JP2007019491A - Electric double layer capacitor and electrode therefor - Google Patents

Electric double layer capacitor and electrode therefor Download PDF

Info

Publication number
JP2007019491A
JP2007019491A JP2006162492A JP2006162492A JP2007019491A JP 2007019491 A JP2007019491 A JP 2007019491A JP 2006162492 A JP2006162492 A JP 2006162492A JP 2006162492 A JP2006162492 A JP 2006162492A JP 2007019491 A JP2007019491 A JP 2007019491A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
electrolyte
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162492A
Other languages
Japanese (ja)
Inventor
Hiroyuki Norieda
博之 則枝
Kotaro Kobayashi
康太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
Original Assignee
Japan Gore Tex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc filed Critical Japan Gore Tex Inc
Priority to JP2006162492A priority Critical patent/JP2007019491A/en
Publication of JP2007019491A publication Critical patent/JP2007019491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • Y02T10/7022

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electricarry activated electric double layer capacitor in which the volumetric capacitance density, resistance, and withstand voltage are all enhanced. <P>SOLUTION: An electric double layer capacitor comprises a polarizable electrode that contains a carbon material including a microcrystalline carbon similar to graphite, and an electrolyte that contains a spiro compound represented by a general formula (1). In the formula, A represents a spiro atom having an sp<SP>3</SP>hybrid orbital, Z<SP>1</SP>and Z<SP>2</SP>respectively represent an atomic group forming a saturated or unsaturated ring having four or more ring atoms including A, and X<SP>-</SP>represents a counter anion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用電極および電気二重層キャパシタに関する。   The present invention relates to an electrode for an electric double layer capacitor and an electric double layer capacitor.

近年、大電流で充放電できる電気二重層キャパシタが、電気自動車用補助電源、太陽電池用補助電源、風力発電用補助電源等の充放電頻度の高い蓄電デバイスとして有望視されている。そのため、エネルギー密度が高く、急速充放電が可能で、耐久性に優れた電気二重層キャパシタが望まれている。   In recent years, electric double layer capacitors that can be charged and discharged with a large current are promising as power storage devices with high charge / discharge frequency, such as an auxiliary power source for electric vehicles, an auxiliary power source for solar cells, and an auxiliary power source for wind power generation. Therefore, an electric double layer capacitor having a high energy density, capable of rapid charge / discharge, and excellent in durability is desired.

電気二重層キャパシタは、1対の分極性電極を、セパレータを介して対向させて正極および負極とする構造を有している。各分極性電極には水系電解質溶液または非水系電解質溶液が含浸させられ、各分極性電極はそれぞれ集電極と接合させられる。水系電解質溶液は体積静電容量密度を上げ抵抗値を小さくすることが可能であるが、使用電圧を水の電気分解が起こる電圧以下にする必要があるため、エネルギー密度を大きくするためには非水系電解液が使用される。   The electric double layer capacitor has a structure in which a pair of polarizable electrodes are opposed to each other with a separator interposed therebetween to form a positive electrode and a negative electrode. Each polarizable electrode is impregnated with an aqueous electrolyte solution or a non-aqueous electrolyte solution, and each polarizable electrode is joined to a collector electrode. The aqueous electrolyte solution can increase the volume capacitance density and reduce the resistance value, but it is necessary to make the working voltage below the voltage at which water electrolysis occurs, so it is not possible to increase the energy density. An aqueous electrolyte is used.

電気二重層キャパシタに用いられる分極性電極材料として、黒鉛類似の微結晶性炭素を有する炭素材(以下、「黒鉛類似炭素材」という。)が知られている(特許文献1〜5)。この炭素材は、原料の賦活処理を制御することにより黒鉛類似の微結晶性炭素の結晶子の層間距離(d002)が0.365〜0.385nmの範囲内になるように調製されたものである。このような特定の層間距離を有する微結晶性炭素は、電解質溶液と接触させて通常使用する電圧(定格電圧)以上の電圧を印加すると、炭素結晶層間に電解質イオンが挿入されて電気的な賦活(電界賦活)が起こり、その結果高い静電容量を示すようになる(電界賦活型キャパシタ)。黒鉛類似炭素材は、一度イオンが挿入されて細孔が形成されると、その後定格電圧で繰り返し使用しても高い静電容量を維持する。黒鉛類似炭素材は、電気二重層キャパシタ用の炭素材として一般的に用いられている活性炭と比較して、耐電圧が高く、エネルギー密度を格段に高くできることから、活性炭に代わる炭素材として注目を集めている。 As a polarizable electrode material used for an electric double layer capacitor, a carbon material having microcrystalline carbon similar to graphite (hereinafter referred to as “graphite similar carbon material”) is known (Patent Documents 1 to 5). This carbon material was prepared so that the interlayer distance (d 002 ) of the crystallites of microcrystalline carbon similar to graphite was within the range of 0.365 to 0.385 nm by controlling the activation treatment of the raw material. It is. When the microcrystalline carbon having such a specific interlayer distance is brought into contact with the electrolyte solution and a voltage higher than the voltage normally used (rated voltage) is applied, electrolyte ions are inserted between the carbon crystal layers and electrically activated. (Electric field activation) occurs, and as a result, a high capacitance is exhibited (electric field activation type capacitor). The graphite-like carbon material maintains a high capacitance even if it is repeatedly used at a rated voltage after the insertion of ions once to form pores. Graphite-like carbon materials have a higher withstand voltage and can significantly increase energy density compared to activated carbon that is generally used as a carbon material for electric double layer capacitors. Collecting.

