JP2007021900A - Barrier film and laminated material using the same - Google Patents

Barrier film and laminated material using the same Download PDF

Info

Publication number
JP2007021900A
JP2007021900A JP2005207501A JP2005207501A JP2007021900A JP 2007021900 A JP2007021900 A JP 2007021900A JP 2005207501 A JP2005207501 A JP 2005207501A JP 2005207501 A JP2005207501 A JP 2005207501A JP 2007021900 A JP2007021900 A JP 2007021900A
Authority
JP
Japan
Prior art keywords
film
barrier
gas barrier
gas
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005207501A
Other languages
Japanese (ja)
Inventor
Koichi Mikami
浩一 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005207501A priority Critical patent/JP2007021900A/en
Publication of JP2007021900A publication Critical patent/JP2007021900A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely useful barrier film improving the adhesion strength or the like with a base material film and a membrane layer comprising an inorganic oxide and excellent in barrier properties preventing the permeation of an oxygen gas, steam or the like, and a laminated material using it. <P>SOLUTION: The gas barrier film A is constituted by providing a vapor deposition film 2 comprising polyparaxylene on one side of the base material film, subsequently providing a barrier membrane layer 3 comprising the inorganic oxide on the vapor deposition film 2 comprising polyparaxylene and further providing a gas barrier coating film, which comprises a gas barrier composition containing at least one kind of alkoxide represented by formula: R<SP>1</SP><SB>n</SB>M(OR<SP>2</SP>)<SB>m</SB>(wherein R<SP>1</SP>and R<SP>2</SP>are a 1-8C organic group, M is a metal atom, n is an integer of 0 or above, m is an integer of 1 or above and n+m is the atomic valency of M) and a polyvinyl alcohol resin and/or an ethylene-vinyl alcohol copolymer and obtained by polycondensation by a sol-gel method, on the barrier membrane layer comprising the inorganic oxide. The laminated material is obtained using the barrier film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バリア性フィルムおよびそれを使用した積層材に関し、更に詳しくは、印刷加工、ラミネ−ト加工、熱処理加工、その他等の加工処理後においても、基材フィルムと無機酸化物からなるバリア性薄膜層との密着性に優れ、かつ、酸素ガス、水蒸気等の透過を阻止するバリア性に優れ、更に、引っ張り、揉み、しごき等の物理的ストレスにさらされても、そのバリア性の劣化が少なく、透明性に優れた極めて有用なバリア性フィルムおよびそれを使用した積層材に関するものである。   The present invention relates to a barrier film and a laminate using the same, and more specifically, a barrier comprising a base film and an inorganic oxide even after processing such as printing, laminating, heat treatment, and the like. Excellent adhesion to the conductive thin film layer, excellent barrier properties to block the transmission of oxygen gas, water vapor, etc., and even when exposed to physical stress such as pulling, stagnation, ironing, etc. The present invention relates to a very useful barrier film excellent in transparency and a laminated material using the same.

従来、飲食品、化成品、雑貨品、その他等を充填包装する包装用材料としては、充填包装する内容物の変質、変色、その他等を防止するために、酸素ガス、水蒸気等の透過を遮断、阻止する、種々の形態からなるバリア性基材が開発され、提案されている。
その最も代表的なものとしては、例えば、アルミニウム箔ないしその蒸着膜が、提案されているが、このものは、極めて安定したバリア性を発揮するものの、使用後、ゴミとして焼却処理する場合、その焼却適性に劣り、使用後の廃棄処理が容易でないという問題点があり、また、透明性に欠けるという問題点もある。
Conventionally, as packaging materials for filling and packaging foods, beverages, chemicals, miscellaneous goods, etc., the permeation of oxygen gas, water vapor, etc. is blocked in order to prevent deterioration, discoloration, etc. of the contents to be filled and packaged. Barrier substrates having various forms have been developed and proposed.
As its most typical, for example, an aluminum foil or a vapor deposition film thereof has been proposed. Although this exhibits an extremely stable barrier property, when it is incinerated as garbage after use, its There is a problem that it is inferior to incineration, and disposal processing after use is not easy, and there is also a problem that transparency is lacking.

これに対処するために、例えば、ポリ塩化ビニリデン系樹脂、エチレン−ビニルアルコ−ル共重合体、その他等からなる酸素ガス、水蒸気等の透過を遮断、阻止するバリア性樹脂フィルムを使用することが試みられている。
しかし、ポリ塩化ビニリデン系樹脂は、その構造中に塩素原子を含有することから、使用後、ゴミとして焼却処理する場合、有害な塩素ガスが発生し、環境衛生上好ましくないという問題点がある。
一方、エチレン−ビニルアルコ−ル共重合体は、酸素透過性が低く、かつ、香味成分の吸着性が低いという長所を有するものの、水蒸気に接触するとバリア性が、著しく低下してしまうという問題がある。
このため、バリア性基材としてのエチレン−ビニルアルコ−ル共重合体を水蒸気から遮断するために複雑な積層構造とする必要があり、製造コストの増大を来しているというのが実状である。
In order to cope with this, for example, it is attempted to use a barrier resin film that blocks or prevents permeation of oxygen gas, water vapor, and the like made of polyvinylidene chloride resin, ethylene-vinyl alcohol copolymer, etc. It has been.
However, since the polyvinylidene chloride resin contains chlorine atoms in its structure, when it is incinerated as waste after use, harmful chlorine gas is generated, which is unfavorable for environmental hygiene.
On the other hand, the ethylene-vinyl alcohol copolymer has the advantages that the oxygen permeability is low and the adsorptivity of the flavor component is low, but there is a problem that the barrier property is remarkably lowered when it comes into contact with water vapor. .
For this reason, in order to block the ethylene-vinyl alcohol copolymer as a barrier base material from water vapor, it is necessary to make it a complicated laminated structure, and the fact is that the manufacturing cost is increasing.

そこで、近年、高いバリア性と保香性とを安定して発揮し、かつ、透明性を有するバリア性基材として、珪素酸化物、酸化アルミニウム等の無機酸化物の薄膜からなるバリア層を備えたバリア性基材が開発され、提案されている。
而して、上記のバリア性基材としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、あるいは、ポリプロピレン系樹脂等からなる基材フィルムの一方の面に、例えば、真空蒸着法、スパッタリング法、イオンプレ−ティング法、イオンクラスタ−ビ−ム法等の物理気相成長法(Physical Vapor Deposition法、PVD法)を用いて、珪素酸化物、酸化アルミニウム等の無機酸化物を真空蒸着により付着させて、その無機酸化物の薄膜を設けることにより製造さている。
具体的には、金属または金属の酸化物を原料とし、これを加熱して蒸気化し、次いで、その蒸気化した金属または金属の酸化物を、基材フィルムの一方の面に蒸着する真空蒸着法、あるいは、原料として金属または金属の酸化物を使用し、酸素を導入して酸化させて、基材フィルムの一方の面に蒸着する酸化反応蒸着法、更に、酸化反応をプラズマで助成するプラズマ助成式の酸化反応蒸着法等を用いて蒸着層を形成することにより、バリア性基材を製造することができる。
また、上記のバリア性基材としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、あるいは、ポリプロピレン系樹脂等からなる基材フィルムの一方の面に、例えば、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いて、珪素酸化物等の無機酸化物を蒸着により付着させて、その無機酸化物の薄膜を設けることにより製造さている。
具体的には、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマ−ガスを原料とし、キャリヤ−ガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物からなる蒸着層を形成することにより、バリア性基材を製造することができる。
Therefore, in recent years, a barrier layer made of a thin film of an inorganic oxide such as silicon oxide or aluminum oxide has been provided as a barrier base material that stably exhibits high barrier properties and fragrance retention properties and has transparency. Barrier substrates have been developed and proposed.
Thus, as the above-mentioned barrier substrate, for example, on one surface of a substrate film made of polyester resin, polyamide resin, polypropylene resin or the like, for example, vacuum deposition, sputtering, ion -An inorganic oxide such as silicon oxide or aluminum oxide is deposited by vacuum deposition using a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a ting method or an ion cluster beam method, It is manufactured by providing a thin film of the inorganic oxide.
Specifically, a vacuum deposition method in which a metal or a metal oxide is used as a raw material, heated and vaporized, and then the vaporized metal or metal oxide is vapor-deposited on one surface of a base film. Alternatively, using a metal or metal oxide as a raw material, introducing oxygen to oxidize and depositing it on one side of the base film, and further plasma assistance to promote the oxidation reaction with plasma A barrier substrate can be produced by forming a vapor deposition layer using an oxidation reaction vapor deposition method or the like.
Further, as the above-mentioned barrier base material, for example, a plasma chemical vapor deposition method, a thermochemical vapor deposition method, or the like may be applied to one surface of a base film made of a polyester resin, a polyamide resin, or a polypropylene resin. An inorganic oxide such as silicon oxide is deposited by vapor deposition using a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a phase growth method or a photochemical vapor deposition method. Manufactured by providing a thin film.
Specifically, on one surface of the base film, an evaporation monomer gas such as an organosilicon compound is used as a raw material, an inert gas such as argon gas or helium gas is used as a carrier gas, and oxygen gas is further added. By forming a vapor deposition layer made of an inorganic oxide such as silicon oxide using a low temperature plasma chemical vapor deposition method using oxygen gas or the like as a supply gas and using a low temperature plasma generator or the like, a barrier substrate Can be manufactured.

しかし、上記のような物理気相成長法(PVD法)あるいは化学気相成長法(CVD法)においては、無機酸化物の薄膜が、極めて薄膜の状態で製膜化され、優れたバリア性能を得られるという利点を有するものの、基材フィルムが真空中で高温等に晒されることから、基材フィルム自身がその影響を受け、黄変等の変化を発生したり、あるいは、基材フィルムと無機酸化物の薄膜との密着性に難点が生じ、しばしば、その層間において剥離するという現象を生じるという問題点がある。
上記のような問題点は、包装用材料としてのバリア性基材としては、致命的な欠点となるものであり、その用をなさなくなるものである。
そこで、近年、上記のバリア性基材について、そのバリア性能の更なる改善等と共に基材フィルムと無機酸化物の薄膜との密着強度の改善等を目的として、種々の新技術、新製品等が開発され、提案されている。
例えば、基材フィルムの表面に、予め、プラズマ前処理を施す方法が提案されているが、プラズマ前処理は、すでに若干ではあるが、基材フィルムの表面にダメ−ジを加えることとなり前処理としては好ましくないものである。
また、上記のバリア性能の改善や基材フィルムと無機酸化物の薄膜との密着強度の改善等を行うものとして、例えば、基材フィルムの表面に、予め、アンカ−コ−ト剤あるいはプライマ−剤等をコ−ティングする方法等も数多く提案されている。
However, in the physical vapor deposition method (PVD method) or the chemical vapor deposition method (CVD method) as described above, an inorganic oxide thin film is formed in a very thin state, and has excellent barrier performance. Although it has the advantage of being obtained, since the base film is exposed to high temperature etc. in a vacuum, the base film itself is affected, causing changes such as yellowing, or the base film and inorganic There is a problem in that the adhesion to the oxide thin film is difficult and often causes a phenomenon of peeling between the layers.
The problems as described above are fatal defects as a barrier base material as a packaging material, and the use thereof is not achieved.
Therefore, in recent years, various new technologies, new products, etc. have been developed for the above-mentioned barrier base materials for the purpose of improving the adhesion performance between the base film and the inorganic oxide thin film as well as further improving the barrier performance. Developed and proposed.
For example, a method of performing plasma pretreatment on the surface of the base film has been proposed in advance, but the plasma pretreatment has already added some damage to the surface of the base film. Is not preferable.
Further, as an improvement of the barrier performance and improvement of the adhesion strength between the base film and the inorganic oxide thin film, for example, an anchor coating agent or a primer is previously formed on the surface of the base film. Many methods for coating agents and the like have been proposed.

例えば、延伸されたポリエステルフィルムの少なくとも片面に、ポリエステル5〜95重量%を水もしくは溶媒に分散または溶解した状態で、炭素−炭素不飽和結合を有する化合物95〜5重量%と混合し反応させた生成物を塗布、乾燥させて、厚さ0.01〜5μmの生成物層を形成し、この生成物層の少なくとも片面に、厚さ5〜500nmのケイ素酸化物の透明な薄膜層が形成されてなることを特徴とする、ガスバリア性の優れた透明プラスチックフィルムが提案されている(例えば、特許文献1参照。)。
また、ポリエステル系樹脂でなる基材フィルムの少なくとも片面に樹脂被覆層が形成された被覆ポリエステルフィルムであって、該樹脂被覆層が、エステル結合を有するセグメントを分子内に少なくとも一種含有する、水不溶性の熱可塑性樹脂を主成分とする樹脂組成物により形成され、該熱可塑性樹脂がポリエステルポリウレタンであり、そして、該樹脂組成物でなるフィルムの60℃での引張り進度ε(%)が、100≦ε≦500であり、かつ、該樹脂組成物の、下式に示す微小変形回復率Rが、90%以上である、被覆ポリエステルフィルムが提案されている(式は略す。)(例えば、特許文献2参照。)。
更に、ポリエステルフィルムの少なくとも片面に、溶剤膨潤率が50%以下で、且つ、水膨潤率が80%以下の水系自己乳化型熱反応性ウレタンを主成分とする表面改質層を設け、更に該表面改質層上に金属蒸着層を設けたことを特徴とする金属蒸着ポリエステルフィルムも提案されている(例えば、特許文献3参照。)。
また、プラスチックからなる基材上にポリエステル樹脂と混入樹脂からなるプライマ−層を積層したことを特徴とする積層体が提案されている(例えば、特許文献4参照。)。
特公平8−25244号公報(特許請求の範囲等) 特許第2570462号公報(特許請求の範囲等) 特許第2964568号公報(特許請求の範囲等) 特開平8−224846号公報(特許請求の範囲等)
For example, on at least one side of a stretched polyester film, 5 to 95% by weight of polyester is dispersed or dissolved in water or a solvent and mixed with 95 to 5% by weight of a compound having a carbon-carbon unsaturated bond and reacted. The product is applied and dried to form a product layer having a thickness of 0.01 to 5 μm, and a transparent thin film layer of silicon oxide having a thickness of 5 to 500 nm is formed on at least one side of the product layer. A transparent plastic film excellent in gas barrier properties, which is characterized in that it has been proposed, is proposed (for example, see Patent Document 1).
Further, it is a coated polyester film in which a resin coating layer is formed on at least one side of a base film made of a polyester resin, and the resin coating layer contains at least one segment having an ester bond in the molecule. The thermoplastic resin is a polyester polyurethane, and the film made of the resin composition has a tensile progress ε (%) at 60 ° C. of 100 ≦ A coated polyester film in which ε ≦ 500 and the microdeformation recovery rate R shown in the following formula of the resin composition is 90% or more has been proposed (formula is omitted) (for example, patent document). 2).
Further, on at least one surface of the polyester film, a surface modification layer mainly composed of an aqueous self-emulsifying heat-reactive urethane having a solvent swelling ratio of 50% or less and a water swelling ratio of 80% or less is further provided. A metal vapor-deposited polyester film characterized by providing a metal vapor-deposited layer on the surface modification layer has also been proposed (see, for example, Patent Document 3).
Further, there has been proposed a laminate in which a primer layer made of a polyester resin and a mixed resin is laminated on a plastic substrate (see, for example, Patent Document 4).
Japanese Patent Publication No. 8-25244 (Claims) Japanese Patent No. 2570462 (Claims etc.) Japanese Patent No. 2964568 (claims, etc.) JP-A-8-224846 (Claims etc.)

しかしながら、上記の特許文献1〜4に係る発明においては、いずれも、例えば、バリア性基材の金属蒸着層の面に、ヒ−トシ−ル性樹脂層等を積層した積層体を製造し、これを使用して、食品等を充填包装し、更に、殺菌を目的として、ボイル処理あるいはレトルト処理等を行うと、蒸着層との層間において容易に剥離し、その用をなさず、十分に満足し得る包装製品を製造することが極めて困難であるというのが実状である。
そこで本発明は、基材フィルムの一方の面に無機酸化物からなる薄膜を形成する際に、基材フィルムへの影響を改善し、その黄変等の変化を防止し、また、基材フィルムと無機酸化物からなる薄膜層との密着強度等を改良し、例えば、印刷加工、ラミネ−ト加工、熱処理加工、その他等の加工処理後においても、基材フィルムと無機酸化物からなる薄膜との密着性に優れ、かつ、酸素ガス、水蒸気等の透過を阻止するバリア性に優れ、引っ張り、揉み、しごき等の物理的ストレスにさらされても、そのバリア性の劣化が少なく、透明性に優れた極めて有用なバリア性フィルムおよびそれを使用した積層材を提供することである。
However, in the inventions according to the above-mentioned Patent Documents 1 to 4, for example, a laminate in which a heat-sealable resin layer or the like is laminated on the surface of the metal vapor-deposited layer of the barrier base material, for example, Using this, filling and packaging foods, etc., and further boiling or retorting for the purpose of sterilization, it peels easily between layers with the vapor deposition layer, and does not make use of it. The reality is that it is extremely difficult to produce a packaging product that can be used.
Therefore, the present invention improves the influence on the base film when forming a thin film made of an inorganic oxide on one surface of the base film, prevents changes such as yellowing, and the base film The adhesion strength between the thin film layer made of inorganic oxide and the thin film made of inorganic oxide, for example, after processing such as printing, laminating, heat treatment, etc. It has excellent barrier properties that prevent the transmission of oxygen gas, water vapor, etc., and even when exposed to physical stress such as tension, stagnation, and ironing, its barrier properties are less deteriorated and it is transparent. An excellent and extremely useful barrier film and a laminate using the same are provided.

本発明者は、上記のような問題点を改良すべく種々検討の結果、ポリパラキシリレンからなる蒸着重合膜に着目し、まず、基材フィルムの一方の面に、予め、パラシクロファン化合物等を使用し、化学蒸着法等により形成したポリパラキシリレンからなる蒸着重合膜を設け、次いで、該ポリパラキシリレンからなる蒸着重合膜の上に、無機酸化物からなるバリア性薄膜層を設け、更に、該無機酸化物からなるバリア性薄膜層の上に、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設けてバリア性フィルムを製造し、而して、該バリア性フィルムを使用し、そのバリア性フィルムを構成するガスバリア性塗布膜の面に、ヒ−トシ−ル性樹脂層等を積層して積層材を製造し、しかる後、該積層材を使用し、これを製袋して包装用袋を製造し、次いで、該包装用袋内に所望の飲食品等を充填包装して包装半製品を製造し、更に、該包装半製品を、例えば、90℃、30分間位の条件でボイル処理し、あるいは、温度、110℃〜130℃位、圧力、1〜3Kgf/cm2 ・G位で20〜60分間程度加熱加圧殺菌処理等のレトルト処理を施してボイルないしレトルト食品を製造したところ、耐熱性、耐圧性、耐水性、ヒ−トシ−ル性、耐ピンホ−ル性、耐突き刺し性、その他等の諸物性に優れ、特に、ボイルないしレトルト処理等の加工に伴う熱処理に耐え、無機酸化物からなるバリア性薄膜層からの層間剥離等は認められず、その密接着性に優れ、また、酸素ガス、水蒸気等の透過を阻止するバリア性に優れ、更に、引っ張り、揉み、しごき等の物理的ストレスに晒されても、そのバリア性の劣化が少なく、透明性に優れた極めて有用なバリア性フィルムおよびそれを使用した積層材を製造し得ることを見出して本発明を完成したものである。 As a result of various studies to improve the above-mentioned problems, the present inventor paid attention to a vapor-deposited polymer film made of polyparaxylylene. First, a paracyclophane compound was previously formed on one surface of a base film. Etc., and a vapor-deposited polymer film made of polyparaxylylene formed by chemical vapor deposition or the like is provided, and then a barrier thin film layer made of an inorganic oxide is formed on the vapor-deposited polymer film made of polyparaxylylene. And a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are organic groups having 1 to 8 carbon atoms) on the barrier thin film layer made of the inorganic oxide. M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents the valence of M. Alkoxides, polyvinyl alcohol resins and / or ethylene A vinyl alcohol copolymer, and further, a gas barrier coating film made of a gas barrier composition obtained by polycondensation by a sol-gel method is provided to produce a barrier film. A laminated material is produced by laminating a heat-sealable resin layer or the like on the surface of the gas barrier coating film that constitutes the barrier film, and then using the laminated material. A bag is produced to produce a packaging bag, and then the desired food or drink is filled and packaged in the packaging bag to produce a packaging semi-finished product. Further, the packaging semi-finished product is produced, for example, at 90 ° C. for 30 minutes. Or boiled at a temperature, 110 ° C to 130 ° C, pressure, 1 to 3 kgf / cm 2 · G for about 20 to 60 minutes. After manufacturing retort food, Excellent physical properties such as heat resistance, pressure resistance, water resistance, heat seal resistance, pin hole resistance, puncture resistance, etc., especially withstand heat treatment associated with processing such as boil or retort processing, inorganic oxidation No delamination or the like from the barrier thin film layer made of a material is observed, it is excellent in tight adhesion, excellent in barrier properties to prevent permeation of oxygen gas, water vapor, etc. The present invention has been completed by finding that it is possible to produce a very useful barrier film having excellent transparency and a laminate material using the same, even when exposed to physical stress, with little deterioration of the barrier property. is there.

すなわち、本発明は、基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜を設け、次に、該ポリパラキシリレンからなる蒸着重合膜の上に、無機酸化物からなるバリア性薄膜層を設け、更に、該無機酸化物からなるバリア性薄膜層の上に、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設けることを特徴とするバリア性フィルムおよびそれを使用した積層材に関するものである。 That is, the present invention provides a vapor-deposited polymer film made of polyparaxylylene on one surface of a base film, and then a barrier made of an inorganic oxide on the vapor-deposited polymer film made of polyparaxylylene. sex thin layer provided, further, on the barrier film layer made of inorganic oxide, the general formula R 1 n M (OR 2) m ( where in the formula, R 1, R 2 is 1 to the number of carbon atoms 8 represents an organic group, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents an atomic valence of M). A gas barrier coating film comprising a gas barrier composition comprising at least one alkoxide, a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, and further obtained by polycondensation by a sol-gel method. Barrier film characterized by providing And a laminated material using the same.

本発明は、基材フィルムの一方の面に、予め、ポリパラキシリレンからなる蒸着重合膜を設けることにより、無機酸化物からなるバリア性薄膜層を設ける際の真空蒸着時における基材フィルムへの影響を改善し、それ自身の黄変等の変化を防止すると共に基材フィルムと無機酸化物からなるバリア性薄膜層との密着強度等を改良し、基材フィルムと無機酸化物からなるバリア性薄膜層との密着性に極めて優れているものである。
而して、本発明に係るバリア性フィルムおよびそれを使用した積層材においては、基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜を介して、無機酸化物からなるバリア性薄膜層およびガスバリア性塗布膜を極めて強固に多層に積層することにより、例えば、包装用材料等に使用されるバリア性基材として、酸素ガス、水蒸気等の透過を阻止するガスバリア性、特に、水蒸気バリア性に優れ、また、積層加工、製袋加工、その他等の後加工適性にも優れ、更に、例えば、レトルト処理、ボイル処理等による加熱殺菌処理等における耐水強度も著し改良することができ、極めて防湿性等に優れているものである。
更に、本発明に係るバリア性フィルムおよびそれを使用した積層材において、ガスバリア性塗布膜は、ポリビニルアルコール系樹脂又はエチレン・ビニルアルコール共重合体と1種以上のアルコキシドとが、相互に化学的に反応して、極めて強固な三次元網状複合ポリマ−層を構成し、而して、それと無機酸化物からなるバリア性薄膜層とが相乗し、極めて高いガスバリア性を安定して維持するとともに、良好な透明性、および、耐衝撃性、耐熱水性等を備えたバリア性フィルムを製造し得ることができるものである。
特に、本発明においては、ポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体とを併用する場合には、ポリビニルアルコール系樹脂と1種以上のアルコキシド、エチレン・ビニルアルコール共重合体と1種以上のアルコキシド、および、ポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体との両者と1種以上のアルコキシドとが各々組み合わされて、極めて複雑なハイブリット状の強固な三次元網状複合ポリマ−層を構成し、而して、それらと無機酸化物からなるバリア性薄膜層とが相乗して、更に極めて高いガスバリア性を安定して維持し、特に、酸素ガスバリア性と共に水蒸気バリア性が著しく向上し、かつ、良好な透明性、および、耐衝撃性、耐熱水性等を備えたバリア性フィルムを製造し得ることができるものである。
本発明においては、例えば、該バリア性フィルムを使用し、そのガスバリア性塗布膜の面に、ヒ−トシ−ル性樹脂層等を積層して積層材を製造し、しかる後、該積層材を使用し、これを製袋して包装用袋を製造し、次いで、該包装用袋内に所望の飲食品等を充填包装して包装半製品を製造し、更に、該包装半製品を、例えば、ボイル処理、あるいは、レトルト処理を施しても、耐熱性、耐圧性、耐水性、ヒ−トシ−ル性、耐ピンホ−ル性、耐突き刺し性、その他等の諸物性に優れ、ボイルないしレトルト処理等の加工に伴う熱処理に耐え、無機酸化物からなるバリア性薄膜層からの層間剥離等は認められず、その密接着性に優れ、かつ、酸素ガス、水蒸気等の透過を阻止するバリア性に優れ、更に、引っ張り、揉み、しごき等の物理的ストレスに晒されても、そのバリア性の劣化も少なく、透明性に優れた極めて有用なバリア性フィルムおよびそれを使用した積層材に係るものである。
The present invention provides a base film at the time of vacuum deposition when a barrier thin film layer made of an inorganic oxide is provided by previously providing a vapor deposition polymer film made of polyparaxylylene on one surface of the base film. In addition to preventing changes such as yellowing itself, the adhesive strength between the base film and the barrier thin film layer made of inorganic oxide is improved, and the barrier made of base film and inorganic oxide is improved. It is extremely excellent in adhesion with the conductive thin film layer.
Thus, in the barrier film according to the present invention and the laminated material using the same, the barrier property made of an inorganic oxide is formed on one surface of the base film through the vapor-deposited polymer film made of polyparaxylylene. By stacking a thin film layer and a gas barrier coating film very firmly in multiple layers, for example, as a barrier base material used for packaging materials, etc., gas barrier properties that prevent permeation of oxygen gas, water vapor, etc., in particular, water vapor Excellent barrier properties, and excellent post-processing suitability such as laminating, bag making, etc. Furthermore, water resistance in heat sterilization treatment such as retort treatment and boil treatment can be markedly improved. It is extremely excellent in moisture resistance and the like.
Furthermore, in the barrier film according to the present invention and the laminate material using the same, the gas barrier coating film is formed by chemically reacting polyvinyl alcohol resin or ethylene / vinyl alcohol copolymer and one or more alkoxides with each other. Reacts to form a very strong three-dimensional network composite polymer layer, and thus, it and the barrier thin film layer made of inorganic oxides synergistically maintain an extremely high gas barrier property and are good It is possible to produce a barrier film having excellent transparency, impact resistance, hot water resistance and the like.
In particular, in the present invention, when a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer are used in combination, the polyvinyl alcohol-based resin and at least one alkoxide, the ethylene / vinyl alcohol copolymer, and at least one or more types are used. An alkoxide, a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer, and one or more alkoxides are combined to form an extremely complex, hybrid, strong three-dimensional network composite polymer layer. Thus, they and the barrier thin film layer made of inorganic oxides synergistically maintain an extremely high gas barrier property, and in particular, the water vapor barrier property is remarkably improved together with the oxygen gas barrier property, and A barrier film having good transparency, impact resistance, hot water resistance, etc. can be produced. It is those that can be.
In the present invention, for example, the barrier film is used, and a laminate material is produced by laminating a heat-seal resin layer or the like on the surface of the gas barrier coating film. Use this to produce a packaging bag, then fill and wrap the desired food or drink in the packaging bag to produce a packaging semi-finished product. Even if boiled or retorted, it has excellent physical properties such as heat resistance, pressure resistance, water resistance, heat seal resistance, pinhole resistance, puncture resistance, etc. Barrier property that can withstand heat treatment accompanying processing such as processing, has no delamination from the barrier thin film layer made of inorganic oxide, has excellent tight adhesion, and prevents permeation of oxygen gas, water vapor, etc. Excellent physical properties such as tension, sag, and ironing Are exposed to be, its barrier property deterioration is small and in which according to the very useful barrier film excellent in transparency and laminate using the same.

上記の本発明に係るバリア性フィルムおよびそれを使用した積層材について以下に図面等を用いて更に詳しく説明する。
図1は、本発明に係るバリア性フィルムについてその層構成の一例を示す概略的断面図であり、図2、図3および図4は、図1に示す本発明に係るバリア性フィルムを使用して製造した本発明に係る積層材についてその層構成の一二例を示す概略的断面図であり、図5は、図2に示す本発明に係る積層材を使用して製袋して製造した本発明に係る包装用袋についてその一例を示す概略的斜視図であり、図6は、図5に示す本発明に係る包装用袋を使用して内容物を充填包装して製造した本発明に係る包装製品についてその一例を示す概略的斜視図である。
The barrier film according to the present invention and the laminated material using the same will be described below in more detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of a barrier film according to the present invention. FIGS. 2, 3 and 4 use the barrier film according to the present invention shown in FIG. FIG. 5 is a schematic cross-sectional view showing one example of the layer structure of the laminated material according to the present invention manufactured by manufacturing, and FIG. 5 is manufactured by making a bag using the laminated material according to the present invention shown in FIG. FIG. 6 is a schematic perspective view showing an example of the packaging bag according to the present invention, and FIG. 6 shows the present invention manufactured by filling and packaging the contents using the packaging bag according to the present invention shown in FIG. It is a schematic perspective view which shows the example about the packaged product which concerns.

まず、本発明に係るバリア性フィルムAとしては、図1に示すように、基材フィルム1の一方の面に、ポリパラキシリレンからなる蒸着重合膜2を設け、次に、該ポリパラキシリレンからなる蒸着重合膜2の上に、無機酸化物からなるバリア性薄膜層3を設け、更に、該無機酸化物からなるバリア性薄膜層3の上に、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜4を設けた構成からなることを基本層構成とするものである。 First, as the barrier film A according to the present invention, as shown in FIG. 1, a vapor deposition polymer film 2 made of polyparaxylylene is provided on one surface of a base film 1, and then the polyparaxylylene is provided. A barrier thin film layer 3 made of an inorganic oxide is provided on the vapor-deposited polymer film 2 made of lene, and further a general formula R 1 n M (OR 2) is formed on the barrier thin film layer 3 made of the inorganic oxide. ) m (where in the formula, R 1, R 2 represents an organic group having 1 to 8 carbon atoms, M represents a metal atom, n is an integer of 0 or more, m is 1 or more Represents an integer, and n + m represents a valence of M.) and contains a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, and Gas barrier composition obtained by polycondensation by the sol-gel method The basic layer structure includes the structure provided with the sub-barrier coating film 4.

次に、本発明において、本発明に係るバリア性フィルムを使用して製造する積層材について、上記の図1に示す本発明に係るバリア性フィルムAを使用して製造する積層材の場合を例として説明すると、図2に示すように、上記の図1に示す本発明に係るバリア性フィルムAを構成するガスバリア性塗布膜4の面に、少なくとも、ヒ−トシ−ル性樹脂層11を積層した構成からなる本発明に係るバリア性フィルムを使用した積層材B、あるいは、図3に示すように、上記の図1に示す本発明に係るバリア性フィルムAを構成するガスバリア性塗布膜4の面に、中間基材12を介して、ヒ−トシ−ル性樹脂層11を積層した構成からなる本発明に係るバリア性フィルムを使用した積層材B1 、更に、図4に示すように、上記の図1に示す本発明に係るバリア性フィルムAを構成する基材フィルム1の他方の面に、更に、プラスチック基材13を積層し、また、本発明に係るバリア性フィルムAを構成するガスバリア性塗布膜4の面に、ヒ−トシ−ル性樹脂層11を積層した構成からなる本発明に係るバリア性フィルムを使用した積層材B2 等を例示することができる。 なお、上記の図2、図3および図4において、符号1、2、3等は、前述の図1に示す符号1、2、3等と同じ意味である。 Next, in the present invention, the laminated material produced using the barrier film according to the present invention is an example of the laminated material produced using the barrier film A according to the present invention shown in FIG. As shown in FIG. 2, at least a heat seal resin layer 11 is laminated on the surface of the gas barrier coating film 4 constituting the barrier film A according to the present invention shown in FIG. The laminated material B using the barrier film according to the present invention having the structure described above, or the gas barrier coating film 4 constituting the barrier film A according to the present invention shown in FIG. 1 as shown in FIG. On the surface, a laminated material B 1 using a barrier film according to the present invention consisting of a structure in which a heat-sealable resin layer 11 is laminated via an intermediate base material 12, further, as shown in FIG. The present invention shown in FIG. On the other surface of the substrate film 1 constituting the barrier film A, a plastic substrate 13 is further laminated, and on the surface of the gas barrier coating film 4 constituting the barrier film A according to the present invention, Examples thereof include a laminate B 2 using the barrier film according to the present invention having a structure in which the heat-seal resin layer 11 is laminated. 2, 3 and 4, reference numerals 1, 2, 3 and the like have the same meanings as reference numerals 1, 2, 3 and the like shown in FIG. 1.

更に、本発明において、本発明に係るバリア性フィルムを使用して製造した積層材を使用して製袋した包装用袋についてその一例を挙げれば、かかる本発明に係る包装用袋としては、例えば、上記の図2に示す積層材Bを使用して製袋した包装用袋の場合を例として説明すると、図5に示すように、上記の積層材B、Bを2枚用意し、その最内層に位置するヒ−トシ−ル性樹脂層11、11の面を対向させて重ね合わせ、しかる後、その外周周辺の端部の三方をヒ−トシ−ルしてヒ−トシ−ル部15、15、15を形成すると共に開口部16を形成して、本発明に係るバリア性フィルムを使用して製造した積層材を使用して製袋した本発明に係る三方シ−ル型の包装用袋Cを製造することができる。   Furthermore, in this invention, if the example is given about the packaging bag bag-made using the laminated material manufactured using the barrier film based on this invention, as this packaging bag concerning this invention, for example, As an example of the case of a packaging bag made using the laminate B shown in FIG. 2, two laminates B and B are prepared as shown in FIG. Heat seal resin layers 11, 11 positioned in the inner layer face each other and overlap each other, and thereafter, heat seal is applied to the three ends of the outer periphery and heat seal portion 15. , 15, 15 and the opening 16 are formed, and the three-sided seal type packaging according to the present invention is formed using the laminated material manufactured using the barrier film according to the present invention. Bag C can be manufactured.

