provided inside the semi-basement 12. A primary refrigerant circuit 28 in which NH 3 circulates, and a compressor 30, a condenser 32, an expansion valve 34, and an evaporator 36 provided in the primary refrigerant circuit 28 are configured. In addition, a CO 2 reservoir 38 is provided inside the semi-basement 12. A CO 2 circulation path 40 is provided between the CO 2 liquid reservoir 38 and the evaporator 36. The gaseous CO2 brine that has entered the evaporator 36 from the CO2 liquid reservoir 38 via the CO2 circulation path 40 is cooled by the evaporator 36 to become liquid and returns to the CO2 liquid reservoir 38. The CO2 reservoir 38 is provided with a pressure sensor 42 that detects the internal pressure. The detection value of the pressure sensor 42 is sent to the control device 60 described later.

冷却室14a〜cには、夫々1個又は複数の空気冷却器44a〜cが設けられている。空気冷却器44a〜cとCO2液溜器38との間は、CO2循環路50及び分岐路52a、52bで接続されている。CO2液溜器38からCO2循環路50及び分岐路52a、52bを通ってCO2ブライン液が空気冷却器44a〜cに送られる。CO2循環路50の往路50aには液ポンプ51が設けられている。各冷却室に複数の冷却室が設けられる場合、各冷却室はCO2循環路50に対して並列に配置される。   One or a plurality of air coolers 44a to 44c are provided in the cooling chambers 14a to 14c, respectively. The air coolers 44a to 44c and the CO2 reservoir 38 are connected by a CO2 circulation path 50 and branch paths 52a and 52b. The CO2 brine liquid is sent from the CO2 liquid reservoir 38 through the CO2 circulation path 50 and the branch paths 52a and 52b to the air coolers 44a to 44c. A liquid pump 51 is provided in the forward path 50 a of the CO 2 circulation path 50. When a plurality of cooling chambers are provided in each cooling chamber, each cooling chamber is arranged in parallel to the CO 2 circulation path 50.

空気冷却器44aを挟んで分岐路52aの上流側部位には開閉弁54aが設けられ、下流側部位には開閉弁56aが設けられている。また、空気冷却器44bを挟んで分岐路52bの上流側部位には開閉弁54bが設けられ、下流側部位には開閉弁56bが設けられている。また、空気冷却器44cを挟んでCO2循環路50の上流側部位に開閉弁54cが設けられ、下流側部位には開閉弁56cが設けられている。   An opening / closing valve 54a is provided at the upstream side portion of the branch passage 52a with the air cooler 44a interposed therebetween, and an opening / closing valve 56a is provided at the downstream side portion. Further, an opening / closing valve 54b is provided at the upstream side portion of the branch passage 52b with the air cooler 44b interposed therebetween, and an opening / closing valve 56b is provided at the downstream side portion. Further, an open / close valve 54c is provided at an upstream portion of the CO2 circulation path 50 with the air cooler 44c interposed therebetween, and an open / close valve 56c is provided at a downstream portion.

空気冷却器44a〜cには夫々ファン46a〜cが設けられ、ファン46a〜cによって空気冷却器44a〜cの内部に空気流aを形成し、CO2ブライン液と室内空気との熱伝達効率を向上できる。冷却室14a〜cには夫々温度センサ58a〜cが設けられ、温度センサ58a〜cの検出値は制御装置60(図2参照)に送られる。   Each of the air coolers 44a to 44c is provided with fans 46a to 46c. The fans 46a to 46c form an air flow a inside the air coolers 44a to 44c, thereby improving the heat transfer efficiency between the CO2 brine solution and the room air. It can be improved. Temperature sensors 58a to 58c are provided in the cooling chambers 14a to 14c, respectively, and detection values of the temperature sensors 58a to 58c are sent to the control device 60 (see FIG. 2).

