JP2007021577A - Deep drawn sink and deep drawing process - Google Patents

Deep drawn sink and deep drawing process Download PDF

Info

Publication number
JP2007021577A
JP2007021577A JP2005236135A JP2005236135A JP2007021577A JP 2007021577 A JP2007021577 A JP 2007021577A JP 2005236135 A JP2005236135 A JP 2005236135A JP 2005236135 A JP2005236135 A JP 2005236135A JP 2007021577 A JP2007021577 A JP 2007021577A
Authority
JP
Japan
Prior art keywords
deep drawing
sink
side wall
plate
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236135A
Other languages
Japanese (ja)
Inventor
Masakimi Inagaki
正公 稲垣
Michio Yanatori
美智雄 梁取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYOURA KK
Toyoura Co Ltd
Original Assignee
TOYOURA KK
Toyoura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYOURA KK, Toyoura Co Ltd filed Critical TOYOURA KK
Priority to JP2005236135A priority Critical patent/JP2007021577A/en
Publication of JP2007021577A publication Critical patent/JP2007021577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bathtubs, Showers, And Their Attachments (AREA)
  • Combinations Of Kitchen Furniture (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Sink And Installation For Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance drainability by providing unevenness continuously formed on the inner side walls, corners and bottom of a sink and lessening a hydrodynamic resistance coefficient of the unevenness and increasing the capillary force. <P>SOLUTION: The invented deep drawing process uses a die 101, a punch 102 and a holder 103. The deep drawing of a plate 1 is achieved by varying the cushion pressure of the holder 103 according to the progress of the deep drawing and by adjusting the three-dimensional spreading degree of the plate 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は浴槽や流し台で、表面に凹凸を有する板素材を深絞り加工したシンクの構造と深絞り加工方法に関する。  The present invention relates to a sink structure and a deep drawing method in which a plate material having an uneven surface is deep drawn by a bathtub or a sink.

本発明に関連ある公知例としては以下のものがある。
公知例(1)特許文献:特開2004−316195
公知例(2)特許文献:特開平5−71266
公知例(3)特許文献:特開平11−105191
公知例(4)特許文献:特開2004−137796
公知例(5)特許文献:特開2001−246433
公知例(6)特許文献:実用新案第2516296
Known examples relating to the present invention include the following.
Known Example (1) Patent Document: JP-A 2004-316195
Known Example (2) Patent Document: JP-A-5-71266
Known Example (3) Patent Document: JP-A-11-105191
Known Example (4) Patent Document: Japanese Patent Application Laid-Open No. 2004-137796
Known Example (5) Patent Document: Japanese Patent Laid-Open No. 2001-246433
Known Example (6) Patent Document: Utility Model No. 2516296

前記の公知例について、シンクの水切り性をよくし、水滴の付着も少なくすることにより、水垢の発生を少なくするという観点から見る。公知例(1)は、シンクの側壁のみに凹凸の加工を施した構成を提供したもので、シンクの側壁・隅部・底板に連続的に凹凸加工したものに関しては開示していず、また深絞りの過程において、好適な凹凸の形状を作成することについては開示していない。また公知例(2)と(6)は、シンクの天板に凹凸加工した板を使用したシンクの構成を提供しているが、シンクの側壁・隅部・底板に凹凸加工をしたものに関しては開示していない。また公知例(3)は、板材の表面に印刷方法により多層膜を作りながら凹凸加工をする方法を開示しているが、板材表面にプレスなどにより機械的に凹凸加工したものではなく、また深絞りシンクの製造方法や構成に関しては、開示していない。また公知例(4)と(5)は板材表面に、プレスなどにより機械的に凹凸加工をする製造方法を開示しているが、深絞りシンクを製造する方法、およびシンクの構成に関しては開示していない。本発明は、シンクの側壁・隅部・底面に連続的に,凹凸を有するように深絞り加工できる製造方法と、板素材表面に付いている凹凸の形状とその表面状態を、水切り性のよい構造に、ポンチとダイスによる深絞り加工の過程において、作ることが主眼である。これにより側壁・隅部・底部から排水孔まで水の移動が連続的に行われるようにすることにより、水きり性を良くして水垢の発生を少なくし、また凹凸加工を施したことにより、傷をつけたとしても、凸面だけに痕跡がつくようにして、傷を目立ち難くし、かつ美観も良くするものを提供することにある。  The above-mentioned known examples are viewed from the viewpoint of reducing the generation of scale by improving the drainability of the sink and reducing the adhesion of water droplets. Known example (1) provides a configuration in which unevenness is processed only on the side wall of the sink, and does not disclose the case where the unevenness is continuously processed on the side wall, corner, and bottom plate of the sink. It is not disclosed to create a suitable uneven shape in the process of drawing. In addition, the known examples (2) and (6) provide a sink structure using a plate with unevenness on the top plate of the sink, but with respect to the sink with side walls, corners and bottom plate being processed with unevenness. Not disclosed. Moreover, although the known example (3) discloses a method of performing uneven processing while forming a multilayer film on the surface of the plate material by a printing method, it is not mechanically processed by pressing or the like on the surface of the plate material. The manufacturing method and configuration of the aperture sink are not disclosed. In addition, known examples (4) and (5) disclose a manufacturing method in which the surface of a plate material is mechanically processed by pressing or the like, but a method for manufacturing a deep drawing sink and the configuration of the sink are disclosed. Not. The present invention provides a manufacturing method that can be deep-drawn so as to have irregularities continuously on the side wall, corners, and bottom surface of the sink, and the shape and surface state of the irregularities on the surface of the plate material. The main point is to make the structure in the process of deep drawing by punch and die. This allows water to move continuously from the side walls, corners, and bottom to the drainage holes, improving water drainage and reducing the generation of scales, and providing irregularities to prevent scratches. Even if it is attached, it is to provide a thing that makes the scratches inconspicuous and improves the aesthetics so that only the convex surface is marked.

シンクで水きり性が問題になる場合は、大きく分けて2通りある。第1は、シンクの排水孔を閉めてシンク全体を満水状態にして水を溜め、洗い作業終了後、排水孔を開放して、排水するときのように、水の連続流れ状態での、シンク内面の水きり性と水付着性の良否がどうかという場合である。第2は、排水孔が開放されていて満水状態ではない状態で、蛇口を開けて水を流しながら、洗い作業をしている場合などに、水が側壁にかかり、これが側壁・隅部・底板を介して、不連続的に水が排水孔に移動する際の、水切り性と水付着性の良否がどうかと言う場合である。どちらの場合にもシンク内面の凹凸の構造は、流体力学的に抵抗係数が小さいことが重要である。またシンクの内面に付着している水滴は、凹凸部の毛細管作用を受け易くして、毛細管作用により排水孔に移動し易くすることも重要である。また本発明の効果をさらに高めるために、側壁に連なる周縁や天板にも凹凸加工部を連続的に設けるようにする。  When drainage is a problem at the sink, there are two main types. First, the sink drain hole is closed and the sink is fully filled to collect water. After the washing operation is completed, the drain hole is opened and the sink is in a continuous flow of water as when draining. This is the case of whether the inner surface drainage and water adhesion are good or bad. Second, when the drain hole is open and not full, the faucet is opened and the water is poured and water is applied to the side wall. This is the side wall, corner, and bottom plate. It is a case where it is said whether the drainage property and the water adhesion property are good or bad when the water discontinuously moves to the drainage hole. In either case, it is important that the uneven structure of the inner surface of the sink has a small resistance coefficient hydrodynamically. It is also important that the water droplets adhering to the inner surface of the sink are easily subjected to the capillary action of the concavo-convex portion and easily moved to the drainage hole by the capillary action. Further, in order to further enhance the effect of the present invention, the concavo-convex portion is continuously provided on the peripheral edge and the top plate connected to the side wall.