従来、電界賦活型キャパシタ用の電解液としては、電位窓が広い点で高電圧印加を行う電界賦活型キャパシタに適していることから、テトラアルキル4級アンモニウムであるテトラエチルアンモニウム塩、非対称型のトリエチルメチルアンモニウム塩等を電解質としたものが用いられていた(特許文献2)。しかし、これらの電解質は、黒鉛類似炭素材の0.365〜0.385nmという非常に狭い層間へ挿入させることが困難であり、そのため静電容量、直流内部抵抗等の点で黒鉛類似炭素材の電極性能を十分に引き出すことができなかった。   Conventionally, as an electrolytic solution for an electric field activation type capacitor, since it is suitable for an electric field activation type capacitor that applies a high voltage with a wide potential window, a tetraethylammonium salt that is a tetraalkyl quaternary ammonium, an asymmetric type triethyl. What used methylammonium salt etc. as the electrolyte was used (patent document 2). However, these electrolytes are difficult to insert between 0.365 nm and 0.385 nm of a graphite-like carbon material, and therefore, in terms of capacitance, direct current internal resistance, etc. The electrode performance could not be fully exploited.

電界賦活型キャパシタの場合、従来の活性炭型と異なり、電解質イオンの挿入により微細孔が形成されて初めてキャパシタ性能を発揮できることから、電界賦活時の電解質イオンの特性、特にその構造が、得られるキャパシタ性能を大きく左右する。このような電解質イオンの構造面に着目し、平面分子構造を有するイミダゾリウム塩を電界賦活型キャパシタの電解質として用いることが提案されている(特許文献6)。このような電解質は、微結晶性炭素の層間に容易に挿入されるため、得られるキャパシタの静電容量および直流内部抵抗の初期値を改良することができる。しかし、提案されたイミダゾリウム塩系電解質は、電位窓がテトラアルキル4級アンモニウム塩より狭く、高電圧を印加すると電解質自体が分解してしまうため、黒鉛類似炭素材の電極性能を十分に引き出せる高い定格電圧で使用することができない。   In the case of an electric field activated capacitor, unlike the conventional activated carbon type, the capacitor performance can be exhibited only after the micropores are formed by the insertion of electrolyte ions, so that the characteristics of the electrolytic ions at the time of electric field activation, especially the structure, can be obtained. Greatly affects performance. Paying attention to the structure of such electrolyte ions, it has been proposed to use an imidazolium salt having a planar molecular structure as the electrolyte of an electric field activated capacitor (Patent Document 6). Since such an electrolyte is easily inserted between the layers of microcrystalline carbon, it is possible to improve the initial value of the capacitance and direct current internal resistance of the obtained capacitor. However, the proposed imidazolium salt-based electrolyte has a potential window narrower than that of the tetraalkyl quaternary ammonium salt, and the electrolyte itself decomposes when a high voltage is applied, so that the electrode performance of the graphite-like carbon material can be sufficiently extracted. It cannot be used at the rated voltage.

活性炭型キャパシタ用の電解液として1,1’−スピロビピロリジニウム化合物塩を電解質としたものが知られている(非特許文献1)。1,1’−スピロビピロリジニウム化合物塩系電解質は、溶媒に対する溶解性が高く、従来の第4級アンモニウム塩系電解質より高い電導度を実現する上、熱的および電気的にも安定であることが報告されている。しかし、このようなスピロ化合物塩系電解質を電界賦活型キャパシタに適用した例はない。このようなスピロ化合物は、スピロ原子がsp3混成軌道を有するため当該2つの環が一平面上に配列せず、分子全体として嵩高くなることから、黒鉛類似炭素材の極めて微細な層間へ挿入させるためには、平面分子構造をとり、その置換アルキル基もバルキーでないことが好ましいとする従来の教示(特許文献6)に反するからである。 As an electrolytic solution for an activated carbon capacitor, one using 1,1′-spirobipyrrolidinium compound salt as an electrolyte is known (Non-patent Document 1). The 1,1′-spirobipyrrolidinium compound salt-based electrolyte has high solubility in a solvent, realizes higher conductivity than a conventional quaternary ammonium salt-based electrolyte, and is thermally and electrically stable. It has been reported. However, there is no example in which such a spiro compound salt electrolyte is applied to an electric field activated capacitor. In such a spiro compound, since the spiro atom has sp 3 hybrid orbitals, the two rings are not arranged on one plane, and the whole molecule becomes bulky, so that it is inserted between very fine layers of a graphite-like carbon material. This is because it is contrary to the conventional teaching (Patent Document 6) in which a planar molecular structure is adopted and the substituted alkyl group is preferably not bulky.