図2に本実施形態の制御系を示す。図2において、制御装置60には圧力センサ42及び温度センサ58a〜cの検出値が入力される。制御装置60は、これらの検出値に基づいて、圧縮機30の駆動装置30a、液ポンプ51、ファン46a〜cの駆動装置48a〜c及び開閉弁54a〜c、56a〜cの動作を制御する。通常運転時には、開閉弁54a〜c及び56a〜cを開放し、アンモニア冷凍機26、液ポンプ51及びファン46a〜cを稼働し、CO2液溜器38からCO2液溜器38を空気冷却器44a〜cに送って、冷却室を冷却する。   FIG. 2 shows the control system of this embodiment. In FIG. 2, detection values of the pressure sensor 42 and the temperature sensors 58 a to 58 c are input to the control device 60. Based on these detection values, the control device 60 controls the operations of the drive device 30a of the compressor 30, the liquid pump 51, the drive devices 48a to 48c of the fans 46a to 46c, and the on-off valves 54a to 54c and 56a to 56c. . During normal operation, the on-off valves 54a-c and 56a-c are opened, the ammonia refrigerator 26, the liquid pump 51 and the fans 46a-c are operated, and the CO2 liquid reservoir 38 is changed from the CO2 liquid reservoir 38 to the air cooler 44a. To c to cool the cooling chamber.

かかる構成において、1階に設けられた冷却室14aが被保冷品24の出し入れが激しく、昼間の冷却負荷が大きい高負荷型冷却室であり、冷却室14b及び14cが比較的被保冷品24の出し入れが少ない保管型の冷却室である。CO2液溜器38のCO2の温度は−32℃に、圧力は12.3MPaに設定されている。昼間など冷却室14a〜cの通常の設定温度を−25℃に設定し、冷却室14a〜cがこの温度となるように冷凍機26、液ポンプ51及びファン46a〜c等を運転する。   In such a configuration, the cooling chamber 14a provided on the first floor is a high-load type cooling chamber in which the cold article 24 is heavily loaded and unloaded and the cooling load in the daytime is large, and the cooling chambers 14b and 14c are relatively low in the cold article 24. It is a storage-type cooling room with little in and out. The CO2 temperature of the CO2 reservoir 38 is set to -32 ° C, and the pressure is set to 12.3 MPa. The normal set temperature of the cooling chambers 14a-c such as daytime is set to −25 ° C., and the refrigerator 26, the liquid pump 51, the fans 46a-c, etc. are operated so that the cooling chambers 14a-c become this temperature.

夜間等の電力消費量が少ない時間帯には、冷却室14a〜cを前記設定温度より低い温度であり、前記圧力下でCO2が液化可能な温度である−28℃に設定し、制御装置60によって、冷却室14a〜cがこの温度になるようにアンモニア冷凍機26の運転を制御する。また、CO2液溜器38のCO2の圧力が設定値を超えたら、アンモニア冷凍機26の運転を制御してCO2ブラインを冷却し、液化してCO2の圧力を低下させる。   In a time zone where the amount of power consumption is low, such as at night, the cooling chambers 14a to 14c are set to −28 ° C., which is a temperature lower than the set temperature and at which CO 2 can be liquefied under the pressure. Thus, the operation of the ammonia refrigerator 26 is controlled so that the cooling chambers 14a to 14c reach this temperature. When the CO2 pressure in the CO2 reservoir 38 exceeds the set value, the operation of the ammonia refrigerator 26 is controlled to cool the CO2 brine and liquefy it to reduce the CO2 pressure.

昼間の電力消費量がピークとなる時間帯でアンモニア冷凍機26を停止する。アンモニア冷凍機26が停止している間、冷却室14aの被保冷品24の出し入れ等によって冷却負荷が大きくなり、冷却室14aの室内温度が「−25℃+ΔT(例えば1℃)」より高くなったとき、冷却室14a〜cのファン46a〜c及び液ポンプ51を同時に運転する。冷却室14b及び14cでは、夜間の運転により−28℃まで冷やし込みがなされており、空気冷却器44b及び44cを循環するCO2液は、冷却室14b及び14cの冷気で冷却され液化する。   The ammonia refrigerator 26 is stopped in a time zone in which daytime power consumption is at its peak. While the ammonia refrigerator 26 is stopped, the cooling load increases due to the insertion / extraction of the article 24 to be cooled in the cooling chamber 14a, and the indoor temperature of the cooling chamber 14a becomes higher than “−25 ° C. + ΔT (for example, 1 ° C.)”. Then, the fans 46a to 46c and the liquid pump 51 in the cooling chambers 14a to 14c are simultaneously operated. The cooling chambers 14b and 14c are cooled to −28 ° C. by nighttime operation, and the CO 2 liquid circulating in the air coolers 44b and 44c is cooled and liquefied by the cold air in the cooling chambers 14b and 14c.