このような視点に立ち、発明者は鋭意研究を重ね、以下の発明を完成した。
(1)シンク内面には、多数個の凹凸(これをエンボスともいう)を少なくとも、シンクの側壁、隅部、底板に渡り、連続的に設けた構造にし,かつ各々の凹凸の構造を水きり性の良い構造に加工する。具体的には、凹凸の構造を流体(水など)の流れ方向に流線形の形状にして、流体の抵抗係数を小さくするとともに、毛細管作用の効果を高める構造にするものであるが、この形状を深絞り加工の過程で作ることが主眼である。
(2)この凹凸の流線形加工は、シンクの排水孔から遠い側壁部を重要視して、特に側壁部の凹凸形状を流線形の構造に、また毛細管作用を高める構造に加工し、側壁部において流体が流れ易くする。
(3)シンク内面の4平面の側壁のほか、シンクの上面から見た際の対角線上にある4隅の側壁は、さらに排水孔から幾何学的に遠方に位置するので、水きり性が悪くなる。このため、この隅部側壁の各々の凹凸の構造は(2)で述べたように流線形で、かつ毛細管力高める構造にする以外に、凹凸を全体的に眺めた配列模様を排水孔に対して、凸の円弧状になるように加工する。またこの部分の凸部の間隔を、他の面に対して狭くし、水きり性を増強する。このようにすると、隅部を流れる水、または付着していた水滴は、下部に移動するに従い合体して集まり易くなり、そして移動速度が速まり水きり性が高まる。また前記の配列模様は、美観の向上にも寄与する。
From this point of view, the inventor conducted extensive research and completed the following invention.
(1) On the inner surface of the sink, a large number of irregularities (also referred to as embossing) are provided continuously over at least the sidewalls, corners, and bottom plate of the sink, and each irregularity structure is drainable. To a good structure. Specifically, the uneven structure is a streamlined shape in the flow direction of fluid (water, etc.) to reduce the resistance coefficient of the fluid and enhance the effect of capillary action. The main point is to make a deep drawing process.
(2) In the streamline processing of the unevenness, the side wall portion far from the drain hole of the sink is regarded as important. In particular, the uneven shape of the side wall portion is processed into a streamlined structure and a structure that enhances the capillary action. To facilitate fluid flow.
(3) In addition to the four flat side walls of the sink inner surface, the four corner side walls on the diagonal when viewed from the upper surface of the sink are further located geometrically far from the drainage hole, resulting in poor drainage. . For this reason, in addition to the structure of the irregularities on each side wall of the corner, which is streamlined and increases the capillary force as described in (2), the arrangement pattern in which the irregularities are viewed as a whole with respect to the drain holes is used. Then, it is processed into a convex arc shape. Moreover, the space | interval of the convex part of this part is narrowed with respect to another surface, and water drainage property is reinforced. If it does in this way, the water which flows in the corner part, or the water droplet which has adhered will become easy to unite and gather as it moves to the lower part, and moving speed will increase and water drainage nature will increase. Moreover, the said arrangement pattern contributes also to the improvement of aesthetics.

このような構造を、深絞りの過程において実現する方法を、以下に詳述する
(1)ダイス内にポンチにより、凹凸付き板材を押し込みながら深絞り加工するに当たり、板材の周縁をダイスに押し付けておくためのホルダーのクッション圧力を、平滑板材の場合より高めにするとともに、深絞りの度合いが進行して終点に近づくに従い増大していく。増大の方法は、段階的でも良く連続的でも良い。板材はダイスとポンチとの間で、時間に対して、3次元的に移動しながら深絞り加工されるが、板材には延びる部分と縮む部分があり、このクッション圧力の調整次第で、シンクの内面の凹凸の形状と凹凸の配列模様が変化するので、時間に対する(加工の進行度に応じた)段階的なクッション圧力の調整と、その度合いが重要である。
(2)本発明の凹凸付き板材の場合のクッション圧力の大きさは、同じ厚さの平滑板材を加工する場合に対して1,1から2,5倍の範囲とする。
(3)深絞り時に、板材に塗布する潤滑油は、少なくとも炭化水素油を添加したものを用い、板材に塗布するときの初期温度を10℃から30℃の範囲に調整する。
(4)平面状側壁部の減肉率は、加工率の低い周縁または天板に対して20%から50%の範囲、4隅側壁部のそれは加工率の低い底板に対して20%から60%範囲に調整した構造にする。
A method for realizing such a structure in the process of deep drawing will be described in detail below. (1) When deep drawing is performed while pressing the uneven plate material into the die with a punch, the peripheral edge of the plate material is pressed against the die. The cushion pressure of the holder for setting is made higher than in the case of the smooth plate material, and increases as the degree of deep drawing advances and approaches the end point. The method of increase may be stepwise or continuous. The plate material is deep drawn while moving three-dimensionally between the die and the punch, but the plate material has an extended part and a contracted part. Depending on the adjustment of this cushion pressure, the sink material Since the shape of the concavo-convex on the inner surface and the arrangement pattern of the concavo-convex change, the stepwise adjustment of the cushion pressure with respect to time (depending on the progress of processing) and the degree thereof are important.
(2) The cushion pressure in the case of the uneven plate material of the present invention is in the range of 1, 1 to 2, 5 times the case of processing a smooth plate material having the same thickness.
(3) At the time of deep drawing, the lubricating oil applied to the plate material is one added with at least hydrocarbon oil, and the initial temperature when applied to the plate material is adjusted to a range of 10 ° C to 30 ° C.
(4) The thinning ratio of the planar side wall portion is in the range of 20% to 50% with respect to the peripheral edge or top plate having a low processing rate, and that of the four corner side walls is 20% to 60% with respect to the bottom plate having a low processing rate. The structure is adjusted to the% range.

本発明の深絞り加工シンクの構造によれば、側壁4平面および4ヶ所の隅部側壁から底板を介して排水孔に連続的に水が流し易くなり、水きり性が向上して排水孔から外部に容易に排水されるようになる。これにより水垢の発生が少なくなる。またシンク上面から見たときの4隅の内面の凹凸の配列模様は、排水孔に対して凸の円弧状になるため、この隅部の水きり性が良好となるとともに、隅部の凹凸の全体的な縞模様を見たときの印象・美観が著しく良好となる。また全体的に傷が目立たなくなる。  According to the structure of the deep drawing sink of the present invention, water can easily flow continuously from the plane of the side wall 4 and the four corner side walls through the bottom plate to the drainage hole, so that water drainage is improved and the drainage hole is improved from the outside. Easily drained. This reduces the occurrence of scale. In addition, since the arrangement pattern of the irregularities on the inner surfaces of the four corners when viewed from the top surface of the sink is a circular arc that is convex with respect to the drainage holes, the drainage of the corners is good and the entire irregularities of the corners are also improved. The impression and aesthetics of a typical striped pattern are remarkably good. Also, the scratches are not noticeable as a whole.

本発明の実施の形態を図1から図9を用いて具体的に説明する。
図1から図4までは、深絞り加工の工程図を示したものである。図1は深絞り加工の第1工程図であり、同一面上に配設したポンチ102とホルダー103の上面に板材1を乗せ、その反対側にダイス101の端面を当てて、初期設定をした状態を示したものである。この板材1の表側と裏側には潤滑油を塗布しておく。潤滑油の原液は、水に溶くなどして10℃から30℃の範囲に調整する。
The embodiment of the present invention will be specifically described with reference to FIGS.
1 to 4 show process drawings of deep drawing. FIG. 1 is a first process diagram of deep drawing, and the initial setting was made by placing the plate 1 on the upper surface of the punch 102 and the holder 103 arranged on the same surface, and contacting the end surface of the die 101 on the opposite side. It shows the state. Lubricating oil is applied to the front side and the back side of the plate 1. The stock solution of the lubricating oil is adjusted to a range of 10 ° C. to 30 ° C. by dissolving in water.