而して、本発明においては、図6に示すように、上記で製造した本発明に係るバリア性フィルムを使用して製造した積層材を使用して製袋した本発明に係る三方シ−ル型の包装用袋Cを使用し、その開口部16から、例えば、飲食品等の内容物17を充填し、次いで、上方の開口部16をヒ−トシ−ルして上方のシ−ル部18等を形成して、種々の形態からなる包装製品Dを製造することができるものである。
なお、本発明においては、図示しないが、上記で製造した本発明に係るバリア性フィルムを使用して製造した積層材を使用して製袋した本発明に係る三方シ−ル型の包装用袋を使用し、その開口部から、例えば、カレ−、シチュ−、ス−プ、ミ−トソ−ス、ハンバ−グ、ミ−トボ−ル、しゅうまい、おでん、その他等の所望の飲食品等の内容物を充填し、次いで、上方の開口部をヒ−トシ−ルして上方のシ−ル部等を形成して包装半製品を製造し、しかる後、該包装半製品を、例えば、温度、110℃〜130℃位、圧力、1〜3Kgf/cm2 ・G位で20〜60分間程度加圧加熱殺菌処理等のレトルト処理等を施して、種々の形態からなるレトルト包装製品を製造することができるものである。
また、本発明においては、上記のようなレトルト処理に代えて、例えば、90℃位で30分間位煮沸して加熱殺菌処理等を施して、ボイル加熱殺菌処理包装製品を製造することもできるものである。
また、本発明においては、図示しないが、上記の図3および図4に示す本発明に係るバリア性フィルムを使用して製造した積層材を使用し、上記と同様にして、上記と同様に、本発明に係るバリア性フィルムを使用して製造した積層材を使用して製袋した包装用袋、包装製品等を製造し得ることがでるものである。
なお、本発明において、本発明に係る包装用袋、包装製品等としては、上記に図示した例示の包装用袋の形状に限定されるものでないことは言うまでもないことであり、その目的、用途等により、四方シ−ル型、自立性型、ガゼット型、角底型、ピロ−型、その他等の種々の形態からなる包装用袋を製造することができるものである。
Thus, in the present invention, as shown in FIG. 6, the three-sided seal according to the present invention produced by using the laminated material manufactured using the barrier film according to the present invention manufactured as described above. The packaging bag C of the mold is used, and, for example, the contents 17 such as food and drink are filled from the opening 16, and then the upper opening 16 is heat-sealed to seal the upper seal 18 etc. can be formed and the packaged product D which consists of various forms can be manufactured.
In the present invention, although not shown in the drawings, the three-sided seal type packaging bag according to the present invention produced by using the laminated material produced using the barrier film according to the present invention produced above. From the opening, for example, desired foods and beverages such as curry, stew, soup, meat sauce, hamburger, meatball, sweet potato, oden, etc. The contents are filled, and then the upper opening is heat sealed to form an upper seal or the like to produce a packaged semi-finished product. , 110 ° C to 130 ° C, pressure, 1 to 3 kgf / cm 2 · Retort treatment such as pressure heat sterilization for about 20 to 60 minutes at G position to produce retort packaging products of various forms It is something that can be done.
Moreover, in this invention, it can replace with the above retort process, for example, can boil a heat | fever sterilization process etc. by boiling for about 30 minutes at about 90 degreeC, and can manufacture a boil heat sterilization process packaging product. It is.
Further, in the present invention, although not shown, using a laminated material manufactured using the barrier film according to the present invention shown in FIG. 3 and FIG. 4 above, in the same manner as above, It is possible to manufacture packaging bags, packaging products, and the like that are made using the laminated material manufactured using the barrier film according to the present invention.
In the present invention, it is needless to say that the packaging bag, packaged product and the like according to the present invention are not limited to the shape of the illustrated packaging bag illustrated above, and its purpose, use, etc. Thus, packaging bags having various forms such as a four-side seal type, a self-supporting type, a gusset type, a square bottom type, a pillow type, and the like can be manufactured.

上記の例示は、本発明に係るバリア性フィルム、それを使用した積層材、および、積層材を使用して製袋した包装用袋、包装製品等について、その二三例を例示したものであり、本発明はこれらによって限定されるものではないものである。
例えば、本発明においては、図示しないが、更に、その使用目的、用途等によって、他の素材等を任意に使用し、種々の形態からなるバリア性フィルム、該バリア性フィルムを使用した積層材、および、積層材を使用して製袋した包装用袋、包装製品等を設計して製造することができるものである。
また、例えば、図示しないが、本発明においては、無機酸化物からなるバリア性薄膜層としては、無機酸化物からなるバリア性薄膜層の1層からなる単層膜のみならず無機酸化物からなるバリア性薄膜層の2層以上からなる多層膜等から構成することもできるものである。
なお、本発明において、上記のような本発明に係るバリア性フィルムを使用して製造した積層材を積層する方法としては、図示しないが、例えば、例えば、アンカ−コ−ト剤によるアンカ−コ−ト剤層、ポリオレフィン系樹脂等を溶融押出した溶融押出樹脂層等を介して積層する溶融押出ラミネ−ト法、あるいは、例えば、ラミネ−ト用接着剤によるラミネ−ト用接着剤層等をを介して積層するドライラミネ−ト法、その他等により積層することができる。
The above illustrations are a few examples of the barrier film according to the present invention, a laminated material using the barrier film, a packaging bag made using the laminated material, a packaged product, and the like. However, the present invention is not limited to these.
For example, in the present invention, although not shown in the drawings, according to the purpose of use, use, etc., other materials are arbitrarily used, barrier films having various forms, laminated materials using the barrier films, And it can design and manufacture the packaging bag and the packaging product etc. which were made into a bag using a laminated material.
Further, for example, although not shown in the drawings, in the present invention, the barrier thin film layer made of an inorganic oxide is made of not only a single layer film made of an inorganic oxide but also an inorganic oxide. It can also be composed of a multilayer film composed of two or more barrier thin film layers.
In the present invention, as a method for laminating the laminated material produced using the barrier film according to the present invention as described above, although not shown, for example, anchor coating with an anchor coating agent is used. -Laminate adhesive layer, melt extrusion laminating method by laminating via a melt extruded resin layer obtained by melt extrusion of polyolefin resin, or laminating adhesive layer by laminating adhesive, etc. It can be laminated by a dry lamination method, etc., through which the film is laminated.

次に、本発明において、本発明に係るバリア性フィルム、積層材、包装用袋、包装製品等を構成する材料、製造法等について説明すると、まず、本発明に係るバリア性フィルムを構成する基材フィルムについて説明すると、かかる基材フィルムとしては、これが、本発明に係るバリア性フィルムを構成する基本素材となること、更に、ポリパラキシリレンからなる蒸着重合膜、無機酸化物からなるバリア性薄膜層等を保持する基材であること等から、まず、それらの形成、加工等の条件に耐え、かつ、その特性を損なうことなくそれらを良好に保持し得ることができること、更に、包装用袋の製袋に際し、加工作業性、耐熱性、滑り性、耐ピンホ−ル性、その他等の諸物性に優れ、更に、その他等の条件を充足し得る樹脂のフィルムないしシ−トを使用することができる。
本発明において、上記の樹脂のフィルムないしシ−トとしては、具体的には、例えば、ポリエチレン系樹脂あるいはポリプロピレン系樹脂等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS樹脂)、アクリロニトリルル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ(メタ)アクリル系樹脂、ポリカ−ボネ−ト系樹脂、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト等のポリエステル系樹脂、各種のナイロン樹脂等のポリアミド系樹脂、ポリウレタン系樹脂、アセタ−ル系樹脂、セルロ−ス系樹脂、その他等の各種の樹脂のフィルムないしシ−トを使用することができる。
本発明においては、上記の樹脂のフィルムないしシ−トの中でも、特に、ポリエステル系樹脂、ポリオレフィン系樹脂、または、ポリアミド系樹脂のフィルムないしシ−トを使用することが好ましいものである。
Next, in the present invention, the material constituting the barrier film, the laminate, the packaging bag, the packaged product, etc. according to the present invention, the production method, etc. will be described. First, the base constituting the barrier film according to the present invention. The material film will be described. As such a base film, this is a basic material constituting the barrier film according to the present invention, a vapor-deposited polymer film composed of polyparaxylylene, and a barrier property composed of an inorganic oxide. Because it is a base material that holds a thin film layer, etc., first, it can withstand the conditions of formation, processing, etc., and can hold them well without impairing its properties, and further for packaging When making a bag, it has excellent physical properties such as workability, heat resistance, slipperiness, pinhole resistance, and other properties, as well as a resin film or sheet that can satisfy other conditions. It is possible to use the door.
In the present invention, specific examples of the resin film or sheet include polyolefin resins such as polyethylene resins and polypropylene resins, cyclic polyolefin resins, polystyrene resins, and acrylonitrile-styrene copolymer. Polyester such as coalescence (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), poly (meth) acrylic resin, polycarbonate resin, polyethylene terephthalate, polyethylene naphthalate Various resins such as polyamide resins such as polyamide resins, polyurethane resins, acetal resins, cellulose resins, and the like can be used.
In the present invention, it is particularly preferable to use a polyester resin, a polyolefin resin, or a polyamide resin film or sheet among the above-described resin films or sheets.

本発明において、上記の各種の樹脂のフィルムないしシ−トとしては、例えば、上記の各種の樹脂の1種ないしそれ以上を使用し、押し出し法、キャスト成形法、Tダイ法、切削法、インフレ−ション法、その他等の製膜化法を用いて、上記の各種の樹脂を単独で製膜化する方法、あるいは、2種以上の各種の樹脂を使用して多層共押し出し製膜化する方法、更には、2種以上の樹脂を使用し、製膜化する前に混合して製膜化する方法等により、各種の樹脂のフィルムないしシ−トを製造し、更に、要すれば、例えば、テンタ−方式、あるいは、チュ−ブラ−方式等を利用して1軸ないし2軸方向に延伸してなる各種の樹脂のフィルムないしシ−トを使用することができる。
本発明において、各種の樹脂のフィルムないしシ−トの膜厚としては、6〜200μm位、より好ましくは、9〜100μm位が望ましい。
In the present invention, as the above-mentioned various resin films or sheets, for example, one or more of the above-mentioned various resins are used, and an extrusion method, a cast molding method, a T-die method, a cutting method, an inflation method are used. -A method of forming the above-mentioned various resins independently using a film-forming method such as an ionization method or the like, or a method of forming a multilayer co-extrusion film using two or more types of various resins In addition, by using two or more kinds of resins, various film or sheet of resin is manufactured by a method of mixing and forming before forming a film, and if necessary, for example, Various resin films or sheets formed by stretching in a uniaxial or biaxial direction using a tenter system, a tubular system, or the like can be used.
In the present invention, the film thickness of various resin films or sheets is preferably about 6 to 200 μm, more preferably about 9 to 100 μm.

なお、上記の各種の樹脂の1種ないしそれ以上を使用し、その製膜化に際して、例えば、フィルムの加工性、耐熱性、耐候性、機械的性質、寸法安定性、抗酸化性、滑り性、離形性、難燃性、抗カビ性、電気的特性、強度、その他等を改良、改質する目的で、種々のプラスチック配合剤や添加剤等を添加することができ、その添加量としては、極く微量から数十%まで、その目的に応じて、任意に添加することができる。
上記において、一般的な添加剤としては、例えば、滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、その他等を使用することができ、更には、改質用樹脂等も使用することがてきる。
In addition, when using one or more of the above-mentioned various resins and forming the film, for example, film processability, heat resistance, weather resistance, mechanical properties, dimensional stability, antioxidant properties, slipperiness Various plastic compounding agents and additives can be added for the purpose of improving and modifying mold release properties, flame retardancy, antifungal properties, electrical properties, strength, etc. Can be arbitrarily added from a very small amount to several tens of percent depending on the purpose.
In the above, as a general additive, for example, a lubricant, a crosslinking agent, an antioxidant, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment, and the like can be used. Furthermore, a modifying resin or the like can be used.

また、本発明において、各種の樹脂フィルムないしシートの表面は、ポリパラキシリレンからなる蒸着重合膜等との密接着性等を向上させるために、必要に応じて、予め、所望の表面処理層を設けることができるものである。
本発明において、上記の表面処理層としては、例えば、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理、その他等の前処理を任意に施し、例えば、コロナ処理層、オゾン処理層、プラズマ処理層、酸化処理層、その他等を形成して設けることができる。
上記の表面前処理は、各種の樹脂のフィルムないしシートとガスバリア性塗布膜との密接着性等を改善するための方法として実施するものであるが、上記の密接着性を改善する方法として、その他、例えば、各種の樹脂のフィルムないしシートの表面に、予め、プライマーコート剤層、アンダーコート剤層、アンカーコート剤層、接着剤層、あるいは、蒸着アンカーコート剤層等を任意に形成して、表面処理層とすることもできる。
上記の前処理のコート剤層としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系掛胎、ポリ酢酸ビニル系樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフイン系樹脂あるいはその共重合体ないし変性樹脂、セルロース系樹脂、その他等をビヒクルの主成分とする樹脂組成物を使用することができる。
In the present invention, the surface of various resin films or sheets may have a desired surface treatment layer in advance, if necessary, in order to improve close adhesion with a vapor-deposited polymer film made of polyparaxylylene. Can be provided.
In the present invention, as the surface treatment layer, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, oxidation treatment using chemicals, etc. For example, a corona treatment layer, an ozone treatment layer, a plasma treatment layer, an oxidation treatment layer, or the like can be formed and provided.
The surface pretreatment is carried out as a method for improving the tight adhesion between various resin films or sheets and the gas barrier coating film, etc. In addition, for example, a primer coat agent layer, an undercoat agent layer, an anchor coat agent layer, an adhesive layer, or a deposition anchor coat agent layer is arbitrarily formed on the surface of various resin films or sheets in advance. The surface treatment layer can also be used.
Examples of the pre-treatment coating agent layer include polyester resins, polyamide resins, polyurethane resins, epoxy resins, phenol resins, (meth) acrylic coatings, polyvinyl acetate resins, polyethylene or polypropylene. A resin composition having a vehicle as a main component of a polyolefin resin such as the above or a copolymer or modified resin thereof, a cellulose resin, or the like can be used.

次に、本発明において、本発明に係るバリア性フィルムを構成するポリパラキシリレンからなる蒸着重合膜について説明すると、かかるポリパラキシリレンからなる蒸着重合膜としては、例えば、パラシクロファン化合物を600〜700℃に加熱すると容易に分解し、これが、キシリレン−ラジカルとなり、基材フィルムの一方の表面で重合し、その基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜を形成することができるものである。
上記において、上記のパラシクロファン化合物としては、例えば、(2、2)−パラシクロファン、ジクロロ−(2、2)−パラシクロファン、テトラクロロ−(2、2)−パラシクロファン、テトラフルオロ−(2、2)−パラシクロファン、アミノ−(2、2)−パラシクロファン、その他等を使用することができる。
本発明において、本発明に係るバリア性フィルムを構成するポリパラキシリレンからなる蒸着重合膜の膜厚としては、0.01μm〜5μm位、好ましくは、0.1μm〜1μm位が望ましいものである。
Next, in the present invention, the vapor deposition polymer film comprising polyparaxylylene constituting the barrier film according to the present invention will be described. As the vapor deposition polymer film comprising such polyparaxylylene, for example, a paracyclophane compound is used. When it is heated to 600 to 700 ° C., it is easily decomposed to become a xylylene radical, which is polymerized on one surface of the base film, and a deposited polymer film made of polyparaxylylene is formed on one surface of the base film. It can be formed.
In the above, examples of the paracyclophane compound include (2,2) -paracyclophane, dichloro- (2,2) -paracyclophane, tetrachloro- (2,2) -paracyclophane, tetra Fluoro- (2,2) -paracyclophane, amino- (2,2) -paracyclophane, etc. can be used.
In the present invention, the thickness of the vapor-deposited polymer film comprising polyparaxylylene constituting the barrier film according to the present invention is preferably about 0.01 μm to 5 μm, and preferably about 0.1 μm to 1 μm. .

而して、本発明において、上記の本発明に係るバリア性フィルムを構成するポリパラキシリレンからなる蒸着重合膜の製膜化法としては、種々の方法を採り得るが、例えば、本発明においては、後述する本発明に係るバリア性フィルムを構成する無機酸化物からなるバリア性薄膜を製膜化する際に、その前工程で製膜化することができる。
本発明において、その製膜化法についてその一例を例示して具体的に説明すると、図7は、上記のポリパラキシリレンからなる蒸着重合膜の製膜化装置の一例を示す概略的構成図である。
すなわち、本発明においては、図7に示すように、後述するプラズマ化学気相成長法により無機酸化物からなるバリア性薄膜を形成する低温プラズマ化学気相成長装置21を使用し、まず、該プラズマ化学気相成長装置21の真空チャンバ−22内に配置された巻き出しロ−ル23から基材フィルム1を繰り出し、更に、該基材フィルム1を、補助ロ−ル24等を介して所定の速度で冷却・電極ドラム25周面上に搬送する。
而して、本発明においては、上記のように基材フィルム1を、補助ロ−ル24等を介して所定の速度で冷却・電極ドラム25周面上に搬送する際に、例えば、パラシクロファン化合物等の原料を気化する気化装置26に該パラシクロファン化合物等の原料を入れ、該気化装置26内において、上記のパラシクロファン化合物等の原料を200〜300℃に加熱して、該パラシクロファン化合物等の原料を気化させ、次いで、その気化したパラシクロファン化合物等の原料をを分解する分解室27に該気化したパラシクロファン化合物等の原料を送り込み、更に、該分解室27内において、上記の気化したパラシクロファン化合物等の原料を600〜700℃に加熱して、該パラシクロファン化合物等の原料を分解し、例えば、キシリレン−ラジカル等のモノマ−を生成し、これをノズル28を介して、基材フィルム1の表面にあてて蒸着させると共に重合させて、該基材フィルム1の表面に、ポリパラキシリレンからなる蒸着重合膜を製膜化することができるものである。
Thus, in the present invention, various methods can be adopted as a method for forming a vapor-deposited polymer film comprising polyparaxylylene constituting the barrier film according to the present invention. For example, in the present invention, When forming a barrier thin film made of an inorganic oxide constituting the barrier film according to the present invention to be described later, it can be formed in the previous step.
In the present invention, the film forming method will be specifically described with an example as an example. FIG. 7 is a schematic configuration diagram showing an example of a film forming apparatus for a vapor-deposited polymer film made of the above polyparaxylylene. It is.
That is, in the present invention, as shown in FIG. 7, a low temperature plasma chemical vapor deposition apparatus 21 that forms a barrier thin film made of an inorganic oxide by a plasma chemical vapor deposition method described later is used. The base film 1 is fed out from the unwinding roll 23 arranged in the vacuum chamber 22 of the chemical vapor deposition apparatus 21, and the base film 1 is further passed through the auxiliary roll 24 and the like in a predetermined manner. Cooled and transported on the circumferential surface of the electrode drum 25 at a speed.
Thus, in the present invention, when the base film 1 is conveyed onto the peripheral surface of the cooling / electrode drum 25 at a predetermined speed via the auxiliary roll 24 as described above, for example, A raw material such as the paracyclophane compound is placed in a vaporizer 26 that vaporizes the raw material such as a fan compound, and the raw material such as the paracyclophane compound is heated to 200 to 300 ° C. in the vaporizer 26, A raw material such as a paracyclophane compound is vaporized, and then, the raw material such as the vaporized paracyclophane compound is fed into a decomposition chamber 27 for decomposing the vaporized raw material such as a paracyclophane compound. In the above, the vaporized raw material such as paracyclophane compound is heated to 600 to 700 ° C. to decompose the raw material such as paracyclophane compound. A monomer such as cal is produced, and this is applied to the surface of the base film 1 through the nozzle 28 and vapor-deposited and polymerized, and vapor deposition polymerization comprising polyparaxylylene is applied to the surface of the base film 1. A film can be formed into a film.

あるいは、本発明においては、図8に示すように、後述する物理気相成長法により無機酸化物からなるバリア性薄膜を形成する巻き取り式真空蒸着装置41を使用し、まず、該巻き取り式真空蒸着装置41の真空チャンバ−42内に配置された巻き出しロ−ル43から基材フィルム1を繰り出し、更に、該基材フィルム1を、ガイドロ−ル44、45等を介して所定の速度で冷却したコ−ティングドラム46周面上に搬送する。
而して、本発明においては、上記のように基材フィルム1を、ガイドロ−ル44、45等を介して所定の速度で冷却したコ−ティングドラム46周面上に搬送する際に、例えば、パラシクロファン化合物等の原料を気化する気化装置47に該パラシクロファン化合物等の原料を入れ、該気化装置47内において、上記のパラシクロファン化合物等の原料を200〜300℃に加熱して、該パラシクロファン化合物等の原料を気化させ、次いで、その気化したパラシクロファン化合物等の原料を分解する分解室48に該気化したパラシクロファン化合物等の原料を送り込み、更に、該分解室48内において、上記の気化したパラシクロファン化合物等の原料を600〜700℃に加熱して、該パラシクロファン化合物等の原料を分解し、例えば、キシリレン−ラジカル等のモノマ−を生成し、これをノズル49を介して、基材フィルム1の表面にあてて蒸着させると共に重合させて、該基材フィルム1の表面に、ポリパラキシリレンからなる蒸着重合膜を製膜化することができるものである。
上記の例示は、本発明に係るバリア性フィルムを構成するポリパラキシリレンからなる蒸着重合膜の製膜化法についてその一二例を例示するものであり、本発明はこれにより限定されるものではないことは言うまでもないことである。
例えば、図示しないが、上記のようにインラインで基材フィルムの上にポリパラキシリレンからなる蒸着重合膜を製膜化する代わりに、オフラインで別のところで基材フィルムの上にポリパラキシリレンからなる蒸着重合膜を製膜化し、次いで、その上に、後述する無機酸化物からなるバリア性薄膜を形成することもできるものである。
Alternatively, in the present invention, as shown in FIG. 8, a winding type vacuum vapor deposition apparatus 41 that forms a barrier thin film made of an inorganic oxide by a physical vapor deposition method to be described later is used. The base film 1 is fed out from the unwinding roll 43 disposed in the vacuum chamber 42 of the vacuum vapor deposition apparatus 41, and the base film 1 is further fed at a predetermined speed through the guide rolls 44, 45 and the like. Then, it is transported onto the peripheral surface of the coating drum 46 cooled in the above step.
Thus, in the present invention, when the base film 1 is transported onto the peripheral surface of the coating drum 46 cooled at a predetermined speed via the guide rolls 44, 45, etc., as described above, for example, The raw material such as the paracyclophane compound is placed in the vaporizer 47 that vaporizes the raw material such as the paracyclophane compound, and the raw material such as the paracyclophane compound is heated to 200 to 300 ° C. in the vaporizer 47. Then, the raw material such as the paracyclophane compound is vaporized, and then the raw material such as the vaporized paracyclophane compound is fed into the decomposition chamber 48 where the vaporized raw material such as the paracyclophane compound is decomposed. In the chamber 48, the raw material such as the vaporized paracyclophane compound is heated to 600 to 700 ° C. to decompose the raw material such as the paracyclophane compound, for example, Monomers such as xylylene radicals are produced and deposited on the surface of the base film 1 through the nozzle 49 and polymerized to form polyparaxylylene on the surface of the base film 1. A vapor-deposited polymer film can be formed.
The above examples illustrate one or two examples of the method for forming a vapor-deposited polymer film comprising polyparaxylylene constituting the barrier film according to the present invention, and the present invention is limited thereby. It goes without saying that it is not.
For example, although not shown, instead of forming a vapor-deposited polymer film of polyparaxylylene on the base film in-line as described above, the polyparaxylylene is formed on the base film at another location offline. It is also possible to form a vapor-deposited polymer film made of the above, and then form a barrier thin film made of an inorganic oxide, which will be described later, on the film.

次に、本発明において、本発明に係るバリア性フィルムを構成する無機酸化物からなるバリア性薄膜層について説明すると、かかる無機酸化物からなるバリア性薄膜層としては、例えば、化学気相成長法、または、物理気相成長法、あるいは、その両法を併用する方法等により無機酸化物の蒸着膜の1層からなる単層膜あるいは2層以上からなる多層膜または複合膜を形成して製造することができるものである。   Next, in the present invention, the barrier thin film layer made of an inorganic oxide constituting the barrier film according to the present invention will be described. As the barrier thin film layer made of such an inorganic oxide, for example, a chemical vapor deposition method is used. Or by forming a single layer film consisting of one layer of an inorganic oxide vapor-deposited film or a multilayer film or a composite film consisting of two or more layers by a physical vapor deposition method or a method using both of these methods in combination. Is something that can be done.

本発明において、上記の化学気相成長法による無機酸化物の蒸着膜について更に詳しく説明すると、かかる化学気相成長法による無機酸化物の蒸着膜としては、例えば、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いて無機酸化物の蒸着膜を形成することができる。
本発明においては、具体的には、基材フィルムの一方の面に設けたポリパラキシリレンからなる蒸着重合膜の上に、有機珪素化合物等の蒸着用モノマ−ガスを原料とし、キャリヤ−ガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。
上記において、低温プラズマ発生装置としては、例えば、高周波プラズマ、パルス波プラズマ、マイクロ波プラズマ等の発生装置を使用することがてき、而して、本発明においては、高活性の安定したプラズマを得るためには、高周波プラズマ方式による発生装置を使用することが望ましい。
In the present invention, the inorganic oxide vapor-deposited film by the chemical vapor deposition method will be described in more detail. Examples of the inorganic oxide vapor-deposited film by the chemical vapor deposition method include plasma chemical vapor deposition, thermal A vapor deposition film of an inorganic oxide can be formed using a chemical vapor deposition method (chemical vapor deposition method, CVD method) such as a chemical vapor deposition method or a photochemical vapor deposition method.
Specifically, in the present invention, a vapor deposition monomer film such as an organosilicon compound is used as a raw material on a vapor deposition polymer film made of polyparaxylylene provided on one surface of a base film, and a carrier gas. Silicon oxide using a low temperature plasma chemical vapor deposition method using an inert gas such as argon gas or helium gas, further using oxygen gas as an oxygen supply gas, and utilizing a low temperature plasma generator or the like A vapor-deposited film of an inorganic oxide such as can be formed.
In the above, for example, high-frequency plasma, pulse wave plasma, microwave plasma, or the like can be used as the low-temperature plasma generator. Thus, in the present invention, highly active and stable plasma is obtained. Therefore, it is desirable to use a high-frequency plasma generator.

具体的に、上記の低温プラズマ化学気相成長法による無機酸化物の蒸着膜の形成法についてその一例を例示して説明すると、前述の図7に示すように、基材フィルムの一方の面にポリパラキシリレンからなる蒸着重合膜を形成した後、前述の図7に示す低温プラズマ化学気相成長装置を使用し、その基材フィルムの一方の面に形成したポリパラキシリレンからなる蒸着重合膜の上に、インラインで無機酸化物の蒸着膜を形成することができる。 すなわち、前述の図7に示すように、基材フィルム1の一方の面に、ポリパラキシリレンからなる蒸着重合膜を設けた後、更に、基材フィルム1を繰り出し、所定の速度で冷却・電極ドラム25周面上に搬送する。
而して、本発明においては、ガス供給装置29、30および、原料揮発供給装置31等から酸素ガス、不活性ガス、有機珪素化合物等の蒸着用モノマ−ガス、その他等を供給し、それらからなる蒸着用混合ガス組成物を調整しなから原料供給ノズル32を通して真空チャンバ−22内に該蒸着用混合ガス組成物を導入し、そして、上記の冷却・電極ドラム25周面上に搬送された、ポリパラキシリレンからなる蒸着重合膜を設けた基材フィルム1のポリパラキシリレンからなる蒸着重合膜の上に、グロ−放電プラズマ33によってプラズマを発生させ、これを照射して、酸化珪素等の無機酸化物の蒸着膜を製膜化する。
本発明においては、その際に、冷却・電極ドラム25は、真空チャンバ−22の外に配置されている電源34から所定の電力が印加されており、また、冷却・電極ドラム25の近傍には、マグネット35を配置してプラズマの発生が促進されている。
次いで、上記で基材フィルム1の一方の面に設けたポリパラキシリレンからなる蒸着重合膜の上に、酸化珪素等の無機酸化物の蒸着膜を形成したその基材フィルム1を、補助ロ−ル36を介して巻き取りロ−ル37に巻き取って、本発明にかかるプラズマ化学気相成長法による無機酸化物の蒸着膜を形成することができるものである。
なお、図中、38は、真空ポンプを表す。
上記の例示は、その一例を例示するものであり、これによって本発明は限定されるものではないことは言うまでもないことである。
図示しないが、本発明においては、無機酸化物の蒸着膜としては、無機酸化物の蒸着膜の1層だけではなく、2層あるいはそれ以上を積層した多層膜の状態でもよく、また、使用する材料も1種または2種以上の混合物で使用し、また、異種の材質で混合した無機酸化物の蒸着膜を構成することもできる。
Specifically, an example of the formation method of the vapor-deposited film of the inorganic oxide by the low-temperature plasma chemical vapor deposition method will be described as an example. As shown in FIG. After forming a vapor-deposited polymer film made of polyparaxylylene, using the low-temperature plasma chemical vapor deposition apparatus shown in FIG. 7, the vapor-deposition polymerization made of polyparaxylylene formed on one surface of the substrate film On the film, an inorganic oxide vapor deposition film can be formed in-line. That is, as shown in FIG. 7 described above, after providing a vapor deposition polymer film made of polyparaxylylene on one surface of the base film 1, the base film 1 is further fed out and cooled at a predetermined rate. It is conveyed on the electrode drum 25 circumferential surface.
Thus, in the present invention, oxygen gas, inert gas, a monomer gas for vapor deposition such as an organosilicon compound, and the like are supplied from the gas supply devices 29 and 30 and the raw material volatilization supply device 31 and the like. The mixed gas composition for vapor deposition was introduced into the vacuum chamber 22 through the raw material supply nozzle 32 without adjusting the mixed gas composition for vapor deposition, and was conveyed onto the peripheral surface of the cooling / electrode drum 25 described above. A plasma is generated by glow discharge plasma 33 on the vapor-deposited polymer film made of polyparaxylylene of the base film 1 provided with the vapor-deposited polymer film made of polyparaxylylene. A vapor-deposited film of an inorganic oxide such as is formed.
In the present invention, at that time, the cooling / electrode drum 25 is applied with a predetermined power from the power source 34 disposed outside the vacuum chamber 22, and is also in the vicinity of the cooling / electrode drum 25. The generation of plasma is promoted by arranging the magnet 35.
Next, the base film 1 in which a vapor-deposited film of inorganic oxide such as silicon oxide is formed on the vapor-deposited polymer film made of polyparaxylylene provided on one surface of the base film 1 as described above, -It can wind up on the winding roll 37 via the roll 36, and can form the vapor deposition film | membrane of the inorganic oxide by the plasma chemical vapor deposition method concerning this invention.
In the figure, 38 represents a vacuum pump.
The above exemplification is an example, and it goes without saying that the present invention is not limited thereby.
Although not shown, in the present invention, the inorganic oxide vapor deposition film may be not only one layer of the inorganic oxide vapor deposition film but also a multilayer film in which two or more layers are laminated, and is used. The materials may be used alone or as a mixture of two or more, and an inorganic oxide vapor deposition film mixed with different materials may be formed.

上記において、真空チャンバ−内を真空ポンプにより減圧し、真空度1×10-1〜1×10-8Torr位、好ましくは、真空度1×10-3〜1×10-7Torr位に調製することが望ましいものである。
また、原料揮発供給装置においては、原料である有機珪素化合物を揮発させ、ガス供給装置から供給される酸素ガス、不活性ガス等と混合させ、この混合ガスを原料供給ノズルを介して真空チャンバ−内に導入されるものである。
この場合、混合ガス中の有機珪素化合物の含有量は、1〜40%位、酸素ガスの含有量は、10〜70%位、不活性ガスの含有量は、10〜60%位の範囲とすることができ、例えば、有機珪素化合物と酸素ガスと不活性ガスとの混合比を1:6:5〜1:17:14程度とすることができる。
一方、冷却・電極ドラムには、電源から所定の電圧が印加されているため、真空チャンバ−内の原料供給ノズルの開口部と冷却・電極ドラムとの近傍でグロ−放電プラズマが生成され、このグロ−放電プラズマは、混合ガスなかの1つ以上のガス成分から導出されるものであり、この状態において、基材フィルムを一定速度で搬送させ、グロ−放電プラブマによって、冷却・電極ドラム周面上の基材フィルムの上に設けたポリパラキシリレンからなる蒸着重合膜の上に、酸化珪素等の無機酸化物の蒸着膜を形成することができるものである。
なお、このときの真空チャンバ−内の真空度は、1×10-1〜1×10-4Torr位、好ましくは、真空度1×10-1〜1×10-2Torr位に調製することが望ましく、また、基材フィルムの搬送速度は、10〜300m/分位、好ましくは、50〜150m/分位に調製することが望ましいものである。
In the above, the inside of the vacuum chamber is depressurized by a vacuum pump and adjusted to a vacuum degree of 1 × 10 −1 to 1 × 10 −8 Torr, preferably a vacuum degree of 1 × 10 −3 to 1 × 10 −7 Torr. It is desirable to do.
In the raw material volatilization supply device, the organic silicon compound as the raw material is volatilized and mixed with oxygen gas, inert gas, etc. supplied from the gas supply device, and this mixed gas is supplied to the vacuum chamber through the raw material supply nozzle. It is introduced in the inside.
In this case, the content of the organosilicon compound in the mixed gas is about 1 to 40%, the content of oxygen gas is about 10 to 70%, and the content of inert gas is about 10 to 60%. For example, the mixing ratio of the organosilicon compound, oxygen gas, and inert gas can be about 1: 6: 5 to 1:17:14.
On the other hand, since a predetermined voltage is applied to the cooling / electrode drum from the power source, glow discharge plasma is generated in the vicinity of the opening of the raw material supply nozzle in the vacuum chamber and the cooling / electrode drum. The glow discharge plasma is derived from one or more gas components in the mixed gas. In this state, the substrate film is conveyed at a constant speed, and the glow discharge plasma is used to cool the electrode drum peripheral surface. A vapor-deposited film of an inorganic oxide such as silicon oxide can be formed on a vapor-deposited polymer film made of polyparaxylylene provided on the upper substrate film.
At this time, the degree of vacuum in the vacuum chamber should be adjusted to 1 × 10 −1 to 1 × 10 −4 Torr, preferably to 1 × 10 −1 to 1 × 10 −2 Torr. In addition, it is desirable that the conveying speed of the base film is adjusted to about 10 to 300 m / min, preferably about 50 to 150 m / min.