冷却室14aでは、空気冷却器44aを循環するCO2ブライン液は一部蒸発ガス化した気液混合状態となる。冷却室14b及び14cの冷気で冷却されたCO2ブライン液と、冷却室14aで室内空気と熱交換し、一部蒸発ガス化した気液混合状態のCO2ブラインは、CO2循環路の復路50b及びCO2液溜器38で合流し混合され、冷却室14aで一部蒸発したCO2ガスは液化する。液化したCO2ブラインは、CO2循環路50及びCO2液溜器38を介して冷却室14aの空気冷却器44aに供給される。このCO2ブライン液によって冷却室14aが冷却される。これによって、冷却室14aを通常の設定温度−25℃に戻すことができる。   In the cooling chamber 14a, the CO2 brine liquid circulating through the air cooler 44a is in a gas-liquid mixed state in which the gas is partially evaporated. The CO2 brine liquid cooled by the cold air in the cooling chambers 14b and 14c and the CO2 brine in a gas-liquid mixed state that is partially evaporated and gasified by exchanging heat with room air in the cooling chamber 14a are the return path 50b and CO2 of the CO2 circulation path. The CO2 gas that has joined and mixed in the liquid reservoir 38 and partially evaporated in the cooling chamber 14a is liquefied. The liquefied CO2 brine is supplied to the air cooler 44a of the cooling chamber 14a through the CO2 circulation path 50 and the CO2 liquid reservoir 38. The cooling chamber 14a is cooled by this CO2 brine solution. As a result, the cooling chamber 14a can be returned to the normal set temperature of -25 ° C.

そのため、アンモニア冷凍機26を停止した時でも、被保冷品24の出し入れが多い冷却室14aを含め、各冷却室を通常の設定温度である−25℃に保持できる。このように、比較的被保冷品24の出入りが少ない保管型冷蔵倉庫14b及び14cの蓄熱効果を利用して冷却室14aを冷却すると共に、夜間の運転では、冷やしすぎが起らない設定温度である−28℃になるようにアンモニア冷凍機26を運転するので、省電力化を達成できる。   Therefore, even when the ammonia refrigerator 26 is stopped, each cooling chamber can be maintained at −25 ° C., which is a normal set temperature, including the cooling chamber 14a in which the article to be cooled 24 is frequently taken in and out. As described above, the cooling chamber 14a is cooled using the heat storage effect of the storage-type refrigerated warehouses 14b and 14c with relatively little entry / exit of the product to be cooled 24, and at a set temperature that does not cause excessive cooling during nighttime operation. Since the ammonia refrigerator 26 is operated to a certain −28 ° C., power saving can be achieved.

(実施形態2)
次に、本発明装置の第1実施形態を図3に基づいて説明する。本実施形態では、前記実施形態の構成に加えて、一端が開閉弁54cと空気冷却器44c間のCO2循環路50に接続され、他端がCO2液溜器38の上部に接続されたCO2ブライン液供給路62が設けられている。また、一端が開閉弁54bと冷却室14b間の分岐路52bに接続され、他端がCO2ブライン液供給路62に接続されたCO2ブライン液供給路64が設けられている。CO2ブライン液供給路62には開閉弁66cが設けられ、CO2ブライン液供給路64には開閉弁66bが設けられている。開閉弁66b及び66cの動作は制御装置60によって制御される。その他の構成及び設定温度等の運転条件は前記実施形態と同一である。
(Embodiment 2)
Next, a first embodiment of the device of the present invention will be described with reference to FIG. In the present embodiment, in addition to the configuration of the above embodiment, one end is connected to the CO2 circulation path 50 between the on-off valve 54c and the air cooler 44c, and the other end is connected to the upper portion of the CO2 reservoir 38. A liquid supply path 62 is provided. Further, a CO2 brine supply path 64 is provided, one end of which is connected to the branch path 52b between the on-off valve 54b and the cooling chamber 14b, and the other end is connected to the CO2 brine liquid supply path 62. An open / close valve 66 c is provided in the CO 2 brine solution supply path 62, and an open / close valve 66 b is provided in the CO 2 brine solution supply path 64. The operation of the on-off valves 66b and 66c is controlled by the control device 60. Other configurations and operating conditions such as set temperature are the same as in the above embodiment.