図2は第2工程図であり、まずダイス101に対しホルダー103から板材1に圧力が加えられ、板材1を押さえ込む。この圧力をクッション圧力と言い、板材1の厚さ、強さ、すべり係数、潤滑材の種類、表面のコーテング・薄膜の有無や目的とする表面形状の作成に応じて、変えていくことが重要である。このような準備終了後、ポンチ102を上方に押し上げながら、板材1に圧力を加え、板材1をダイス101の空間部に押し込み変形させていく。このとき、ポンチ102とダイス101との間に存在する板材1の周縁5は、内側にずれ込むように移動し始める。この第2工程はドロー工程とも言う。  FIG. 2 is a second process diagram. First, pressure is applied to the plate material 1 from the holder 103 to the die 101 to press the plate material 1. This pressure is called cushion pressure, and it is important to change it according to the thickness, strength, slip coefficient, type of lubricant, surface coating / thin film, and creation of the desired surface shape. It is. After completion of such preparation, pressure is applied to the plate 1 while pushing the punch 102 upward, and the plate 1 is pushed into the space of the die 101 and deformed. At this time, the peripheral edge 5 of the plate 1 existing between the punch 102 and the die 101 starts to move inwardly. This second process is also called a draw process.

図3は第3工程図で、図2の工程をさらに続けて、ダイス101の終点までポンチ102を押し込んで深絞り加工した状態を示している。この工程では、ポンチ102とダイス101との間に存在する板材1の周縁5は、さらに内側にずれ込む。この周縁5のずれ込み方、3次元的な板材1の移動の仕方に応じて、その表面に存在する凹凸の形状が変化する。本発明では凸部の形状が、最初は円形や正方形であったものを楕円形や長方形に変化させ、流体である水流または水滴10の移動方向(重力方向)に流線型に加工する。また凹凸の一部に丸みを作り、流体力学的な抵抗係数が小さくなる形状に変え、かつ毛細管作用を強める構造にする。この第3工程はリストライク工程とも言う。  FIG. 3 is a third process diagram and shows a state where the process of FIG. 2 is further continued and the punch 102 is pushed to the end point of the die 101 and deep drawing is performed. In this step, the peripheral edge 5 of the plate 1 existing between the punch 102 and the die 101 is further shifted inward. Depending on how the peripheral edge 5 is displaced and how the three-dimensional plate 1 is moved, the shape of the unevenness on the surface changes. In the present invention, the shape of the convex portion is initially circular or square, but is changed to an ellipse or a rectangle, and is processed into a streamline shape in the moving direction (gravity direction) of the water stream or water droplet 10 that is a fluid. In addition, a part of the unevenness is rounded, the shape is changed to a shape with a small hydrodynamic resistance coefficient, and the capillary action is strengthened. This third process is also referred to as a restructuring process.

図4は第4工程図で,ポンチ102とダイス101を、それぞれ反対方向に移動して、板材1から開放した状態を示している。この状態で、板材1は深絞り加工が終了し、シンク200の形状がほぼ出来上がる。以上の4工程において、板材1はダイス101と、ポンチ102により変形され、また側面部では摩擦を受けるので、熱が発生して温度上昇する。この温度により板材1の伸びが変わるが、本発明では40℃から80℃の範囲に調整する。これは、ダイス101とポンチ102の熱容量と表面積およびポンチ102の打込み作業率を考慮し、これに空調温度を調節することにより実現される。  FIG. 4 is a fourth process diagram and shows a state where the punch 102 and the die 101 are moved in opposite directions and released from the plate 1. In this state, the deep drawing process of the plate material 1 is completed, and the shape of the sink 200 is almost completed. In the above four steps, the plate 1 is deformed by the die 101 and the punch 102, and receives friction at the side surface portion, so that heat is generated and the temperature rises. Although the elongation of the plate 1 varies depending on this temperature, in the present invention, it is adjusted within the range of 40 ° C to 80 ° C. This is realized by taking into consideration the heat capacity and surface area of the die 101 and the punch 102 and the driving work rate of the punch 102 and adjusting the air conditioning temperature accordingly.

第4工程を終了した後、周縁5は捩れたりして変形している場合があるので、この不要な部分は裁断して除去する。なお、前述した第2工程と第3工程で周縁5はダイス101の中央に向かい移動するが、必要に応じてホルダー103に突起を付けておいて、板材1の周縁5をこれに引っ掛け、周縁5の移動する量を加減して、板材1の展延度を調節してもよい。  After finishing the fourth step, the peripheral edge 5 may be twisted and deformed, so this unnecessary portion is cut and removed. In the second step and the third step described above, the peripheral edge 5 moves toward the center of the die 101. If necessary, a protrusion is attached to the holder 103, and the peripheral edge 5 of the plate 1 is hooked on the peripheral edge 5. The spread amount of the plate 1 may be adjusted by adjusting the amount of movement of 5.

図5は深絞りシンクの上面図、図6は深絞りシンクの断面図で図5のA−A矢視図を示している。出来上ったシンク200の構造は、側壁6、底板7、周縁5、およびそれらの間に介在する隅部R1,R2、R3,空間部4、から構成されている。底板7に設ける排水孔8は、第1図から第4図の深絞り工程で一体的に作成してもよく、後工程を設けて作成しても良いものである。底板7は緩やかな下り勾配を有していて、側壁6部等から流下する水を受けて底板7から排水孔8に円滑に水を排出できる。また周縁5を長く延長すれば天板になり、この天板にも凹凸加工部を連続的に付けておけば、全体的に効果は一層高まる。  FIG. 5 is a top view of the deep drawing sink, and FIG. 6 is a cross-sectional view of the deep drawing sink and shows a view taken along the line AA of FIG. The completed sink 200 has a side wall 6, a bottom plate 7, a peripheral edge 5, and corners R1, R2, R3 and a space 4 interposed therebetween. The drain hole 8 provided in the bottom plate 7 may be formed integrally in the deep drawing process of FIGS. 1 to 4 or may be formed by providing a post process. The bottom plate 7 has a gentle downward slope, and can smoothly drain water from the bottom plate 7 to the drain hole 8 by receiving water flowing down from the side wall 6 part or the like. Moreover, if the periphery 5 is extended long, it will become a top plate, and if an uneven | corrugated processed part is continuously attached also to this top plate, the effect will increase further as a whole.