また、上記のプラズマ化学気相成長装置において、酸化珪素等の無機酸化物の蒸着膜の形成は、基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の上に、、プラズマ化した原料ガスを酸素ガスで酸化しながらSiOX の形で薄膜状に形成されるので、当該形成される酸化珪素等の無機酸化物の蒸着膜は、緻密で、隙間の少ない、可撓性に富む連続層となるものであり、従って、酸化珪素等の無機酸化物の蒸着膜のバリア性は、従来の真空蒸着法等によって形成される酸化珪素等の無機酸化物の蒸着膜と比較してはるかに高いものとなり、薄い膜厚で十分なバリア性を得ることができるものである。
また、本発明においては、SiOX プラズマにより基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の表面が、清浄化され、基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の表面に、極性基やフリ−ラジカル等が発生するので、形成される酸化珪素等の無機酸化物の蒸着膜と基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜との密接着性が高いものとなるという利点を有するものである。
更に、上記のように酸化珪素等の無機酸化物の連続膜の形成時の真空度は、1×10-1〜1×10-4Torr位、好ましくは、1×10-1〜1×10-2Torr位に調製することから、従来の真空蒸着法により酸化珪素等の無機酸化物の蒸着膜を形成する時の真空度、1×10-4〜1×10-5Torr位に比較して低真空度であることから、ポリパラキシリレンからなる蒸着重合膜を設けた基材フィルムを原反交換時の真空状態設定時間を短くすることができ、真空度を安定しやすく、製膜プロセスが安定するものである。
In the plasma chemical vapor deposition apparatus described above, the formation of a vapor deposition film of an inorganic oxide such as silicon oxide is performed on a vaporized polymer film made of polyparaxylylene provided on a base film, and then converted into plasma. Since the gas is oxidized with oxygen gas and formed into a thin film in the form of SiO x , the formed vapor-deposited film of inorganic oxide such as silicon oxide is dense, continuous with high flexibility and few gaps. Therefore, the barrier property of the vapor-deposited film of inorganic oxide such as silicon oxide is much higher than that of the vapor-deposited film of inorganic oxide such as silicon oxide formed by the conventional vacuum vapor deposition method or the like. Thus, a sufficient barrier property can be obtained with a thin film thickness.
Further, in the present invention, the surface of the vapor-deposited polymer film made of polyparaxylylene provided on the base film by SiO x plasma is cleaned, and the vapor-deposited polymer film made of polyparaxylylene provided on the base film is Since polar groups, free radicals, etc. are generated on the surface, there is close adhesion between the deposited film of inorganic oxide such as silicon oxide and the deposited polymer film made of polyparaxylene on the base film. It has the advantage of being expensive.
Furthermore, as described above, the degree of vacuum when forming a continuous film of an inorganic oxide such as silicon oxide is about 1 × 10 −1 to 1 × 10 −4 Torr, preferably 1 × 10 −1 to 1 × 10. -2 Since it is prepared at the Torr position, the degree of vacuum when forming a deposited film of an inorganic oxide such as silicon oxide by the conventional vacuum evaporation method is compared with the 1 × 10 −4 to 1 × 10 −5 Torr position. Because of the low degree of vacuum, it is possible to shorten the time for setting the vacuum state of the base film provided with the vapor-deposited polymer film made of polyparaxylylene when replacing the raw material, making it easy to stabilize the degree of vacuum and forming the film. The process is stable.

本発明において、有機珪素化合物等の蒸着モノマ−ガスを使用して形成される酸化珪素の蒸着膜は、有機珪素化合物等の蒸着モノマ−ガスと酸素ガス等とが化学反応し、その反応生成物が、基材フィルムの一方の面に設けたポリパラキシリレンからなる蒸着重合膜の面と密接着し、緻密な、柔軟性等に富む薄膜を形成するものであり、通常、一般式SiOX (ただし、Xは、0〜2の数を表す)で表される酸化珪素を主体とする連続状の薄膜である。
而して、上記の酸化珪素の蒸着膜としては、透明性、バリア性等の点から、一般式SiOX (ただし、Xは、1.3〜1.9の数を表す。)で表される酸化珪素の蒸着膜を主体とする薄膜であることが好ましいものである。
上記において、Xの値は、蒸着モノマ−ガスと酸素ガスのモル比、プラズマのエネルギ−等により変化するが、一般的に、Xの値が小さくなればガス透過度は小さくなるが、膜自身が黄色性を帯び、透明性が悪くなる。
In the present invention, a vapor deposition film of silicon oxide formed using a vapor deposition monomer gas such as an organosilicon compound chemically reacts with a vapor deposition monomer gas such as an organic silicon compound and oxygen gas, and the reaction product. but one of the closely wearing the surface of the vapor-deposited polymer film of poly-para-xylylene which is provided on the surface of the substrate film, dense, and forms a thin film rich in flexibility or the like, usually, the general formula SiO X (Where X represents a number from 0 to 2), and is a continuous thin film mainly composed of silicon oxide.
Thus, the silicon oxide vapor-deposited film is represented by the general formula SiO x (where X represents a number from 1.3 to 1.9) from the viewpoint of transparency and barrier properties. A thin film mainly composed of a deposited silicon oxide film is preferable.
In the above, the value of X varies depending on the molar ratio of the vapor-deposited monomer gas and oxygen gas, the energy of the plasma, etc. Generally, the gas permeability decreases as the value of X decreases, but the film itself Becomes yellowish and the transparency is poor.

また、上記の酸化珪素の蒸着膜は、酸化珪素を主体とし、これに、更に、炭素、水素、珪素または酸素の1種類、または、その2種類以上の元素からなる化合物を少なくとも1種類を化学結合等により含有する蒸着膜からなることを特徴とするものである。
例えば、C−H結合を有する化合物、Si−H結合を有する化合物、または、炭素単位がグラファイト状、ダイヤモンド状、フラ−レン状等になっている場合、更に、原料の有機珪素化合物やそれらの誘導体を化学結合等によって含有する場合があるものである。
具体例を挙げると、CH3 部位を持つハイドロカ−ボン、SiH3 シリル、SiH2 シリレン等のハイドロシリカ、SiH2 OHシラノ−ル等の水酸基誘導体等を挙げることができる。
上記以外でも、蒸着過程の条件等を変化させることにより、酸化珪素の蒸着膜中に含有される化合物の種類、量等を変化させることができる。
而して、上記の化合物が、酸化珪素の蒸着膜中に含有する含有量としては、0.1〜50%位、好ましくは、5〜20%位が望ましいものである。
上記において、含有率が、0.1%未満であると、酸化珪素の蒸着膜の耐衝撃性、延展性、柔軟性等が不十分となり、曲げなとにより、擦り傷、クラック等が発生し易く、高いバリア性を安定して維持することが困難になり、また、50%を越えると、バリア性が低下して好ましくないものである。
更に、本発明においては、酸化珪素の蒸着膜において、上記の化合物の含有量が、酸化珪素の蒸着膜の表面から深さ方向に向かって減少させることが好ましく、これにより、酸化珪素の蒸着膜の表面においては、上記の化合物等により耐衝撃性等を高められ、他方、基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の面との界面においては、上記の化合物の含有量が少ないために、基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜と酸化珪素の蒸着膜との密接着性が強固なものとなるという利点を有するものである。
In addition, the silicon oxide vapor-deposited film is mainly composed of silicon oxide, and further, at least one kind of compound composed of one kind of carbon, hydrogen, silicon, or oxygen, or two or more kinds thereof is chemically used. It consists of the vapor deposition film | membrane contained by a coupling | bonding etc., It is characterized by the above-mentioned.
For example, when a compound having a C—H bond, a compound having a Si—H bond, or a carbon unit is in the form of graphite, diamond, fullerene, etc. A derivative may be contained by a chemical bond or the like.
Specific examples include hydrocarbons having a CH 3 site, hydrosilica such as SiH 3 silyl, SiH 2 silylene, and hydroxyl derivatives such as SiH 2 OH silanol.
In addition to the above, the type, amount, etc., of the compound contained in the deposited film of silicon oxide can be changed by changing the conditions of the vapor deposition process.
Thus, the content of the above compound in the deposited film of silicon oxide is about 0.1 to 50%, preferably about 5 to 20%.
In the above, if the content is less than 0.1%, the impact resistance, spreadability, flexibility, etc. of the deposited silicon oxide film become insufficient, and scratches, cracks, etc. are likely to occur due to bending. It is difficult to stably maintain a high barrier property, and if it exceeds 50%, the barrier property is lowered, which is not preferable.
Furthermore, in the present invention, in the silicon oxide vapor deposition film, the content of the above-mentioned compound is preferably decreased from the surface of the silicon oxide vapor deposition film in the depth direction. On the surface, the impact resistance and the like can be enhanced by the above compound, etc., while the content of the above compound is at the interface with the surface of the vapor-deposited polymer film made of polyparaxylylene provided on the base film For this reason, there is an advantage that the tight adhesion between the vapor deposition polymer film made of polyparaxylylene and the silicon oxide vapor deposition film provided on the base film becomes strong.

而して、本発明において、上記の酸化珪素の蒸着膜について、例えば、X線光電子分光装置(Xray Photoelectron Spectroscopy、XPS)、二次イオン質量分析装置(Secondary Ion Mass Spectroscopy、SIMS)等の表面分析装置を用い、深さ方向にイオンエッチングする等して分析する方法を利用して、酸化珪素の蒸着膜の元素分析を行うことより、上記のような物性を確認することができる。
また、本発明において、上記の酸化珪素の蒸着膜の膜厚としては、膜厚50Å〜4000Å位であることが望ましく、具体的には、その膜厚としては、100〜1000Å位が望ましく、而して、上記において、1000Å、更には、4000Åより厚くなると、その膜にクラック等が発生し易くなるので好ましくなく、また、100Å、更には、50Å未満であると、バリア性の効果を奏することが困難になることから好ましくないものである。
上記のおいて、その膜厚は、例えば、株式会社理学製の蛍光X線分析装置(機種名、RIX2000型)を用いて、ファンダメンタルパラメ−タ−法で測定することができる。 また、上記において、上記の酸化珪素の蒸着膜の膜厚を変更する手段としては、蒸着膜の体積速度を大きくすること、すなわち、モノマ−ガスと酸素ガス量を多くする方法や蒸着する速度を遅くする方法等によって行うことができる。
Thus, in the present invention, the above silicon oxide vapor deposition film is subjected to surface analysis such as an X-ray photoelectron spectrometer (Xray Photoelectron Spectroscopy, XPS), a secondary ion mass spectrometer (Secondary Ion Mass Spectroscopy, SIMS), etc. The physical properties as described above can be confirmed by conducting an elemental analysis of the deposited film of silicon oxide using a method of analyzing by ion etching in the depth direction using an apparatus.
In the present invention, the film thickness of the above-described silicon oxide vapor deposition film is preferably about 50 to 4000 mm, and specifically, the film thickness is preferably about 100 to 1000 mm. In the above, if it is thicker than 1000 mm, and more preferably 4000 mm, it is not preferable because cracks and the like are likely to occur in the film, and if it is less than 100 mm, further less than 50 mm, there is an effect of barrier properties. Is not preferable because it becomes difficult.
In the above, the film thickness can be measured by a fundamental parameter method using, for example, a fluorescent X-ray analyzer (model name, RIX2000 type) manufactured by Rigaku Corporation. In the above, as means for changing the film thickness of the silicon oxide vapor deposition film, the volume velocity of the vapor deposition film is increased, that is, the method of increasing the amount of monomer gas and oxygen gas and the vapor deposition rate. This can be done by a method of slowing down.

次に、上記において、酸化珪素等の無機酸化物の蒸着膜を形成する有機珪素化合物等の蒸着用モノマ−ガスとしては、例えば、1.1.3.3−テトラメチルジシロキサン、ヘキサメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、その他等を使用することができる。
本発明において、上記のような有機珪素化合物の中でも、1.1.3.3−テトラメチルジシロキサン、または、ヘキサメチルジシロキサンを原料として使用することが、その取り扱い性、形成された連続膜の特性等から、特に、好ましい原料である。
また、上記において、不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を使用することができる。
Next, in the above, as a vapor deposition monomer gas such as an organic silicon compound that forms a vapor deposition film of an inorganic oxide such as silicon oxide, for example, 1.1.3.3-tetramethyldisiloxane, hexamethyldisiloxane Siloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyl Trimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane, etc. can be used.
In the present invention, among the organic silicon compounds as described above, the use of 1.1.3.3-tetramethyldisiloxane or hexamethyldisiloxane as a raw material is easy to handle and formed continuous film. In view of the above characteristics and the like, it is a particularly preferable raw material.
Moreover, in the above, as an inert gas, argon gas, helium gas, etc. can be used, for example.

次に、本発明において、上記の物理気相成長法による無機酸化物の蒸着膜について更に詳しく説明すると、かかる物理気相成長法による無機酸化物の蒸着膜としては、例えば、真空蒸着法、スパッタリング法、イオンプレ−ティング法、イオンクラスタ−ビ−ム法等の物理気相成長法(Physical Vapor Deposition法、PVD法)を用いて無機酸化物の蒸着膜を形成することができる。
本発明において、具体的には、金属または金属の酸化物を原料とし、これを加熱して蒸気化し、これを基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の面に蒸着する真空蒸着法、あるいは、原料として金属または金属の酸化物を使用し、酸素を導入して酸化させて基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の面に蒸着する酸化反応蒸着法、更に酸化反応をプラズマで助成するプラズマ助成式の酸化反応蒸着法等を用いて蒸着膜を形成することができる。
上記において、蒸着材料の加熱方式としては、例えば、抵抗加熱方式、高周波誘導加熱方式、エレクトロンビ−ム加熱方式(EB)等にて行うことができる。
Next, in the present invention, the inorganic oxide vapor-deposited film by the physical vapor deposition method will be described in more detail. Examples of the inorganic oxide vapor-deposited film by the physical vapor deposition method include, for example, vacuum vapor deposition and sputtering. A vapor deposition film of an inorganic oxide can be formed using a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a method, an ion plating method, or an ion cluster beam method.
In the present invention, specifically, a vacuum in which a metal or a metal oxide is used as a raw material, is heated and vaporized, and is vapor-deposited on the surface of a vapor-deposited polymer film made of polyparaxylene on a base film. A vapor deposition method, or an oxidation reaction vapor deposition method in which a metal or metal oxide is used as a raw material, and oxygen is introduced to oxidize and vapor deposition is performed on the surface of a vapor deposition polymer film made of polyparaxylylene provided on a base film, Furthermore, a vapor deposition film can be formed using a plasma-assisted oxidation reaction vapor deposition method in which an oxidation reaction is supported by plasma.
In the above, as a heating method of the vapor deposition material, for example, a resistance heating method, a high frequency induction heating method, an electron beam heating method (EB), or the like can be used.

本発明において、物理気相成長法による無機酸化物の蒸着膜を形成する方法について、その具体例を挙げると、前述の図8に示すように、基材フィルムの一方の面にポリパラキシリレンからなる蒸着重合膜を形成した後、前述の図8に示す巻き取り式真空蒸着装置を使用し、その基材フィルムの一方の面に形成したポリパラキシリレンからなる蒸着重合膜の上に、インラインで無機酸化物の蒸着膜を形成することができる。
すなわち、前述の図8に示すように、基材フィルム1の一方の面に、ポリパラキシリレンからなる蒸着重合膜を設けた後、更に、基材フィルム1を繰り出し、所定の速度で冷却したコ−ティングドラム46に案内される。
而して、上記の冷却したコ−ティングドラム46上に案内された、ポリパラキシリレンからなる蒸着重合膜を設けた基材フィルム1のポリパラキシリレンからなる蒸着重合膜の上に、るつぼ50で熱せられた蒸着源51、例えば、金属アルミニウム、あるいは、酸化アルミニウム等を蒸発させ、更に、必要ならば、酸素ガス吹出口52より酸素ガス等を噴出し、これを供給しながら、マスク53、53を介して、例えば、酸化アルミニウム等の無機酸化物の蒸着膜を成膜化し、次いで、上記において、例えば、ポリパラキシリレンからなる蒸着重合膜の上に酸化アルミニウム等の無機酸化物の蒸着膜を形成した基材フィルム1を、ガイドロ−ル54、55等を介して送り出し、更に、巻き取りロ−ル56に巻き取ることによって、本発明にかかる物理気相成長法による無機酸化物の蒸着膜を形成することができる。
なお、本発明においては、上記のような巻き取り式真空蒸着装置を用いて、まず、第1層の無機酸化物の蒸着膜を形成し、次いで、同様にして、該無機酸化物の蒸着膜の上に、更に、無機酸化物の蒸着膜を形成するか、あるいは、上記のような巻き取り式真空蒸着装置を用いて、これを2連に連接し、連続的に、無機酸化物の蒸着膜を形成することにより、2層以上の多層膜からなる無機酸化物の蒸着膜を形成することができる。
In the present invention, a specific example of a method for forming a vapor-deposited film of an inorganic oxide by physical vapor deposition is as follows. As shown in FIG. 8 described above, polyparaxylylene is formed on one surface of a substrate film. After forming the vapor-deposited polymer film consisting of the above, using the take-up vacuum vapor deposition apparatus shown in FIG. 8 above, on the vapor-deposited polymer film composed of polyparaxylylene formed on one surface of the base film, An inorganic oxide vapor deposition film can be formed in-line.
That is, as shown in FIG. 8 described above, after providing a vapor deposition polymer film made of polyparaxylylene on one surface of the base film 1, the base film 1 was further fed out and cooled at a predetermined speed. Guided to the coating drum 46.
Thus, the crucible is placed on the vapor deposition polymer film made of polyparaxylylene of the base film 1 provided with the vapor deposition polymer film made of polyparaxylylene guided on the cooled coating drum 46. The vapor deposition source 51 heated at 50, for example, metal aluminum or aluminum oxide is evaporated, and if necessary, oxygen gas or the like is ejected from the oxygen gas outlet 52 and supplied to the mask 53. 53, for example, a vapor-deposited film of an inorganic oxide such as aluminum oxide is formed. Then, in the above, for example, an inorganic oxide such as aluminum oxide is deposited on the vapor-deposited polymer film made of polyparaxylylene. The base film 1 on which the deposited film is formed is sent out through the guide rolls 54 and 55, and further wound up on the winding roll 56. It is possible to form a deposited film of an inorganic oxide by that physical vapor deposition.
In the present invention, the first-layer inorganic oxide vapor deposition film is first formed using the above-described take-up vacuum vapor deposition apparatus, and then the inorganic oxide vapor deposition film is formed in the same manner. Further, an inorganic oxide vapor deposition film is formed on the substrate, or by using the above-described take-up vacuum vapor deposition apparatus, these are connected in series, and the inorganic oxide vapor deposition is continuously performed. By forming the film, it is possible to form an inorganic oxide vapor-deposited film composed of two or more multilayer films.

上記において、金属または無機酸化物の蒸着膜としては、基本的には、金属の酸化物を蒸着した薄膜であれば使用可能であり、例えば、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)等の金属の酸化物の蒸着膜を使用することができる。
而して、好ましいものとしては、ケイ素(Si)、アルミニウム(Al)等の金属の酸化物の蒸着膜を挙げることができる。
また、上記の金属の酸化物の蒸着膜は、ケイ素酸化物、アルミニウム酸化物、マグネシウム酸化物等のように金属酸化物として呼ぶことができ、その表記は、例えば、SiOX 、AlOX 、MgOX 等のようにMOX (ただし、式中、Mは、金属元素を表し、Xの値は、金属元素によってそれぞれ範囲がことなる。)で表される。
上記のXの値の範囲としては、ケイ素(Si)は、0〜2、アルミニウム(Al)は、0〜1.5、マグネシウム(Mg)は、0〜1、カルシウム(Ca)は、0〜1、カリウム(K)は、0〜0.5、スズ(Sn)は、0〜2、ナトリウム(Na)は、0〜0.5、ホウ素(B)は、0〜1、5、チタン(Ti)は、0〜2、鉛(Pb)は、0〜1、ジルコニウム(Zr)は0〜2、イットリウム(Y)は、0〜1.5の範囲の値をとることができる。
また、上記において、X=0の場合、完全な金属であり、透明ではなく全く使用することができない、また、Xの範囲の上限は、完全に酸化した値である。
本発明において、一般的に、ケイ素(Si)、アルミニウム(Al)以外は、使用される例に乏しく、ケイ素(Si)は、1.0〜2.0、アルミニウム(Al)は、0.5〜1.5の範囲の値のものを使用することができる。
本発明において、上記のような無機酸化物の蒸着膜の膜厚としては、使用する金属、または、金属の酸化物の種類等によって異なるが、例えば、50〜2000Å位、好ましくは、100〜1000Å位の範囲内で任意に選択して形成することが望ましい。
また、本発明においては、無機酸化物の蒸着膜としては、使用する金属または金属の酸化物としては、1種または2種以上の混合物で使用し、異種の材質で混合した無機酸化物の蒸着膜を構成することもできる。
In the above, as the deposited film of metal or inorganic oxide, basically, any thin film on which a metal oxide is deposited can be used. For example, silicon (Si), aluminum (Al), magnesium (Mg ), Calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), titanium (Ti), lead (Pb), zirconium (Zr), yttrium (Y), etc. Oxide deposited films can be used.
Thus, preferable examples include vapor-deposited films of metal oxides such as silicon (Si) and aluminum (Al).
Also, deposited film of oxides of the above metals, silicon oxides, aluminum oxides, can be referred to as a metal oxide like such as magnesium oxide, the notation is, for example, SiO X, AlO X, MgO MO X (in the formula, M represents a metal element, the value of X is in the range respectively of a metal element different.) as X, etc. represented by.
As the range of the value of X, 0 to 2 for silicon (Si), 0 to 1.5 for aluminum (Al), 0 to 1 for magnesium (Mg), 0 to 1 for calcium (Ca). 1, 0 to 0.5 for potassium (K), 0 to 2 for tin (Sn), 0 to 0.5 for sodium (Na), 0 to 1, 5 for boron (B), titanium ( Ti) can be 0 to 2, lead (Pb) is 0 to 1, zirconium (Zr) is 0 to 2, and yttrium (Y) is 0 to 1.5.
In the above, when X = 0, it is a complete metal and is not transparent and cannot be used at all. The upper limit of the range of X is a completely oxidized value.
In the present invention, generally, examples other than silicon (Si) and aluminum (Al) are scarce, silicon (Si) is 1.0 to 2.0, and aluminum (Al) is 0.5. Those with values in the range of -1.5 can be used.
In the present invention, the film thickness of the inorganic oxide vapor-deposited film as described above varies depending on the metal used or the type of metal oxide, but is, for example, about 50 to 2000 mm, preferably 100 to 1000 mm. It is desirable to select and form arbitrarily within the range.
Moreover, in this invention, as a vapor deposition film of an inorganic oxide, as a metal or metal oxide to be used, it is used by 1 type, or 2 or more types of mixtures, and vapor deposition of the inorganic oxide mixed by the dissimilar material A membrane can also be constructed.

なお、本発明において、上記の物理気相成長法による無機酸化物の蒸着膜としては、例えば、具体的には、酸化アルミニウムの非結晶性の薄膜を使用することが好ましく、更に具体的に述べれば、式AlOX (式中、Xは、0.5〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であり、かつ、該酸化アルミニウムの非結晶性の薄膜が、その薄膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜からなるものを使用することができる。
あるいは、本発明において、酸化アルミニウムの非結晶性の薄膜としては、式AlOX (式中、Xは、0.5〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であり、かつ、該酸化アルミニウムの非結晶性の薄膜が、その薄膜表面から内面に向かう深さ方向に向かってXの値が増加している酸化アルミニウムの非結晶性の薄膜を使用することができる。
なお、本発明において、上記の式中のXの値としては、基本的には、X=0.5以上のものを使用することができるが、本発明においては、X=1.0未満になると、着色が激しく、かつ、透明性に劣ることから、X=1.0以上のものを使用することが望ましく、また、X=1.5のものは、アルミニウムと酸素とが完全に酸化した状態のものであることから、上限としては、X=1.5までのものを使用することができる。
次に、本発明において、酸化アルミニウムの非結晶性の薄膜の膜厚としては、例えば、10〜3000Å位、好ましくは、60〜1000Å位の範囲内で任意に選択して形成することが望ましい。
In the present invention, as the inorganic oxide vapor-deposited film formed by the physical vapor deposition method, for example, an amorphous thin film of aluminum oxide is preferably used, and more specifically described. For example, it is a non-crystalline thin film of aluminum oxide represented by the formula AlO x (where X represents a number in the range of 0.5 to 1.5), and the non-crystalline aluminum oxide. A thin film made of an amorphous thin film of aluminum oxide in which the value of X decreases in the depth direction from the thin film surface toward the inner surface can be used.
Alternatively, in the present invention, the non-crystalline thin film of aluminum oxide is a non-crystalline aluminum oxide represented by the formula AlO x (where X represents a number in the range of 0.5 to 1.5). A non-crystalline thin film of aluminum oxide, the non-crystalline thin film of aluminum oxide having an X value increasing in the depth direction from the thin film surface toward the inner surface. Can be used.
In the present invention, the value of X in the above formula can basically be X = 0.5 or more, but in the present invention, X is less than 1.0. Then, since the coloring is intense and the transparency is poor, it is desirable to use X = 1.0 or more, and when X = 1.5, aluminum and oxygen are completely oxidized. Since it is a thing of a state, a thing to X = 1.5 can be used as an upper limit.
Next, in the present invention, the film thickness of the amorphous thin film of aluminum oxide is desirably selected and formed within a range of, for example, 10 to 3000 mm, preferably 60 to 1000 mm.

而して、本発明において、上記の式AlOX (式中、Xは、1.0〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であり、かつ、該酸化アルミニウムの非結晶性の薄膜が、その薄膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜を形成する方法について具体的に説明すると、上記の図8に示す巻き取り式真空蒸着装置を使用して具体的に酸化アルミニウムの非結晶性の薄膜を形成することができる。
本発明においては、まず、真空チャンバ−の中で、巻き出しロ−ルから繰り出した基材フィルムは、冷却したコ−ティングドラムに案内される。
而して、上記の冷却したコ−ティングドラム上に案内された基材フィルムの上に、るつぼで熱せられた蒸着源、例えば、金属アルミニウム、あるいは、酸化アルミニウム等を蒸発させ、更に、必要ならば、酸素ガス吹出口より酸素ガス等を噴出し、これを供給しながら、マスクを介して、例えば、酸化アルミニウム等の無機酸化物の蒸非結晶の薄膜を成膜化するものであるが、その際に、上記のるつぼと酸素吹き出し口との位置関係を調整し、該るつぼと酸素吹き出し口の配置位置を中心線からずらし、るつぼを中心線の位置に配置し、他方、酸素吹き出し口を中心線から基材フィルムの排出側にずらして配置する。
而して、上記のような配置関係の状態で、るつぼで蒸発源としての熱せられたアルミニウム、または、アルミニウムの酸化物を蒸発させる。
他方、アルミニウム、または、アルミニウムの酸化物を噴出させながら、更に、酸素吹き出し口より酸素を噴出させ、而して、酸素を噴出させる際に、酸素の噴出濃度を変化させ、最初は低くし、その後、徐々に高くしながら酸素を噴出させる。
上記のように、アルミニウム、または、アルミニウムの酸化物と酸素とを、その酸素の噴出位置あるいはその濃度を変化させながら、基材フィルムの表面に、マスクを介して、アルミニウム、または、アルミニウムの酸化物のガスと酸素のガスとを噴出、蒸着させると、基材フィルムの表面に酸化アルミニウムの非結晶の薄膜を成膜するときに、該アルミニウム、または、アルミニウムの酸化物ガスと酸素のガスとが相互に作用して、マスクを介して、基材フィルムの表面に、酸化アルミニウムの非結晶性の薄膜を成膜化して、その膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜を形成することができるものである。
なお、基材フィルムの一方の面には、勿論、ポリパラキシリレンからなる蒸着重合膜が形成され、そのポリパラキシリレンからなる蒸着重合膜の上に、式AlOX (式中、Xは、1.0〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であり、かつ、該酸化アルミニウムの非結晶性の薄膜が、その薄膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜が形成されるものである。
Thus, in the present invention, it is an amorphous thin film of aluminum oxide represented by the above formula AlO x (wherein X represents a number in the range of 1.0 to 1.5), A method for forming an aluminum oxide non-crystalline thin film in which the value of X decreases in the depth direction from the thin film surface toward the inner surface of the non-crystalline thin film of aluminum oxide is specifically described. If it demonstrates, the amorphous thin film of aluminum oxide can be specifically formed using the above-mentioned winding type vacuum evaporation system shown in FIG.
In the present invention, first, the base film fed from the unwinding roll in the vacuum chamber is guided to the cooled coating drum.
Thus, the evaporation source heated by the crucible, for example, metal aluminum or aluminum oxide is evaporated on the substrate film guided on the cooled coating drum, and if necessary, For example, an oxygen gas or the like is ejected from an oxygen gas outlet, and a vapor amorphous film of an inorganic oxide such as aluminum oxide is formed through a mask while supplying the oxygen gas. At that time, the positional relationship between the crucible and the oxygen outlet is adjusted, the arrangement position of the crucible and the oxygen outlet is shifted from the center line, the crucible is arranged at the center line, and the oxygen outlet is It is shifted from the center line to the discharge side of the base film.
Thus, heated aluminum or an oxide of aluminum is evaporated in the crucible as an evaporation source in the state of the arrangement as described above.
On the other hand, while ejecting aluminum or aluminum oxide, oxygen is further ejected from the oxygen blowing port, and thus when oxygen is ejected, the oxygen ejection concentration is changed, and initially reduced, Thereafter, oxygen is spouted while gradually increasing.
As described above, aluminum or aluminum oxide and oxygen are oxidized on the surface of the base film through a mask while changing the oxygen ejection position or concentration. When an amorphous gas thin film of aluminum oxide is formed on the surface of the base film, the aluminum or the oxide gas of oxygen and the oxygen gas Interact with each other to form an amorphous thin film of aluminum oxide on the surface of the base film through the mask, and the value of X increases in the depth direction from the film surface toward the inner surface. A non-crystalline thin film of reduced aluminum oxide can be formed.
Of course, a vapor-deposited polymer film made of polyparaxylylene is formed on one surface of the base film, and on the vapor-deposited polymer film made of polyparaxylylene, the formula AlO x (where X is A non-crystalline thin film of aluminum oxide represented by the following formula, and the non-crystalline thin film of aluminum oxide from the thin film surface to the inner surface: A non-crystalline thin film of aluminum oxide in which the value of X decreases in the depth direction is formed.

上記において、アルミニウム、または、アルミニウムの酸化物は、その両者の混合物も蒸着源として使用することもできる。
また、上記において、アルミニウム、またはアルミニウムの酸化物と酸素の噴出は、実際的には、放射状に濃度分布をもって噴出しているものと考えられるものである。
更に、上記において、基材フィルムは、マスクとマスクとの間の領域で酸化アルミニウムの非結晶性の薄膜が成膜化されるが、ここで、最初は、アルミニウム、または、アルミニウムの酸化物を噴出しながら、酸素の割合が少ない領域を通り、そこで、まず、AlOX のXの値が小さい薄膜を成膜化する。
次に、可撓性プラスチック基材は、更に、進んで行くと、徐々に酸素の割合が増加しながら、アルミニウム、またはアルミニウムの酸化物を噴出すると、AlOX のXの値が大きい膜を成膜化する。
以上のような方法で、基材フィルムの表面に、酸化アルミニウムの非結晶性の薄膜を成膜化して、その膜表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜を形成することができるものである。
上記のように、るつぼと酸素吹き出し口との位置関係をずらす方法は、その一例であり、その他、例えば、るつぼやコ−ティングドラムを移動させたり、酸素吹き出し口を傾けたり、種々の方法で酸化アルミニウムの非結晶性の薄膜を形成することができる。
In the above, aluminum or an oxide of aluminum can also be used as a vapor deposition source.
In the above description, the ejection of aluminum or aluminum oxide and oxygen is actually considered to be ejected radially with a concentration distribution.
Furthermore, in the above, the base film is formed with an amorphous thin film of aluminum oxide in a region between the masks. Here, first, aluminum or an oxide of aluminum is formed. While being ejected, it passes through a region where the proportion of oxygen is low, and a thin film having a small X value of AlO x is first formed.
Next, as the flexible plastic substrate further advances, the ratio of oxygen gradually increases, and when aluminum or aluminum oxide is ejected, a film with a large X value of AlO x is formed. Turn into a film.
By the method as described above, an amorphous thin film of aluminum oxide is formed on the surface of the base film, and the value of X decreases in the depth direction from the film surface toward the inner surface. An amorphous thin film of aluminum can be formed.
As described above, the method of shifting the positional relationship between the crucible and the oxygen outlet is one example, and other methods such as moving the crucible and the coating drum, tilting the oxygen outlet, etc. An amorphous thin film of aluminum oxide can be formed.

上記の蒸着において、真空チャンバ−の真空度としては、100 〜10-5mbar位、好ましくは、10-1〜10-4mbar位が望ましい。
また、蒸着チャンバ−の真空度としては、酸素導入前においては、10-2〜10-8mbar位、好ましくは、10-3〜10-7mbar位が望ましいく、酸素導入後においては、10-1〜10-6mbar位、好ましくは、10-2〜10-5mbar位が望ましい。
次に、可撓性プラスチック基材の搬送速度としては、10〜800m/分位、好ましくは、50〜600m/分位が望ましい。
なお、酸素導入量等は、蒸着機の大きさ等によって異なる。
In the above vapor deposition, the degree of vacuum in the vacuum chamber is preferably about 10 0 to 10 −5 mbar, preferably about 10 −1 to 10 −4 mbar.
Further, the degree of vacuum of the vapor deposition chamber is preferably about 10 −2 to 10 −8 mbar, preferably about 10 −3 to 10 −7 mbar before introducing oxygen, and is preferably about 10 −3 to 10 −7 mbar. A position of -1 to 10 -6 mbar, preferably 10 -2 to 10 -5 mbar is desirable.
Next, the conveyance speed of the flexible plastic substrate is preferably about 10 to 800 m / min, and preferably about 50 to 600 m / min.
The amount of oxygen introduced varies depending on the size of the vapor deposition machine.