本実施形態では、昼間の電力ピーク時にアンモニア冷凍機26を停止し、冷却室14aが「−25℃+ΔT(例えば1℃)」より高くなったとき、開閉弁54b及び54cを閉じ、開閉弁66b及び66cを含むその他の開閉弁を開放する。そして、冷却室14a〜cのファン46a〜c及び液ポンプ51を同時に運転する。冷却室14b及び14cは、夜間の運転により、空気冷却器44b及び44cを循環するCO2を液化するのに十分な冷やし込みがなされている。この時、冷却室14aの空気冷却器44aで室内空気と熱交換し、蒸発ガス化したCO2ガス及びCO2液溜器38のガス状のCO2ブラインは、CO2循環路50の復路50bを自然上昇し、空気冷却器44b及び44cに達して冷却され液化される。   In this embodiment, when the ammonia refrigerator 26 is stopped at the daytime power peak and the cooling chamber 14a becomes higher than “−25 ° C. + ΔT (for example, 1 ° C.)”, the on-off valves 54b and 54c are closed, and the on-off valve 66b And other open / close valves including 66c are opened. And the fans 46a-c and the liquid pump 51 of the cooling chambers 14a-c are operated simultaneously. The cooling chambers 14b and 14c are cooled enough to liquefy the CO2 circulating through the air coolers 44b and 44c during nighttime operation. At this time, heat exchange with room air is performed by the air cooler 44a of the cooling chamber 14a, and the evaporated CO2 gas and the gaseous CO2 brine of the CO2 reservoir 38 naturally rise in the return path 50b of the CO2 circulation path 50. The air coolers 44b and 44c are cooled and liquefied.

空気冷却器44b及び44cで液化したCO2ブラインは、CO2ブライン液供給路62及び64を重力により流下し、CO2液溜器38に流入する。CO2液溜器38に流入したCO2ブライン液は、液ポンプ51によって開閉弁54aを経由し、空気冷却器44aに供給される。このCO2ブライン液で冷却室14aが冷却され、冷却室14aの温度が設定温度の−25℃に戻る。   The CO2 brine liquefied by the air coolers 44 b and 44 c flows down through the CO2 brine liquid supply paths 62 and 64 by gravity and flows into the CO2 liquid reservoir 38. The CO2 brine liquid that has flowed into the CO2 liquid reservoir 38 is supplied to the air cooler 44a by the liquid pump 51 via the on-off valve 54a. The cooling chamber 14a is cooled by this CO2 brine solution, and the temperature of the cooling chamber 14a returns to the set temperature of −25 ° C.

本実施形態によれば、図1及び図2に示す実施形態が得られる作用効果に加えて、液ポンプ51はCO2ブライン液を空気冷却器44aに送るだけのために運転すればよい。そのため、液ポンプ51の動力を節減できる。   According to the present embodiment, in addition to the operational effects obtained by the embodiment shown in FIGS. 1 and 2, the liquid pump 51 may be operated only to send the CO2 brine liquid to the air cooler 44a. Therefore, the power of the liquid pump 51 can be saved.

(実施形態3)
次に、本発明装置の第2実施形態を図4に基づいて説明する。本実施形態は、一端が開閉弁54cと空気冷却器44c間のCO2循環路50に接続され、他端が開閉弁54aと空気冷却器44a間の分岐路52aに接続されたCO2ブライン液供給路68が設けられている。CO2ブライン液供給路68には、空気冷却器44cに近い部位に開閉弁70が設けられ、空気冷却器44aに近い部位に開閉弁72が設けられている。開閉弁70及び72の開閉動作は制御装置60で制御される。その他の構成及び設定温度等の運転条件は図1及び図2に示す実施形態と同一である。
(Embodiment 3)
Next, 2nd Embodiment of this invention apparatus is described based on FIG. In the present embodiment, a CO2 brine liquid supply path having one end connected to the CO2 circulation path 50 between the on-off valve 54c and the air cooler 44c and the other end connected to the branch path 52a between the on-off valve 54a and the air cooler 44a. 68 is provided. In the CO2 brine liquid supply path 68, an opening / closing valve 70 is provided near the air cooler 44c, and an opening / closing valve 72 is provided near the air cooler 44a. The opening / closing operation of the opening / closing valves 70 and 72 is controlled by the control device 60. Other configurations and operating conditions such as set temperature are the same as those of the embodiment shown in FIGS.