図7は本発明で重要な深絞り時のポンチ102の押し込み深さとホルダー103のクッション圧力の関係を示したものである。横軸に無次元クッション圧力Pを、縦軸に無次元押し込み深さHをとり、従来の平滑板材の場合と、本発明の凹凸付き板材の場合を比較して示してある。図8に示す平滑板材1の場合の無次元クッション圧力Pは、黒丸印で示すように無次元押し込み深さHが0(始点)から1(終点)まで1で同じである。図9に示すような本発明に用いる凹凸付き板材の場合の無次元クッション圧力Pは、図7の四角印でその一例を示すように、黒丸印より高く、かつ始点から終点に進行するに従い除除に高めていく。上昇に仕方は、図示の四角印で示す一実施例のように段階的でもよく、連続的に上昇しても良い。この例では、初期の無次元クッション圧力Pは、1,6であるが終点では1,9まで高めている。この図7の一実施例に用いた板材1に関する仕様と条件を以下に示す。なおこのグラフで従来品と本発明品は、図8に示す従来品の板材1の厚さt1と、図9の本発明に用いる凹凸付き板材1の凸部2の厚さt1とを同一にして比較している。  FIG. 7 shows the relationship between the push-in depth of the punch 102 and the cushion pressure of the holder 103 during deep drawing, which is important in the present invention. The dimensionless cushion pressure P is taken on the horizontal axis, and the dimensionless indentation depth H is taken on the vertical axis, comparing the case of the conventional smooth plate and the case of the plate with unevenness of the present invention. The dimensionless cushion pressure P in the case of the smooth plate 1 shown in FIG. 8 is the same when the dimensionless pushing depth H is 1 from 0 (start point) to 1 (end point) as indicated by black circles. The dimensionless cushion pressure P in the case of the uneven plate material used in the present invention as shown in FIG. 9 is higher than the black circle mark as shown by an example of the square mark in FIG. 7, and is removed as it progresses from the start point to the end point. I will increase it. The method of ascending may be stepwise as in the embodiment shown by the square marks in the figure or may be continuously raised. In this example, the initial dimensionless cushion pressure P is 1, 6 but increased to 1, 9 at the end point. The specifications and conditions relating to the plate 1 used in the embodiment of FIG. 7 are shown below. In this graph, the conventional product and the product of the present invention have the same thickness t1 of the conventional plate 1 shown in FIG. 8 and the thickness t1 of the convex portion 2 of the uneven plate 1 used in the present invention of FIG. Compare.

(実施例の仕様と条件)
・素材:18−8ステンレス鋼で表面にポリプロピレンの薄膜付き
・板厚:0,7mm
・板材の凹凸の数:1インチ当り17個
・凹凸の深さ:0,03mm(図9でt1−t2)
・凹凸の形状:正方形(図9の凸部2の平面形状)
・シンクのサイズ(図5と図6参照)
a=440mm、b=365mm、h=190mm
・潤滑剤:炭化水素油を含有したものを水に溶いたもの
・潤滑剤の調整初期温度:約25℃
(Example specifications and conditions)
・ Material: 18-8 stainless steel with polypropylene thin film on the surface ・ Thickness: 0.7mm
・ Number of irregularities of plate material: 17 per inch ・ Depth of irregularities: 0.03 mm (t1-t2 in FIG. 9)
Uneven shape: square (planar shape of the protrusion 2 in FIG. 9)
・ Sink size (see Figs. 5 and 6)
a = 440 mm, b = 365 mm, h = 190 mm
・ Lubricant: Hydrocarbon oil-containing material dissolved in water ・ Lubricant adjustment initial temperature: about 25 ° C.

(本発明の有効な範囲)
種種テストを行い本発明の有効な範囲は以下に示す通りである。以下の範囲で深絞り加工を行ったシンクは、側壁から隅部を介して底板まで連続的に水が流れ易くなり、水切り性が良好となる。
▲1▼材質:ステンレス系のもの全般に有効
▲2▼板厚さ:0,4〜1,5mm
▲3▼凹凸の数:1インチ当たり5〜40個
▲4▼凹凸の深さ:0,2mm程度まで(図9でt1−t2)
▲5▼凹凸の平面形状:特に制限されないが、丸、四角、三角、菱型、楕円などに特に有効
▲6▼シンクのサイズの制限:小サイズは容易に製作可能であるが、図5、図6のa寸法あるいはb寸法が300mm以上、h寸法が150mm以上のものまで製作可能。また側壁が内側に向かい傾斜しているものには、勿論有効であるが、鋭く切り立つ垂直壁にも有効
▲7▼シンク隅部の円弧寸法:かなり小寸法のものまで有効で、図5のR1部の局率半径が約100mm以下でも製作可能になり、また図6のR2とR3部の局率半径が20mm程度まで製作可能になる。
(Effective range of the present invention)
Various tests were conducted, and the effective range of the present invention is as follows. A sink that has been deep-drawn in the following range can easily flow water continuously from the side wall to the bottom plate through the corners, and has good drainage performance.
(1) Material: Effective for all stainless steel materials (2) Plate thickness: 0, 4 to 1,5 mm
(3) Number of irregularities: 5 to 40 per inch (4) Depth of irregularities: up to about 0.2 mm (t1-t2 in FIG. 9)
(5) Planar shape of irregularities: Not particularly limited, but particularly effective for round, square, triangular, rhombus, ellipse, etc. (6) Restriction of sink size: Although small sizes can be easily manufactured, FIG. It is possible to manufacture up to dimension a or b in Fig. 6 of 300 mm or more and h dimension of 150 mm or more. Of course, it is effective when the side wall is inclined toward the inside, but it is also effective for a vertical wall that is sharply cut. (7) Arc size of sink corner: effective even for very small dimensions, R1 in FIG. It can be manufactured even when the locality radius of the portion is about 100 mm or less, and the locality radius of the R2 and R3 portions of FIG. 6 can be manufactured up to about 20 mm.

(潤滑剤とクッション圧力の推奨値)
▲1▼潤滑剤の種類と初期の調整温度:炭化水素油を含有するものが良く、初期の調整温度は、10℃から30℃の範囲が良い。
▲2▼クッション圧力:板厚さや凹凸の数により変化させる必要があるが、上記の本発明の有効範囲では、図7に示す上限値と下限値の範囲で段取りをすればよい。具体的には、従来の平滑材の場合を1とすると、下限値は1,1から1,3倍であり、上限値は2,0から2,5倍の範囲である。
(Recommended values for lubricant and cushion pressure)
(1) Type of lubricant and initial adjustment temperature: those containing a hydrocarbon oil are preferable, and the initial adjustment temperature is preferably in the range of 10 ° C to 30 ° C.
{Circle around (2)} Cushion pressure: Although it is necessary to change depending on the plate thickness and the number of irregularities, in the above-mentioned effective range of the present invention, it is only necessary to set up within the range of the upper limit value and the lower limit value shown in FIG. Specifically, when the case of the conventional smoothing material is 1, the lower limit value is in the range of 1, 1 to 1, 3 times, and the upper limit value is in the range of 2, 0 to 2, 5 times.

(凹凸の断面形状と水切り性)
本発明によれば、凹凸の断面形状が流体力学的に抵抗係数を小さくし、かつ毛細管力を受けやすくする形状になる。これはシンク内面の側壁部が図2に示す第2工程、図3に示す第3工程で、板材1が展延する過程において作られる。最初円形であったものは楕円、正方形であったものは長方形になり、流体の流れ方向に流線形になる。さらに流体の流れに対抗する凹凸の角においては、凸部の角が取れて丸みを帯び、これにより流体の抵抗係数が小さくなる。また凹部と凸部で形成する隅角度が開き、凸部の上に付着した水滴が凹部に吸い込まれ易くなる。これらの両方の効果により、水きり性が向上する。以下これらについて詳述する。
(Cross section shape and drainage)
According to the present invention, the cross-sectional shape of the projections and depressions becomes a shape that hydrodynamically reduces the resistance coefficient and easily receives the capillary force. This is made in the process of spreading the plate 1 in the second step shown in FIG. 2 and the third step shown in FIG. The first circular shape is an ellipse, the square one is a rectangle, and it becomes streamlined in the fluid flow direction. Furthermore, at the corners of the concaves and convexes that oppose the fluid flow, the corners of the convex portions are removed and rounded, thereby reducing the resistance coefficient of the fluid. Further, the corner angle formed by the concave portion and the convex portion is opened, and water droplets adhering to the convex portion are easily sucked into the concave portion. Both of these effects improve drainage. These will be described in detail below.