特開平11−317333号公報JP 11-317333 A 特開2000−077273号公報JP 2000-077273 A 特開2000−068164号公報JP 2000-068164 A 特開2000−068165号公報JP 2000-068165 A 特開2000−100668号公報Japanese Patent Laid-Open No. 2000-1000066 特開2004−289130号公報JP 2004-289130 A 千葉他、電気化学会第72回大会講演要旨集、第242頁、2005年Chiba et al., Abstracts of the 72nd Annual Meeting of the Electrochemical Society, page 242, 2005

本発明は、電解質を選択することにより体積静電容量密度(エネルギー密度)、抵抗値および耐電圧を同時に向上させ、よって黒鉛類似炭素材の電極性能を十分に引き出せる電界賦活型電気二重層キャパシタを提供することを目的とする。   The present invention provides an electric field activated electric double layer capacitor that can simultaneously improve the volume capacitance density (energy density), resistance value, and withstand voltage by selecting an electrolyte, and thereby sufficiently bring out the electrode performance of a graphite-like carbon material. The purpose is to provide.

本発明によると、
(1)黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極と、下記一般式(1)で表されるスピロ化合物を含む電解質とを含んでなる電気二重層キャパシタが提供される。
According to the present invention,
(1) An electric double layer capacitor comprising a polarizable electrode containing a carbon material having microcrystalline carbon similar to graphite and an electrolyte containing a spiro compound represented by the following general formula (1) is provided.

Figure 2007019491
Figure 2007019491

(上式中、Aはsp3混成軌道を有するスピロ原子を表し、Z1およびZ2は、各々独立に、Aを含む環原子数が4以上である飽和環または不飽和環を形成する原子群を表し、そしてX-は対アニオンを表す。) (In the above formula, A represents a spiro atom having an sp 3 hybrid orbital, and Z 1 and Z 2 are each independently an atom that forms a saturated or unsaturated ring having 4 or more ring atoms including A. Represents a group, and X represents a counter anion.)

さらに本発明によると、
(2)該スピロ原子が該電解質の正電荷を担う、(1)に記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(2) The electric double layer capacitor according to (1), wherein the spiro atom bears a positive charge of the electrolyte.

さらに本発明によると、
(3)該スピロ原子が窒素である、(2)に記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(3) The electric double layer capacitor according to (2), wherein the spiro atom is nitrogen.

さらに本発明によると、
(4)Z1とZ2の環原子数が同数である、(1)〜(3)のいずれかに記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(4) The electric double layer capacitor according to any one of (1) to (3), wherein the number of ring atoms of Z 1 and Z 2 is the same.

さらに本発明によると、
(5)Z1とZ2の環原子数が5である、(4)に記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(5) The electric double layer capacitor according to (4), wherein the number of ring atoms of Z 1 and Z 2 is 5.

さらに本発明によると、
(6)Z1とZ2の環構造が同一である、(4)または(5)に記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(6) The electric double layer capacitor according to (4) or (5), wherein the ring structures of Z 1 and Z 2 are the same.

さらに本発明によると、
(7)該スピロ化合物が1,1’−スピロビピロリジニウムである、(1)に記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(7) The electric double layer capacitor according to (1), wherein the spiro compound is 1,1′-spirobipyrrolidinium.

さらに本発明によると、
(8)該黒鉛類似の微結晶性炭素を有する炭素材は、BET1点法による未充電時比表面積が800m2/g以下であり、かつ、X線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、(1)〜(7)のいずれかに記載の電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(8) The carbon material having microcrystalline carbon similar to graphite has an uncharged specific surface area of 800 m 2 / g or less by the BET one-point method and an interlayer distance d 002 of 0.350 by the X-ray diffraction method. The electric double layer capacitor according to any one of (1) to (7), which is in a range of ˜0.385 nm, is provided.

本発明によると、黒鉛類似炭素材を含む分極性電極に、上記一般式(1)で表されるスピロ化合物を含む電解質を組み合わせたことにより、電界賦活型電気二重層キャパシタの体積静電容量密度(エネルギー密度)、抵抗値および耐電圧が同時に向上し、黒鉛類似炭素材の電極性能を一段と引き出すことができる。   According to the present invention, by combining a polarizable electrode containing a graphite-like carbon material with an electrolyte containing a spiro compound represented by the general formula (1), the volume capacitance density of an electric field activated electric double layer capacitor is obtained. (Energy density), resistance value, and withstand voltage are improved at the same time, and the electrode performance of the graphite-like carbon material can be further enhanced.