本実施形態では、昼間など冷却室14a〜cの通常の設定温度を−25℃に設定し、冷却室14a〜cがこの温度となるように冷凍機26、液ポンプ51及びファン46a〜c等を運転する。そして、夜間等の電力消費量が少ない時間帯には、冷却室14a〜cを前記設定温度より低い温度であり、前記圧力下でCO2が液化可能な温度である−28℃に設定し、制御装置60によって、冷却室14a〜cがこの温度になるようにアンモニア冷凍機26の運転を制御する。   In the present embodiment, the normal set temperature of the cooling chambers 14a to c such as daytime is set to −25 ° C., and the refrigerator 26, the liquid pump 51, the fans 46a to c and the like are set so that the cooling chambers 14a to 14c are at this temperature. To drive. And in the time zone when the amount of power consumption is small such as at night, the cooling chambers 14a to 14c are set to -28 ° C., which is a temperature lower than the set temperature and at which CO 2 can be liquefied under the pressure. The operation of the ammonia refrigerator 26 is controlled by the device 60 so that the cooling chambers 14a to 14c reach this temperature.

昼間の電力ピーク時にアンモニア冷凍機26を停止し、冷却室14aが「−25℃+ΔT(例えば1℃)」より高くなったとき、開閉弁54a、56b及び54cを閉じ、開閉弁70及び72を含む他の開閉弁を開放する。そして、冷却室14a及び14cのファン46a及び46cを運転する。冷却室14cは、夜間の運転により、空気冷却器44cを循環するCO2を液化するのに十分冷却されている。この時、冷却室14aを冷却してガス化したCO2ブラインは、開閉弁56a、復路50b及び開閉弁56cを通って空気冷却器44cに流入し、空気冷却器44cで冷却され液化する。   When the daytime power peak, the ammonia refrigerator 26 is stopped, and when the cooling chamber 14a becomes higher than “−25 ° C. + ΔT (for example, 1 ° C.)”, the on-off valves 54a, 56b and 54c are closed, and the on-off valves 70 and 72 are turned on. Open other open / close valves including it. Then, the fans 46a and 46c of the cooling chambers 14a and 14c are operated. The cooling chamber 14c is sufficiently cooled to liquefy the CO2 circulating through the air cooler 44c by nighttime operation. At this time, the CO2 brine gasified by cooling the cooling chamber 14a flows into the air cooler 44c through the on-off valve 56a, the return path 50b, and the on-off valve 56c, and is cooled and liquefied by the air cooler 44c.

液化したCO2ブラインはCO2ブライン液供給路68を重力により自然流下し、空気冷却器44aに流入する。冷却室14aで室内空気と熱交換しガス化したCO2ブラインは、サーモサイフォン効果の原理で、開閉弁56a、復路50b、開閉弁56c及び空気冷却器44cに上昇する。空気冷却器44cに達したガス状のCO2ブラインは空気冷却器44cで再び冷却され液化する。CO2ブライン液が空気冷却器44aに供給されたことで冷却室14aが冷却され、冷却室14aの温度が設定温度である−25℃に戻る。   The liquefied CO2 brine naturally flows down through the CO2 brine liquid supply path 68 by gravity and flows into the air cooler 44a. The CO2 brine gasified by heat exchange with room air in the cooling chamber 14a rises to the on-off valve 56a, the return path 50b, the on-off valve 56c, and the air cooler 44c on the principle of the thermosiphon effect. The gaseous CO2 brine that has reached the air cooler 44c is cooled again and liquefied by the air cooler 44c. The cooling chamber 14a is cooled by supplying the CO 2 brine solution to the air cooler 44a, and the temperature of the cooling chamber 14a returns to −25 ° C. which is the set temperature.