図10は従来の平滑板材を用いたシンク側壁に付着した水滴の径を測定し、その度数分布を示したものである。この実験では実際のシンクを用い、常温の状態で、その側壁に水を散布して、写真観察により計測した。側壁に付着し残留した水は、一時的に広い膜状に広がる。しばらくすると、この水膜は、表面張力により幾つかに分割れ、さらに各水膜は、小さく分断されながら、最終的に小さな水滴が側壁に散在した状態になる。この水滴は、シンク内壁の付着力により、下方部に降下せず,そのまま壁面に残っている。側壁100mm平方内の各水滴の径と数を計測し、横軸に付着した水滴の径D(mm),縦軸に度数(%)をとって示してある。水滴の径は2mm以上において、高い度数を示し、3mmが1番高い正規分布となっている。1mm以下のものはほとんどない。  FIG. 10 shows the frequency distribution of the diameter of water droplets attached to the sink side wall using a conventional smooth plate material. In this experiment, an actual sink was used, water was sprayed on the side wall at room temperature, and measurement was performed by photographic observation. The water remaining on the side wall temporarily spreads in a wide film shape. After a while, this water film is divided into several parts by the surface tension, and each water film is finally divided into small water droplets while being divided into small parts. These water droplets remain on the wall surface as they are without dropping down due to the adhesion of the sink inner wall. The diameter and number of each water droplet within a square of 100 mm on the side wall are measured, the diameter D (mm) of the water droplet adhering to the horizontal axis, and the frequency (%) on the vertical axis. When the diameter of the water droplet is 2 mm or more, the frequency is high and 3 mm is the highest normal distribution. There is almost no thing of 1 mm or less.

これより、シンク200の内面に付いている凸部9の径、及び凹部3の間隙は少なくとも3mm以下、好ましくは2mm以下にすると、水切り性が良好となる。このようなサイズに凸部9と凹部3を調整すると、凸部9の上面に付着した水滴10は、その面に安定に存在できなくなり、凹部3に流れ込むからである。凹部3においても同様で、水滴10の形状が流れ方向にすぐ変形して、重力により下方部に移動するようになる。凹部3は連通溝であるので、隣の凸部9の水滴10と合流合体して大きくなり、流れ速度が大きくなり下方部に移動する。  Accordingly, when the diameter of the convex portion 9 attached to the inner surface of the sink 200 and the gap of the concave portion 3 are at least 3 mm or less, preferably 2 mm or less, the water draining property is improved. This is because when the convex portion 9 and the concave portion 3 are adjusted to such a size, the water droplets 10 attached to the upper surface of the convex portion 9 cannot stably exist on the surface and flow into the concave portion 3. The same applies to the concave portion 3, and the shape of the water droplet 10 is immediately deformed in the flow direction and moves downward by gravity. Since the concave portion 3 is a communication groove, it merges and merges with the water droplets 10 of the adjacent convex portion 9 to increase the flow speed and move downward.

このような作用は、前記の凸部2、凹部3のサイズ調整のほか,凸部9の形状が流体の流れ方向に長い流線型であり、また凸部9の角および凹部3の隅に丸みが存在することも重要である。本発明はそのような目的に好適な形状を提供している。  In addition to the adjustment of the size of the convex portion 2 and the concave portion 3, such an effect is a streamline type in which the shape of the convex portion 9 is long in the fluid flow direction, and the corners of the convex portion 9 and the corners of the concave portion 3 are rounded. It is also important to exist. The present invention provides a shape suitable for such purposes.

図11は本発明のシンク200の側壁6の4平面、及び隅部R1の側壁の凸部9の構造を示す平面図であり、また図12は図11のC−C断面図である。具体的には、図12はシンク200の側壁6の4平面、および隅部R1の側壁を、面に対して垂直方向から見た図である。この図11の上部は周縁5に近く、この図11の下部は底部7に近い状態にある。本発明の深絞り加工方法を用いると、シンク200の側壁6の4平面およびシンク隅部R1の側壁の上下方向には、最初に用いる板材1の凸部2の形状が円形であったものが、楕円形状の凸部9に変形したものになる。この図11の楕円状に変形した凸部9の長径a1と短径b1は、図10に示す水滴10の正規分布から、少なくとも約3mm以下、好ましくは約2mm以下にすることが重要である。また凹部の間隙S1,S2も、少なくとも約3mm以下、好ましくは約2mm以下にすることが重要である。
この水切り作用をさらに促進するには、凸部9の角、及び凹部3の隅部に丸みが存在すると好適に行われる。図12の断面図で、凸部9の角の局率半径r1、及び凹部3の隅部の局率半径r2は少なくとも0,01mm以上にするのがよい。この凸部9の角部の局率半径r1の存在は、凸部9の上面に付着した水滴10を凹部3の溝に、移動させ易くする。また凹部3の隅部の局率半径r2の存在は、凹部3内の水滴10に対する濡れ縁長さを小さくし、水滴10を重力方向に移動させ易くする。
11 is a plan view showing the structure of the four planes of the side wall 6 of the sink 200 of the present invention and the convex portion 9 on the side wall of the corner R1, and FIG. 12 is a cross-sectional view taken along the line CC in FIG. Specifically, FIG. 12 is a view of the four planes of the side wall 6 of the sink 200 and the side wall of the corner R1 as seen from the direction perpendicular to the surface. The upper part of FIG. 11 is close to the peripheral edge 5, and the lower part of FIG. 11 is close to the bottom part 7. When the deep drawing method of the present invention is used, the shape of the convex part 2 of the plate material 1 used first is circular in the four planes of the side wall 6 of the sink 200 and the vertical direction of the side wall of the sink corner R1. In other words, it is deformed into an elliptical convex portion 9. It is important that the major axis a1 and minor axis b1 of the convex portion 9 deformed into an elliptical shape in FIG. 11 is at least about 3 mm or less, preferably about 2 mm or less from the normal distribution of the water droplet 10 shown in FIG. It is also important that the gaps S1 and S2 of the recesses are at least about 3 mm or less, preferably about 2 mm or less.
In order to further promote the draining action, it is preferably performed when the corners of the convex portions 9 and the corner portions of the concave portions 3 are rounded. In the cross-sectional view of FIG. 12, the locality radius r <b> 1 at the corner of the convex portion 9 and the locality radius r <b> 2 at the corner portion of the concave portion 3 are preferably at least 0.01 mm or more. The presence of the locality radius r1 at the corner of the convex portion 9 facilitates the movement of the water droplet 10 attached to the upper surface of the convex portion 9 into the groove of the concave portion 3. In addition, the presence of the radius of curvature r2 at the corner of the recess 3 reduces the wet edge length of the water droplet 10 in the recess 3 and facilitates the movement of the water droplet 10 in the direction of gravity.

図13は図12と比較するために、完全矩形断面形状の凹凸付き板材1の断面図を示したものである。このように断面形状が完全矩形断面となっていると、凸部9の表面に付着した水滴10は、表面張力の効果が不足して、凹部3に移動し難い。また凹部3に存在する水滴10は、濡れ縁長さが図12の場合に比較して増加するため、付着力が大きくなり、重力方向に移動し難くなる。時には、水滴10が移動した後、その一部10−aが、凹部3の隅部に残留し、水きり性が悪くなる。  For comparison with FIG. 12, FIG. 13 shows a cross-sectional view of the plate member 1 with unevenness having a completely rectangular cross-sectional shape. When the cross-sectional shape is a complete rectangular cross-section in this way, the water droplet 10 attached to the surface of the convex portion 9 is not easily moved to the concave portion 3 due to insufficient surface tension effect. Moreover, since the wet edge length increases compared with the case of FIG. 12, the water droplet 10 which exists in the recessed part 3 becomes larger, and becomes difficult to move to the gravity direction. Sometimes, after the water droplet 10 moves, a part 10-a thereof remains in the corner of the recess 3 and the water draining property is deteriorated.

図14から図21までは、本発明のシンク200の内面に加工された凹凸の構造に関して、詳細に記載したものである。  FIGS. 14 to 21 describe in detail the uneven structure processed on the inner surface of the sink 200 of the present invention.