次にまた、本発明において、基材フィルムの少なくとも一方の面に、式AlOX (式中、Xは、0.5〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であって、かつ、該酸化アルミニウムの非結晶性の薄膜が、その膜表面から内面に向かう深さ方向に向かってXの値が増加している酸化アルミニウムの非結晶性の薄膜を形成する方法について具体的に説明すると、前述の図8に示す巻き取り式真空蒸着装置を使用して具体的に酸化アルミニウムの非結晶性の薄膜を形成することができる。
本発明においては、まず、真空チャンバ−の中で、巻き出しロ−ルから繰り出した基材フィルムは、冷却したコ−ティングドラムに案内される。
而して、上記の冷却したコ−ティングドラム上に案内された基材フィルムの上に、るつぼで熱せられた蒸着源、例えば、金属アルミニウム、あるいは、酸化アルミニウム等を蒸発させ、更に、必要ならば、酸素ガス吹出口より酸素ガス等を噴出し、これを供給しながら、マスクを介して、例えば、酸化アルミニウム等の無機酸化物の非結晶性の薄膜を成膜化するものであるが、その際に、上記のるつぼと酸素吹き出し口との位置関係を調整し、該るつぼと酸素吹き出し口の配置位置を中心線からずらし、るつぼを中心線の位置に配置し、他方、酸素吹き出し口を中心線から基材フィルムの進入側にずらして配置する。
而して、上記のような配置関係の状態で、るつぼで蒸発源としての熱せられたアルミニウム、または、アルミニウムの酸化物を蒸発させて噴出させる。
他方、アルミニウム、または、アルミニウムの酸化物を噴出させながら、更に、酸素吹き出し口より酸素を噴出させ、而して、酸素を噴出させる際に、酸素の噴出濃度を変化させ、最初は高くし、その後、徐々に低くしながら酸素を噴出させる。
上記のように、アルミニウム、または、アルミニウムの酸化物と酸素とを、その酸素の噴出位置、あるいは濃度を変化させながら、基材フィルムの表面に、マスクを介して、アルミニウム、または、アルミニウムの酸化物のガスと酸素のガスとを噴出、蒸着させると、基材フィルムの表面に蒸着膜を成膜するときに、該アルミニウム、または、アルミニウムの酸化物ガスと酸素のガスとが相互に作用して、マスクを介して、基材フィルムの表面に、酸化アルミニウムの非結晶性の薄膜を成膜化して、その膜表面から内面に向かう深さ方向に向かってXの値が増加している酸化アルミニウムの非結晶性の薄膜を形成することができるものである。
Next, in the present invention, an aluminum oxide represented by the formula AlO x (where X represents a number in the range of 0.5 to 1.5) is formed on at least one surface of the base film. A non-crystalline thin film of aluminum oxide in which the value of X increases in the depth direction from the film surface to the inner surface. The method for forming the thin film will be described in detail. A non-crystalline thin film of aluminum oxide can be specifically formed using the above-described winding type vacuum vapor deposition apparatus shown in FIG.
In the present invention, first, the base film fed from the unwinding roll in the vacuum chamber is guided to the cooled coating drum.
Thus, the evaporation source heated by the crucible, for example, metal aluminum or aluminum oxide is evaporated on the substrate film guided on the cooled coating drum, and if necessary, For example, a non-crystalline thin film of an inorganic oxide such as aluminum oxide is formed through a mask while jetting oxygen gas or the like from an oxygen gas outlet and supplying it. At that time, the positional relationship between the crucible and the oxygen outlet is adjusted, the arrangement position of the crucible and the oxygen outlet is shifted from the center line, the crucible is arranged at the center line, and the oxygen outlet is It is shifted from the center line to the entry side of the base film.
Thus, in the state of the arrangement as described above, heated aluminum or an oxide of aluminum is evaporated and ejected as an evaporation source with a crucible.
On the other hand, while ejecting aluminum or aluminum oxide, oxygen is further ejected from the oxygen outlet, and thus when oxygen is ejected, the oxygen ejection concentration is changed, and initially increased, Thereafter, oxygen is spouted while gradually lowering.
As described above, aluminum or aluminum oxide and oxygen are oxidized on the surface of the base film through a mask while changing the oxygen ejection position or concentration. When an object gas and an oxygen gas are ejected and vapor-deposited, the aluminum or the oxide gas of aluminum and the oxygen gas interact with each other when forming a vapor-deposited film on the surface of the base film. Then, a non-crystalline thin film of aluminum oxide is formed on the surface of the base film through a mask, and the value of X increases in the depth direction from the film surface toward the inner surface. An amorphous thin film of aluminum can be formed.

上記において、アルミニウム、または、アルミニウムの酸化物は、その両者の混合物も蒸着源として使用することができる。
また、上記において、アルミニウム、または、アルミニウムの酸化物と酸素の噴出は、実際的には、放射状に濃度分布をもって噴出しているものと考えられるものである。
更に、上記において、基材フィルムは、マスクとマスクとの間の領域で酸化アルミニウムの非結晶性の薄膜が成膜化されるが、ここで、最初は、アルミニウム、またはアルミニウムの酸化物を噴出させながら、酸素の割合が多い領域を通り、そこで、まず、AlOX のXの値が大きい薄膜を成膜化する。
次に、基材フィルムは、更に、進んで行くと、徐々に酸素の割合が減少しながら、アルミニウム、または、アルミニウムの酸化物を噴出させて、そこで、AlOX のXの値が小さい膜を成膜化する。
以上のような方法で、基材フィルムの表面に、酸化アルミニウムの非結晶性の薄膜を成膜化して、その膜表面から内面に向かう深さ方向に向かってXの値が増加している酸化アルミニウムの非結晶性の薄膜を形成することができるものである。
上記のように、るつぼと酸素吹き出し口との位置関係をずらす方法は、その一例であり、その他、例えば、るつぼやコ−ティングドラムを移動させたり、酸素吹き出し口を傾けたり、その他、種々の方法で酸化アルミニウムの非結晶性の薄膜を形成することができものである。
なお、基材フィルムの一方の面には、勿論、ポリパラキシリレンからなる蒸着重合膜が形成され、そのポリパラキシリレンからなる蒸着重合膜の上に、式AlOX (式中、Xは、0.5〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜であって、かつ、該酸化アルミニウムの非結晶性の薄膜が、その膜表面から内面に向かう深さ方向に向かってXの値が増加している酸化アルミニウムの非結晶性の薄膜を形成されるものである。
In the above, aluminum or an oxide of aluminum can also be used as a vapor deposition source.
In the above description, the ejection of aluminum or aluminum oxide and oxygen is actually considered to be ejected radially with a concentration distribution.
Further, in the above, a non-crystalline thin film of aluminum oxide is formed on the base film in a region between the masks. Here, first, aluminum or an oxide of aluminum is ejected. Then, a thin film having a large X value of AlO x is first formed into a film through a region having a high oxygen ratio.
Next, as the base film further advances, aluminum or an oxide of aluminum is ejected while the proportion of oxygen gradually decreases, where a film having a small X value of AlO x is formed. Form a film.
By the method as described above, an amorphous thin film of aluminum oxide is formed on the surface of the base film, and the value of X increases in the depth direction from the film surface toward the inner surface. An amorphous thin film of aluminum can be formed.
As described above, the method of shifting the positional relationship between the crucible and the oxygen outlet is an example thereof. In addition, for example, the crucible and the coating drum are moved, the oxygen outlet is inclined, and various other methods are used. By this method, an amorphous thin film of aluminum oxide can be formed.
Of course, a vapor-deposited polymer film made of polyparaxylylene is formed on one surface of the base film, and on the vapor-deposited polymer film made of polyparaxylylene, the formula AlO x (where X is A non-crystalline thin film of aluminum oxide represented by the formula (1), wherein the non-crystalline thin film of aluminum oxide is formed from the film surface to the inner surface. A non-crystalline thin film of aluminum oxide in which the value of X increases in the depth direction toward is formed.

上記の蒸着機において、真空チャンバ−の真空度としては、前述と同様に、100 〜10-5mbar位、好ましくは、10-1〜10-4mbar位が望ましい。
また、蒸着チャンバ−の真空度としては、酸素導入前においては、10-2〜10-8mbar位、好ましくは、10-3〜10-7mbar位が望ましいく、酸素導入後においては、10-1〜10-6mbar位、好ましくは、10-2〜10-5mbar位が望ましい。
次に、可撓性プラスチック基材の搬送速度としては、10〜800m/分位、好ましくは、50〜600m/分位が望ましい。
なお、酸素導入量等は、蒸着機の大きさ等によって異なる。
In the above-described vapor deposition apparatus, the vacuum degree of the vacuum chamber is desirably about 10 0 to 10 −5 mbar, preferably about 10 −1 to 10 −4 mbar, as described above.
Further, the degree of vacuum of the deposition chamber is preferably about 10 −2 to 10 −8 mbar, preferably about 10 −3 to 10 −7 mbar before introducing oxygen, and is preferably about 10 −3 to 10 −7 mbar. A position of -1 to 10 -6 mbar, preferably 10 -2 to 10 -5 mbar is desirable.
Next, the conveyance speed of the flexible plastic substrate is preferably about 10 to 800 m / min, and preferably about 50 to 600 m / min.
The amount of oxygen introduced varies depending on the size of the vapor deposition machine.

なお、本発明において、ポリパラキシリレンからなる蒸着重合膜を設けた基材フィルムのポリパラキシリレンからなる蒸着重合膜の面に、無機酸化物の蒸着膜を形成する場合、該ポリパラキシリレンからなる蒸着重合膜の面と無機酸化物の蒸着膜の面との密接着性等を向上させ 終局的には、その両者を強固に密着させて、その層間剥離(デラミ)等の発生を防止するために、上記のポリパラキシリレンからなる蒸着重合膜の表面に、予め、不活性ガスによるプラズマ処理を施してプラズマ処理面等を設けることが好ましいものである。
而して、本発明において、不活性ガスによるプラズマ処理面について説明すると、かかるプラズマ処理面としては、基材フィルムの一方の面に設けたポリパラキシリレンからなる蒸着重合膜の表面に、気体をア−ク放電により電離させることにより生じるプラズマガスを利用して表面改質を行うプラズマ表面処理法等を利用して、プラズマ処理面を形成することがてきる。
すなわち、本発明においては、窒素ガス、アルゴンガス、ヘリウムガス、その他等の不活性ガスをプラズマガスとして使用するプラズマ表面処理法でプラズマ処理を行うことによりプラズマ処理面を形成することができる。
なお、本発明において、プラズマガスとしては、上記の不活性ガスに、更に、酸素ガスを添加した混合ガスを使用することもできる。
また、本発明において、不活性ガスによるプラズマ処理面を形成する場合、例えば、物理気相成長法または化学気相成長法による無機酸化物の蒸着膜を形成する直前に、インラインでプラズマ処理を行うことにより、基材フィルムに設けたポリパラキシリレンからなる蒸着重合膜の表面の水分、塵等を除去すると共にその表面の平滑化、活性化、その他等の表面処理を可能とすることから望ましいものである。
更に、本発明において、上記のプラズマ処理としては、プラズマ出力、プラズマガスの種類、プラズマガスの供給量、処理時間、その他等の条件を考慮してプラズマ放電処理をおこなうことが好ましいものである。
また、本発明において、プラズマを発生させる方法としては、例えば、直流グロ−放電、高周波放電、マイクロ波放電、その他等の装置を利用して行うことができる。
また、本発明においては、大気圧プラズマ処理法等を利用してプラズマ処理面を形成することもできる。
In the present invention, when an inorganic oxide vapor deposition film is formed on the surface of the vapor deposition polymerization film made of polyparaxylylene of the base film provided with the vapor deposition polymerization film made of polyparaxylylene, the polyparaxylylene Improving the tight adhesion between the surface of the vapor-deposited polymer film made of len and the surface of the vapor-deposited film of the inorganic oxide. Eventually, the two will be firmly adhered to each other, and the delamination will occur. In order to prevent this, it is preferable that the surface of the vapor-deposited polymer film made of polyparaxylylene is previously subjected to a plasma treatment with an inert gas to provide a plasma treatment surface or the like.
Thus, in the present invention, the plasma-treated surface with an inert gas will be described. As the plasma-treated surface, a gas is formed on the surface of the vapor-deposited polymer film made of polyparaxylene on one surface of the base film. It is possible to form a plasma-treated surface using a plasma surface treatment method or the like in which surface modification is performed using a plasma gas generated by ionizing a gas by arc discharge.
That is, in the present invention, the plasma processing surface can be formed by performing plasma processing by a plasma surface processing method using an inert gas such as nitrogen gas, argon gas, helium gas or the like as the plasma gas.
In the present invention, as the plasma gas, a mixed gas obtained by adding oxygen gas to the above inert gas can also be used.
In the present invention, when forming a plasma treatment surface with an inert gas, for example, in-line plasma treatment is performed immediately before forming an inorganic oxide vapor deposition film by physical vapor deposition or chemical vapor deposition. This is desirable because it allows removal of moisture, dust, etc. on the surface of the vapor deposition polymer film made of polyparaxylylene provided on the base film, and enables surface treatment such as smoothing, activation, etc. of the surface. Is.
Further, in the present invention, it is preferable to perform the plasma discharge treatment in consideration of conditions such as plasma output, plasma gas type, plasma gas supply amount, treatment time, and the like.
In the present invention, as a method for generating plasma, for example, a direct current glow discharge, a high frequency discharge, a microwave discharge, or the like can be used.
In the present invention, the plasma processing surface can also be formed using an atmospheric pressure plasma processing method or the like.

次に、本発明において、本発明に係るバリア性フィルムを構成するガスバリア性塗布膜について説明すると、かかるガスバリア性塗布膜としては、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルーゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合するガスバリア性組成物を調製する工程、基材フィルムの一方の面にポリパラキシリレンからなる蒸着重合膜と無機酸化物からなるバリア性薄膜層を順次に積層したその無機酸化物からなるバリア性薄膜層の上に、要すれば、酸素ガスによるプラズマ処理面を介して、上記のゾルゲル法によって重縮合するガスバリア性組成物を塗工して塗工膜を設ける工程、上記の塗工膜を設けた基材フィルムを、20℃〜180℃で、かつ、上記の基材フィルムの融点以下の温度で10秒〜10分間加熱処理して、上記の基材フィルムの一方の面に設けた無機酸化物からなるバリア性薄膜層の上に、酸素ガスによるプラズマ処理面を介して、上記のガスバリア性組成物によるガスバリア性塗布膜を形成する工程等を包含する製造工程により製造することができる。 Next, in the present invention, the gas barrier coating film constituting the barrier film according to the present invention will be described. As the gas barrier coating film, the general formula R 1 n M (OR 2 ) m (wherein, R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents M At least one alkoxide represented by the formula (1)), a polyvinyl alcohol-based resin and / or an ethylene / vinyl alcohol copolymer, and a sol-gel catalyst, acid, water And a step of preparing a gas barrier composition that is polycondensed by a sol-gel method in the presence of an organic solvent, a vapor-deposited polymer film composed of polyparaxylylene on one surface of a base film, and a barrier property composed of an inorganic oxide Thin film layer in order Next, if necessary, a gas barrier composition that is polycondensed by the sol-gel method is applied onto the laminated thin film layer made of the inorganic oxide, if necessary, through a plasma-treated surface with oxygen gas. The step of providing a coating film, the base film provided with the above-mentioned coating film is heat-treated at a temperature of 20 ° C. to 180 ° C. and below the melting point of the above base film for 10 seconds to 10 minutes, A step of forming a gas barrier coating film of the above gas barrier composition on a barrier thin film layer made of an inorganic oxide provided on one surface of the above base film through a plasma treated surface of oxygen gas, etc. Can be produced by a production process including

なお、本発明において、本発明に係るバリア性フィルムを形成するガスバリア性塗布膜としては、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルーゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合するガスバリア性組成物を調製する工程、基材フィルムの一方の面にポリパラキシリレンからなる蒸着重合膜と無機酸化物からなるバリア性薄膜層を順次に積層したその無機酸化物からなるバリア性薄膜層の上に、要すれば、酸素ガスによるプラズマ処理面を介して、上記のゾルゲル法によって重縮合するガスバリア性組成物を塗工して塗工膜を2層以上重層する工程、上記の2層以上重層した塗工膜を設けた基材フィルムを、20℃〜180℃で、かつ、上記の基材フィルムの融点以下の温度で10秒〜10分間加熱処理して、上記の基材フィルムの一方の面に設けた無機酸化物からなるバリア性薄膜層の上に、要すれば、酸素ガスによるプラズマ処理面を介して、上記のガスバリア性組成物によるガスバリア性塗布膜を2層以上重層した複合ポリマ−層を形成する工程等を包含する製造工程により製造することができる。 In the present invention, the gas barrier coating film for forming the barrier film according to the present invention has a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 are carbon atoms of 1 -8 represents an organic group, M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M. In the presence of a sol-gel catalyst, an acid, water, and an organic solvent, and at least one alkoxide, a polyvinyl alcohol-based resin and / or an ethylene / vinyl alcohol copolymer. The process of preparing a gas barrier composition that undergoes polycondensation by the sol-gel method, an inorganic oxide in which a vapor-deposited polymer film composed of polyparaxylylene and a barrier thin film layer composed of an inorganic oxide are sequentially laminated on one surface of a base film Thin barrier property If necessary, the step of applying the gas barrier composition to be polycondensed by the sol-gel method through the plasma treatment surface with oxygen gas, if necessary, and laminating two or more coating films, A base film provided with two or more layers of coating films is subjected to a heat treatment at 20 ° C. to 180 ° C. and at a temperature not higher than the melting point of the above base film for 10 seconds to 10 minutes, and the above base material Two or more gas barrier coating films of the above gas barrier composition are provided on the barrier thin film layer made of an inorganic oxide provided on one surface of the film, if necessary, through a plasma treatment surface with oxygen gas. It can be manufactured by a manufacturing process including a process of forming a multilayered composite polymer layer.

上記において、本発明にかかるガスバリア性フィルムを構成するガスバリア性塗布膜を形成する一般式R1 n M(OR2 m で表されるアルコキシドとしては、アルコキシドの部分加水分解物、アルコキシドの加水分解縮合物の少なくとも1種以上を使用することができ、また、上記のアルコキシドの部分加水分解物としては、アルコキシ基のすべてが加水分解されている必要はなく、1個以上が加水分解されているもの、および、その混合物であってもよく更に、加水分解の縮合物としては、部分加水分解アルコキシドの2量体以上のもの、具体的には、2〜6量体のものを使用される。 In the above, as the alkoxide represented by the general formula R 1 n M (OR 2 ) m for forming the gas barrier coating film constituting the gas barrier film according to the present invention, a partial hydrolyzate of alkoxide, hydrolysis of alkoxide At least one or more of the condensates can be used. In addition, as the partial hydrolyzate of the above alkoxide, it is not necessary that all of the alkoxy groups are hydrolyzed, and one or more of them are hydrolyzed. In addition, a hydrolyzed condensate may be a dimer or more of a partially hydrolyzed alkoxide, specifically a dimer or hexamer.

上記の一般式R1 n M(OR2 m で表されるアルコキシドにおいて、Mで表される金属原子としては、ケイ素、ジルコニウム、チタン、アルミニウム、その他等を使用することができる。
而して、本発明において、好ましい金属としては、例えば、ケイ素を挙げることができる。
また、本発明において、アルコキシドの用い方としては、単独又は2種以上の異なる金属原子のアルコキシドを同一溶液中に混合して使うこともできる。
In the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , silicon, zirconium, titanium, aluminum, and the like can be used as the metal atom represented by M.
Thus, in the present invention, examples of a preferable metal include silicon.
In the present invention, alkoxides can be used alone or in combination of two or more different metal atom alkoxides in the same solution.

また、上記の一般式R1 n M(OR2 m で表されるアルコキシドにおいて、R1 で表される有機基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基、その他等のアルキル基を挙げることができる。
また、上記の一般式R1 n M(OR2 m で表されるアルコキシドにおいて、R2 で表される有機基の具体例としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、その他等を挙げることができる。
なお、本発明において、同一分子中にこれらのアルキル基は同一であっても、異なってもよい。
Further, in the alkoxide represented by the general formula R 1 n M (OR 2) m, specific examples of the organic group represented by R 1 include methyl group, ethyl group, n- propyl group, i Examples thereof include alkyl groups such as -propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group and others.
In the alkoxide represented by the general formula R 1 n M (OR 2 ) m , specific examples of the organic group represented by R 2 include, for example, a methyl group, an ethyl group, an n-propyl group, i -Propyl group, n-butyl group, sec-butyl group, and the like.
In the present invention, these alkyl groups may be the same or different in the same molecule.

而して、本発明において、上記の一般式R1 n M(OR2 m で表されるアルコキシドとしては、例えば、MがSiであるアルコキシシランを使用することが好ましいものである。
上記のアルコキシシランとしては、一般式Si(ORa )4 (ただし、式中、Raは、低級アルキル基を表す。)で表されるものである。
上記において、Raとしては、メチル基、エチル基、n−プロピル基、n−ブチル基、その他等が用いられる。
上記のアルコキシシランの具体例としては、例えば、テトラメトキシシラン Si(OCH3 4 、テトラエトキシシラン Si(OC2 5 4 、テトラプロポキシシラン Si(0C 37 4 、テトラブトキシシラン Si(OC4 9 4 、その他等を使用することができる。
Thus, in the present invention, as the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , for example, it is preferable to use an alkoxysilane in which M is Si.
The alkoxysilane is represented by the general formula Si (ORa) 4 (wherein Ra represents a lower alkyl group).
In the above, Ra includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like.
As specific examples of the above alkoxysilane, for example, tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (0C 3 H 7 ) 4 , tetrabutoxysilane Si (OC 4 H 9 ) 4 , etc. can be used.

また、本発明において、上記の一般式R1 n M(OR2 m で表されるアルコキシドとしては、例えば、一般式Rbn Si(ORc)4-m (ただし、式中、nは、0以上の整数を表し、mは、1、2、3の整数を表し、Rb、Rcは、メチル基、エチル基、n−プロピル基、n−ブチル基、その他を表わす。)で表されるアルキルアルコキシシランを使用することができる。
上記のアルキルアルコキシシランの具体例としては、例えば、メチルトリメトキシシラン CH3 Si(OCH3 3 、メチルトリエトキシシラン CH3 Si(OC2 5 3 、ジメチルジメトキシシラン (CH3 2 Si(OCH3 2 、ジメチルジエトキシシラン (CH3 2 Si(OC2 5 2 、その他等を使用することができる。
上記のアルコキシシラン、アルキルアルコキシシラン等は、単独又は2種以上を混合しても用いることができる。
また、本発明において、上記のアルコキシシランの縮重合物も使用することができ、具体的には、例えば、ポリテトラメトキシシラン、ポリテトラエメトキシシラン、その他等を使用することができる。
In the present invention, examples of the alkoxide represented by the general formula R 1 n M (OR 2 ) m include, for example, the general formula Rb n Si (ORc) 4-m (where n is 0 The above-mentioned integer is represented, m represents an integer of 1, 2, and 3, and Rb and Rc represent a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like. Alkoxysilanes can be used.
Specific examples of the above alkylalkoxysilane include, for example, methyltrimethoxysilane CH 3 Si (OCH 3 ) 3 , methyltriethoxysilane CH 3 Si (OC 2 H 5 ) 3 , dimethyldimethoxysilane (CH 3 ) 2 Si (OCH 3 ) 2 , dimethyldiethoxysilane (CH 3 ) 2 Si (OC 2 H 5 ) 2 , etc. can be used.
Said alkoxysilane, alkylalkoxysilane, etc. can be used individually or in mixture of 2 or more types.
In the present invention, a polycondensation product of the above alkoxysilane can also be used, and specifically, for example, polytetramethoxysilane, polytetraemethoxysilane, and the like can be used.

次に、本発明において、上記の一般式R1 n M(OR2 m で表されるアルコキシドとしては、例えば、MがZrであるジルコニウムアルコキシドを使用することができる。
上記のジルコニウムアルコキシドの具体例としては、例えば、テトラメトキシジルコニウム Zr(OCH3 4 、テトラエトキシジルコニウム Zr(OC2 5 4 、テトラiプロポキシジルコニウム Zr(is0−0C 37 4 、テトラnブトキシジルコニウム Zr(OC4 9 4 、その他等を使用することができる。
Next, in the present invention, as the alkoxide represented by the general formula R 1 n M (OR 2 ) m , for example, a zirconium alkoxide in which M is Zr can be used.
Specific examples of the zirconium alkoxide include, for example, tetramethoxyzirconium Zr (OCH 3 ) 4 , tetraethoxyzirconium Zr (OC 2 H 5 ) 4 , tetra ipropoxyzirconium Zr (is0-0C 3 H 7 ) 4 , tetra nButoxyzirconium Zr (OC 4 H 9 ) 4 , etc. can be used.

また、本発明において、上記の一般式R1 n M(OR2 m で表されるアルコキシドとしては、例えば、MがTiであるチタニウムアルコキシドを使用することができる。
上記のチタニウムアルコキシドの具体例としては、例えば、テトラメトキシチタニウム Ti(OCH3 4 、テトラエトキシチタニウム Ti(OC2 5 4 、テトライソプロポキシチタニウム Ti(is0−0C 37 4 、テトラnブトキシチタニウム Ti(OC4 9 4 、その他等を使用することができる。
In the present invention, as the alkoxide represented by the general formula R 1 n M (OR 2 ) m , for example, a titanium alkoxide in which M is Ti can be used.
Specific examples of the titanium alkoxide include, for example, tetramethoxytitanium Ti (OCH 3 ) 4 , tetraethoxytitanium Ti (OC 2 H 5 ) 4 , tetraisopropoxytitanium Ti (is0-0C 3 H 7 ) 4 , tetra n-Butoxy titanium Ti (OC 4 H 9 ) 4 , etc. can be used.

更に、本発明において、上記の一般式R1 n M(OR2 m で表されるアルコキシドとしては、例えば、MがAlであるアルミニウムアルコキシドを使用することができる。
上記のアルミニウムアルコキシドの具体例としては、例えば、テトラメトキシアルミニウム Al(OCH3 4 、テトラエトキシアルミニウム Al(OC2 5 4 、テトライソプロポキシアルミニウム Al(is0−0C 37 4 、テトラnブトキシアルミニウム Al(OC4 9 4 、その他等を使用することができる。
Furthermore, in the present invention, as the alkoxide represented by the above general formula R 1 n M (OR 2 ) m , for example, an aluminum alkoxide in which M is Al can be used.
Specific examples of the aluminum alkoxide include, for example, tetramethoxyaluminum Al (OCH 3 ) 4 , tetraethoxyaluminum Al (OC 2 H 5 ) 4 , tetraisopropoxyaluminum Al (is0-0C 3 H 7 ) 4 , tetra nButoxyaluminum Al (OC 4 H 9 ) 4 , etc. can be used.

なお、本発明においては、上記のようなアルコキシドは、その2種以上を混合して用いてもよいものである。
而して、本発明において、特に、アルコキシシランとジルコニウムアルコキシドを混合して用いることによって、得られるガスバリア性積層フィルムの靭性、耐熱性等を向上させることができ、また、延伸時のフィルムの耐レトルト性などの低下が回避されるものである。
上記のジルコニウムアルコキシドの使用量は、上記のアルコキシシラン100重量部に対して10重量部以下の範囲であり、好ましくは、約5重量部位が好ましいものである。 上記において、10重量部を越えると、形成されるガスバリア性塗布膜が、ゲル化し易くなり、また、その膜の脆性が大きくなり、基材フィルムを被覆した際にガスバリア性塗布膜が剥離し易くなる傾向にあることから好ましくないものである。
In the present invention, the above alkoxides may be used as a mixture of two or more thereof.
Thus, in the present invention, in particular, by using a mixture of alkoxysilane and zirconium alkoxide, it is possible to improve the toughness, heat resistance, etc. of the resulting gas barrier laminate film, and to improve the resistance of the film during stretching. A decrease in retort property is avoided.
The amount of the zirconium alkoxide used is in the range of 10 parts by weight or less with respect to 100 parts by weight of the alkoxysilane, preferably about 5 parts by weight. In the above, when the amount exceeds 10 parts by weight, the formed gas barrier coating film is easily gelled, and the brittleness of the film is increased, so that the gas barrier coating film is easily peeled off when the base film is coated. This is not preferable.

また、本発明において、特に、アルコキシシランとチタニウムアルコキシドを混合して用いることによって、得られるガスバリア性塗布膜の熱伝導率が低くなり、ガスバリア性積層フィルムの耐熱性が著しく向上するという利点がある。
上記において、チタニウムアルコキシドの使用量は、上記のアルコキシシラン100重量部に対して5重量部以下の範囲であり、好ましくは、約3重量部位が好ましいものである。
上記において、5重量部を越えると、形成されるガスバリア性塗布膜の脆性が大きくなり、基材フィルムを被覆した際に、ガスバリア性塗布膜が剥離し易くなる傾向にあることから好ましくないものである。
In the present invention, in particular, by using a mixture of alkoxysilane and titanium alkoxide, there is an advantage that the heat conductivity of the obtained gas barrier coating film is lowered and the heat resistance of the gas barrier laminated film is remarkably improved. .
In the above, the amount of titanium alkoxide used is in the range of 5 parts by weight or less with respect to 100 parts by weight of the alkoxysilane, and preferably about 3 parts by weight.
In the above, if it exceeds 5 parts by weight, the gas barrier coating film to be formed becomes more brittle, and it is not preferable because the gas barrier coating film tends to peel off when the base film is coated. is there.

次に、本発明に係るバリア性フィルムを構成するガスバリア性塗布膜を形成するポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体としては、ポリビニルアルコ−ル系樹脂、または、エチレン・ビニルアルコ−ル共重合体を単独で各々使用することができ、あるいは、ポリビニルアルコ−ル系樹脂およびエチレン・ビニルアルコ−ル共重合体とを組み合わせて使用することができ、而して、本発明において、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体を使用することにより、ガスバリア性塗布膜のガスバリア性、耐水性、耐候性、その他等の物性を著しく向上させることができるものである。
特に、本発明において、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて使用することにより、上記のガスバリア性、耐水性、および耐候性等の物性に加えて、耐熱水性および熱水処理後のガスバリア性等に著しく優れたガスバリア性塗布膜を形成することができるものである。
Next, as the polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer forming the gas barrier coating film constituting the barrier film according to the present invention, a polyvinyl alcohol resin or ethylene The vinyl alcohol copolymer can be used alone, or can be used in combination with a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer. In the above, by using a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, the gas barrier properties, water resistance, weather resistance, and other physical properties of the gas barrier coating film can be remarkably improved. Is.
In particular, in the present invention, by using a combination of a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer, in addition to the above physical properties such as gas barrier properties, water resistance, and weather resistance, hot water resistance and hot water A gas barrier coating film remarkably excellent in gas barrier properties after the treatment can be formed.

本発明において、ポリビニルアルコ−ル系樹脂およびエチレン・ビニルアルコ−ル共重合体とを組み合わせて使用する場合、それぞれの配合割合としては、重量比で、ポリビニルアルコ−ル系樹脂:エチレン・ビニルアルコ−ル共重合体=10:0.05〜10:6位であることが好ましく、更には、約10:1位の配合割合で使用することが更に好ましいものである。   In the present invention, when a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer are used in combination, the blending ratio of each is, as a weight ratio, polyvinyl alcohol-based resin: ethylene / vinyl alcohol. The copolymer is preferably in the 10: 0.05 to 10: 6 position, and more preferably in a blending ratio of about 10: 1.

また、本発明において、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコール共重合体との含有量は、上記のアルコキシドの合計量100重量部に対して5〜500重量部の範囲であり、好ましくは、約20〜200重量部位の配合割合でガスバリア性組成物を調製することが好ましいものである。
上記において、500重量部を越えると、ガスバリア性塗布膜の脆性が大きくなり、得られるガスバリア性積層フィルムの耐水性および耐候性等も低下する傾向にあることから好ましくなく、更に、5重量部を下回るとガスバリア性が低下することから好ましくないものである。
In the present invention, the content of the polyvinyl alcohol-based resin and / or the ethylene / vinyl alcohol copolymer is in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the total amount of the alkoxide, Preferably, it is preferable to prepare the gas barrier composition at a blending ratio of about 20 to 200 parts by weight.
In the above, if it exceeds 500 parts by weight, the brittleness of the gas barrier coating film is increased, and the water resistance and weather resistance of the resulting gas barrier laminated film tend to be lowered, which is not preferable. If it is below, the gas barrier property is lowered, which is not preferable.

本発明において、ポリビニルアルコ一ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体としては、まず、ポリビニルアルコ一ル系樹脂としては、一般に、ポリ酢酸ビニルをケン化して得られるものを使用することができる。
上記のポリビニルアルコール系樹脂としては、酢酸基が数十%残存している部分ケン化ポリビニルアルコール系樹脂でも、もしくは、酢酸基が残存しない完全ケン化ポリビニルアルコールでも、あるいは、OH基が変性された変性ポリビニルアルコール系樹脂でもよく、特に限定されるものではない。
上記ポリビニルアルコール系樹脂の具体例としては、株式会社クラレ製のRSポリマーであるRS−110(ケン化度=99%、重合度=1,000)、同社製のクラレポバールLM−20SO(ケン化度=40%、重合度=2,000)、日本合成化学工業株式会社製のゴーセノールNM−14(ケン化度=99%、重合度=1,400)等を使用することができる。
In the present invention, as the polyvinyl alcohol-based resin and / or ethylene / vinyl alcohol copolymer, first, as the polyvinyl alcohol-based resin, generally obtained by saponifying polyvinyl acetate is used. be able to.
As the above-mentioned polyvinyl alcohol resin, a partially saponified polyvinyl alcohol resin in which several tens% of acetic acid groups remain, or a completely saponified polyvinyl alcohol in which no acetic acid groups remain, or an OH group has been modified. A modified polyvinyl alcohol resin may be used and is not particularly limited.
Specific examples of the polyvinyl alcohol-based resin include RS-110 (saponification degree = 99%, polymerization degree = 1,000) manufactured by Kuraray Co., Ltd., and Kuraray Poval LM-20SO (saponification) manufactured by Kuraray Co., Ltd. Degree = 40%, degree of polymerization = 2,000), Gohsenol NM-14 (degree of saponification = 99%, degree of polymerization = 1,400) manufactured by Nippon Synthetic Chemical Industry Co., Ltd. can be used.