本実施形態によれば、図1及び図2の実施形態が得られる作用効果に加えて、サイフォンの原理で空気冷却器44aに供給されるCO2ブラインが自然循環するので、液ポンプ51の稼働が不要になり、液ポンプ51の駆動に要する電力を削減できる。なお、本実施形態では、冷却室14aの温度が設定温度を超えた時、空気冷却器44cのみからCO2ブライン液を空気冷却器44aに供給するようにしているが、空気冷却器44cとCO2ブライン液供給路68とを接続するCO2ブライン液供給路を設け、空気冷却器44bからもCO2ブライン液を供給するようにしてもよい。   According to the present embodiment, in addition to the effects obtained by the embodiments of FIGS. 1 and 2, the CO2 brine supplied to the air cooler 44 a is naturally circulated by the siphon principle, so that the liquid pump 51 is operated. It becomes unnecessary, and the electric power required for driving the liquid pump 51 can be reduced. In this embodiment, when the temperature of the cooling chamber 14a exceeds the set temperature, the CO2 brine liquid is supplied from only the air cooler 44c to the air cooler 44a. However, the air cooler 44c and the CO2 brine are used. A CO2 brine solution supply path that connects the liquid supply channel 68 may be provided, and the CO2 brine solution may also be supplied from the air cooler 44b.

なお、前記実施形態は、いずれもNH3を冷媒とする冷凍機を用いているが、本発明はNH3以外の冷媒を使用した冷凍機を用いることができる。   In addition, although all the said embodiments use the refrigerator which uses NH3 as a refrigerant | coolant, this invention can use the refrigerator using refrigerants other than NH3.

本発明によれば、高負荷型冷却室及び保管型冷却室を含む複数の冷却室を有する冷蔵倉庫において、電力消費量がピークとなる時間帯及びその他の時間帯を含め、省電力化を実現できる。   According to the present invention, in a refrigerated warehouse having a plurality of cooling chambers including a high load type cooling chamber and a storage type cooling chamber, power saving is realized including a time zone in which power consumption is at a peak and other time zones. it can.

10 冷蔵倉庫
12 半地下室
14a 冷却室(高負荷型冷却室)
14b、14c 冷却室(保管型冷却室)
16a〜c 荷捌き室
18 エレベータ
20 ドックシェルタ
22 輸送車
24 被保冷品
26 アンモニア冷凍機
28 1次冷媒回路
30 圧縮機
30a 駆動装置
32 凝縮器
34 膨張弁
36 蒸発器
38 CO2液溜器
40 CO2循環路
42 圧力センサ
44a〜c 空気冷却器
46a〜c ファン
48a〜c 駆動装置
50 CO2循環路
50a 往路
50b 復路
51 液ポンプ
52a、52b 分岐路
54a〜c、56a〜c、66b、66c、70,72 開閉弁
58a〜c 温度センサ
60 制御装置
62,64,68 CO2ブライン液供給路
GL 地面
a 空気流
10 Refrigerated warehouse 12 Semi-basement 14a Cooling room (high load type cooling room)
14b, 14c Cooling chamber (storage type cooling chamber)
16a-c Loading room 18 Elevator 20 Dock shelter 22 Transport vehicle 24 Cooled product 26 Ammonia refrigerator 28 Primary refrigerant circuit 30 Compressor 30a Drive device 32 Condenser 34 Expansion valve 36 Evaporator 38 CO2 reservoir 40 CO2 circulation Path 42 pressure sensor 44a-c air cooler 46a-c fan 48a-c drive unit 50 CO2 circulation path 50a forward path 50b return path 51 liquid pump 52a, 52b branch path 54a-c, 56a-c, 66b, 66c, 70, 72 Open / close valve 58a-c Temperature sensor 60 Control device 62, 64, 68 CO2 brine liquid supply path GL Ground a Air flow

Claims (4)