図14は初期の凹凸の平面形状が、円形の場合の平面図、図15は図14のD−D断面である。凸部2の先端の径はd1、根元の径はd2である。凹部3の根元に存在するr2部の隅角度θ1は、最初100度位のものを使用する。凸部2の先端は、若干中高となっている。  FIG. 14 is a plan view in the case where the planar shape of the initial unevenness is circular, and FIG. 15 is a DD cross section of FIG. The diameter of the tip of the convex part 2 is d1, and the diameter of the root is d2. The corner angle θ1 of the r2 portion existing at the base of the recess 3 is initially about 100 degrees. The tip of the convex portion 2 is slightly middle and high.

図16は本発明の深絞り加工後の平面図で,図14,図15の円形状の凸部2が楕円状の凸部9に変形加工された形状を示している。図17は図16のE−E断面図である。凸部9は流体の流れ方向に対して楕円状に変形し、凸部9の先端の長径はa1、短径はb1、凸部9の根元の長径はa2、短径はb2に変化する。長径a1及び短径b1のサイズは3mm以下、好ましくは2mm以下にする。r2部の隅角度θ2は、図15の初期の隅角度θ1にから開かれ、110度以上にするのがよい。また本発明の加工方法によれば、凹部3はシンク200の裏のP面からΔhだけ、内面側に向かい移動する。この凹部3の移動量Δhは、0,005mm程度以上となり、この分、凹部3はシンク200の内側に向かい湾曲し、この湾曲が凸部9上の水滴10の凹部3への吸込みに好適に作用する。またポンチ102の摺動面で加工された凸部9は、図15の凸部2に対して平坦となり、その表面には、流体の流れ方向に向かった筋が付く。この筋は0,002mm程度であるが、凸部9に付着した水滴10の凹部3への移動を促進する。  FIG. 16 is a plan view after deep drawing according to the present invention, and shows a shape in which the circular convex portion 2 in FIGS. 14 and 15 is deformed into an elliptical convex portion 9. 17 is a cross-sectional view taken along line EE in FIG. The convex portion 9 is deformed into an ellipse with respect to the fluid flow direction, and the major axis of the tip of the convex portion 9 is a1, the minor axis is b1, the major axis of the base of the convex portion 9 is a2, and the minor axis is b2. The size of the major axis a1 and the minor axis b1 is 3 mm or less, preferably 2 mm or less. The corner angle θ2 of the r2 part is preferably opened from the initial corner angle θ1 of FIG. Further, according to the processing method of the present invention, the recess 3 moves toward the inner surface side by Δh from the P surface on the back of the sink 200. The movement amount Δh of the concave portion 3 is about 0.005 mm or more, and accordingly, the concave portion 3 is curved toward the inside of the sink 200, and this curvature is suitable for suction of the water droplet 10 on the convex portion 9 into the concave portion 3. Works. Moreover, the convex part 9 processed by the sliding surface of the punch 102 is flat with respect to the convex part 2 in FIG. 15, and a streak directed in the fluid flow direction is attached to the surface. Although this streak is about 0.002 mm, the movement of the water droplet 10 attached to the convex portion 9 to the concave portion 3 is promoted.

図18は、凸部の初期の平面形状が正方形の場合の板材の平面図を示したものであり、図19は図18の板材を深絞り加工した場合の平面図である。図19に示すように、流体の流れ方向に長方形に延びた形状に加工される。凸部9の先端部の長径a1及び短径b1は、少なくとも3mm以下、好ましくは2mm以下に調整するのがよい。凸部9を平面図で見た場合の4隅の丸み部の局率半径r3も重要で、この局率半径r3は0,005mm以上にする。このように加工すると、流体の抵抗係数を小さくするのに寄与する。  FIG. 18 is a plan view of the plate material when the initial planar shape of the convex portion is a square, and FIG. 19 is a plan view when the plate material of FIG. 18 is deep-drawn. As shown in FIG. 19, it is processed into a shape extending in a rectangular shape in the fluid flow direction. The major axis a1 and minor axis b1 of the tip of the convex part 9 are adjusted to at least 3 mm or less, preferably 2 mm or less. The radius of curvature r3 of the rounded corners of the four corners when the convex portion 9 is viewed in a plan view is also important, and the radius of curvature r3 is set to 0.005 mm or more. Processing in this way contributes to reducing the resistance coefficient of the fluid.

図20は凸部の平面形状が、正方菱形の初期形状の場合を示したものである。また図21は図20の形状のものを、深絞り加工した本発明の凸部の形状の平面図である。流体の流れ方向に対して、長い菱形に加工される。凸部9の長径a1及び短径b1は、少なくとも3mm以下、好ましくは2mm以下にする。凸部9を平面図で見た場合の4隅の丸み部の局率半径r3も重要で、この局率半径r3は0,005mm以上にする。このように加工すると、流体の抵抗係数を小さくするのに寄与する。  FIG. 20 shows a case where the planar shape of the convex portion is a square rhombus initial shape. FIG. 21 is a plan view of the shape of the convex portion of the present invention obtained by deep drawing the shape of FIG. It is processed into a long diamond shape with respect to the fluid flow direction. The major axis a1 and the minor axis b1 of the convex part 9 are at least 3 mm or less, preferably 2 mm or less. The radius of curvature r3 of the rounded corners of the four corners when the convex portion 9 is viewed in a plan view is also important, and the radius of curvature r3 is set to 0.005 mm or more. Processing in this way contributes to reducing the resistance coefficient of the fluid.

図16、図19、図21に示した本発明の凸部9は,流体の流れ方向に対して流線型であり,このような凸部9を、シンク200の側壁4平面、及び4隅R1部の側壁部の、特に上部すなわち周縁5に近い部分に多く存在するように加工する。このように加工すると、排水孔8から1番遠い側壁上方部が、水切り性が良好になり、目的に合ったシンク200が実現でき、実用に供して便利となった。  The convex portions 9 of the present invention shown in FIGS. 16, 19, and 21 are streamlined with respect to the fluid flow direction, and such convex portions 9 are formed on the side wall 4 plane of the sink 200 and the four corner R1 portions. Of the side wall of the steel plate so as to be present in a large amount, particularly in the upper part, that is, the part close to the peripheral edge 5. When processed in this way, the upper portion of the side wall farthest from the drainage hole 8 has good drainage properties, and the sink 200 suitable for the purpose can be realized, which is convenient for practical use.