また、本発明において、エチレン・ビニルアルコール共重合体としては、エチレンと酢酸ビニルとの共重合体のケン化物、すなわち、エチレン−酢酸ビニルランダム共重合体をケン化して得られるものを使用することができる。
具体的には、酢酸基が数十モル%残存している部分ケン化物から、酢酸基が数モル%しか残存していないかまたは酢酸基が残存しない完全ケン化物まで含み、特に限定されるものではないが、ガスバリア性の観点から好ましいケン化度は、80モル%以上、より好ましくは、90モル%以上、さらに好ましくは、95モル%以上であるものを使用することが望ましいものである
また、上記のエチレン・ビニルアルコール共重合体中のエチレンに由来する繰り返し単位の含量(以下「エチレン含量」ともいう)は、通常、0〜50モル%、好ましくは、20〜45モル%であるものを使用することが好ましいものである。
上記のエチレン・ビニルアルコール共重合体の具体例としては、株式会社クラレ製、エバールEP−F101(エチレン含量;32モル%)、日本合成化学工業株式会社製、ソアノールD2908(エチレン含量;29モル%)等を使用することができる。
In the present invention, as the ethylene-vinyl alcohol copolymer, a saponified product of a copolymer of ethylene and vinyl acetate, that is, a product obtained by saponifying an ethylene-vinyl acetate random copolymer should be used. Can do.
Specific examples include partial saponification products in which several tens mol% of acetic acid groups remain to complete saponification products in which acetic acid groups remain only a few mol% or no acetic acid groups remain. However, it is desirable to use a saponification degree that is preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more from the viewpoint of gas barrier properties. The content of repeating units derived from ethylene in the ethylene / vinyl alcohol copolymer (hereinafter also referred to as “ethylene content”) is usually 0 to 50 mol%, preferably 20 to 45 mol%. Is preferably used.
Specific examples of the ethylene / vinyl alcohol copolymer include Kuraray Co., Ltd., Eval EP-F101 (ethylene content: 32 mol%), Nippon Synthetic Chemical Industry Co., Ltd., Soarnol D2908 (ethylene content: 29 mol%). ) Etc. can be used.

次に、本発明において、本発明に係るバリア性フィルムを構成するガスバリア性塗布膜を形成するガスバリア性組成物について説明すると、かかるガスバリア性組成物としては、前述のような一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、上記のようなポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルーゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合するガスバリア性組成物を調製するものである。 Next, in the present invention, the gas barrier composition for forming the gas barrier coating film constituting the barrier film according to the present invention will be described. As the gas barrier composition, the general formula R 1 n M as described above is used. (OR 2 ) m (wherein, R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M represents a metal atom, n represents an integer of 0 or more, and m represents An integer of 1 or more, and n + m represents the valence of M.) and at least one alkoxide represented by the following formula: polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer In addition, a gas barrier composition which contains a coal and is polycondensed by a sol-gel method in the presence of a sol-gel method catalyst, an acid, water, and an organic solvent is prepared.

上記のガスバリア性組成物を調製するに際し、例えば、シランカップリング剤等も添加することができるものである。
而して、上記のシランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができる。
本発明においては、特に、エポキシ基を有するオルガノアルコキシシランが好適であり、それには、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、あるいは、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン等を使用することができる。
上記のようなシランカップリング剤は、1種ないし2種以上を混合して用いてもよい。 本発明において、上記のようなシランカップリング剤の使用量は、上記のアルコキシシラン100重量部に対して1〜20重量部位の範囲内で使用することができる。
上記において、20重量部以上を使用すると、形成されるガスバリア性塗布膜の剛性と脆性とが大きくなり、また、ガスバリア性塗布膜の絶縁性および加工性が低下する傾向にあることから好ましくないものである。
In preparing the gas barrier composition, for example, a silane coupling agent or the like can be added.
Thus, known organic reactive group-containing organoalkoxysilanes can be used as the silane coupling agent.
In the present invention, an organoalkoxysilane having an epoxy group is particularly suitable. For example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, or β- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like can be used.
The above silane coupling agents may be used alone or in combination of two or more. In this invention, the usage-amount of the above silane coupling agents can be used within the range of 1-20 weight part with respect to 100 weight part of said alkoxysilanes.
In the above, if 20 parts by weight or more is used, the rigidity and brittleness of the gas barrier coating film to be formed are increased, and the insulating property and workability of the gas barrier coating film tend to decrease, which is not preferable. It is.

次に、上記のガスバリア性組成物において用いられる、ゾルーゲル法触媒、主として、重縮合触媒としては、水に実質的に不溶であり、かつ有機溶媒に可溶な第三アミンが用いられる。
具体的には、例えば、N、N−ジメチルベンジルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、その他等を使用することができる。
本発明においては、特に、N、N−ジメチルべンジルアミンが好適である。
その使用量は、アルコキシド、および、シランカップリング剤の合計量100重量部当り、0.01〜1.0重量部、好ましくは、約0.03重量部位使用することが好ましいものである。
また、上記のガスバリア性組成物において用いられる、酸としては、上記ゾルーゲル法の触媒、主として、アルコキシドやシランカップリング剤などの加水分解のための触媒として用いられる。
上記の酸としては、例えば、硫酸、塩酸、硝酸などの鉱酸、ならびに、酢酸、酒石酸な等の有機酸、その他等を使用することができる。
上記の酸の使用量は、アルコキシドおよびシランカップリング剤のアルコキシド分(例えばシリケート部分)の総モル量に対し0.001〜0.05モル位、好ましくは、約0.01モル位を使用することが好ましいものである。
Next, as a sol-gel method catalyst, mainly a polycondensation catalyst, used in the gas barrier composition, a tertiary amine that is substantially insoluble in water and soluble in an organic solvent is used.
Specifically, for example, N, N-dimethylbenzylamine, tripropylamine, tributylamine, tripentylamine, and the like can be used.
In the present invention, N, N-dimethylbenzylamine is particularly preferred.
The amount used is 0.01 to 1.0 part by weight, preferably about 0.03 parts by weight per 100 parts by weight of the total amount of alkoxide and silane coupling agent.
The acid used in the gas barrier composition is used as a catalyst for the sol-gel method, mainly as a catalyst for hydrolysis of an alkoxide, a silane coupling agent, or the like.
Examples of the acid include mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and tartaric acid, and the like.
The amount of the acid used is about 0.001 to 0.05 mol, preferably about 0.01 mol, relative to the total molar amount of the alkoxide and the alkoxide content of the silane coupling agent (for example, silicate moiety). Is preferred.

更に、上記のガスバリア性組成物においては、上記のアルコキシドの合計モル量1モルに対して0.1〜100モル、好ましくは、0.8から2モルの割合の水をもちいることができる。
上記の水の量が、2モルを越えると、上記のアルコキシシランと金属アルコキシドとから得られるポリマーが球状粒子となり、更に、この球状粒子同士が3次元的に架橋し、密度の低い、多孔性のポリマーとなり、而して、そのような多孔性のポリマーは、ガスバリア性積層フィルムのガスバリア性を改善することができなくなることから好ましくないものである。
また、上記の水の量が0.8モルを下回ると、加水分解反応が進行しにくくなる傾向にあることから好ましくないものである。
Furthermore, in the gas barrier composition, water can be used in a proportion of 0.1 to 100 mol, preferably 0.8 to 2 mol, relative to 1 mol of the total molar amount of the alkoxide.
When the amount of the water exceeds 2 mol, the polymer obtained from the alkoxysilane and the metal alkoxide becomes spherical particles, and the spherical particles are three-dimensionally cross-linked to form a porous material having a low density. Therefore, such a porous polymer is not preferable because the gas barrier property of the gas barrier laminate film cannot be improved.
On the other hand, if the amount of water is less than 0.8 mol, the hydrolysis reaction tends to hardly proceed, which is not preferable.

更にまた、上記のガスバリア性組成物において用いられる、有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、その他等を用いることができる。
更に、上記のガスバリア性組成物において、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコール共重合体は、上記のアルコキシドやシランカップリング剤などを含む塗工液中で溶解した状態であることが好ましく、そのため上記の有機溶媒の種類が適宜選択されるものである。
ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて使用する場合には、n−ブタノールを使用することが好ましい。
本発明において、溶媒中に可溶化されたエチレン・ビニルアルコール共重合体は、例えば、ソアノール(商品名)として市販されているものを使用することができる。
上記の有機溶媒の使用量は、通常、上記のアルコキシド、シランカップリング剤、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコール共重合体、酸およびゾルーゲル法触媒の合計量100重量部当り30〜500重量部位である。
Furthermore, as the organic solvent used in the gas barrier composition, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butanol, and the like can be used.
Furthermore, in the gas barrier composition, the polyvinyl alcohol-based resin and / or the ethylene / vinyl alcohol copolymer is in a state of being dissolved in a coating solution containing the alkoxide or the silane coupling agent. Therefore, the type of the organic solvent is appropriately selected.
In the case of using a combination of a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer, it is preferable to use n-butanol.
In the present invention, as the ethylene / vinyl alcohol copolymer solubilized in a solvent, for example, those commercially available as Soarnol (trade name) can be used.
The amount of the organic solvent used is usually 30 per 100 parts by weight of the total amount of the alkoxide, silane coupling agent, polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer, acid and sol-gel catalyst. ~ 500 parts by weight.

次に、本発明においては、本発明に係るバリア性フィルムは、具体的には、例えば、以下のようにして製造される。
まず、上記のアルコキシシラン等のアルコキシド、シランカップリング剤、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコール共重合体、ゾルーゲル法触媒、酸、水、有機溶媒、および、必要に応じて、金属アルコキシド等を混合してガスバリア性組成物(塗工液)を調製する。
次に、上記のガスバリア性組成物(塗工液)中では次第に重縮合反応が進行する。
次いで、基材フィルムの一方の面にポリパラキシリレンからなる蒸着重合膜と無機酸化物からなるバリア性薄膜層を順次に積層したその無機酸化物からなるバリア性薄膜層の上に、常法により、上記のガスバリア性組成物(塗工液)を通常の方法で塗布し、乾燥する。
而して、上記の乾燥により、上記のアルコキシシラン等のアルコキシド、金属アルコキシド、シランカップリング剤およびポリビニルアルコール系樹脂及び/又はエチレン・ビニルアルコール共重合体等の重縮合が進行し、塗工膜が形成される。
更に、好ましくは、上記の塗布操作を繰り返して、2層以上からなる複数の塗工膜を積層する。
最後に、上記の塗工液を塗布した基材フィルムを20℃〜180℃位で、かつ、基材フィルムの融点以下の温度、好ましくは、約50℃〜160℃位の範囲の温度で、10秒〜10分間加熱処理して、基材フィルムの一方の面に形成した無機酸化物からなるバリア性薄膜層の上に、上記のガスバリア性組成物(塗工液)によるガスバリア性塗布膜を1層ないし2層以上形成して、本発明に係るバリア性フィルムを製造することができる。
このようにして得られた本発明に係るバリア性フィルムは、ガスバリア性に優れているものである。
Next, in the present invention, the barrier film according to the present invention is specifically produced as follows, for example.
First, an alkoxide such as alkoxysilane, a silane coupling agent, a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, a sol-gel catalyst, an acid, water, an organic solvent, and, if necessary, A metal alkoxide or the like is mixed to prepare a gas barrier composition (coating liquid).
Next, a polycondensation reaction gradually proceeds in the gas barrier composition (coating liquid).
Then, on the one side of the base film, a vapor-deposited polymer film composed of polyparaxylylene and a barrier thin film layer composed of an inorganic oxide are sequentially laminated on the barrier thin film layer composed of the inorganic oxide. Then, the gas barrier composition (coating liquid) is applied by a usual method and dried.
Thus, by the above drying, polycondensation of the alkoxide such as alkoxysilane, metal alkoxide, silane coupling agent, polyvinyl alcohol resin and / or ethylene / vinyl alcohol copolymer proceeds, and the coating film Is formed.
Furthermore, preferably, the above coating operation is repeated to laminate a plurality of coating films composed of two or more layers.
Finally, the base film coated with the above coating solution is at a temperature of about 20 ° C. to 180 ° C. and below the melting point of the base film, preferably at a temperature in the range of about 50 ° C. to 160 ° C. A gas barrier coating film made of the above gas barrier composition (coating solution) is formed on the barrier thin film layer made of an inorganic oxide formed on one surface of the base film by heat treatment for 10 seconds to 10 minutes. The barrier film according to the present invention can be produced by forming one layer or two or more layers.
The barrier film according to the present invention thus obtained is excellent in gas barrier properties.

なお、本発明において、ポリビニルアルコール系樹脂の代わりに、エチレン・ビニルアルコール共重合体、あるいは、ポリビニルアルコール系樹脂とエチレン・ビニルアルコール共重合体との両者を用いて、上記と同様に、塗工、乾燥および加熱処理を行うことにより製造される本発明に係るバリア性フィルムにおいては、ボイル処理、レトルト処理等の熱水処理後のガスバリア性が更に向上するという利点を有するものである。   In the present invention, in place of the polyvinyl alcohol resin, an ethylene / vinyl alcohol copolymer, or both a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer are used in the same manner as described above. The barrier film according to the present invention produced by drying and heat treatment has an advantage that the gas barrier property after hot water treatment such as boil treatment and retort treatment is further improved.

更に、本発明においては、上記のようにエチレン・ビニルアルコール共重合体、あるいは、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて使用しない場合、すなわち、ポリビニルアルコール系樹脂のみを使用して、本発明に係るバリア性フィルムを製造する場合には、熱水処理後のガスバリアー性を向上させるために、例えば、予め、ポリビニルアルコール系樹脂を使用したガスバリア性組成物を塗工して第1の塗工層を形成し、次いで、その塗工層の上に、エチレン・ビニルアルコール共重合体を含有するガスバリア性組成物を塗工して第2の塗工層を形成し、それらの複合層を形成することにより、本発明に係るバリア性フィルムのガスバリア性を向上させることを可能とするものである。   Furthermore, in the present invention, as described above, when ethylene vinyl alcohol copolymer or polyvinyl alcohol resin and ethylene vinyl alcohol copolymer are not used in combination, that is, only polyvinyl alcohol resin is used. And when manufacturing the barrier film which concerns on this invention, in order to improve the gas barrier property after a hot-water process, for example, the gas barrier composition which used the polyvinyl alcohol-type resin beforehand is applied. Forming a first coating layer, and then coating a gas barrier composition containing an ethylene / vinyl alcohol copolymer on the coating layer to form a second coating layer, By forming these composite layers, the gas barrier property of the barrier film according to the present invention can be improved.

更にまた、上記のエチレン・ビニルアルコール共重合体を含有するガスバリア性組成物により形成される塗工層、または、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とを組み合わせて含有するガスバリア性組成物により形成される塗工層を、複数層重層して形成することによっても、本発明に係るバリア性フィルムのガスバリア性の向上に有効な手段となるものである。   Furthermore, the coating layer formed by the gas barrier composition containing the above-mentioned ethylene / vinyl alcohol copolymer, or the gas barrier composition containing a combination of a polyvinyl alcohol-based resin and an ethylene / vinyl alcohol copolymer. Forming a plurality of coating layers formed of an object as a plurality of layers is also an effective means for improving the gas barrier properties of the barrier film according to the present invention.

次に、本発明に係るバリア性フィルムの製造法について、アルコキシドとして、アルコキシシランをする場合を事例としてその作用を説明すると、まず、アルコキシシランおよび金属アルコキシドは、添加された水によって、加水分解される。
その際、酸が加水分解の触媒となる。
次いで、ゾルーゲル法触媒の働きによって、生じた水酸基からプロトンが奪取され、加水分解生成物同士が脱水重縮合する。
このとき、酸触媒により同時にシランカップリング剤も加水分解されて、アルコキシ基が水酸基となる。
また、塩基触媒の働きにより、エポキシ基の開環も起こり、水酸基が生じる。
加水分解されたシランカップリング剤と加水分解されたアルコキシドとの重縮合反応も進行する。
さらに、反応系にはポリビニルアルコール系樹脂、または、エチレン・ビニルアルコール共重合体、または、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体とが存在するため、ポリビニルアルコール系樹脂およびエチレン・ビニルアルコール共重合体が有する水酸基との反応も生じる。
生成する重縮合物は、例えば、Si−O−Si、Si−O−Zr、Si−O−Ti、その他等の結合からなる無機質部分と、シランカップリング剤に起因する有機部分とを含有する複合ポリマーを構成する
上記の反応においては、例えば、下記の式(III)に示される部分構造式を有し、更に、シランカップリング剤に起因する部分を有する直鎖状のポリマーがまず生成する。
このポリマーは、OR基(エトキシ基などのアルコキシ基)が、直鎖状のポリマーから分岐した形で有する。
このOR基は、存在する酸が触媒となって加水分解されてOH基となり、ゾルーゲル法触媒(塩基触媒)の働きにより、まず、OH基が、脱プロトン化し、次いで、重縮合が進行する。
すなわち、このOH基が、下記の式(I)に示されるポリビニルアルコール系樹脂、または、下記の式(II)に示されるエチレン・ビニルアルコール共重合体と重縮合反応し、Si−O−Si結合を有する、例えば、下記の式(IV)に示される複合ポリマー、あるいは、下記の式(V)及び(VI)に示される共重合した複合ポリマーが生じると考えられるものである。
Next, the operation of the barrier film production method according to the present invention will be described with reference to the case of using alkoxysilane as an alkoxide. First, alkoxysilane and metal alkoxide are hydrolyzed by added water. The
At that time, the acid serves as a catalyst for hydrolysis.
Next, protons are taken from the generated hydroxyl groups by the action of the sol-gel method catalyst, and hydrolyzed products are dehydrated and polycondensed.
At this time, the silane coupling agent is simultaneously hydrolyzed by the acid catalyst, and the alkoxy group becomes a hydroxyl group.
In addition, due to the action of the base catalyst, ring opening of the epoxy group also occurs and a hydroxyl group is generated.
A polycondensation reaction between the hydrolyzed silane coupling agent and the hydrolyzed alkoxide also proceeds.
Furthermore, since the reaction system includes a polyvinyl alcohol resin, an ethylene / vinyl alcohol copolymer, or a polyvinyl alcohol resin and an ethylene / vinyl alcohol copolymer, the polyvinyl alcohol resin and the ethylene / vinyl alcohol Reaction with the hydroxyl group of the copolymer also occurs.
The resulting polycondensate contains, for example, an inorganic part composed of bonds such as Si—O—Si, Si—O—Zr, Si—O—Ti, and the like, and an organic part derived from the silane coupling agent. In the above reaction constituting the composite polymer, for example, a linear polymer having a partial structural formula represented by the following formula (III) and further having a portion derived from the silane coupling agent is first formed. .
This polymer has an OR group (an alkoxy group such as an ethoxy group) branched from a linear polymer.
This OR group is hydrolyzed to become an OH group using an existing acid as a catalyst, and the OH group is first deprotonated by the action of a sol-gel method catalyst (base catalyst), and then polycondensation proceeds.
That is, this OH group undergoes a polycondensation reaction with a polyvinyl alcohol-based resin represented by the following formula (I) or an ethylene / vinyl alcohol copolymer represented by the following formula (II) to form Si—O—Si. It is considered that a composite polymer having a bond, for example, represented by the following formula (IV) or a copolymerized composite polymer represented by the following formulas (V) and (VI) is formed.

Figure 2007021900
Figure 2007021900

Figure 2007021900
Figure 2007021900

Figure 2007021900
Figure 2007021900

Figure 2007021900
Figure 2007021900

Figure 2007021900
Figure 2007021900

Figure 2007021900
Figure 2007021900

上記の反応は常温で進行し、ガスバリア性組成物(塗工液)は、調製中に粘度が増加する。
このガスバリア性組成物(塗工液)を、基材フィルムの一方の面に設けたと無機酸化物からなるバリア性薄膜層の上に塗布し、加熱して溶媒および重縮合反応により生成したアルコールを除去すると、重縮合反応が完結し、基材フィルムの一方の面に設けた無機酸化物からなるバリア性薄膜層の上に透明な塗工層が形成される。
上記の塗工層を複数層積層する場合には、層間の塗工層中の複合ポリマー同士も縮合し、層と層との間が強固に結合する。
更に、シランカップリング剤の有機反応性基や、加水分解によって生じた水酸基が基材フィルムの一方の面に設けた無機酸化物からなるバリア性薄膜層の表面の水酸基等と結合するため、基材フィルムの一方の面に設けた密着助剤層と無機酸化物からなるバリア性薄膜層との表面と、塗工層との密着性、接着性等も良好なものとなるものである。
The above reaction proceeds at room temperature, and the viscosity of the gas barrier composition (coating liquid) increases during preparation.
When this gas barrier composition (coating liquid) is provided on one surface of a base film, it is applied onto a barrier thin film layer made of an inorganic oxide, heated to produce a solvent and an alcohol produced by a polycondensation reaction. When removed, the polycondensation reaction is completed, and a transparent coating layer is formed on the barrier thin film layer made of an inorganic oxide provided on one surface of the base film.
In the case of laminating a plurality of the above-mentioned coating layers, the composite polymers in the coating layers between the layers are also condensed, and the layers are firmly bonded to each other.
Further, since the organic reactive group of the silane coupling agent and the hydroxyl group generated by hydrolysis are bonded to the hydroxyl group on the surface of the barrier thin film layer made of an inorganic oxide provided on one surface of the base film, The adhesion between the surface of the adhesion aid layer provided on one surface of the material film and the barrier thin film layer made of an inorganic oxide and the coating layer, the adhesiveness, etc. are also good.

本発明の方法においては、添加される水の量が、アルコキシド類1モルに対して0.8〜2モル、好ましくは、1 .5 モルに調節されているため、上記の直鎖状のポリマーが形成される。
このような直鎖状ポリマーは、結晶性を有し、非晶質部分の中に多数の微小の結晶が埋包された構造をとる。
このような結晶構造は、結晶性有機ポリマー(例えば、塩化ビニリデンやポリビニルアルコール)と同様であり、さらに極性基(OH基)が部分的に分子内に存在し、分子の凝集エネルギーが高く分子鎖剛性も高いため良好なガスバリアー性を示す。
In the method of the present invention, the amount of water added is 0.8 to 2 mol, preferably 1. Since it is adjusted to 5 moles, the above linear polymer is formed.
Such a linear polymer has crystallinity and has a structure in which a large number of minute crystals are embedded in an amorphous part.
Such a crystal structure is the same as that of a crystalline organic polymer (for example, vinylidene chloride or polyvinyl alcohol). Furthermore, a polar group (OH group) is partially present in the molecule, and the molecular aggregation energy is high. Excellent gas barrier properties due to high rigidity.

本発明に係るバリア性フィルムは、上記のような優れた特性を有するので、包装材料として有用であり、特に、ガスバリア性(O2 、N2 、H2 O、CO2 、その他等の透過を遮断、阻止する)に優れるため、食品包装用フィルムを構成するバリア性基材として、好適に使用されるものである。
特に、N2 あるいは、CO2 ガス等を充填した、いわゆる、ガス充填包装に用いた場合には、その優れたガスバリア性が、充填ガスの保持に極めて有効となる。
更に、本発明に係るバリア性フィルムは、熱水処理、特に、高圧熱水処理(レトルト処理)に優れ、極めて優れたガスバリア性特性を示すものである。
Barrier film according to the present invention, because it has excellent characteristics as described above are useful as packaging materials, in particular, gas barrier properties (O 2, N 2, H 2 O, CO 2, the transmission of other such Therefore, it is preferably used as a barrier substrate constituting a food packaging film.
In particular, when used in so-called gas-filled packaging filled with N 2 or CO 2 gas, the excellent gas barrier property is extremely effective for holding the filled gas.
Furthermore, the barrier film according to the present invention is excellent in hot water treatment, particularly high-pressure hot water treatment (retort treatment), and exhibits extremely excellent gas barrier properties.

本発明においては、無機酸化物からなるバリア性薄膜層とガスバリア性塗布膜とが、例えば、加水分解・共縮合反応による化学結合、水素結合、あるいは、配位結合などを形成し、無機酸化物からなるバリア性薄膜層とガスバリア性塗布膜との密着性が向上し、その2層の相乗効果により、より良好なガスバリア性の効果を発揮し得るものである。
上記の本発明のガスバリア性組成物を塗布する方法としては、例えば、グラビアロ−ルコーターなどのロールコート、スプレーコート、スピンコ−ト、デイツピング、刷毛、バーコード、アプリケータ等の塗布手段により、1回あるいは複数回の塗布で、乾燥膜厚が、0.01〜30μm、好ましくは、0.1〜10μm位の塗工膜を形成することができ、更に、通常の環境下、50〜300℃、好ましくは、70〜200℃の温度で、0.005〜60分間、好ましくは、0.01〜10分間、加熱・乾操することにより、縮合が行われ、本発明の第1または第2のガスバリア性塗布膜を形成することができる。
また、必要ならば、本発明のガスバリア性組成物を塗布する際に、予め、無機酸化物からなるバリア性薄膜層の上に、プライマー剤等を塗布することもできるものであり、また、コロナ放電処理あるいはプラズマ処理、その他等の前処理を任意に施すことができるものである。
In the present invention, the barrier thin film layer made of an inorganic oxide and the gas barrier coating film form, for example, a chemical bond, a hydrogen bond, or a coordinate bond by hydrolysis / co-condensation reaction, and the inorganic oxide The adhesion between the barrier thin film layer and the gas barrier coating film is improved, and a better gas barrier effect can be exhibited by the synergistic effect of the two layers.
As a method for applying the gas barrier composition of the present invention, for example, a roll coating such as a gravure roll coater, a spray coating, a spin coating, a date coating, a brush, a barcode, an applicator or the like is used once. Alternatively, a coating film having a dry film thickness of 0.01 to 30 μm, preferably about 0.1 to 10 μm, can be formed by applying a plurality of times, and further, under a normal environment, 50 to 300 ° C., Preferably, the condensation is carried out by heating and drying at a temperature of 70 to 200 ° C. for 0.005 to 60 minutes, preferably 0.01 to 10 minutes, and the first or second of the present invention. A gas barrier coating film can be formed.
Further, if necessary, when applying the gas barrier composition of the present invention, a primer agent or the like can be applied on the barrier thin film layer made of an inorganic oxide in advance. A pretreatment such as a discharge treatment or a plasma treatment can be optionally performed.

以上において説明したように、本発明に係るバリア性フィルムは、基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜、要すれば設ける不活性ガスによるプラズマ処理面、無機酸化物からなるバリア性薄膜層、要すれば設ける酸素ガスによるプラズマ処理面あるいはプライマ−剤層、および、ガスバリア性塗布膜を順次に積層したことを特徴とするバリア性フィルムに係るものである。
而して、本発明に係るバリア性フィルムは、基材フィルム、ポリパラキシリレンからなる蒸着重合膜、無機酸化物からなるバリア性薄膜層、ガスバリア性塗布膜等との良好な密接着性を有し、更に、高いガスバリア性を安定して維持すると共に良好な透明性、及び、対熱水性、耐衝撃性等を備え、包装用袋等を構成するバリア性素材として極めて有用なものであり、これに、例えば、ヒ−トシ−ル性樹脂層、中間基材、プラスチック基材、その他等を任意に積層して、種々の層構成からなる包装用材料としての積層材を製造し、次いで、これを使用し、製袋して、種々の形態からなる包装用袋を製造し得るものである。
As described above, the barrier film according to the present invention has a vapor-deposited polymer film made of polyparaxylylene on one surface of a base film, a plasma-treated surface with an inert gas, if necessary, an inorganic oxide The present invention relates to a barrier film characterized in that a barrier thin film layer comprising, a plasma-treated surface or primer agent layer with oxygen gas provided if necessary, and a gas barrier coating film are sequentially laminated.
Thus, the barrier film according to the present invention has good tight adhesion with a base film, a vapor-deposited polymer film made of polyparaxylylene, a barrier thin film layer made of an inorganic oxide, a gas barrier coating film, and the like. Furthermore, it is extremely useful as a barrier material constituting packaging bags, etc., with stable high gas barrier properties and good transparency, heat resistance, impact resistance, etc. There are, for example, a heat-sealable resin layer, an intermediate substrate, a plastic substrate, etc., which are arbitrarily laminated to produce a laminated material as a packaging material having various layer configurations, Subsequently, this can be used to form a bag to produce packaging bags having various forms.

上記の本発明において、本発明に係る積層材を構成するヒ−トシ−ル性樹脂層について説明すると、かかるヒ−トシ−ル性樹脂層としては、熱によって溶融し相互に融着し得るものであればよく、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマ−樹脂、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−プロピレン共重合体、メチルペンテンポリマ−、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマ−ル酸、その他等の不飽和カルボン酸で変性した酸変性ポリオレフィン系樹脂、その他等の樹脂の1種ないしそれ以上からなる樹脂のフィルムないしシ−トあるいはその塗布膜等を使用することができる。
上記の樹脂のフィルムないしシ−トは、単層ないし多層で使用することができ、また、上記の樹脂のフィルムないしシ−トの厚さとしては、5μm〜300μm位、好ましくは、10μm〜110μm位が望ましい。
更に、本発明において、上記の樹脂のフィルムないしシ−トの厚さとしては、本発明に係る積層材を使用し、包装用袋の製袋時において、本発明に係るバリア性フィルムを構成する無機酸化物からなるバリア性薄膜層に、擦り傷、あるいは、クラック等を発生するすることを防止するために、比較的に、その膜厚を厚くすることが好ましく、具体的には、40μm〜110μm位、望ましくは、50μm〜100μm位であることが好ましいものである。
而して、本発明においては、上記のような樹脂のフィルムないしシ−トの中でも、特に、厚さ50μm〜100μm位の無延伸ポリプロピレンフィルムないしシ−トを使用することが好ましいものである。
In the present invention described above, the heat sealable resin layer constituting the laminated material according to the present invention will be described. The heat sealable resin layer can be melted by heat and fused to each other. For example, low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-ethyl acrylate copolymer Polymers, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene-propylene copolymers, methylpentene polymers, polyolefin resins such as polyethylene or polypropylene, acrylic acid, methacrylic acid, maleic anhydride, Acid-modified polyolefin trees modified with unsaturated carboxylic acids such as fumaric acid and others , One or a film of a resin or sheet consisting of more resins other like - can be used bets or a coating film.
The resin film or sheet can be used in a single layer or multiple layers, and the thickness of the resin film or sheet is about 5 μm to 300 μm, preferably 10 μm to 110 μm. The position is desirable.
Further, in the present invention, the thickness of the resin film or sheet is the laminate material according to the present invention, and constitutes the barrier film according to the present invention at the time of making a packaging bag. In order to prevent generation of scratches or cracks in the barrier thin film layer made of an inorganic oxide, it is preferable to relatively increase the film thickness, specifically, 40 μm to 110 μm. It is preferable that it is about 50 μm to 100 μm.
Thus, in the present invention, among the resin films or sheets as described above, it is particularly preferable to use an unstretched polypropylene film or sheet having a thickness of about 50 μm to 100 μm.

次にまた、本発明において、本発明に係る積層材を構成する中間基材としては、これが前述の基材フィルムと同様に、本発明に係る包装用袋を構成する基本ないし補助素材となることから、機械的、物理的、化学的、その他等において優れた性質を有し、その強度に優れ、更に、耐熱性、防湿性、耐ピンホ−ル性、耐突き刺し性、透明性、その他等に優れた樹脂のフィルムないしシ−トを使用することができる。
具体的には、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリアラミド系樹脂、ポリプロピレン系樹脂、ポリカ−ボネ−ト系樹脂、ポリアセタ−ル系樹脂、フッ素系樹脂、その他等の強靱な樹脂のフィルムないしシ−トを使用することができる。
而して、上記の樹脂のフィルムないしシ−トとしては、未延伸フィルム、あるいは、一軸方向または二軸方向に延伸した延伸フィルム等のいずれのものでも使用することができる。
また、本発明において、その樹脂のフィルムないしシ−トの厚さとしては、強度、耐突き刺し性、剛性、その他等について必要最低限に保持され得る厚さであればよく、厚すぎると、コストを上昇するとい欠点もあり、逆に、薄すぎると、強度、耐突き刺し性、剛性、その他等が低下して好ましくないものである。
本発明においては、上記のような理由から、約10μmないし100μm位、好ましくは、約12μmないし50μm位が最も望ましい。
而して、本発明においては、上記のような樹脂のフィルムないしシ−トの中でも、特に、厚さ15μm〜30μm位の2軸延伸ポリアミド系樹脂フィルムを使用することが好ましいものである。
Next, in the present invention, as an intermediate substrate constituting the laminated material according to the present invention, this is the basic or auxiliary material constituting the packaging bag according to the present invention, as with the aforementioned base film. From mechanical properties, physical properties, chemical properties, etc., excellent strength, excellent strength, heat resistance, moisture resistance, pinhole resistance, puncture resistance, transparency, etc. An excellent resin film or sheet can be used.
Specifically, for example, a film of a tough resin such as a polyester resin, a polyamide resin, a polyaramid resin, a polypropylene resin, a polycarbonate resin, a polyacetal resin, a fluorine resin, or the like. A sheet can be used.
Thus, as the resin film or sheet, any of an unstretched film or a stretched film stretched in a uniaxial direction or a biaxial direction can be used.
In the present invention, the thickness of the resin film or sheet may be a thickness that can be kept to the minimum necessary for strength, puncture resistance, rigidity, and the like. On the other hand, if it is too thin, the strength, puncture resistance, rigidity, etc. are lowered, which is not preferable.
In the present invention, for the reasons described above, about 10 μm to 100 μm, preferably about 12 μm to 50 μm is most desirable.
Thus, in the present invention, among the resin films or sheets as described above, it is particularly preferable to use a biaxially stretched polyamide resin film having a thickness of about 15 μm to 30 μm.

次に、本発明において、本発明に係る積層材を構成するプラスチック基材について説明すると、かかるプラスチック基材としては、これも上記の中間基材と同様に、これが、本発明に係る包装用袋を構成する基本素材ないし補助素材となることから、機械的、物理的、化学的、その他等において優れた強度を有し、更に、耐突き刺し性等に優れ、その他、耐熱性、防湿性、耐ピンホール性、透明性、その他等に優れた樹脂のフィルムないしシートを使用することができる。
具体的には、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン樹脂等のポリアミド系樹脂、ポリアラミド系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、フッ素系樹脂、その他等の強靭な樹脂のフィルムないしシートを使用することができる。
上記において、上記の樹脂のフィルムないしシートとしては、未延伸フィルム、あるいは一軸方向または二軸方向に延伸した延伸フィルム等のいずれのものでも使用することができる。
また、本発明において、その樹脂のフィルムないしシートの厚さとしては、強度、耐突き刺し性、その他等について、必要最低限に保持され得る厚さであればよく、厚すぎると、コストを上昇するとい欠点もあり、逆に、薄すぎると、強度、耐突き刺し性、その他等が低下して好ましくないものである。
本発明においては、上記のような理由から、約9μmないし100μm位、好ましくは、約12μmないし50μm位が最も望ましい。
なお、本発明において、上記のプラスチック基材の表面および/または裏面には、所望の印刷模様層等を設けることができるものである。
Next, in the present invention, the plastic base material constituting the laminated material according to the present invention will be described. As the plastic base material, this is the same as the intermediate base material, and this is the packaging bag according to the present invention. Since it is a basic material or auxiliary material that constitutes, it has excellent strength in mechanical, physical, chemical, etc., and also has excellent puncture resistance, etc., in addition, heat resistance, moisture resistance, A resin film or sheet excellent in pinhole property, transparency, and the like can be used.
Specifically, for example, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyamide resins such as various nylon resins, polyaramid resins, polypropylene resins, polyethylene resins, polycarbonate resins, polyacetal resins, fluorine A film or sheet of a tough resin such as a resin or the like can be used.
In the above, as the resin film or sheet, any of an unstretched film or a stretched film stretched in a uniaxial direction or a biaxial direction can be used.
In the present invention, the thickness of the resin film or sheet may be a thickness that can be kept to the minimum necessary for strength, puncture resistance, etc., and if it is too thick, the cost increases. On the other hand, if it is too thin, the strength, puncture resistance, etc. are undesirably lowered.
In the present invention, about 9 μm to 100 μm, preferably about 12 μm to 50 μm is the most desirable for the reasons described above.
In the present invention, a desired printed pattern layer or the like can be provided on the front surface and / or the back surface of the plastic substrate.