被保冷品の出し入れが多い高負荷型冷却室と被保冷品の出し入れが少ない保管型冷却室とを含む複数の冷却室を有する冷蔵倉庫の省電力運転方法において、
冷凍サイクルを構成する冷凍機でCO2ブライン液を製造する第1工程と、
該CO2ブライン液を各冷却室に夫々設けられた空気冷却器に供給して各冷却室を第1の設定温度に冷却する第2工程と、
電力消費量がピークとなる時間帯以外の時間帯に前記冷凍機を運転し、第1の設定温度より低く、CO2ブラインを液化可能な第2の設定温度に各冷却室を冷却する第3工程と、
電力消費量がピークとなる時間帯を含む時間帯に前記冷凍機の運転を停止し、第1の設定温度より高温となった前記高負荷型冷却室の空気冷却器に、前記保管型冷却室で冷却液化したCO2ブライン液を供給し、該高負荷型冷却室の温度を第1の設定温度に戻す第4工程とからなることを特徴とする冷蔵倉庫の省電力運転方法。
In a power-saving operation method of a refrigerated warehouse having a plurality of cooling chambers including a high-load type cooling chamber with a large amount of cold storage / removal and a storage type cooling chamber with a small amount of cold storage / removal,
A first step of producing a CO2 brine solution with a refrigerator constituting a refrigeration cycle;
A second step of supplying the CO2 brine solution to an air cooler provided in each cooling chamber to cool each cooling chamber to a first set temperature;
A third step of operating the refrigerator in a time zone other than the time zone in which the power consumption reaches a peak, and cooling each cooling chamber to a second set temperature lower than the first set temperature and capable of liquefying CO2 brine. When,
Operation of the refrigerator is stopped during a time period including a time period in which the power consumption is at a peak, and the storage type cooling chamber is connected to the air cooler of the high load type cooling chamber that has become higher than the first set temperature. A power saving operation method for a refrigerated warehouse, comprising: a fourth step of supplying the CO2 brine liquid cooled and liquefied in step 4 and returning the temperature of the high load cooling chamber to the first set temperature.
被保冷品の出し入れが多い高負荷型冷却室と被保冷品の出し入れが少ない保管型冷却室とを含む複数の冷却室を有する冷蔵倉庫において、
冷凍サイクルを構成する冷凍機と、
該冷凍機で冷却されたCO2ブライン液を貯留するCO2液溜器と、
各冷却室に夫々設けられた空気冷却器と、
前記CO2液溜器から前記空気冷却器にCO2ブライン液を供給するCO2循環路と、
前記CO2液溜器から前記空気冷却器にCO2ブライン液を供給する前記CO2循環路の往路に設けられた液ポンプと、
各冷却室に夫々設けられた温度センサと、
前記CO2循環路から分岐し、前記保管型冷却室で冷却液化したCO2ブライン液を前記高負荷型冷却室に供給するCO2ブライン液供給路とを備えていることを特徴とする冷蔵倉庫。
In a refrigerated warehouse having a plurality of cooling chambers including a high-load type cooling chamber with a large number of items to be taken in and out and a storage type cooling chamber with a few items to be taken in and out.
A refrigerator constituting a refrigeration cycle;
A CO2 liquid reservoir for storing the CO2 brine liquid cooled by the refrigerator;
An air cooler provided in each cooling chamber;
A CO2 circuit for supplying a CO2 brine solution from the CO2 reservoir to the air cooler;
A liquid pump provided in a forward path of the CO2 circulation path for supplying a CO2 brine liquid from the CO2 liquid reservoir to the air cooler;
A temperature sensor provided in each cooling chamber;
A refrigerated warehouse comprising a CO2 brine liquid supply path that branches from the CO2 circulation path and supplies the CO2 brine liquid cooled and liquefied in the storage-type cooling chamber to the high-load cooling chamber.
前記高負荷型冷却室は前記保管型冷却室より下層の階にあり、前記CO2液溜器は各冷却室より下方に配置され、
前記CO2ブライン液供給路は、前記保管型冷却室の空気冷却器のCO2流れ方向上流側部位で前記CO2循環路の往路から分岐し、前記CO2液溜器に接続されていることを特徴とする請求項2に記載の冷蔵倉庫。
The high-load cooling chamber is on a lower floor than the storage-type cooling chamber, and the CO2 liquid reservoir is disposed below each cooling chamber,
The CO2 brine supply path is branched from the forward path of the CO2 circulation path at the upstream side of the CO2 flow direction of the air cooler of the storage type cooling chamber, and is connected to the CO2 liquid reservoir. The refrigerated warehouse according to claim 2.
前記高負荷型冷却室は前記保管型冷却室より下層の階にあり、前記CO2液溜器は各冷却室より下方に配置され、
前記CO2ブライン液供給路は、前記保管型冷却室の空気冷却器のCO2流れ方向上流側部位で前記CO2循環路の往路から分岐し、前記高負荷型冷却室の空気冷却器のCO2流れ方向上流側部位で前記CO2循環路の往路に接続していることを特徴とする請求項2に記載の冷蔵倉庫。
The high-load cooling chamber is on a lower floor than the storage-type cooling chamber, and the CO2 liquid reservoir is disposed below each cooling chamber,
The CO2 brine liquid supply path branches from the forward path of the CO2 circulation path at the upstream side of the CO2 flow direction of the air cooler of the storage type cooling chamber, and upstream of the CO2 flow direction of the air cooler of the high load cooling chamber. 3. The refrigerated warehouse according to claim 2, wherein a side part is connected to an outward path of the CO2 circulation path.
JP2012135324A 2012-06-15 2012-06-15 Power saving operation method and apparatus for refrigerated warehouse Active JP5912891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135324A JP5912891B2 (en) 2012-06-15 2012-06-15 Power saving operation method and apparatus for refrigerated warehouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012135324A JP5912891B2 (en) 2012-06-15 2012-06-15 Power saving operation method and apparatus for refrigerated warehouse