図22はシンク200の隅部R1付近の凸部2の配列模様を示した斜視図である。全体的に見た配列模様は、排水孔8に対して凸の円弧状に加工する。シンク200の上面から見た4平面の側壁6に対して、ここに示した対角線上にある4隅のR1部の側壁は、排水孔8から幾何学的に遠方に位置するので、水きり性が悪くなる。本発明では、この隅部R1の側壁部の凸部2の構造は、前述のように流体の流れ方向に流線形である以外に、この図22に示すように、R1部の側壁の凸部2(この図では黒丸印で示す)を全体的に眺めた配列模様は排水孔8に対して、凸の円弧状に加工されるので、隅部R1付近に付着した水滴10は、下部に移動するに従い合流して集まり易くなり、そして移動速度が速まる。この4隅R1の側壁部は排水孔8から1番遠い部分であるので、その凸部9の短径b1、凹部3の間隙S1は、側壁6の4平面部のものより小さく加工すると、水切りの効果が高まる。たとえば一実施例では、側壁4平面においては、凸部9の先端部の長径a1=1,2mm、短径b1=1,0mm、間隙S1=1,5mmに対して、4隅R1の側壁部では、a1=1,5mm、b1=0,8mm、S1=1,0mmである。また図22に示す配列模様は、美観の向上にも寄与する。  FIG. 22 is a perspective view showing an arrangement pattern of the protrusions 2 near the corner R1 of the sink 200. FIG. The overall arrangement pattern is processed into a convex arc shape with respect to the drain holes 8. The sidewalls of the four corners R1 on the diagonal line shown here are geometrically distant from the drainage holes 8 with respect to the four planar sidewalls 6 seen from the top surface of the sink 200, so Deteriorate. In the present invention, the structure of the convex portion 2 on the side wall portion of the corner portion R1 is streamlined in the fluid flow direction as described above, and as shown in FIG. 22, the convex portion on the side wall portion of the R1 portion. 2 (shown by black circles in this figure) is processed into a convex arc shape with respect to the drain holes 8, so that the water droplets 10 adhering to the vicinity of the corner R1 move downward. As you do, it will be easier to meet and gather, and the movement speed will increase. Since the side wall portion of the four corners R1 is the portion farthest from the drain hole 8, if the short diameter b1 of the convex portion 9 and the gap S1 of the concave portion 3 are made smaller than those of the four planar portions of the side wall 6, The effect of increases. For example, in one embodiment, in the plane of the side wall 4, the side wall portions of the four corners R 1 with respect to the major axis a 1 = 1, 2 mm, the minor axis b 1 = 1, 0 mm, and the gap S 1 = 1, 5 mm Then, a1 = 1, 5 mm, b1 = 0, 8 mm, and S1 = 1,0 mm. Moreover, the arrangement | sequence pattern shown in FIG. 22 contributes also to the improvement of aesthetics.

深絞りの第1工程図(初期設定時)First drawing of deep drawing (initial setting) 深絞りの第2工程図(深絞り開始時)Second drawing of deep drawing (at the start of deep drawing) 深絞りの第3工程図(深絞り終了時)Third drawing of deep drawing (at the end of deep drawing) 深絞りの第4工程図(ポンチとダイスの開放時)Fourth drawing of deep drawing (when punch and die are opened) 深絞りシンクの上面図Top view of deep drawing sink 深絞りシンクの断面図(図5のA−A矢視図)Cross-sectional view of deep drawing sink (viewed along arrow AA in FIG. 5) 本発明の深絞り時の押し込み深さとホルダーのクッション圧力の関係Relationship between indentation depth and holder cushion pressure during deep drawing of the present invention 従来の平滑板材の側面図Side view of conventional smooth plate 本発明に用いる凹凸付き板材の側面図Side view of uneven plate used in the present invention 従来の平滑板材利用シンク側壁に付着した水滴径の度数分布Frequency distribution of water droplet diameter attached to the side wall of a sink using a conventional smooth plate 本発明のシンク側壁の凹凸の配列を示す平面図The top view which shows the arrangement | sequence of the unevenness | corrugation of the sink side wall of this invention 図11のC−C断面図CC sectional view of FIG. 完全矩形断面形状の凹凸付き板材の断面図Cross-sectional view of uneven plate with full rectangular cross-section 本発明に用いる凹凸付き板材の円形状の凸部の初期形状を示す平面図The top view which shows the initial shape of the circular convex part of the uneven | corrugated board | plate material used for this invention 図14のD−D断面図DD sectional view of FIG. 図14の板材の深絞り加工後の凸部の平面図14 is a plan view of the convex portion after deep drawing of the plate material of FIG. 図16のE−E断面図EE sectional view of FIG. 本発明に用いる他の凹凸付き板材の凹凸の初期形状を示す平面図The top view which shows the initial shape of the unevenness | corrugation of the other uneven | corrugated board | plate material used for this invention 図18の板材の深絞り加工後の凸部の平面図The top view of the convex part after the deep drawing process of the board | plate material of FIG. 本発明に用いる他の凹凸付き板材の凸部の初期形状を示す平面図The top view which shows the initial shape of the convex part of the other uneven | corrugated board | plate material used for this invention 図20の板材の深絞り加工後の凸部の平面図20 is a plan view of the convex portion after deep drawing of the plate material of FIG. シンク隅部の凹凸の配列模様を示す斜視図The perspective view which shows the arrangement pattern of the unevenness | corrugation of a sink corner part

符号の説明Explanation of symbols

1・・・板材(または素材)
2・・・凸部
3・・・凹部
4・・・空間
5・・・縁(または周縁)
6・・・側壁
7・・・底板
8・・・排水孔
9・・・変形した凸部
10,10−a・・・水滴
101・・・ダイス
102・・・ポンチ
103・・・ホルダー
200・・・シンク
a1・・・凸部の先端部の長径
a2・・・凸部の根元部の長径
b1・・・凸部の先端部の短径
b2・・・凸部の根元部の短径
d1・・・円形状凸部の先端部の直径
d2・・・円形状凸部の根元部の直径
s1、s2・・・凹部の間隙長さ
r1・・・凸部の角の局率半径
r2・・・凹部の隅部の局率半径
r3・・・凸部平面の隅部の局率半径
R1,R2,R3・・・シンク隅部または各隅部曲率半径
θ1・・・初期隅角度
θ2・・・深絞り加工後の隅角度
1 ... Plate material (or material)
2 ... convex part 3 ... concave part 4 ... space 5 ... edge (or peripheral edge)
6 ... Side wall 7 ... Bottom plate 8 ... Drain hole 9 ... Deformed convex part 10, 10-a ... Water drop 101 ... Die 102 ... Punch 103 ... Holder 200 ··· sink a1 ··· major axis a2 of the tip of the convex portion ··· major axis b1 of the root portion of the convex portion ··· minor axis b2 of the tip portion of the convex portion ··· minor axis d1 of the root portion of the convex portion ... Diameter d2 of the tip of the circular convex part ... Diameter s1, s2 of the base part of the circular convex part ... Gap length r1 of the concave part ... Local radius r2 of the corner of the convex part ··· radius of curvature r3 at the corner of the concave portion ··· radius of curvature R1, R2, R3 · · · corner radius of the sink or each corner θ1 ... initial corner angle θ2 · · · ..Corner angle after deep drawing

Claims (10)