ところで、通常、包装用袋は、物理的にも化学的にも過酷な条件におかれることから、包装用袋を構成する積層材には、厳しい包装適性が要求され、変形防止強度、落下衝撃強度、耐ピンホ−ル性、耐熱性、密封性、品質保全性、作業性、衛生性、その他等の種々の条件が要求され、このために、本発明においては、上記のような材料の他に、上記のような諸条件を充足するその他の材料を任意に使用することができ、具体的には、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、アイオノマ−樹脂、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸またはメタクリル酸共重合体、メチルペンテンポリマ−、ポリブテン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、塩化ビニル−塩化ビニリデン共重合体、ポリ(メタ)アクリル系樹脂、ポリアクリルニトリル系樹脂、ポリスチレン系樹脂、アクリロニトリル−スチレン共重合体(AS系樹脂)、アクリロニトリル−ブタジェン−スチレン共重合体(ABS系樹脂)、ポリエステル系樹脂、ポリアミド系樹脂、ポリカ−ボネ−ト系樹脂、ポリビニルアルコ−ル系樹脂、エチレン−酢酸ビニル共重合体のケン化物、フッ素系樹脂、ジエン系樹脂、ポリアセタ−ル系樹脂、ポリウレタン系樹脂、ニトロセルロ−ス、その他等の公知の樹脂のフィルムないしシ−トを任意に選択して使用することができる。
その他、例えば、合成紙等も使用することができる。
本発明において、上記のフィルムないしシ−トは、未延伸、一軸ないし二軸方向に延伸されたもの等のいずれのものでも使用することができる。
また、その厚さは、任意であるが、数μmから300μm位の範囲から選択して使用することができる。
更に、本発明においては、フィルムないしシ−トとしては、押し出し成膜、インフレ−ション成膜、コ−ティング膜等のいずれの性状の膜でもよい。
By the way, since packaging bags are usually subjected to severe physical and chemical conditions, the laminated materials constituting the packaging bags are required to have strict packaging suitability, deformation prevention strength, drop impact. Various conditions such as strength, pinhole resistance, heat resistance, sealability, quality maintenance, workability, hygiene, etc. are required. For this reason, in the present invention, in addition to the above materials, In addition, other materials satisfying the above-mentioned conditions can be arbitrarily used. Specifically, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, Ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid or methacrylic acid copolymer, Ten polymer, polybutene resin, polyvinyl chloride resin, polyvinyl acetate resin, polyvinylidene chloride resin, vinyl chloride-vinylidene chloride copolymer, poly (meth) acrylic resin, polyacrylonitrile resin, polystyrene Resin, acrylonitrile-styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyester resin, polyamide resin, polycarbonate resin, polyvinyl alcohol resin , Saponified ethylene-vinyl acetate copolymer, fluorine resin, diene resin, polyacetal resin, polyurethane resin, nitrocellulose, etc. Can be used.
In addition, for example, synthetic paper or the like can also be used.
In the present invention, the above-described film or sheet may be any of unstretched, uniaxially or biaxially stretched.
The thickness is arbitrary, but can be selected from a range of several μm to 300 μm.
Furthermore, in the present invention, the film or sheet may be a film having any property such as extrusion film formation, inflation film formation, and coating film.

特に、本発明において、その他の基材としては、例えば、水蒸気、水等の透過を阻止するバリア性を有する低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体等の樹脂のフィルムないしシ−ト、樹脂に顔料等の着色剤を、その他、所望の添加剤を加えて混練してフィルム化してなる遮光性を有する各種の着色樹脂のフィルムないしシ−ト等を使用することができる。
これらの材料は、一種ないしそれ以上を組み合わせて使用することができる。
また、上記のフィルムないしシ−トの厚さとしては、任意であるが、通常、5μmないし300μm位、更には、10μmないし100μm位が望ましい。
In particular, in the present invention, as other base materials, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene having a barrier property to prevent permeation of water vapor, water, etc. -Films or sheets of resins such as propylene copolymers, and various colored resin films having light-shielding properties obtained by adding a colorant such as a pigment to the resin and kneading the resin with a desired additive. Or a sheet or the like can be used.
These materials can be used alone or in combination.
The thickness of the film or sheet is arbitrary, but is usually about 5 μm to 300 μm, more preferably about 10 μm to 100 μm.

なお、本発明において、本発明に係るバリア性フィルム、積層材等を構成する上記のような基材のいずれかの片面あるいは両面には、例えば、文字、図形、記号、模様、その他等からなる所望の印刷模様を印刷して、印刷模様層を形成することができるものである。 上記の印刷模様層としては、通常のインキビヒクルの1種ないし2種以上を主成分とし、これに、必要ならば、可塑剤、安定剤、酸化防止剤、光安定剤、紫外線吸収剤、硬化剤、架橋剤、滑剤、帯電防止剤、充填剤、その他等の添加剤の1種ないし2種以上を任意に添加し、更に、染料・顔料等の着色剤を添加し、溶媒、希釈剤等で充分に混練してインキ組成物を調整し、次いで、該インキ組成物を使用し、例えば、グラビア印刷、オフセット印刷、凸版印刷、スクリ−ン印刷、転写印刷、フレキソ印刷、その他等の印刷方式を使用し、上記の基材フィルムの片面に、文字、図形、記号、模様、その他等からなる所望の印刷模様を印刷して、本発明にかかる印刷模様層を形成することができるものである。   In the present invention, on one side or both sides of the above-mentioned base material constituting the barrier film, laminated material or the like according to the present invention, for example, it consists of characters, figures, symbols, patterns, etc. A desired printed pattern can be printed to form a printed pattern layer. The printed pattern layer is mainly composed of one or more ordinary ink vehicles, and if necessary, a plasticizer, a stabilizer, an antioxidant, a light stabilizer, an ultraviolet absorber, a curing agent. One or more additives such as additives, crosslinking agents, lubricants, antistatic agents, fillers, etc. are optionally added, and colorants such as dyes and pigments are added, and solvents, diluents, etc. Kneaded sufficiently to prepare an ink composition, and then the ink composition is used. For example, gravure printing, offset printing, letterpress printing, screen printing, transfer printing, flexographic printing, etc. Can be used to form a printed pattern layer according to the present invention by printing a desired printed pattern consisting of characters, figures, symbols, patterns, etc. on one side of the base film. .

上記において、インキビヒクルとしては、公知のもの、例えば、あまに油、きり油、大豆油、炭化水素油、ロジン、ロジンエステル、ロジン変性樹脂、シェラック、アルキッド樹脂、フェノ−ル系樹脂、マレイン酸樹脂、天然樹脂、炭化水素樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリスチレン系樹脂、ポリビニルブチラ−ル樹脂、アクリルまたはメタクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、尿素樹脂、メラミン樹脂、アミノアルキッド系樹脂、ニトロセルロ−ス、エチルセルロ−ス、塩化ゴム、環化ゴム、その他等の1種ないし2種以上を使用することができる。   In the above, as the ink vehicle, known ones such as sesame oil, drill oil, soybean oil, hydrocarbon oil, rosin, rosin ester, rosin modified resin, shellac, alkyd resin, phenolic resin, maleic acid Resin, natural resin, hydrocarbon resin, polyvinyl chloride resin, polyvinyl acetate resin, polystyrene resin, polyvinyl butyral resin, acrylic or methacrylic resin, polyamide resin, polyester resin, polyurethane resin, One or more of epoxy resins, urea resins, melamine resins, aminoalkyd resins, nitrocellulose, ethyl cellulose, chlorinated rubber, cyclized rubber, etc. can be used.

また、本発明において、本発明に係る積層材を形成するラミネート用接着剤層を構成するラミネート用接着剤としては、例えば、ポリ酢酸ビニル系接着剤、アクリル酸のエチル、ブチル、2 −エチルヘキシルエステル等のホモポリマー、あるいは、これらとメタクリル酸メチル、アクリロニトリル、スチレン等との共重合体等からなるポリアクリル酸エステル系接着剤、シアノアクリレート系接着剤、エチレンと酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等のモノマーとの共重合体等からなるエチレン共重合体系接着剤、セルロース系接着剤、ポリエステル系接着剤、ポリアミド系接着剤、ポリイミド系接着剤、尿素樹脂またはメラミン樹脂等からなるアミノ樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、反応型(メタ)アクリル系接着剤、クロロプレンゴム、ニトリルゴム、スチレンーブタジェンゴム等からなるゴム系接着剤、シリコーン系接着剤、アルカリ金属シリケート、低融点ガラス等からなる無機系接着剤、その他等の接着剤を使用することがてきる。
上記の接着剤の組成系は、水性型、溶液型、エマルジョン型、分散型等のいずれの組成物形態でもよく、また、その性状は、フィルム・シート状、粉末状、固形状等のいずれの形態でもよく、更に、接着機構については、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの形態でもよいものである。
而して、本発明においては、積層する両者の一方の面に、上記のラミネート用接着剤を、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施し、次いで、溶剤等を乾燥させてラミネート用接着剤層を形成すことができ、そのコーティングないし印刷量としては、0.1〜10g/m2 (乾燥状態)位が望ましい。
In the present invention, examples of the laminating adhesive constituting the laminating adhesive layer forming the laminated material according to the present invention include, for example, polyvinyl acetate adhesive, ethyl acrylate, butyl, 2-ethylhexyl ester Homopolymers such as these, or polyacrylate adhesives, cyanoacrylate adhesives, ethylene and vinyl acetate, ethyl acrylate, acrylic acid, and the like, and copolymers thereof with methyl methacrylate, acrylonitrile, styrene, etc. , Ethylene copolymer adhesives composed of copolymers with monomers such as methacrylic acid, cellulose adhesives, polyester adhesives, polyamide adhesives, polyimide adhesives, amino acids composed of urea resins or melamine resins, etc. Resin adhesives, phenol resin adhesives, epoxy adhesives, Urethane adhesive, reactive (meth) acrylic adhesive, chloroprene rubber, nitrile rubber, rubber adhesive made of styrene-butadiene rubber, silicone adhesive, alkali metal silicate, low melting point glass, etc. Adhesives such as system adhesives and others can be used.
The composition system of the above-mentioned adhesive may be any composition form such as an aqueous type, a solution type, an emulsion type, and a dispersion type, and the property is any of film / sheet form, powder form, solid form, etc. Further, the bonding mechanism may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, and a hot pressure type.
Thus, in the present invention, the above laminating adhesive is applied to one side of both of the laminated layers, for example, a coating method such as a roll coating method, a gravure roll coating method, a kiss coating method, or the like, or a printing method. Then, the solvent or the like is dried to form an adhesive layer for laminating, and the coating or printing amount is preferably about 0.1 to 10 g / m 2 (dry state).

また、本発明において、本発明に係る積層材を形成するアンカ−コ−ト剤層を構成するアンカ−コ−ト剤としては、例えば、イソシアネ−ト系(ウレタン系)、ポリエチレンイミン系、ポリブタジェン系、有機チタン系、その他等のアンカ−コ−ティング剤を使用することができる。
更に、本発明において、溶融押出ラミネ−ト法における溶融押出樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン系触媒を使用して重合したエチレンーα・オレフイン共重合体、ポリプロピレン、エチレンー酢酸ビニル共重合体、アイオノマー樹脂、エチレンーアクリル酸エチル共重合体、エチレンーアクリル酸共重合体、エチレンーメタクリル酸共重合体、エチレンープロピレン共重合体、メチルペンテンポリマー、ポリエチレン、ポリプロピレン等のポリオレフイン系樹脂をアクリル酸、メタクリル酸、無水マレイン酸、フマール酸、その他等の不飽和カルポン酸で変性した酸変性ポリオレフイン系樹脂、その他等を使用することができる。
なお、本発明において、上記の積層を行う際に、必要ならば、例えば、積層する基材等の表面に、例えば、コロナ処理、オゾン処理、フレーム処理等の前処理を任意に施すことができる。
In the present invention, examples of the anchor coating agent constituting the anchor coating agent layer forming the laminated material according to the present invention include isocyanate (urethane), polyethyleneimine, and polybutadiene. Anchor coating agents such as those based on organic, organic titanium, etc. can be used.
Furthermore, in the present invention, as the melt-extruded resin in the melt-extrusion laminating method, for example, a low density polyethylene, a medium density polyethylene, a high density polyethylene, a linear (linear) low density polyethylene, or a metallocene catalyst is used. Polymerized ethylene-α-olefin copolymer, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene- Polyolefin resins such as propylene copolymer, methylpentene polymer, polyethylene, polypropylene, etc. modified with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, etc., acid-modified polyolefin resins, etc. Can be used.
In the present invention, when performing the above lamination, if necessary, for example, pretreatment such as corona treatment, ozone treatment, frame treatment, etc. can be optionally applied to the surface of the substrate to be laminated. .

ところで、本発明において、上記のようなアンカ−コ−ト剤層を形成するアンカ−コ−ト剤、および、ラミネ−ト用接着剤層を形成するラミネ−ト用接着剤としては、例えば、トリレンジイソシアナ−ト、ジフェニルメタンジイソシアナ−ト、ポリメチレンポリフェニレンポリイソシアナ−ト等の芳香族ポリイソシアナ−ト、あるいは、ヘキサメチレンジイソシアナ−ト、キシリレンジイソシアナ−ト等の脂肪族ポリイソシアナ−ト等の多官能イソシアネ−トと、ポリエ−テル系ポリオ−ル、ポリエステル系ポリオ−ル、ポリアクリレ−トポリオ−ル等のヒドロキシル基含有化合物との反応により得られるポリエ−テルポリウレタン系樹脂、ポリエステル系ポリウレタン系樹脂、または、ポリアクリレ−トポリウレタン系樹脂を主成分とするアンカ−コ−ト剤、あるいは、ラミネ−ト用接着剤を使用することが望ましいものである。
而して、上記のようなアンカ−コ−ト剤、あるいは、ラミネ−ト用接着剤を使用して形成してなるアンカ−コ−ト剤層、あるいは、ラミネ−ト用接着剤層は、柔らかく、柔軟性に富み、かつ、屈曲性に富む薄膜を形成することができ、その引っ張り伸長度を向上させ、無機酸化物からなるバリア性薄膜層に対し柔軟性、屈曲性等を有する被膜として作用し、例えば、ラミネ−ト加工、印刷加工、あるいは、製袋加工等の後加工時における無機酸化物からなるバリア性薄膜層の後加工適性を向上させ、後加工時における無機酸化物からなるバリア性薄膜層へのクラック等の発生等を防止するものである。
ちなみに、本発明において、上記のようなアンカ−コ−ト剤によるアンカ−コ−ト剤層および/またはラミネ−ト用接着剤によるラミネ−ト用接着剤層は、JIS規格K7113に基づいて、100〜300%の範囲からなる引っ張り伸度を有するものである。
而して、本発明においては、上記のようなアンカ−コ−ト剤によるアンカ−コ−ト剤層および/またはラミネ−ト用接着剤によるラミネ−ト用接着剤層の引っ張り伸度、その他により、バリア性フィルムと、ヒ−トシ−ル性樹脂層との密接着性を向上させ、これにより、無機酸化物からなるバリア性薄膜層へのクラック等の発生を防止し、そのラミネ−ト強度等を高めるものである。
上記において、引っ張り伸度が、100%未満であると、積層材としての柔軟性がなくなり、無機酸化物からなるバリア性薄膜層へのクラック等が発生し易くなることから好ましくなく、また、引っ張り伸度が、300%を越えると、アンカ−コ−ト剤、あるいは、ラミネ−ト用接着剤等としての接着性の強度が十分でなく、要求されるラミネ−ト強度が発現されにくくなることから好ましくないものである。
By the way, in the present invention, as the anchor coat agent for forming the anchor coat layer as described above and the adhesive for laminate forming the laminate adhesive layer, for example, Aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenylene polyisocyanate, or aliphatics such as hexamethylene diisocyanate, xylylene diisocyanate A polyether polyurethane resin obtained by reacting a polyfunctional isocyanate such as a polyisocyanate with a hydroxyl group-containing compound such as a polyether polyol, a polyester polyol or a polyacrylate polyol, Mainly polyester-based polyurethane resin or polyacrylate polyurethane-based resin Lanka - co - DOO agents, or laminating - those it is desirable to use the preparative adhesive.
Thus, the anchor coat agent layer or the laminate adhesive layer formed by using the anchor coat agent or the laminating adhesive as described above, As a film that can form a soft, flexible and flexible thin film, improve its tensile elongation, and has flexibility, flexibility, etc. against a barrier thin film layer made of an inorganic oxide For example, it improves the post-processing suitability of the barrier thin film layer made of an inorganic oxide during post-processing such as laminating, printing, or bag making, and is made of inorganic oxide during post-processing. This prevents the occurrence of cracks and the like in the barrier thin film layer.
Incidentally, in the present invention, the anchor coat layer by the anchor coat agent and / or the laminate adhesive layer by the laminate adhesive as described above are based on JIS standard K7113. It has a tensile elongation of 100 to 300%.
Thus, in the present invention, the tensile elongation of the anchor coating layer by the anchor coating agent and / or the laminating adhesive layer by the laminating adhesive as described above, etc. Thus, the tight adhesion between the barrier film and the heat-seal resin layer is improved, thereby preventing the occurrence of cracks and the like in the barrier thin film layer made of an inorganic oxide, and the lamination Strength is increased.
In the above, if the tensile elongation is less than 100%, it is not preferable because the flexibility as a laminated material is lost, and cracks and the like tend to occur in the barrier thin film layer made of an inorganic oxide. If the elongation exceeds 300%, the adhesive strength as an anchor coating agent or an adhesive for laminating is not sufficient, and the required laminating strength becomes difficult to be expressed. Is not preferable.

次に、本発明において、上記の積層材を使用して製造する本発明に係る包装用袋について説明すると、かかる包装用袋は、上記のような積層材を使用し、そのヒ−トシ−ル性樹脂層の面を対向して重ね合わせ、しかる後、その周辺端部をヒ−トシ−ルしてシ−ル部を形成して、上端部に開口部を有する包装用袋を製袋することができる。
而して、その製袋方法としては、上記のような積層材を、折り曲げるかあるいは重ね合わせて、その内層の面を対向させ、更にその周辺端部を、例えば、側面シ−ル型、二方シ−ル型、三方シ−ル型、四方シ−ル型、封筒貼りシ−ル型、合掌貼りシ−ル型(ピロ−シ−ル型)、ひだ付シ−ル型、平底シ−ル型、角底シ−ル型、ガゼット型、その他等のヒ−トシ−ル形態によりヒ−トシ−ルして、上端部に開口部を有する種々の形態からなる包装用袋を製造することができる。
その他、包装用袋としては、例えば、自立性包装用袋(スタンディングパウチ)等も可能である。
上記において、ヒ−トシ−ルの方法としては、例えば、バ−シ−ル、回転ロ−ルシ−ル、ベルトシ−ル、インパルスシ−ル、高周波シ−ル、超音波シ−ル等の公知の方法で行うことができる。
Next, in the present invention, the packaging bag according to the present invention manufactured using the above laminated material will be described. The packaging bag uses the above laminated material, and its heat seal. The surfaces of the photosensitive resin layers are overlapped to face each other, and then the peripheral end portion is heat sealed to form a seal portion, and a packaging bag having an opening at the upper end portion is formed. be able to.
Thus, as the bag making method, the above-mentioned laminated material is folded or overlapped so that the inner layer faces each other, and the peripheral edge thereof is, for example, a side seal type, two-layer type. Square seal type, three-way seal type, four-side seal type, envelope-attached seal type, jointed seal type (pill seal type), pleated seal type, flat bottom seal Heat-sealing in the form of heat seals such as a shell type, square bottom seal type, gusset type, etc., and manufacturing packaging bags having various forms having an opening at the upper end. Can do.
In addition, as the packaging bag, for example, a self-supporting packaging bag (standing pouch) can be used.
In the above, as the heat seal method, for example, a bar seal, a rotary roll seal, a belt seal, an impulse seal, a high frequency seal, an ultrasonic seal and the like are known. It can be done by the method.

次に、本発明において、上記で製造した包装用袋の開口部から内容物を充填し、次いで、その上端部に開口部をヒ−トシ−ル等により密閉することによって、本発明に係る包装用袋を使用した種々の形態からなる包装製品を製造することができるものである。
更に、本発明において、上記で製造した包装用袋の開口部から内容物を充填し、次いで、その上端部に開口部をヒ−トシ−ル等により密閉することによって、包装半製品を製造し、しかる後、該包装半製品を、レトルト処理あるいはボイル処理等の加熱処理を施すことによって、本発明にかかるレトルト用パウチを使用したレトルト包装食品を製造することができるものである。
上記において、レトルト処理あるいはボイル処理する方法としては、例えば、通常のレトルト釜を使用し、温度、110〜130℃位、好ましくは、120℃前後位、圧力、1〜3Kgf/cm2 ・G、好ましくは、2.1Kgf/cm2 ・G前後位、時間、20〜60分間位、好ましくは、30分間前後で加熱加圧処理する方法、あるいは、温度、90〜100℃、好ましくは、90℃前後位、時間、5〜20分間位、好ましくは、10分間前後位でボイル処理する方法等により行うことができる。
而して、本発明においては、上記のようなレトルト処理あるいはボイル処理により、内容物を加熱殺菌、あるいは、加熱殺菌調理等を行うことができるものである。
Next, in the present invention, the packaging according to the present invention is filled by filling the contents from the opening of the packaging bag produced above, and then sealing the opening at the upper end with a heat seal or the like. It is possible to manufacture packaged products having various forms using bags.
Furthermore, in the present invention, a packaging semi-finished product is manufactured by filling the contents from the opening of the packaging bag manufactured above and then sealing the opening at the upper end with a heat seal or the like. Thereafter, the packaged semi-finished product is subjected to a heat treatment such as a retort treatment or a boil treatment, whereby a retort packaged food using the retort pouch according to the present invention can be produced.
In the above, as a method for retorting or boiling, for example, a normal retort kettle is used, and the temperature is about 110 to 130 ° C., preferably about 120 ° C., pressure, 1 to 3 kgf / cm 2 · G, Preferably, a method of heating and pressurizing at about 2.1 kgf / cm 2 · G, about 20 to 60 minutes, preferably about 30 minutes, or temperature, 90 to 100 ° C., preferably 90 ° C. It can be carried out by a method of performing a boil treatment in about front and rear, time, about 5 to 20 minutes, preferably about 10 minutes.
Thus, in the present invention, the contents can be subjected to heat sterilization, heat sterilization cooking, or the like by retort processing or boil processing as described above.

次に、本発明において、本発明に係る包装用袋内に充填包装する内容物としては、例えば、調理食品、水産練り製品、冷凍食品、煮物、餅、液体ス−プ、調味料、飲料水、その他等の各種の飲食品、具体的には、例えば、カレ−、シチュ−、ス−プ、ミ−トソ−ス、ハンバ−グ、ミ−トボ−ル、しゅうまい、おでん、お粥等の流動食品、ゼリ−状食品、調味料、水、その他等の各種の飲食品等を挙げることができる。
而して、本発明において、本発明に係る包装用袋は、耐熱性、耐圧性、耐水性、ヒ−トシ−ル性、耐ピンホ−ル性、耐突き刺し性、その他等の諸物性に優れ、特に、酸素ガス、水蒸気等の透過を阻止するバリア性、透明性等に優れ、かつ、レトルト処理等の加工に伴う熱処理に耐え、更に、容器・包装ごみの軽量化、減量化等を図ると共にその製造工程の短縮化によりその製造コストの低減化を図ることができ、内容物の充填包装適性、品質保全性等に優れているものである。
Next, in the present invention, the contents to be filled and packaged in the packaging bag according to the present invention include, for example, cooked food, marine product, frozen food, boiled food, simmered, liquid soup, seasoning, drinking water, Other foods and drinks, such as curry, stew, soup, meat sauce, hamburger, meatball, sweet potato, oden, rice cake etc. Various foods and beverages such as foods, jelly-like foods, seasonings, water, etc. can be mentioned.
Thus, in the present invention, the packaging bag according to the present invention is excellent in various physical properties such as heat resistance, pressure resistance, water resistance, heat seal resistance, pin hole resistance, puncture resistance, and others. In particular, it has excellent barrier properties, transparency, etc. that prevent permeation of oxygen gas, water vapor, etc., and withstands heat treatment associated with processing such as retort treatment, and further reduces the weight and weight of containers and packaging waste. At the same time, the manufacturing process can be shortened by shortening the manufacturing process, and the contents can be packed and packaged and the quality is excellent.

具体的には、本発明においては、基材フィルムとして、例えば、ポリエステル系樹脂フィルムを使用する場合には、特に、耐熱性、耐屈曲性等の物性に優れた包装用袋を製造することができ、また、中間基材として、例えば、ポリアミド系樹脂(ナイロン)フィルムを使用する場合には、特に、耐ピンホ−ル性等に優れた包装用袋を製造することができるものである。
また、本発明においては、基材フィルムとポリパラキシリレンからなる蒸着重合膜との密接着性、ポリパラキシリレンからなる蒸着重合膜と無機酸化物からなるバリア性薄膜層との密接着性、無機酸化物からなるバリア性薄膜層とガスバリア性塗布膜との密接着性等に優れ、かつ、それらは、各々、透明性を有し、かつ、酸素ガス、水蒸気等の透過を阻止するバリア性を有するものであり、終極的には、アルミニウム箔等の金属箔とほぼ同等のバリア性等の作用効果を発揮すると共にアルミニウム箔等の金属箔と異なり、透明性に優れ、内容物等の視認性等に優れているものであり、更に、金属探知機等による金属探知テストを可能とするものである。
更に、本発明においては、無機酸化物からなるバリア性薄膜層等は、その膜厚は、数十Å〜数千Åからなるものであり、例えば、膜厚が5〜20μm前後からなるアルミニウム箔等の金属箔等と比較して、その膜厚を著しく薄膜化し、軽量化することができ、また、その重量を著しく低減化し、容器・包装ごみの軽量化、減量化等を図ることができるものである。
更にまた、本発明においては、有機珪素化合物を蒸着用モノマ−ガスとして使用し、プラズマ化学気相成長法を用いて製膜化してなる酸化珪素の蒸着膜を、バリア性層を構成する無機酸化物からなるバリア性薄膜層として使用すると、該酸化珪素の蒸着膜が、柔軟性に富み、耐屈曲性等を有することから、酸化珪素の蒸着膜にクラック等を生じてバリア性等を低下するということが少ないという利点を有するものである。
次に、上記の本発明について実施例を挙げて更に具体的に説明する。
Specifically, in the present invention, for example, when a polyester-based resin film is used as the base film, a packaging bag having excellent physical properties such as heat resistance and bending resistance can be produced. In addition, for example, when a polyamide-based resin (nylon) film is used as the intermediate substrate, a packaging bag excellent in pinhole resistance and the like can be manufactured.
In the present invention, close adhesion between a base film and a vapor-deposited polymer film made of polyparaxylylene, and close adhesion between a vapor-deposited polymer film made of polyparaxylylene and a barrier thin film layer made of an inorganic oxide. , Excellent in tight adhesion between the barrier thin film layer made of an inorganic oxide and the gas barrier coating film, etc., and they each have transparency and prevent the transmission of oxygen gas, water vapor, etc. Ultimately, it exhibits the effects such as barrier properties that are almost the same as those of metal foils such as aluminum foils, and unlike metal foils such as aluminum foils, it is excellent in transparency, contents, etc. It is excellent in visibility and the like, and further enables a metal detection test using a metal detector or the like.
Furthermore, in the present invention, the barrier thin film layer made of an inorganic oxide has a film thickness of several tens to several thousand, for example, an aluminum foil having a film thickness of about 5 to 20 μm. Compared with metal foils, etc., the film thickness can be significantly reduced to reduce the weight, and the weight can be significantly reduced to reduce the weight and weight of containers and packaging waste. Is.
Furthermore, in the present invention, an organic silicon compound is used as a vapor deposition monomer gas, and a silicon oxide vapor deposition film formed by plasma chemical vapor deposition is used as an inorganic oxide constituting the barrier layer. When used as a barrier thin film layer made of a material, the silicon oxide vapor-deposited film is flexible and has bending resistance. This has the advantage of being less.
Next, the present invention will be described more specifically with reference to examples.

(1).厚さ12μmの二軸延伸ポリエチレンテレフタレ−トフィルムを使用し、これを巻き取り式真空蒸着装置の送り出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ポリエチレンテレフタレ−トフィルムの一方の面に、下記に示す蒸着重合条件により、厚さ0.5μのポリパラキシリレンからなる蒸着重合膜を形成し、連続して、上記のポリパラキシリレンからなる蒸着重合膜の上に、アルミニウムを蒸着源に用いて、酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、下記の蒸着条件により、膜厚20nmの酸化アルミニウムの蒸着膜を形成した。
(蒸着重合条件)
材料;(2、2)−パラシクロファン
気化温度;180℃
熱分解温度;680℃
(蒸着条件)
蒸着源;アルミニウム
蒸着チヤンバー内の真空度;2×10-4mbar
巻き取りチヤンバー内の真空度;2×10-2mbar
電子ビーム電力;40kW
フィルムの搬送速度;480m/min
次に、上記で厚さ20nmの酸化アルミニウムの蒸着膜を形成した直後に、その酸化アルミニウムの蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7.0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbarで酸素/アルゴン混合ガスプラズマ処理を行って、酸化アルミニウムの蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
(2).他方、下記の表1に示す組成に従って、組成a.EVOH(エチレン共重合比率29%)をイソプロピルアルコールおよびイオン交換水の混合溶媒にて溶解したEVOH溶液に、予め調製した組成b.のエチルシリケート40、イソプロピルアルコール、アセチルアセトンアルミニウム、イオン交換水からなる加水分解液を加えて攪拌、更に予め調製した組成c.のポリビニルアルコール水溶液、シランカップリング剤(エポキシシリカSH6040) 、酢酸、イソプロピルアルコール及びイオン交換水からなる混合液を加えて攪拌し、無色透明のバリアー塗工液を得た。
(表1)
a EVOH(エチレン共重合率29%) 0.610(wt%)
イソプロピルアルコール 3.294
2 O 2.196
b エチルシリケート40 11.460
イソプロピルアルコール 17.662
アルミニウムアセチルアセトン 0.020
2 O 13.752
c ポリビニルアルコール 1.520
シランカップリング剤 0.050
イソプロピルアルコール 13.844
2 O 35.462
酢酸 0.130
合 計 100.000(wt%)
次に、上記の(1)で形成した酸化アルミニウムの蒸着膜のプラズマ処理面の面に、上記で製造したガスバリア性組成物を使用し、これをグラビアロールコート法によりコーティングして、次いで、100℃で30秒間、加熱処理して、厚さ0.4μm(乾操状態)のガスバリア性塗布膜を形成して、本発明に係るバリア性フィルムを製造した。
(3).次に、上記の(2)で製造したバリア性フィルムのガスバリア性塗布膜の面に、所望の印刷模様を形成した後、その印刷模様を含む全面に、2液硬化型のポリウレタン系ラミネ−ト用接着剤をグラビアロ−ルコ−ト法を用いて厚さ4.0g/m2 (乾燥状態)にコ−ティングしてラミネ−ト用接着剤層を形成し、次いで、該ラミネ−ト用接着剤層の面に、厚さ15μmの2軸延伸ナイロン6フィルムを、そのコロナ処理面を対向させて重ね合わせ、しかる後、その両者をドライラミネ−トして積層した。
次に、上記で積層した2軸延伸ナイロン6フィルムの面に、コロナ放電処理を施した後、そのコロナ処理面に、上記と同様にして、ラミネ−ト用接着剤層を形成し、しかる後、上記のラミネ−ト用接着剤層面に、厚さ60μmの無延伸ポリプロピレンフィルムをドライラミネ−トして積層して、本発明に係る積層材を製造した。
(4).次に、上記で製造した積層材の2枚を用意し、その無延伸ポリプロピレンフィルムの面を対向して重ね合わせ、しかる後、その外周周辺の端部を三方ヒ−トシ−ルしてシ−ル部を形成すると共に上方に開口部を有する三方シ−ル型の軟包装用袋を製造した。 上記で製造した三方シ−ル型の軟包装用袋内に、その開口部から水を充填包装し、しかる後、その開口部をヒ−トシ−ルして上方シ−ル部を形成して包装半製品を製造し、次いで、その包装半製品をレトルト釜に入れて、温度、120℃、圧力、2.1Kgf/cm2 ・G、時間、30分間からなるレトルト処理条件でレトルト処理を行い、本発明にかかるレトルト包装食品を製造した。
上記で製造したレトルト包装食品は、その包装用袋が、耐熱性、耐圧性、耐水性、バリア性、ヒ−トシ−ル性、耐ピンホ−ル性、突き刺し性、透明性等に優れ、更に、酸素ガス、水蒸気等に対するバリア性に優れ、破袋ないし内容物の漏れ等も認められず、食品容器としての機能、例えば、内容物の充填包装適性、流通適正、保存適性等に優れていた。
(1). Using a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm, this is mounted on a feed roll of a take-up vacuum deposition apparatus, and then fed out onto a coating drum. On one surface of the axially stretched polyethylene terephthalate film, a vapor-deposited polymer film made of polyparaxylylene having a thickness of 0.5 μm was formed under the vapor deposition polymerization conditions shown below. Continuously, the above polyparaxylylene An aluminum oxide film having a film thickness of 20 nm is formed on the vapor-deposited polymer film by using a vacuum vapor deposition method using an electron beam (EB) heating method while supplying oxygen gas using aluminum as a vapor deposition source. A deposited film was formed.
(Vapor deposition polymerization conditions)
Materials; (2, 2) -paracyclophane Evaporation temperature: 180 ° C
Thermal decomposition temperature: 680 ° C
(Deposition conditions)
Deposition source: Aluminum Degree of vacuum in the deposition chamber; 2 × 10 -4 mbar
Degree of vacuum in winding chamber; 2 × 10 -2 mbar
Electron beam power: 40kW
Film conveyance speed: 480 m / min
Next, immediately after forming the aluminum oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator was used on the aluminum oxide vapor deposition film surface, and the power was 9 kW, oxygen gas (O 2 ): argon gas. Using a mixed gas of (Ar) = 7.0: 2.5 (unit: Slm) and performing oxygen / argon mixed gas plasma treatment at a mixed gas pressure of 6 × 10 −2 mbar, an aluminum oxide vapor deposition film A plasma-treated surface having a surface tension improved by 54 dyne / cm or more was formed.
(2). On the other hand, according to the composition shown in Table 1 below, the composition a. Composition prepared in advance in an EVOH solution in which EVOH (ethylene copolymerization ratio 29%) was dissolved in a mixed solvent of isopropyl alcohol and ion-exchanged water b. A hydrolyzed solution composed of ethyl silicate 40, isopropyl alcohol, acetylacetone aluminum, and ion-exchanged water, and stirred, and further prepared in advance c. A mixed solution composed of an aqueous polyvinyl alcohol solution, a silane coupling agent (epoxysilica SH6040), acetic acid, isopropyl alcohol and ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating solution.
(Table 1)
a EVOH (ethylene copolymerization rate 29%) 0.610 (wt%)
Isopropyl alcohol 3.294
H 2 O 2.196
b Ethyl silicate 40 11.460
Isopropyl alcohol 17.662
Aluminum acetylacetone 0.020
H 2 O 13.752
c Polyvinyl alcohol 1.520
Silane coupling agent 0.050
Isopropyl alcohol 13.844
H 2 O 35.462
Acetic acid 0.130
Total 100.000 (wt%)
Next, the gas barrier composition produced above is used for the plasma-treated surface of the aluminum oxide vapor deposition film formed in the above (1), and this is coated by a gravure roll coating method. A gas barrier coating film having a thickness of 0.4 μm (in a dry operation state) was formed by heating at 30 ° C. for 30 seconds to produce a barrier film according to the present invention.
(3). Next, after forming a desired printed pattern on the surface of the gas barrier coating film of the barrier film produced in (2) above, a two-component curable polyurethane laminating film is formed on the entire surface including the printed pattern. A laminating adhesive layer is formed by coating an adhesive for coating to a thickness of 4.0 g / m 2 (dry state) using a gravure roll coating method, and then laminating adhesive A biaxially stretched nylon 6 film having a thickness of 15 μm was laminated on the surface of the agent layer with the corona-treated surfaces facing each other, and then both were laminated by dry lamination.
Next, after applying the corona discharge treatment to the surface of the biaxially stretched nylon 6 film laminated as described above, a laminating adhesive layer is formed on the corona treatment surface in the same manner as described above, and thereafter The laminate material according to the present invention was manufactured by dry laminating and laminating an unstretched polypropylene film having a thickness of 60 μm on the laminating adhesive layer surface.
(4). Next, two sheets of the laminated material produced above are prepared, the non-stretched polypropylene film faces are overlapped with each other, and then the outer peripheral edge is sealed in a three-way heat seal. A three-sided seal-type flexible packaging bag having an opening portion and an opening on the upper side was manufactured. In the three-sided seal type soft packaging bag manufactured above, water is filled and packaged from the opening, and then the opening is heat sealed to form an upper seal. A semi-finished packaging product is manufactured, and then the semi-finished packaging product is placed in a retort kettle and subjected to retort treatment under conditions of temperature, 120 ° C., pressure, 2.1 kgf / cm 2 · G, time, 30 minutes. The retort packaged food according to the present invention was produced.
The retort packaged food manufactured above has excellent heat resistance, pressure resistance, water resistance, barrier properties, heat seal properties, pin hole resistance, piercing properties, transparency, etc. Excellent barrier properties against oxygen gas, water vapor, etc., with no bag breakage or leakage of contents, etc., and functions as a food container, such as content filling and packaging suitability, distribution suitability, storage suitability, etc. .