Publications (2)

Publication Number Publication Date
JP2014001861A JP2014001861A (en) 2014-01-09
JP5912891B2 true JP5912891B2 (en) 2016-04-27

Family

ID=50035207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012135324A Active JP5912891B2 (en) 2012-06-15 2012-06-15 Power saving operation method and apparatus for refrigerated warehouse

Country Status (1)

Country Link
JP (1) JP5912891B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894113B (en) * 2017-12-18 2023-08-25 张伟华 CO 2 Phase-change secondary refrigerant self-driven heating system for heat pump
WO2020165938A1 (en) * 2019-02-12 2020-08-20 三菱電機株式会社 Temperature determination device, temperature determination program, and temperature determination method
WO2020261351A1 (en) * 2019-06-24 2020-12-30 三菱電機株式会社 Set temperature change device, set temperature change system, and set temperature change method and program
WO2023228937A1 (en) * 2022-05-23 2023-11-30 京セラ株式会社 Power management device, power management method, power management program, facility, and freezer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235977A (en) * 2001-02-07 2002-08-23 Sanki Service:Kk Demand control system in which thermal storage control is used
JP2003139456A (en) * 2001-11-05 2003-05-14 Nippon Kentetsu Co Ltd Chamber temperature control method for freezing and refrigerating showcase
JP2011149604A (en) * 2010-01-20 2011-08-04 Kongo Sangyo Kk Refrigerated storage air blowing device
JP5701572B2 (en) * 2010-10-28 2015-04-15 株式会社前川製作所 CO2 brine cooling method and cooling equipment
JP5662112B2 (en) * 2010-11-11 2015-01-28 株式会社前川製作所 Freezing and refrigeration method and freezing and refrigeration equipment

Also Published As

Publication number Publication date
JP2014001861A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
ES2702535T3 (en) Ejection cycle
CN104350338B (en) Aircondition
EP2766668B1 (en) Thermal energy storage in a chiller system
US20160273811A1 (en) System for cooling a cabinet
CN101413745B (en) Middle and low temperature integrated type refrigerated storage / refrigerating system with air discharging and defrosting functions
RU2721508C2 (en) Multi-compartment transport refrigerating system with economiser
EP1614980A2 (en) Refrigeration system
CN103429975A (en) Refrigerant distribution apparatus and method for transport refrigeration system
CN105531130A (en) Air conditioning system utilizing thermal capacity from expansion of compressed fluid
CN103477161A (en) Transcritical refrigerant vapor system with capacity boost
JP5312075B2 (en) Defrost equipment in carbon dioxide circulation and cooling system
JP5912891B2 (en) Power saving operation method and apparatus for refrigerated warehouse
JP2006329601A (en) Cooler and operation method therefor
WO2017006126A1 (en) Combined heating and cooling systems
US10429101B2 (en) Modular two phase loop distributed HVACandR system
KR100907338B1 (en) Refrigerator car using cold storage material
JP2009103453A (en) Air conditioning facility
EP3693685B1 (en) Cooling system
CN107238225A (en) Cooling system with integrated refrigerating function again
KR101351938B1 (en) P.C.M storage type cold store of Moving passable P.C.M small container having furnished.
US10712052B2 (en) Cooling system with improved compressor stability
JP2003207250A (en) Refrigerator
KR101551052B1 (en) CO2 secondary fluid cooling system equipped with controlling CO2 charge amount
JPH07269983A (en) Air conditioner for shop
JPH11287523A (en) Composite type refrigerant circuit equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250