深絞り加工シンクの内面の側壁及び底板及びそれらの間の隅部の表面に連続的に凹凸を設けた深絞り加工シンク。A deep drawing sink in which irregularities are continuously provided on the inner side wall and bottom plate of the deep drawing sink and the surface of the corner between them. 周縁または天板の表面にも凹凸を設けて、前記の側壁の凹凸加工部に連続的に接続した請求項1に記載の深絞り加工シンク。The deep drawing sink according to claim 1, wherein unevenness is also provided on the peripheral edge or the surface of the top plate and continuously connected to the unevenness processing portion of the side wall. 少なくとも深絞り加工シンクの上部から見た4隅の側壁表面または側壁4平面に付いている凹凸には、その平面形状が、周縁または天板の平面に対してほぼ垂直方向に、長く変形しているものが存在することを特徴とする請求項1および請求項2に記載の深絞り加工シンク。At least the unevenness on the side wall surface or the side wall 4 plane of the four corners as viewed from the top of the deep drawing sink is deformed long in a direction substantially perpendicular to the periphery or the plane of the top plate. The deep-drawing sink according to claim 1 or 2, characterized in that there is what is present. 凹凸の一部に、流体の抵抗係数を小さくする丸みが付いていて、凹部と凸部で形成する隅部の隅角度は110度以上のものが存在することを特徴とする請求項1から請求項3に記載の深絞り加工シンク。A part of the unevenness is rounded to reduce the resistance coefficient of the fluid, and a corner angle formed by the concave part and the convex part has a corner angle of 110 degrees or more. Item 6. The deep drawing sink according to item 3. 前記深絞り加工シンクの上部から見た4隅の側壁表面の凹凸の配列構造は、排水孔に対して凸の円弧状であることを特徴とする請求項1から請求項4に記載の深絞り加工シンク。5. The deep drawing according to claim 1, wherein the arrangement structure of the irregularities on the surface of the four corner side walls as viewed from the upper part of the deep drawing sink is a circular arc shape convex to the drainage hole. Processing sink. 前記深絞り加工シンクの平面状側壁部及び4隅側壁部の減肉率は、加工率の低い周縁あるいは天板に対して、それぞれ20%から50%、20%から60%の範囲であることを特徴とする請求項1から請求項5に記載の深絞り加工シンク。The thinning ratio of the flat side wall and the four corner side walls of the deep drawing sink is in the range of 20% to 50% and 20% to 60%, respectively, with respect to the peripheral edge or the top plate having a low processing rate. The deep drawing sink according to claim 1, wherein: 前記深絞り加工シンクの上部から見た4隅部、および側壁と底板との間の隅部、および天板と側壁との間の隅部の曲率半径が約20mm以上であることを特徴とする請求項1から請求項6に記載の深絞り加工シンク。The radius of curvature of the four corners seen from the top of the deep drawing sink, the corner between the side wall and the bottom plate, and the corner between the top plate and the side wall is about 20 mm or more. The deep drawing sink according to claim 1. 板材の深絞り加工時のホルダーのクッション圧力を、深絞りの進行度が進むに従い、段階的あるいは連続的に増加し、少なくともクッション圧力は同一厚さの平滑板材を加工する場合の1,1倍以上にすることを特徴とする、表面に凹凸を有する板材の深絞り加工方法。The cushion pressure of the holder during deep drawing of the plate material increases stepwise or continuously as the degree of deep drawing progresses. At least the cushion pressure is 1.1 times that when processing a smooth plate of the same thickness. A deep drawing method for a plate material having irregularities on its surface, characterized in that it is as described above. 板材表面に塗布する潤滑剤は、少なくとも炭化水素油を含有するものであり、板材に塗布する際に10℃から30℃の範囲に管理し、ダイスまたはポンチで板材を加工する時には、摩擦熱などの温度上昇を考慮しながら、板材の加工温度を40℃から80℃の範囲に調節することを特徴とする請求項8に記載の、表面に凹凸を有する板材の深絞り加工方法。The lubricant applied to the surface of the plate material contains at least hydrocarbon oil, and is controlled in the range of 10 ° C. to 30 ° C. when applied to the plate material. When processing the plate material with a die or punch, friction heat, etc. The deep drawing method for a plate material having irregularities on the surface according to claim 8, wherein the processing temperature of the plate material is adjusted to a range of 40 ° C. to 80 ° C. while taking into account the temperature rise. 板材がステンレスであり、その凹凸を有する表面にポリプロピレン等の薄膜が付いているものを用いることを特徴とする請求項8および請求項9に記載の、表面に凹凸を有する板材の深絞り加工方法。10. The deep drawing method for a plate material having unevenness on the surface according to claim 8 or 9, wherein the plate material is stainless steel, and the surface having the unevenness is provided with a thin film such as polypropylene. .
JP2005236135A 2005-07-20 2005-07-20 Deep drawn sink and deep drawing process Pending JP2007021577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236135A JP2007021577A (en) 2005-07-20 2005-07-20 Deep drawn sink and deep drawing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236135A JP2007021577A (en) 2005-07-20 2005-07-20 Deep drawn sink and deep drawing process

Publications (1)

Publication Number Publication Date
JP2007021577A true JP2007021577A (en) 2007-02-01

Family

ID=37783001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236135A Pending JP2007021577A (en) 2005-07-20 2005-07-20 Deep drawn sink and deep drawing process

Country Status (1)

Country Link
JP (1) JP2007021577A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010228008A (en) * 2010-03-25 2010-10-14 Toyoura:Kk Method for producing sink for scullery
CN102380550A (en) * 2011-10-17 2012-03-21 宁波欧琳厨具有限公司 Anneal-free processing technique of stainless steel water tank
KR101167268B1 (en) 2009-12-17 2012-07-23 주식회사에넥스 Method for Manufacturing Upper plate of sink
JP2019065577A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Sink, kitchen table and kitchen device
JP2019063856A (en) * 2017-10-05 2019-04-25 新日鐵住金株式会社 Manufacturing method for metallic component and the metallic component
WO2020007628A3 (en) * 2018-07-05 2020-02-27 Franke Technology And Trademark Ltd Method and device for dry-machining deep-drawn sinks
CN114011968A (en) * 2021-11-05 2022-02-08 沧州春潮五金制造有限公司 Stretching manufacturing process of socket type filter shell
CN114871319A (en) * 2022-04-26 2022-08-09 安徽弘伟环境装备有限公司 Condensed water plate stamping device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167268B1 (en) 2009-12-17 2012-07-23 주식회사에넥스 Method for Manufacturing Upper plate of sink
JP2010228008A (en) * 2010-03-25 2010-10-14 Toyoura:Kk Method for producing sink for scullery
CN102380550A (en) * 2011-10-17 2012-03-21 宁波欧琳厨具有限公司 Anneal-free processing technique of stainless steel water tank
CN102380550B (en) * 2011-10-17 2013-09-18 宁波欧琳厨具有限公司 Anneal-free processing technique of stainless steel water tank
JP2019065577A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Sink, kitchen table and kitchen device
JP2019063856A (en) * 2017-10-05 2019-04-25 新日鐵住金株式会社 Manufacturing method for metallic component and the metallic component
WO2020007628A3 (en) * 2018-07-05 2020-02-27 Franke Technology And Trademark Ltd Method and device for dry-machining deep-drawn sinks
CN114011968A (en) * 2021-11-05 2022-02-08 沧州春潮五金制造有限公司 Stretching manufacturing process of socket type filter shell
CN114871319A (en) * 2022-04-26 2022-08-09 安徽弘伟环境装备有限公司 Condensed water plate stamping device
CN114871319B (en) * 2022-04-26 2022-12-27 安徽弘伟环境装备有限公司 Condensed water plate stamping device

Similar Documents

Publication Publication Date Title
JP2007021577A (en) Deep drawn sink and deep drawing process
US6182743B1 (en) Polyhedral array heat transfer tube
US20160003317A1 (en) Disc brake pad for a vehicle
JP5719935B2 (en) Pneumatic tire
JP5331475B2 (en) Heat transfer surface for cooling electronic components
KR101889637B1 (en) Base panel material for use as heat exchange plate and method for manufacturing such base panel material
EP2015018A1 (en) Heat transmission fin and fin-tube heat exchanger
WO2013039214A1 (en) Raw plate material for heat exchanging plate, and heat exchanging plate using same
JP2015536437A (en) Heat transfer plate and flat plate heat exchanger comprising such a heat transfer plate
US20060090980A1 (en) Wet type friction plate and method of producing the wet type friction plate
JP2015193922A (en) Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
JP5463929B2 (en) Coating die and coating method
CN208373464U (en) A kind of glue groove that coating machine dimple coating head uses
RU2349853C2 (en) Heat exchanger plate and plate-type heat exchanger comprising such plates
CA2506936C (en) Polyhedral array heat transfer tube
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JP6402377B2 (en) cap
JP5631287B2 (en) Original plate material for heat exchange plate and method for producing original plate material for heat exchange plate
JP6781652B2 (en) Sliding members and engine parts
CN207779208U (en) The heat exchange chip of surface tape loop
RU64333U1 (en) HEAT EXCHANGE PLATE PACK
JP5208264B2 (en) Original plate material for heat exchange plate and method for producing original plate material for heat exchange plate
CN204395975U (en) A kind of anti-stifled structured packing
CN104437338B (en) A kind of anti-stifled structured packing
CN211400923U (en) Heat exchange structure, falling film type heat exchange tube and air conditioner