(1).厚さ15μmの二軸延伸ナイロン6フィルムをを使用し、これを巻き取り式真空蒸着装置の巻き出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ナイロン6フィルムの一方の面に、下記に示す蒸着重合条件により、厚さ0.5μのポリパラキシリレンからなる蒸着重合膜を形成し、連続して、上記のポリパラキシリレンからなる蒸着重合膜の上に、アルミニウムを蒸着源に用いて、酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、下記の蒸着条件により、膜厚20nmの酸化アルミニウムの蒸着膜を形成した。
(蒸着重合条件)
材料;(2、2)−パラシクロファン
気化温度;180℃
熱分解温度;680℃
(蒸着条件)
蒸着源;アルミニウム
蒸着チヤンバー内の真空度;2×10-4mbar
巻き取りチヤンバー内の真空度;2×10-2mbar
電子ビーム電力;40kW
フィルムの搬送速度;480m/min
次に、上記で厚さ20nmの酸化アルミニウムの蒸着膜を形成した直後に、その酸化アルミニウムの蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7.0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbarで酸素/アルゴン混合ガスプラズマ処理を行って、酸化アルミニウムの蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
(2).他方、下記の表2に示す組成に従って、組成a.EVOH(エチレン共重合比率29%)イソプロピルアルコールおよびイオン交換水の混合溶媒にて溶解したEVOH溶液に、予め調製した組成b.のエチルシリケート40、イソプロピルアルコー、アセチルアセトンアルミニウム、イオン交換水からなる加水分解液を加えて攪拌、更に予め調製した組成c.のポリビニルアルコール水溶液、酢酸、イソプロピルアルコール及びイオン交換水からなる混合液を加えて攪拌し、無色透明のバリアー塗工液を得た。
(表2)
a EVOH(エチレン共重合率29%) 0.122(wt%)
イソプロピルアルコール 0.659
2 O 0.439
b エチルシリケート40 9.146
イソプロピルアルコール 8.780
アルミニウムアセチルアセトン 0.018
2 O 16.291
c ポリビニルアルコール 1.220
イソプロピルアルコール 19.893
2 O 43.329
酢酸 0.103
合 計 100.000(wt%)
次に、上記の(1)で形成した酸化アルミニウムの蒸着膜のプラズマ処理面の面に、上記で製造したガスバリア性組成物を使用し、これをグラビアロールコート法によりコーティングして、次いで、100℃で30秒間、加熱処理して、厚さ0.2μm(乾操状態)のガスバリア性塗布膜を形成して、本発明に係るバリア性フィルムを製造した。
(3).次に、厚さ12μmの2軸延伸ポリエチレンテレフタレ−トフィルムのコロナ処理面に、通常のグラビアインキ組成物を使用し、グラビア印刷方式により、文字、図形、絵柄、その他等からなる所定の印刷模様を印刷して印刷模様層を形成した。
次に、上記で形成した印刷模様層を含む全面に、2液硬化型ポリウレタン系接着剤(主剤:ポリエステルポリオール、硬化剤:脂肪族シソシアネート)を使用し、これをグラビアロールコ−ト法を用いて、厚さ5.0g/m2 (乾燥状態)にコーティングしてラミネート用接着剤層を形成し、次いで、該ラミネート用接着剤層面に、上記(2)で製造したバリア性フィルムを、そのガスバリア性塗布膜の面を対向させて重ね合わせ、しかる後、その両者をドライラミネ−ト積層した。
更に、上記でドライラミネ−ト積層したバリア性フィルムの二軸延伸ナイロン6フィルムのコロナ処理面の面に、2液硬化型ウレタン系接着剤(主剤:ポリエステルポリオール、硬化剤:脂肪族シソシアネート)を使用し、これをグラビアロールコ−ト法を用いて、厚さ5.0g/m2 (乾燥状態)にコーティングしてラミネート用接着剤層を形成し、次いで、該ラミネート用接着剤層面に、厚さ60μmの無延伸ポリプロピレンフィルムをドライラミネ−トして積層して、本発明に係る積層材を製造した。
(4).次に、上記で製造した積層材の2枚を用意し、その無延伸ポリプロピレンフィルムの面を対向して重ね合わせ、しかる後、その外周周辺の端部を三方ヒ−トシ−ルしてシ−ル部を形成すると共に上方に開口部を有する三方シ−ル型の軟包装用袋を製造した。 上記で製造した三方シ−ル型の軟包装用袋内に、その開口部から水を充填包装し、しかる後、その開口部をヒ−トシ−ルして上方シ−ル部を形成して包装半製品を製造し、次いで、その包装半製品をレトルト釜に入れて、温度、120℃、圧力、2.1Kgf/cm2 ・G、時間、30分間からなるレトルト処理条件でレトルト処理を行い、本発明にかかるレトルト包装食品を製造した。
上記で製造したレトルト包装食品は、その包装用袋が、耐熱性、耐圧性、耐水性、バリア性、ヒ−トシ−ル性、耐ピンホ−ル性、突き刺し性、透明性等に優れ、更に、酸素ガス、水蒸気等に対するバリア性に優れ、破袋ないし内容物の漏れ等も認められず、食品容器としての機能、例えば、内容物の充填包装適性、流通適正、保存適性等に優れていた。
(1). A biaxially stretched nylon 6 film having a thickness of 15 μm was used, and this was mounted on a take-up roll of a take-up vacuum deposition apparatus, and then fed out onto a coating drum. A vapor-deposited polymer film made of polyparaxylylene having a thickness of 0.5 μm is formed on one surface of the axially stretched nylon 6 film under the vapor deposition polymerization conditions shown below, and is continuously made of the above polyparaxylylene. On the vapor deposition polymer film, an aluminum oxide vapor deposition film having a film thickness of 20 nm is formed according to the following vapor deposition conditions by a vacuum vapor deposition method using an electron beam (EB) heating method while supplying oxygen gas using aluminum as a vapor deposition source. Formed.
(Vapor deposition polymerization conditions)
Materials; (2, 2) -paracyclophane Evaporation temperature: 180 ° C
Thermal decomposition temperature: 680 ° C
(Deposition conditions)
Deposition source: Aluminum Degree of vacuum in the deposition chamber; 2 × 10 -4 mbar
Degree of vacuum in winding chamber; 2 × 10 -2 mbar
Electron beam power: 40kW
Film conveyance speed: 480 m / min
Next, immediately after forming the aluminum oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator was used on the aluminum oxide vapor deposition film surface, and the power was 9 kW, oxygen gas (O 2 ): argon gas. Using a mixed gas of (Ar) = 7.0: 2.5 (unit: Slm) and performing oxygen / argon mixed gas plasma treatment at a mixed gas pressure of 6 × 10 −2 mbar, an aluminum oxide vapor deposition film A plasma-treated surface having a surface tension improved by 54 dyne / cm or more was formed.
(2). On the other hand, according to the composition shown in Table 2 below, composition a. EVOH (ethylene copolymerization ratio 29%) A composition prepared in advance in an EVOH solution dissolved in a mixed solvent of isopropyl alcohol and ion-exchanged water b. A hydrolyzate composed of ethyl silicate 40, isopropyl alcohol, acetylacetone aluminum, and ion-exchanged water, followed by stirring, and a composition prepared in advance c. A mixed liquid composed of an aqueous polyvinyl alcohol solution, acetic acid, isopropyl alcohol and ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating liquid.
(Table 2)
a EVOH (ethylene copolymerization ratio 29%) 0.122 (wt%)
Isopropyl alcohol 0.659
H 2 O 0.439
b Ethylsilicate 40 9.146
Isopropyl alcohol 8.780
Aluminum acetylacetone 0.018
H 2 O 16.291
c Polyvinyl alcohol 1.220
Isopropyl alcohol 19.893
H 2 O 43.329
Acetic acid 0.103
Total 100.000 (wt%)
Next, the gas barrier composition produced above is used for the plasma-treated surface of the aluminum oxide vapor deposition film formed in the above (1), and this is coated by a gravure roll coating method. A gas barrier coating film having a thickness of 0.2 μm (in a dry operation state) was formed by heat treatment at 30 ° C. for 30 seconds to produce a barrier film according to the present invention.
(3). Next, a normal gravure ink composition is used on the corona-treated surface of a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm, and a predetermined printing pattern consisting of letters, figures, patterns, etc., by a gravure printing method. Was printed to form a printed pattern layer.
Next, a two-component curable polyurethane adhesive (main agent: polyester polyol, curing agent: aliphatic isocyanate) is used on the entire surface including the printed pattern layer formed above, and this is subjected to a gravure roll coating method. Using the coating film to a thickness of 5.0 g / m 2 (in a dry state) to form an adhesive layer for laminating, the barrier film produced in (2) above was then formed on the surface of the laminating adhesive layer. The surfaces of the gas barrier coating film were overlapped with each other, and then both were laminated by dry lamination.
Furthermore, on the surface of the corona-treated surface of the biaxially stretched nylon 6 film of the barrier film laminated as described above, a two-component curable urethane-based adhesive (main agent: polyester polyol, curing agent: aliphatic isocyanate) This is coated using a gravure roll coat method to a thickness of 5.0 g / m 2 (in a dry state) to form a laminating adhesive layer, and then on the laminating adhesive layer surface, A non-stretched polypropylene film having a thickness of 60 μm was laminated by dry lamination to produce a laminated material according to the present invention.
(4). Next, two sheets of the laminated material produced above are prepared, the non-stretched polypropylene film faces are overlapped with each other, and then the outer peripheral edge is sealed in a three-way heat seal. A three-sided seal-type flexible packaging bag having an opening portion and an opening on the upper side was manufactured. In the three-sided seal type soft packaging bag manufactured above, water is filled and packaged from the opening, and then the opening is heat sealed to form an upper seal. A semi-finished packaging product is manufactured, and then the semi-finished packaging product is placed in a retort kettle and subjected to retort treatment under conditions of temperature, 120 ° C., pressure, 2.1 kgf / cm 2 · G, time, 30 minutes. The retort packaged food according to the present invention was produced.
The retort packaged food manufactured above has excellent heat resistance, pressure resistance, water resistance, barrier properties, heat seal properties, pin hole resistance, piercing properties, transparency, etc. Excellent barrier properties against oxygen gas, water vapor, etc., with no bag breakage or leakage of contents, etc., and functions as a food container, such as content filling and packaging suitability, distribution suitability, storage suitability, etc. .

(1).厚さ12μmの二軸延伸ポリエチレンテレフタレ−トフィルムを使用し、これを巻き取り式真空蒸着装置の巻き出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ポリエチレンテレフタレ−トフィルムの一方の面に、下記に示す蒸着重合条件により、厚さ0.5μのポリパラキシリレンからなる蒸着重合膜を形成し、連続して、上記のポリパラキシリレンからなる蒸着重合膜の面に、マグネトロンスパッタリング装置を使用し、アルゴンガス600sccmを導入して、出力25kWでプラズマ処理を行って、上記のポリパラキシリレンからなる蒸着重合膜の面に、不活性ガスによるプラズマ処理面を形成し、次いで、そのプラズマ処理面に、アルミニウムを蒸着源に用いて、酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、下記の蒸着条件により、膜厚20nmの酸化アルミニウムの蒸着膜を形成した。
(蒸着重合条件)
材料;(2、2)−パラシクロファン
気化温度;180℃
熱分解温度;680℃
(蒸着条件)
蒸着源;アルミニウム
蒸着チヤンバー内の真空度;2×10-4mbar
巻き取りチヤンバー内の真空度;2×10-2mbar
電子ビーム電力;40kW
フィルムの搬送速度;480m/min
次に、上記で厚さ20nmの酸化アルミニウムの蒸着膜を形成した直後に、その酸化アルミニウムの蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7.0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbarで酸素/アルゴン混合ガスプラズマ処理を行って、酸化アルミニウムの蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
(2).他方、下記の表3に示す組成に従って、調製した組成a.のポリビニルアルコール水溶液、酢酸、イソプロピルアルコール及びイオン交換水からなる混合液に、予め調製した組成b.のエチルシリケート40、イソプロピルアルコー、アセチルアセトンアルミニウム、イオン交換水からなる加水分解液を加えて攪拌し、無色透明のバリアー塗工液を得た。
(表3)
a ポリビニルアルコール 1.235(wt%)
イソプロピルアルコール 20.139
2 O 43.866
酢酸 0.104
b エチルシリケート40 9.259
イソプロピルアルコール 8.888
アルミニウムアセチルアセトン 0.018
2 O 16.493
合 計 100.000(wt%)
次に、上記の(1)で形成した酸化アルミニウムの蒸着膜のプラズマ処理面の面に、上記で製造したガスバリア性組成物を使用し、これをグラビアロールコート法によりコーティングして、次いで、100℃で30秒間、加熱処理して、厚さ0.4μm(乾操状態)のガスバリア性塗布膜を形成して、本発明に係るバリア性フィルムを製造した。
(3).次に、上記の(2)で製造したバリア性フィルムを使用し、以下、上記の実施例1と同様にして、上記の実施例1と同様に、本発明に係る積層材、三方シ−ル型の軟包装用袋、包装半製品、レトルト包装食品を製造した。
上記で製造したレトルト包装食品は、その包装用袋が、耐熱性、耐圧性、耐水性、バリア性、ヒ−トシ−ル性、耐ピンホ−ル性、突き刺し性、透明性等に優れ、更に、酸素ガス、水蒸気等に対するバリア性に優れ、破袋ないし内容物の漏れ等も認められず、食品容器としての機能、例えば、内容物の充填包装適性、流通適正、保存適性等に優れていた。
(1). A biaxially stretched polyethylene terephthalate film having a thickness of 12 μm was used, and this was mounted on a take-up roll of a take-up vacuum deposition apparatus. Then, this was fed onto a coating drum, and then the above-mentioned On one surface of the biaxially stretched polyethylene terephthalate film, a vapor-deposited polymer film made of polyparaxylylene having a thickness of 0.5 μm was formed under the following vapor deposition polymerization conditions. A magnetron sputtering apparatus is used on the surface of the vapor-deposited polymer film made of lens, an argon gas of 600 sccm is introduced, plasma treatment is performed at an output of 25 kW, and the surface of the vapor-deposited polymer film made of polyparaxylylene is not coated. A plasma-treated surface with an active gas is formed, and then oxygen gas is supplied to the plasma-treated surface using aluminum as a deposition source. However, a 20 nm-thick aluminum oxide vapor deposition film was formed under the following vapor deposition conditions by a vacuum vapor deposition method using an electron beam (EB) heating method.
(Vapor deposition polymerization conditions)
Materials; (2, 2) -paracyclophane Evaporation temperature: 180 ° C
Thermal decomposition temperature: 680 ° C
(Deposition conditions)
Deposition source: Aluminum Degree of vacuum in the deposition chamber; 2 × 10 -4 mbar
Degree of vacuum in winding chamber; 2 × 10 -2 mbar
Electron beam power: 40kW
Film conveyance speed: 480 m / min
Next, immediately after forming the aluminum oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator was used on the aluminum oxide vapor deposition film surface, and the power was 9 kW, oxygen gas (O 2 ): argon gas. Using a mixed gas of (Ar) = 7.0: 2.5 (unit: Slm) and performing oxygen / argon mixed gas plasma treatment at a mixed gas pressure of 6 × 10 −2 mbar, an aluminum oxide vapor deposition film A plasma-treated surface having a surface tension improved by 54 dyne / cm or more was formed.
(2). On the other hand, according to the composition shown in Table 3 below, the prepared composition a. A pre-prepared composition b. In a mixed solution comprising an aqueous solution of polyvinyl alcohol, acetic acid, isopropyl alcohol and ion-exchanged water. A hydrolyzed solution composed of ethyl silicate 40, isopropyl alcohol, acetylacetone aluminum and ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating solution.
(Table 3)
a Polyvinyl alcohol 1.235 (wt%)
Isopropyl alcohol 20.139
H 2 O 43.866
Acetic acid 0.104
b Ethylsilicate 40 9.259
Isopropyl alcohol 8.888
Aluminum acetylacetone 0.018
H 2 O 16.493
Total 100.000 (wt%)
Next, the gas barrier composition produced above is used for the plasma-treated surface of the aluminum oxide vapor deposition film formed in the above (1), and this is coated by a gravure roll coating method. A gas barrier coating film having a thickness of 0.4 μm (in a dry operation state) was formed by heating at 30 ° C. for 30 seconds to produce a barrier film according to the present invention.
(3). Next, using the barrier film produced in the above (2), the laminate material and the three-way seal according to the present invention are used in the same manner as in the above-described Example 1 as in the above-described Example 1. Molded soft packaging bags, semi-finished packaging products, and retort packaging foods.
The retort packaged food manufactured above has excellent heat resistance, pressure resistance, water resistance, barrier properties, heat seal properties, pin hole resistance, piercing properties, transparency, etc. Excellent barrier properties against oxygen gas, water vapor, etc., with no bag breakage or leakage of contents, etc., and functions as a food container, such as content filling and packaging suitability, distribution suitability, storage suitability, etc. .

(1).厚さ12μmの二軸延伸ポリエチレンテレフタレ−トフィルムを使用し、該二軸延伸ポリエチレンテレフタレ−トフィルムをプラズマ化学気相成長装置の巻き出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ポリエチレンテレフタレ−トフィルムの一方の面に、下記に示す蒸着重合条件により、厚さ0.5μのポリパラキシリレンからなる蒸着重合膜を形成し、連続して、上記のポリパラキシリレンからなる蒸着重合膜の上に、下記に示す蒸着条件により、厚さ20nmの酸化珪素の蒸着膜を形成した。 (蒸着重合条件)
材料;(2、2)−パラシクロファン
気化温度;180℃
熱分解温度;680℃
(蒸着条件)
反応ガス混合比;へキサメチルジシロキサン:酸素ガス:ヘリウム=1.2:5.0:2.5(単位:Slm)
到達圧力;5.0×10-5mbar
製膜圧力;7.0×10-2mbar
ライン速度;150m/min
パワー;35kW
次に、上記で厚さ20nmの酸化珪素の蒸着膜を形成した直後に、その酸化珪素の蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7Z0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbar、処理速度150m/minで酸素/アルゴン混合ガスプラズマ処理を行って、酸化珪素の蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
(2).他方、下記の表1に示す組成に従って、組成a.EVOH(エチレン共重合比率29%)をイソプロピルアルコールおよびイオン交換水の混合溶媒にて溶解したEVOH溶液に、予め調製した組成b.のエチルシリケート40、イソプロピルアルコール、アセチルアセトンアルミニウム、イオン交換水からなる加水分解液を加えて攪拌、更に予め調製した組成c.のポリビニルアルコール水溶液、シランカップリング剤(エポキシシリカSH6040) 、酢酸、イソプロピルアルコール及びイオン交換水からなる混合液を加えて攪拌し、無色透明のバリアー塗工液を得た。
(表1)
a EVOH(エチレン共重合率29%) 0.610(wt%)
イソプロピルアルコール 3.294
2 O 2.196
b エチルシリケート40 11.460
イソプロピルアルコール 17.662
アルミニウムアセチルアセトン 0.020
2 O 13.752
c ポリビニルアルコール 1.520
シランカップリング剤 0.050
イソプロピルアルコール 13.844
2 O 35.462
酢酸 0.130
合 計 100.000(wt%)
次に、上記の(1)で形成した酸素ガスによるプラズマ処理面に、上記で製造したガスバリア性組成物を使用し、これをグラビアロールコート法によりコーティングして、次いで、100℃で30秒間、加熱処理して、厚さ0.4μm(乾操状態)のガスバリア性塗布膜を形成して、本発明に係るバリア性フィルムを製造した。
(3).次に、上記の(2)で製造したバリア性フィルムのガスバリア性塗布膜の面に、所望の印刷模様を形成した後、その印刷模様を含む全面に、2液硬化型のポリウレタン系ラミネ−ト用接着剤をグラビアロ−ルコ−ト法を用いて厚さ4.0g/m2 (乾燥状態)にコ−ティングしてラミネ−ト用接着剤層を形成し、次いで、該ラミネ−ト用接着剤層の面に、厚さ15μmの2軸延伸ナイロン6フィルムを、そのコロナ処理面を対向させて重ね合わせ、しかる後、その両者をドライラミネ−トして積層した。
次に、上記で積層した2軸延伸ナイロン6フィルムの面に、コロナ放電処理を施した後、そのコロナ処理面に、上記と同様にして、ラミネ−ト用接着剤層を形成し、しかる後、上記のラミネ−ト用接着剤層面に、厚さ60μmの無延伸ポリプロピレンフィルムをドライラミネ−トして積層して、本発明に係る積層材を製造した。
(4).次に、上記で製造した積層材の2枚を用意し、その無延伸ポリプロピレンフィルムの面を対向して重ね合わせ、しかる後、その外周周辺の端部を三方ヒ−トシ−ルしてシ−ル部を形成すると共に上方に開口部を有する三方シ−ル型の軟包装用袋を製造した。 上記で製造した三方シ−ル型の軟包装用袋内に、その開口部から水を充填包装し、しかる後、その開口部をヒ−トシ−ルして上方シ−ル部を形成して包装半製品を製造し、次いで、その包装半製品をレトルト釜に入れて、温度、120℃、圧力、2.1Kgf/cm2 ・G、時間、30分間からなるレトルト処理条件でレトルト処理を行い、本発明にかかるレトルト包装食品を製造した。
上記で製造したレトルト包装食品は、その包装用袋が、耐熱性、耐圧性、耐水性、バリア性、ヒ−トシ−ル性、耐ピンホ−ル性、突き刺し性、透明性等に優れ、更に、酸素ガス、水蒸気等に対するバリア性に優れ、破袋ないし内容物の漏れ等も認められず、食品容器としての機能、例えば、内容物の充填包装適性、流通適正、保存適性等に優れていた。
(1). A biaxially stretched polyethylene terephthalate film having a thickness of 12 μm was used, and the biaxially stretched polyethylene terephthalate film was mounted on the unwinding roll of the plasma chemical vapor deposition apparatus, and then this was placed on the coating drum. Thereafter, a vapor-deposited polymer film made of polyparaxylylene having a thickness of 0.5 μm is formed on one surface of the biaxially stretched polyethylene terephthalate film according to the vapor deposition polymerization conditions shown below. Then, a silicon oxide vapor deposition film having a thickness of 20 nm was formed on the vapor deposition polymer film composed of the above polyparaxylylene under the following vapor deposition conditions. (Vapor deposition polymerization conditions)
Materials; (2, 2) -paracyclophane Evaporation temperature: 180 ° C
Thermal decomposition temperature: 680 ° C
(Deposition conditions)
Reaction gas mixing ratio: Hexamethyldisiloxane: Oxygen gas: Helium = 1.2: 5.0: 2.5 (Unit: Slm)
Ultimate pressure: 5.0 × 10 -5 mbar
Film forming pressure: 7.0 × 10 −2 mbar
Line speed: 150 m / min
Power: 35kW
Next, immediately after forming a silicon oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator is used on the silicon oxide vapor deposition film surface, and the power is 9 kW, oxygen gas (O 2 ): argon gas. (Ar) = 7Z0: 2.5 (unit: Slm) is used, and oxygen / argon mixed gas plasma treatment is performed at a mixed gas pressure of 6 × 10 −2 mbar and a processing speed of 150 m / min. A plasma-treated surface was formed in which the surface tension of the silicon deposition film surface was improved by 54 dyne / cm or more.
(2). On the other hand, according to the composition shown in Table 1 below, the composition a. Composition prepared in advance in an EVOH solution in which EVOH (ethylene copolymerization ratio 29%) was dissolved in a mixed solvent of isopropyl alcohol and ion-exchanged water b. A hydrolyzed solution composed of ethyl silicate 40, isopropyl alcohol, acetylacetone aluminum, and ion-exchanged water, and stirred, and further prepared in advance c. A mixed solution composed of an aqueous polyvinyl alcohol solution, a silane coupling agent (epoxysilica SH6040), acetic acid, isopropyl alcohol and ion-exchanged water was added and stirred to obtain a colorless and transparent barrier coating solution.
(Table 1)
a EVOH (ethylene copolymerization rate 29%) 0.610 (wt%)
Isopropyl alcohol 3.294
H 2 O 2.196
b Ethyl silicate 40 11.460
Isopropyl alcohol 17.662
Aluminum acetylacetone 0.020
H 2 O 13.752
c Polyvinyl alcohol 1.520
Silane coupling agent 0.050
Isopropyl alcohol 13.844
H 2 O 35.462
Acetic acid 0.130
Total 100.000 (wt%)
Next, using the gas barrier composition produced above on the plasma treated surface with oxygen gas formed in (1) above, this is coated by the gravure roll coating method, and then at 100 ° C. for 30 seconds. Heat treatment was performed to form a gas barrier coating film having a thickness of 0.4 μm (in a dry operation state) to produce a barrier film according to the present invention.
(3). Next, after forming a desired printed pattern on the surface of the gas barrier coating film of the barrier film produced in (2) above, a two-component curable polyurethane laminating film is formed on the entire surface including the printed pattern. A laminating adhesive layer is formed by coating an adhesive for coating to a thickness of 4.0 g / m 2 (dry state) using a gravure roll coating method, and then laminating adhesive A biaxially stretched nylon 6 film having a thickness of 15 μm was laminated on the surface of the agent layer with the corona-treated surfaces facing each other, and then both were laminated by dry lamination.
Next, after applying the corona discharge treatment to the surface of the biaxially stretched nylon 6 film laminated as described above, a laminating adhesive layer is formed on the corona treatment surface in the same manner as described above, and thereafter The laminate material according to the present invention was manufactured by dry laminating and laminating an unstretched polypropylene film having a thickness of 60 μm on the laminating adhesive layer surface.
(4). Next, two sheets of the laminated material produced above are prepared, the non-stretched polypropylene film faces are overlapped with each other, and then the outer peripheral edge is sealed in a three-way heat seal. A three-sided seal-type flexible packaging bag having an opening portion and an opening on the upper side was manufactured. In the three-sided seal type soft packaging bag manufactured above, water is filled and packaged from the opening, and then the opening is heat sealed to form an upper seal. A semi-finished packaging product is manufactured, and then the semi-finished packaging product is placed in a retort kettle and subjected to retort treatment under conditions of temperature, 120 ° C., pressure, 2.1 kgf / cm 2 · G, time, 30 minutes. The retort packaged food according to the present invention was produced.
The retort packaged food manufactured above has excellent heat resistance, pressure resistance, water resistance, barrier properties, heat seal properties, pin hole resistance, piercing properties, transparency, etc. Excellent barrier properties against oxygen gas, water vapor, etc., with no bag breakage or leakage of contents, etc., and functions as a food container, such as content filling and packaging suitability, distribution suitability, storage suitability, etc. .

(比較例1)
(1).厚さ12μmの二軸延伸ポリエチレンテレフタレ−トフィルムを使用し、これを巻き取り式真空蒸着装置の送り出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ポリエチレンテレフタレ−トフィルムの一方の面に、アルミニウムを蒸着源に用いて、酸素ガスを供給しながら、エレクトロンビーム(EB)加熱方式による真空蒸着法により、下記の蒸着条件により、膜厚20nmの酸化アルミニウムの蒸着膜を形成した。
(蒸着条件)
蒸着源;アルミニウム
蒸着チヤンバー内の真空度;2×10-4mbar
巻き取りチヤンバー内の真空度;2×10-2mbar
電子ビーム電力;40kW
フィルムの搬送速度;480m/min
次に、上記で厚さ20nmの酸化アルミニウムの蒸着膜を形成した直後に、その酸化アルミニウムの蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7.0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbarで酸素/アルゴン混合ガスプラズマ処理を行って、酸化アルミニウムの蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
更に、上記で形成したプラズマ処理面の面に、ポリウレタン系樹脂の初期縮合物に、エポキシ系のシランカップリング剤(8.0重量%)とブロッキング防止剤(1.0重量%)を添加し、十分に混練してなるプライマ−樹脂組成物を使用し、これをグラビアロ−ルコ−ト法により、膜厚0.5g/m2 (乾燥状態)になるようにコ−ティングしてプライマ−剤層を形成して、バリア性フィルムを製造した。
(2).次に、上記の(1)で製造したバリア性フィルムのプライマ−剤層の面に、所望の印刷模様を形成した後、その印刷模様を含む全面に、2液硬化型のポリウレタン系ラミネ−ト用接着剤をグラビアロ−ルコ−ト法を用いて厚さ4.0g/m2 (乾燥状態)にコ−ティングしてラミネ−ト用接着剤層を形成し、次いで、該ラミネ−ト用接着剤層の面に、厚さ15μmの2軸延伸ナイロン6フィルムを、そのコロナ処理面を対向させて重ね合わせ、しかる後、その両者をドライラミネ−トして積層した。
次に、上記で積層した2軸延伸ナイロン6フィルムの面に、コロナ放電処理を施した後、そのコロナ処理面に、上記と同様にして、ラミネ−ト用接着剤層を形成し、しかる後、上記のラミネ−ト用接着剤層面に、厚さ60μmの無延伸ポリプロピレンフィルムをドライラミネ−トして積層して、積層材を製造した。
(3).次に、上記で製造した積層材の2枚を用意し、その無延伸ポリプロピレンフィルムの面を対向して重ね合わせ、しかる後、その外周周辺の端部を三方ヒ−トシ−ルしてシ−ル部を形成すると共に上方に開口部を有する三方シ−ル型の軟包装用袋を製造した。 上記で製造した三方シ−ル型の軟包装用袋内に、その開口部から水を充填包装し、しかる後、その開口部をヒ−トシ−ルして上方シ−ル部を形成して包装半製品を製造し、次いで、その包装半製品をレトルト釜に入れて、温度、120℃、圧力、2.1Kgf/cm2 ・G、時間、30分間からなるレトルト処理条件でレトルト処理を行い、レトルト包装食品を製造した。
(Comparative Example 1)
(1). Using a biaxially stretched polyethylene terephthalate film having a thickness of 12 μm, this is mounted on a feed roll of a take-up vacuum deposition apparatus, and then fed out onto a coating drum. A film thickness of 20 nm is formed on one surface of an axially stretched polyethylene terephthalate film by vacuum deposition using an electron beam (EB) heating method while supplying oxygen gas using aluminum as a deposition source under the following deposition conditions. A deposited film of aluminum oxide was formed.
(Deposition conditions)
Deposition source: Aluminum Degree of vacuum in the deposition chamber; 2 × 10 -4 mbar
Degree of vacuum in winding chamber; 2 × 10 -2 mbar
Electron beam power: 40kW
Film conveyance speed: 480 m / min
Next, immediately after forming the aluminum oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator was used on the aluminum oxide vapor deposition film surface, and the power was 9 kW, oxygen gas (O 2 ): argon gas. Using a mixed gas of (Ar) = 7.0: 2.5 (unit: Slm) and performing oxygen / argon mixed gas plasma treatment at a mixed gas pressure of 6 × 10 −2 mbar, an aluminum oxide vapor deposition film A plasma-treated surface having a surface tension improved by 54 dyne / cm or more was formed.
Furthermore, an epoxy-based silane coupling agent (8.0% by weight) and an anti-blocking agent (1.0% by weight) are added to the polyurethane resin initial condensate on the plasma-treated surface formed above. A primer resin composition obtained by sufficiently kneading is coated by a gravure roll coating method so as to have a film thickness of 0.5 g / m 2 (dry state). Layers were formed to produce a barrier film.
(2). Next, after forming a desired printed pattern on the surface of the primer layer of the barrier film produced in the above (1), a two-component curable polyurethane laminate is formed on the entire surface including the printed pattern. The adhesive for coating is coated to a thickness of 4.0 g / m 2 (in a dry state) using a gravure roll coating method to form an adhesive layer for laminating, and then the adhesive for laminating A biaxially stretched nylon 6 film having a thickness of 15 μm was laminated on the surface of the agent layer with the corona-treated surfaces facing each other, and then both were laminated by dry lamination.
Next, after applying the corona discharge treatment to the surface of the biaxially stretched nylon 6 film laminated as described above, a laminating adhesive layer is formed on the corona treatment surface in the same manner as described above, and thereafter A laminated material was produced by dry laminating and laminating an unstretched polypropylene film having a thickness of 60 μm on the laminating adhesive layer surface.
(3). Next, two sheets of the laminated material produced above are prepared, the non-stretched polypropylene film faces are overlapped with each other, and then the outer peripheral edge is sealed in a three-way heat seal. A three-sided seal-type flexible packaging bag having an opening portion and an opening on the upper side was manufactured. In the three-sided seal type soft packaging bag manufactured above, water is filled and packaged from the opening, and then the opening is heat sealed to form an upper seal. A semi-finished packaging product is manufactured, and then the semi-finished packaging product is placed in a retort kettle and subjected to retort treatment under conditions of temperature, 120 ° C., pressure, 2.1 kgf / cm 2 · G, time, 30 minutes. Retort packaged food was manufactured.

(比較例2)
(1).厚さ12μmの二軸延伸ポリエチレンテレフタレ−トフィルムを使用し、該二軸延伸ポリエチレンテレフタレ−トフィルムをプラズマ化学気相成長装置の巻き出しロールに装着し、次いで、これをコ−ティングドラムの上に繰り出し、しかる後、上記の二軸延伸ポリエチレンテレフタレ−トフィルムの一方の面に、下記に示す蒸着条件により、厚さ20nmの酸化珪素の蒸着膜を形成した。 (蒸着条件)
反応ガス混合比;へキサメチルジシロキサン:酸素ガス:ヘリウム=1.2:5.0:2.5(単位:Slm)
到達圧力;5.0×10-5mbar
製膜圧力;7.0×10-2mbar
ライン速度;150m/min
パワー;35kW
次に、上記で厚さ20nmの酸化珪素の蒸着膜を形成した直後に、その酸化珪素の蒸着膜面に、グロー放電プラズマ発生装置を使用し、パワー9kW、酸素ガス(O2 ):アルゴンガス(Ar)=7Z0:2.5(単位:Slm)からなる混合ガスを使用し、混合ガス圧6×10-2mbar、処理速度150m/minで酸素/アルゴン混合ガスプラズマ処理を行って、酸化珪素の蒸着膜面の表面張力を54dyne/cm以上向上させてたプラズマ処理面を形成した。
更に、上記で形成したプラズマ処理面の面に、ポリエステル系樹脂の初期縮合物に、エポキシ系のシランカップリング剤(8.0重量%)とブロッキング防止剤(1.0重量%)を添加し、十分に混練してなるプライマ−樹脂組成物を使用し、これをグラビアロ−ルコ−ト法により、膜厚0.2g/m2 (乾燥状態)になるようにコ−ティングしてプライマ−剤層を形成して、バリア性フィルムを製造した。
(2).次に、上記の(1)で製造したバリア性フィルムのプライマ−剤層の面に、所望の印刷模様を形成した後、その印刷模様を含む全面に、2液硬化型のポリウレタン系ラミネ−ト用接着剤をグラビアロ−ルコ−ト法を用いて厚さ4.0g/m2 (乾燥状態)にコ−ティングしてラミネ−ト用接着剤層を形成し、次いで、該ラミネ−ト用接着剤層の面に、厚さ15μmの2軸延伸ナイロン6フィルムを、そのコロナ処理面を対向させて重ね合わせ、しかる後、その両者をドライラミネ−トして積層した。
次に、上記で積層した2軸延伸ナイロン6フィルムの面に、コロナ放電処理を施した後、そのコロナ処理面に、上記と同様にして、ラミネ−ト用接着剤層を形成し、しかる後、上記のラミネ−ト用接着剤層面に、厚さ60μmの無延伸ポリプロピレンフィルムをドライラミネ−トして積層して、積層材を製造した。
(3).次に、上記で製造した積層材の2枚を用意し、その無延伸ポリプロピレンフィルムの面を対向して重ね合わせ、しかる後、その外周周辺の端部を三方ヒ−トシ−ルしてシ−ル部を形成すると共に上方に開口部を有する三方シ−ル型の軟包装用袋を製造した。 上記で製造した三方シ−ル型の軟包装用袋内に、その開口部から水を充填包装し、しかる後、その開口部をヒ−トシ−ルして上方シ−ル部を形成して包装半製品を製造し、次いで、その包装半製品をレトルト釜に入れて、温度、120℃、圧力、2.1Kgf/cm2 ・G、時間、30分間からなるレトルト処理条件でレトルト処理を行い、レトルト包装食品を製造した。
(Comparative Example 2)
(1). A biaxially stretched polyethylene terephthalate film having a thickness of 12 μm was used, and the biaxially stretched polyethylene terephthalate film was mounted on the unwinding roll of the plasma chemical vapor deposition apparatus, and then this was placed on the coating drum. Thereafter, a 20 nm thick silicon oxide vapor deposition film was formed on one surface of the biaxially stretched polyethylene terephthalate film under the vapor deposition conditions described below. (Deposition conditions)
Reaction gas mixing ratio: Hexamethyldisiloxane: Oxygen gas: Helium = 1.2: 5.0: 2.5 (Unit: Slm)
Ultimate pressure: 5.0 × 10 -5 mbar
Film forming pressure: 7.0 × 10 −2 mbar
Line speed: 150 m / min
Power: 35kW
Next, immediately after forming a silicon oxide vapor deposition film having a thickness of 20 nm as described above, a glow discharge plasma generator is used on the silicon oxide vapor deposition film surface, and the power is 9 kW, oxygen gas (O 2 ): argon gas. (Ar) = 7Z0: 2.5 (unit: Slm) is used, and oxygen / argon mixed gas plasma treatment is performed at a mixed gas pressure of 6 × 10 −2 mbar and a processing speed of 150 m / min. A plasma-treated surface was formed in which the surface tension of the silicon deposition film surface was improved by 54 dyne / cm or more.
Furthermore, an epoxy-based silane coupling agent (8.0 wt%) and an anti-blocking agent (1.0 wt%) are added to the polyester resin initial condensate on the plasma-treated surface formed above. A primer resin composition obtained by sufficiently kneading is coated by a gravure roll coating method so as to have a film thickness of 0.2 g / m 2 (dry state). Layers were formed to produce a barrier film.
(2). Next, after forming a desired printed pattern on the surface of the primer layer of the barrier film produced in the above (1), a two-component curable polyurethane laminate is formed on the entire surface including the printed pattern. The adhesive for coating is coated to a thickness of 4.0 g / m 2 (in a dry state) using a gravure roll coating method to form an adhesive layer for laminating, and then the adhesive for laminating A biaxially stretched nylon 6 film having a thickness of 15 μm was laminated on the surface of the agent layer with the corona-treated surfaces facing each other, and then both were laminated by dry lamination.
Next, after applying the corona discharge treatment to the surface of the biaxially stretched nylon 6 film laminated as described above, a laminating adhesive layer is formed on the corona treatment surface in the same manner as described above, and thereafter A laminated material was produced by dry laminating and laminating an unstretched polypropylene film having a thickness of 60 μm on the laminating adhesive layer surface.
(3). Next, two sheets of the laminated material produced above are prepared, the non-stretched polypropylene film faces are overlapped with each other, and then the outer peripheral edge is sealed in a three-way heat seal. A three-sided seal-type flexible packaging bag having an opening portion and an opening on the upper side was manufactured. In the three-sided seal type soft packaging bag manufactured above, water is filled and packaged from the opening, and then the opening is heat sealed to form an upper seal. A semi-finished packaging product is manufactured, and then the semi-finished packaging product is placed in a retort kettle and subjected to retort treatment under conditions of temperature, 120 ° C., pressure, 2.1 kgf / cm 2 · G, time, 30 minutes. Retort packaged food was manufactured.

(実験例)
上記の実施例1〜4、および、比較例1〜2において製造したバリア性フィルム、および、積層材について、酸素透過度、および、水蒸気透過度を測定した。
また、上記の実施例1〜4、および、比較例1〜2において製造したバリア性フィルム使用して製造した積層材について、ラミネ−ト強度、および、水付けラミネ−ト強度を測定した。
(1).酸素透過度の測定
これは、温度23℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、オクストラン(OX−TRAN)〕にて測定した。
(2).水蒸気透過度の測定
これは、温度40℃、湿度90%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、パ−マトラン(PERMATRAN)〕にて測定した。
(3).ラミネ−ト強度の測定
これは、積層材を15mm巾の短冊切りし、テンシロンでT字剥離法で、剥離速度50mm/minにて測定した。
(4).水付けラミネ−ト強度の測定
これは、積層材を15mm巾の短冊切りし、テンシロンでT字剥離法で、剥離面にスポイトで水を滴下した状態で、剥離速度50mm/minにて測定した。
上記の測定結果について、下記の表1に示す。
(Experimental example)
The oxygen permeability and the water vapor permeability were measured for the barrier films produced in Examples 1 to 4 and Comparative Examples 1 and 2 and the laminates.
Moreover, about the laminated material manufactured using the barrier film manufactured in said Examples 1-4 and Comparative Examples 1-2, the laminating strength and the watering laminating strength were measured.
(1). Measurement of oxygen permeability This was measured with a measuring instrument (model name, OX-TRAN) manufactured by MOCON, USA, under conditions of a temperature of 23 ° C. and a humidity of 90% RH.
(2). Measurement of Water Vapor Permeability This was measured with a measuring instrument (model name, PERMATRAN) manufactured by MOCON, USA, under conditions of a temperature of 40 ° C. and a humidity of 90% RH.
(3). Measurement of Laminate Strength A laminate material was cut into 15 mm width strips and measured by a T-shaped peeling method with Tensilon at a peeling speed of 50 mm / min.
(4). Measurement of the strength of wet laminating This was measured at a peeling rate of 50 mm / min in a state where a laminated material was cut into 15 mm width strips, and a T-shaped peeling method with Tensilon, and water was dropped onto the peeling surface with a dropper. .
The measurement results are shown in Table 1 below.

(表1)
┌────┬────────────────┐ │ │ バリア性フィルム │ │ ├───────┬────────┤ │ │ 酸素透過度 │ 水蒸気透過度 │ ├────┼───────┼────────┤ │実施例1│ 0.2 │ 0.6 │ ├────┼───────┼────────┤ │実施例2│ 0.3 │ 1.9 │ ├────┼───────┼────────┤ │実施例3│ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │実施例4│ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │比較例1│ 3.0 │ 3.5 │ ├────┼───────┼────────┤ │比較例2│ 2.8 │ 3.4 │ └────┴───────┴────────┘
┌────┬────────────────┐ │ │ 積層材 │ │ ├───────┬────────┤ │ │ 酸素透過度 │ 水蒸気透過度 │ ├────┼───────┼────────┤ │実施例1│ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │実施例2│ 0.2 │ 1.0 │ ├────┼───────┼────────┤ │実施例3│ 0.2 │ 0.4 │ ├────┼───────┼────────┤ │実施例4│ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │比較例1│ 2.7 │ 2.8 │ ├────┼───────┼────────┤ │比較例2│ 2.5 │ 2.8 │ └────┴───────┴────────┘
┌────┬──────────────────┐ │ │ 積層材 │ │ ├───────┬──────────┤ │ │ラミネ−ト強度│水付けラミネ−ト強度│ ├────┼───────┼──────────┤ │実施例1│ PET破断 │ 3.0 │ ├────┼───────┼──────────┤ │実施例2│ PET破断 │ 2.8 │ ├────┼───────┼──────────┤ │実施例3│ PET破断 │ 4.5 │ ├────┼───────┼──────────┤ │実施例4│ PET破断 │ 4.8 │ ├────┼───────┼──────────┤ │比較例1│ PET破断 │ 0.3 │ ├────┼───────┼──────────┤ │比較例2│ PET破断 │ 4.3 │ └────┴───────┴──────────┘ 上記の表1において、酸素透過度の単位は、〔cc/m2 /day/atm・23℃・90%RH〕であり、水蒸気透過度の単位は、〔g/m2 /day・40℃・90%RH〕である。
また、上記の表1において、ラミネ−ト強度および水付けラミネ−ト強度の単位は、[gf/15mm]である。
更に、上記の表1において、PETは、ポリエチレンテレフタレ−トフィルムを意味する。
(Table 1)
┌────┬────────────────┐ │ │ Barrier film │ │ ├───────┬───────┤┤ │ │ Oxygen permeability │ Water vapor permeability │ ├────┼───────┼────────┤ │Example 1│ 0.2 │ 0.6 │ ├────┼ ───────┼────────┤ │Example 2│ 0.3 │ 1.9 │ ├────┼───────┼────── ──┤ │Example 3│ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │Example 4│ 0.2 │ 0. 5 │ ├────┼───────┼────────┤ │Comparative Example 1 │ 3.0 │ 3.5 │ ├────┼────── ─┼────────┤ │Comparative Example 2│ 2.8 │ 3.4 │ └────┴───────┴────────┘
┌────┬────────────────┐ │ │ Laminate │ │ ├───────┬────────┤ │ │ Oxygen Permeability │ Water vapor permeability │ ├────┼───────┼────────┤ │Example 1│ 0.2 │ 0.5 │ ────┼── ──────┼────────┤ │Example 2│ 0.2 │ 1.0 │ ├────┼───────┼─────── ─┤ │Example 3│ 0.2 │ 0.4 │ ├────┼───────┼────────┤ │Example │ 0.2 │ 0.5 │ ├────┼───────┼────────┤ │Comparative Example 1 2.7 │ 2.8 │ ├────┼─────── ┼────────┤ │Comparative Example 2│ 2.5 │ 2.8 │ └────┴───────┴────────┘
┌────┬──────────────────┐ │ │ Laminate │ │ ├───────┬─────────── │ │ │ Laminate strength │ Wetting laminating strength │ ├────┼───────┼─────────┤ 実 施 Example 1 | PET rupture | 0 │ ├────┼───────┼──────────┤ │Example 2 │ PET rupture │ 2.8 │ ├────┼────── ──┼──────────┤ │Example 3│ PET rupture │ 4.5 │ ├────┼───────┼────────── │ │ Example 4 │ PET rupture │ 4.8 │ ├────┼───────┼──────────┤ │ Comparative Example 1 | PET rupture │ 0.3 │ ├────┼───────┼──────────┤ │Comparative Example 2│PET rupture│ 4.3 └────┴───────┴──────────┘ In Table 1 above, the unit of the oxygen permeability, [cc / m 2 / day / atm · 23 ℃ 90% RH] and the unit of water vapor permeability is [g / m 2 / day · 40 ° C. · 90% RH].
In Table 1 above, the unit of the laminating strength and the watering laminating strength is [gf / 15 mm].
Further, in Table 1 above, PET means a polyethylene terephthalate film.

上記の表1に示す測定結果から明らかなように、実施例1〜4にかかるものは、酸素透過度および水蒸気透過度において十分に実用性を有するものであることが確認され、また、ラミネ−ト強度、水付けラミネ−ト強度等においても優れ、更に、透明性を有し、内容物の視認性に優れているものであった。   As is apparent from the measurement results shown in Table 1 above, it was confirmed that the samples according to Examples 1 to 4 were sufficiently practical in terms of oxygen permeability and water vapor permeability. It was also excellent in the strength of the toughness, the strength of water laminating, etc., and further had transparency and the visibility of the contents.

本発明に係るバリア性フィルムおよびそれを使用した積層材、更に、それを使用して製袋した包装用袋は、酸素ガス、水蒸気等の透過を阻止するバリア性、特に、水蒸気バリア性に優れ、更に、積層材の密着性に優れ、例えば、レトルト処理等の加工に伴う熱処理に耐え、更に、容器・包装ごみの軽量化、減量化等を図ると共にその製造工捏の短縮化によりその製造コストの低減化を図り、例えば、調理食品、水産練り製品、冷凍食品、煮物、餅、液体スープ、調味料、飲料水、その他等の各種の飲食品を充填包装するに有用であり、かつ、その内容物の充填包装適性、品質保全性等に優れているものである。   The barrier film according to the present invention and the laminated material using the same, and the packaging bag made using the same are excellent in barrier properties for preventing permeation of oxygen gas, water vapor, etc., in particular, in water vapor barrier properties. Furthermore, it has excellent adhesion to the laminated material, for example, withstands heat treatment associated with processing such as retort processing, and further reduces the weight and weight of containers and packaging waste, and shortens the manufacturing process. For example, it is useful for filling and packaging various foods and beverages such as cooked foods, marine products, frozen foods, boiled foods, rice cakes, liquid soups, seasonings, drinking water, etc. It is excellent in filling and packing of contents and quality maintenance.

本発明に係るバリア性フィルムについてその層構成の一例を示す概略的断面図である。It is a schematic sectional drawing which shows an example of the layer structure about the barrier film which concerns on this invention. 図1に示す本発明に係るバリア性フィルムを使用した積層材についてその層構成の一例を示す概略的断面図である。It is a schematic sectional drawing which shows an example of the layer structure about the laminated material which uses the barrier film which concerns on this invention shown in FIG. 図1に示す本発明に係るバリア性フィルムを使用した積層材についてその層構成の一例を示す概略的断面図である。It is a schematic sectional drawing which shows an example of the layer structure about the laminated material which uses the barrier film which concerns on this invention shown in FIG. 図1に示す本発明に係るバリア性フィルムを使用した積層材についてその層構成の一例を示す概略的断面図である。It is a schematic sectional drawing which shows an example of the layer structure about the laminated material which uses the barrier film which concerns on this invention shown in FIG. 図2に示す積層材を使用し、これを製袋して製造した本発明に係る包装用袋についてその構成の一例を示す概略的斜視図である。It is a schematic perspective view which shows an example of the structure about the packaging bag which uses the laminated material shown in FIG. 図5に示す本発明に係る包装用袋に内容物を充填包装した本発明に係る包装製品についてその構成の一例を示す概略的斜視図である。It is a schematic perspective view which shows an example of the structure about the packaging product which concerns on this invention which filled and packed the contents in the packaging bag which concerns on this invention shown in FIG. プラズマ化学気相成長装置についてその一例の概要を示す概略的構成図である。It is a schematic block diagram which shows the outline | summary of the example about a plasma chemical vapor deposition apparatus. 巻き取り式真空蒸着装置についてその一例の概要を示す概略的構成図である。It is a schematic block diagram which shows the outline | summary of the example about a winding-type vacuum evaporation system.

符号の説明Explanation of symbols

A バリア性フィルム
B、B1 、B2 積層材
C 包装用袋
D 包装製品
1 基材フィルム
2 ポリパラキシリレンからなる蒸着重合膜
3 無機酸化物からなるバリア性薄膜層
4 ガスバリア性塗布膜
11 ヒ−トシ−ル性樹脂層
12 中間基材
13 プラスチック基材
15 ヒ−トシ−ル部
16 開口部
17 内容物
18 上方のシ−ル部
A barrier film B, B 1 , B 2 laminate C packaging bag D packaging product 1 base film 2 vapor-deposited polymer film made of polyparaxylylene 3 barrier thin film layer made of inorganic oxide 4 gas barrier coating film 11 Heat seal resin layer 12 Intermediate base material 13 Plastic base material 15 Heat seal part 16 Opening part 17 Contents 18 Upper seal part

Claims (19)

基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜を設け、次に、該ポリパラキシリレンからなる蒸着重合膜の上に、無機酸化物からなるバリア性薄膜層を設け、更に、該無機酸化物からなるバリア性薄膜層の上に、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設けることを特徴とするバリア性フィルム。 A vapor-deposited polymer film made of polyparaxylylene is provided on one surface of the base film, and then a barrier thin film layer made of an inorganic oxide is provided on the vapor-deposited polymer film made of polyparaxylylene, Furthermore, on the barrier film layer made of inorganic oxide, the general formula R 1 n M (OR 2) m ( where in the formula, R 1, R 2 represents an organic group having 1 to 8 carbon atoms , M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M). And a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, and further comprising a gas barrier coating film formed of a gas barrier composition obtained by polycondensation by a sol-gel method. Barrier film. 基材フィルムが、2軸延伸ポリエステル系樹脂フィルム、2軸延伸ポリアミド系樹脂フィルム、または、2軸延伸ポリオレフィン系樹脂フィルムからなることを特徴とする上記の請求項1に記載するバリア性フィルム。 The barrier film according to claim 1, wherein the base film is composed of a biaxially stretched polyester resin film, a biaxially stretched polyamide resin film, or a biaxially stretched polyolefin resin film. ポリパラキシリレンからなる蒸着重合膜が、ポリパラキシリレン膜、モノクロロポリパラキシリレン膜、ジクロロポリパラキシリレン膜、モノアミノポリパラキシリレン膜、または、ジアミノポリパラキシリレン膜からなることを特徴とする上記の請求項1〜2のいずれか1項に記載するバリア性フィルム。 The vapor-deposited polymer film made of polyparaxylylene consists of a polyparaxylylene film, a monochloropolyparaxylylene film, a dichloropolyparaxylylene film, a monoaminopolyparaxylylene film, or a diaminopolyparaxylylene film. The barrier film according to claim 1, wherein the barrier film is characterized in that ポリパラキシリレンからなる蒸着重合膜が、膜厚0.05μm〜1.0μmの範囲内からなることを特徴とする上記の請求項1〜3のいずれか1項に記載するバリア性フィルム。 4. The barrier film according to claim 1, wherein the vapor-deposited polymer film made of polyparaxylylene has a thickness in the range of 0.05 μm to 1.0 μm. 無機酸化物からなるバリア性薄膜層が、物理気相成長法による無機酸化物からなるバリア性薄膜層からなることを特徴とする上記の請求項1〜4のいずれか1項に記載するバリア性フィルム。 The barrier property according to any one of claims 1 to 4, wherein the barrier thin film layer comprising an inorganic oxide comprises a barrier thin film layer comprising an inorganic oxide formed by physical vapor deposition. the film. 無機酸化物からなるバリア性薄膜層が、酸化アルミニウムの非結晶の薄膜層からなることを特徴とする上記の請求項1〜5のいずれか1項に記載するバリア性フィルム。 The barrier film according to any one of claims 1 to 5, wherein the barrier thin film layer made of an inorganic oxide is an amorphous thin film layer of aluminum oxide. 無機酸化物からなるバリア性薄膜層が、式AlOX (式中、Xは、1.0〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜層であり、かつ、その薄膜層表面から内面に向かう深さ方向に向かってXの値が減少している酸化アルミニウムの非結晶性の薄膜層からなることを特徴とする上記の請求項1〜6のいずれか1項に記載するバリア性フィルム The barrier thin film layer made of an inorganic oxide is an amorphous thin film layer of aluminum oxide represented by the formula AlO x (where X represents a number in the range of 1.0 to 1.5). And a non-crystalline thin film layer of aluminum oxide in which the value of X decreases in the depth direction from the surface of the thin film layer toward the inner surface. Barrier film given in any 1 paragraph 無機酸化物の非結晶の薄膜が、式AlOX (式中、Xは、1.0〜1.5の範囲の数を表す。)で表される酸化アルミニウムの非結晶性の薄膜層であり、かつ、その薄膜層表面から内面に向かう深さ方向に向かってXの値が増加することを特徴とする上記の請求項1〜6のいずれか1項に記載する透明バリアフィルム。 An amorphous thin film of inorganic oxide is an amorphous thin film layer of aluminum oxide represented by the formula AlO x (where X represents a number in the range of 1.0 to 1.5). And the value of X increases toward the depth direction which goes to the inner surface from the thin film layer surface, The transparent barrier film of any one of said Claims 1-6 characterized by the above-mentioned. ガスバリア性塗布膜を構成する一般式R1 n M(OR2 m 中のMが、珪素、ジルコニウム、チタニウム、または、アルミニウムからなることを特徴とする上記の請求項1〜8のいずれか1項に記載するバリア性フィルム。 The M 1 in the general formula R 1 n M (OR 2 ) m constituting the gas barrier coating film is composed of silicon, zirconium, titanium, or aluminum. The barrier film described in the item. ガスバリア性塗布膜を構成するアルコキシドが、アルコキシシランからなることを特徴とする上記の請求項1〜9のいずれか1項に記載するバリア性フィルム。 10. The barrier film according to claim 1, wherein the alkoxide constituting the gas barrier coating film is composed of alkoxysilane. ガスバリア性塗布膜を構成するアルコキシドが、アルコキシドの加水分解物、または、アルコキシドの加水分解縮合物からなることを特徴とする上記の請求項1〜10のいずれか1項に記載するバリア性フィルム。 The barrier film according to any one of claims 1 to 10, wherein the alkoxide constituting the gas barrier coating film comprises a hydrolyzate of alkoxide or a hydrolyzed condensate of alkoxide. ガスバリア性塗布膜を構成するガスバリア性組成物が、シランカップリング剤を含むことを特徴とする上記の請求項1〜11のいずれか1項に記載するバリア性フィルム。 The barrier film according to any one of claims 1 to 11, wherein the gas barrier composition constituting the gas barrier coating film contains a silane coupling agent. ガスバリア性塗布膜を構成するガスバリア性組成物が、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルーゲル法触媒、酸、水、および、有機溶剤の存在下に、ゾルゲル法によって重縮合するガスバリア性組成物からなることを特徴とする上記の請求項1〜12のいずれか1項に記載するバリア性フィルム。 The gas barrier composition constituting the gas barrier coating film has a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 represent an organic group having 1 to 8 carbon atoms, M being Represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M.) and polyvinyl A gas barrier composition containing an alcohol-based resin and / or an ethylene / vinyl alcohol copolymer and further polycondensing by a sol-gel method in the presence of a sol-gel method catalyst, an acid, water, and an organic solvent. The barrier film according to any one of claims 1 to 12, characterized by comprising: ガスバリア性塗布膜が、1層ないし2層以上重層した複合ポリマ−層からなることを特徴とする上記の請求項1〜13のいずれか1項に記載するバリア性フィルム。 14. The barrier film according to any one of claims 1 to 13, wherein the gas barrier coating film comprises a composite polymer layer in which one layer or two or more layers are laminated. ガスバリア性塗布膜が、ガスバリア性組成物を塗工して塗工膜を設けた基材フィルムを、20℃〜150℃で、かつ、上記の基材フィルムの融点以下の温度で30秒〜10分間加熱処理した硬化膜からなることを特徴とする上記の請求項1〜14のいずれか1項に記載するバリア性フィルム。 The base film on which the gas barrier coating film is coated with the gas barrier composition and provided with the coating film is 30 ° C. to 10 seconds at a temperature of 20 ° C. to 150 ° C. and below the melting point of the base film. The barrier film according to any one of claims 1 to 14, wherein the barrier film comprises a cured film that has been heat-treated for minutes. ガスバリア性塗布膜を構成するガスバリア性組成物中のゾルゲル法触媒が、水に実質的に不溶であり、かつ、有機溶媒に可溶な第3アミンからなることを特徴とする上記の請求項1〜15のいずれか1項に記載するバリア性フィルム。 2. The sol-gel method catalyst in the gas barrier composition constituting the gas barrier coating film comprises a tertiary amine that is substantially insoluble in water and soluble in an organic solvent. The barrier film described in any one of -15. ガスバリア性塗布膜を構成するガスバリア性組成物中の第3アミンが、N,N−ジメチルベンジルアミンからなることを特徴とする上記の請求項1〜16のいずれか1項に記載するバリア性フィルム。 The barrier film according to any one of claims 1 to 16, wherein the tertiary amine in the gas barrier composition constituting the gas barrier coating film comprises N, N-dimethylbenzylamine. . ガスバリア性塗布膜を構成するガスバリア性組成物中の水が、アルコキシド1モルに対して0.1〜100モルの割合で用いられることを特徴とする上記の請求項1〜17のいずれか1項に記載するバリア性フィルム。 The water in the gas barrier composition constituting the gas barrier coating film is used in a ratio of 0.1 to 100 moles with respect to 1 mole of the alkoxide. The barrier film described in 1. 基材フィルムの一方の面に、ポリパラキシリレンからなる蒸着重合膜を設け、次に、該ポリパラキシリレンからなる蒸着重合膜の上に、無機酸化物からなるバリア性薄膜層を設け、更に、該無機酸化物からなるバリア性薄膜層の上に、一般式R1 n M(OR2 m (ただし、式中、R1 、R2 は、炭素数1〜8の有機基を表し、Mは、金属原子を表し、nは、0以上の整数を表し、mは、1以上の整数を表し、n+mは、Mの原子価を表す。)で表される少なくとも1種以上のアルコキシドと、ポリビニルアルコ−ル系樹脂及び/又はエチレン・ビニルアルコ−ル共重合体とを含有し、更に、ゾルゲル法によって重縮合して得られるガスバリア性組成物によるガスバリア性塗布膜を設けた構成からなるバリア性フィルムからなり、更に、該バリア性フィルムを構成するガスバリア性塗布膜の面に、少なくとも、ヒ−トシ−ル性樹脂層を設けたことを特徴とする積層材。 A vapor-deposited polymer film made of polyparaxylylene is provided on one surface of the base film, and then a barrier thin film layer made of an inorganic oxide is provided on the vapor-deposited polymer film made of polyparaxylylene, Furthermore, a general formula R 1 n M (OR 2 ) m (wherein R 1 and R 2 represent an organic group having 1 to 8 carbon atoms) on the barrier thin film layer made of the inorganic oxide. , M represents a metal atom, n represents an integer of 0 or more, m represents an integer of 1 or more, and n + m represents a valence of M). And a polyvinyl alcohol resin and / or an ethylene / vinyl alcohol copolymer, and further provided with a gas barrier coating film made of a gas barrier composition obtained by polycondensation by a sol-gel method. A barrier film, and A laminate comprising at least a heat sealable resin layer provided on the surface of a gas barrier coating film constituting an adhesive film.
JP2005207501A 2005-07-15 2005-07-15 Barrier film and laminated material using the same Withdrawn JP2007021900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207501A JP2007021900A (en) 2005-07-15 2005-07-15 Barrier film and laminated material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207501A JP2007021900A (en) 2005-07-15 2005-07-15 Barrier film and laminated material using the same

Publications (1)

Publication Number Publication Date
JP2007021900A true JP2007021900A (en) 2007-02-01

Family

ID=37783285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207501A Withdrawn JP2007021900A (en) 2005-07-15 2005-07-15 Barrier film and laminated material using the same

Country Status (1)

Country Link
JP (1) JP2007021900A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201026A (en) * 2007-02-21 2008-09-04 Konica Minolta Holdings Inc Inkjet head and manufacturing process of the same
US20180369079A1 (en) * 2017-06-22 2018-12-27 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited coating
US20180369859A1 (en) * 2017-06-22 2018-12-27 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited organic coating
CN110719968A (en) * 2017-06-22 2020-01-21 宝洁公司 Film comprising a water-soluble layer and a vapor-deposited inorganic coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201026A (en) * 2007-02-21 2008-09-04 Konica Minolta Holdings Inc Inkjet head and manufacturing process of the same
US20180369079A1 (en) * 2017-06-22 2018-12-27 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited coating
US20180369859A1 (en) * 2017-06-22 2018-12-27 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited organic coating
CN110709174A (en) * 2017-06-22 2020-01-17 宝洁公司 Film comprising a water-soluble layer and a vapor-deposited organic coating
CN110719968A (en) * 2017-06-22 2020-01-21 宝洁公司 Film comprising a water-soluble layer and a vapor-deposited inorganic coating
CN110769945A (en) * 2017-06-22 2020-02-07 宝洁公司 Cosmetic care film comprising a water-soluble layer and a vapor-deposited coating
US10959918B2 (en) * 2017-06-22 2021-03-30 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited coating
US11192139B2 (en) * 2017-06-22 2021-12-07 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited organic coating
US11208246B2 (en) 2017-06-22 2021-12-28 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited inorganic coating
US11473190B2 (en) 2017-06-22 2022-10-18 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited inorganic coating
US11738367B2 (en) 2017-06-22 2023-08-29 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited organic coating

Similar Documents

Publication Publication Date Title
JP2006056007A (en) Gas barrier laminated film and laminated material using it
JP4844808B2 (en) Barrier film and laminated material using the same
JP4852822B2 (en) Barrier film and laminated material using the same
JP2008073993A (en) Gas barrier laminated film
JP2006082319A (en) Barrier film and laminated material using it
JP5051494B2 (en) Gas barrier laminate film and method for producing the same
JP4531383B2 (en) Retort pouch
JP2005088415A (en) Laminated film and its manufacturing method
JP2007216504A (en) Gas-barrier laminated film and its manufacturing method
JP2007075368A (en) Outer packaging bag for infusion solution bag
JP4923837B2 (en) Boil / retort container lid
JP4629363B2 (en) Barrier film and laminated material using the same
JP2008073986A (en) Gas barrier laminated film
JP2007021880A (en) Barrier film and laminated material using the same
JP4629362B2 (en) Barrier film and laminated material using the same
JP2006056036A (en) Gas barrier laminated film and laminated material using it
JP2008023931A (en) Barrier film and laminated material using the same
JP4857522B2 (en) Barrier film and laminated material using the same
JP2008143033A (en) Laminated film for packaging, and manufacturing method thereof
JP2008105283A (en) Linearly tearable gas barrier laminated film
JP2007021900A (en) Barrier film and laminated material using the same
JP4357933B2 (en) Liquid sachet packaging
JP2007021895A (en) Barrier film and laminated material using the same
JP4857482B2 (en) Retort pouch
JP2007111974A (en) Barrier film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007