本発明による電気二重層キャパシタは、黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極と、上記一般式(1)で表されるスピロ化合物を含む電解質とを含んでなることを特徴とするものである。   An electric double layer capacitor according to the present invention comprises a polarizable electrode containing a carbon material having microcrystalline carbon similar to graphite, and an electrolyte containing a spiro compound represented by the above general formula (1). It is what.

本発明による電解質は、sp3混成軌道を有するスピロ原子によって2つの環状構造体(Z1およびZ2)が結合されている。したがって、各環が形成する平面は互いに一定の角度でねじれ、2つの環状構造体は一平面上に配列しない。従来の教示によると、電解質を黒鉛類似炭素材の層間へ効果的に挿入させるためには、電解質カチオンの構成原子が平面上に配列された分子構造をとるべきとされる(特許文献6)。かかる教示からすれば、一平面上に配列しない2つの環状構造体を有するスピロ化合物は、黒鉛類似炭素材の層間への挿入が困難であることが予測される。しかしながら、まったく意外なことに、本発明によるスピロ化合物を含む電解質は、構成原子が平面上に配列された分子構造を有する従来の電解質より効果的に黒鉛類似炭素材の層間へ挿入されることがわかった。特定の理論に束縛されるものではないが、本発明によるスピロ化合物を含む電解質は、電界賦活に際し、第1段階として2つの環状構造体のうちの一方が、黒鉛類似炭素材の結晶面に対しほぼ平行な状態でその結晶層間に挿入され、従来の平面状分子と同様の作用により黒鉛類似炭素材の層間を広げ、続く第2段階として2つの環状構造体のもう一方が、黒鉛類似炭素材の結晶面に対し平行でない一定の角度をなしてその結晶層間に挿入されることで、最初に広げられた層間をこじ開けるようにして更に拡張するものと考えられる。平面分子構造を有しないテトラアルキル4級アンモニウム塩では、イオン全体が比較的嵩高く、第1段階の挿入が起こりにくい。また平面分子構造が一平面しか形成されないイミダゾリウム塩では、第2段階の層間拡張が起こらない。本発明によると、第2段階の層間拡張により比表面積が大きくなるとともに電解質イオンが移動し易くなるため、従来の電解質を用いた電界賦活型キャパシタより高い静電容量と低い直流内部抵抗を実現できる。また、本発明によるスピロ化合物を含む電解質は電位窓が広く、4級アンモニウム塩に匹敵する高い電圧で使用することができるので、静電容量と電圧の2乗に比例するエネルギー密度を従来より格段に高めることができる。 In the electrolyte according to the present invention, two cyclic structures (Z 1 and Z 2 ) are bonded by spiro atoms having sp 3 hybrid orbitals. Therefore, the plane formed by each ring is twisted at a constant angle with each other, and the two annular structures are not arranged on one plane. According to the conventional teaching, in order to effectively insert the electrolyte between the layers of the graphite-like carbon material, it is supposed that the constituent atoms of the electrolyte cation should have a molecular structure arranged on a plane (Patent Document 6). According to such teaching, it is predicted that a spiro compound having two cyclic structures that are not arranged on one plane is difficult to insert between layers of a graphite-like carbon material. Surprisingly, however, the electrolyte containing the spiro compound according to the present invention can be inserted between the graphite-like carbon materials more effectively than the conventional electrolyte having a molecular structure in which constituent atoms are arranged on a plane. all right. While not being bound by any particular theory, the electrolyte containing the spiro compound according to the present invention has one of the two cyclic structures as a first step with respect to the crystal plane of the graphite-like carbon material upon electric field activation. The graphite-like carbon material is inserted between the crystal layers in a substantially parallel state, and the interlayer of the graphite-like carbon material is expanded by the same action as that of the conventional planar molecule. It is considered that the film is further expanded by opening the first widened layer by inserting it between the crystal layers at a certain angle not parallel to the crystal plane. In a tetraalkyl quaternary ammonium salt that does not have a planar molecular structure, the entire ion is relatively bulky and insertion at the first stage is unlikely to occur. In addition, in the case of an imidazolium salt in which the planar molecular structure is formed only in one plane, the second-stage interlayer expansion does not occur. According to the present invention, since the specific surface area is increased by the second-stage interlayer expansion and the electrolyte ions easily move, higher capacitance and lower DC internal resistance can be realized than the conventional field activated capacitor using the electrolyte. . In addition, since the electrolyte containing the spiro compound according to the present invention has a wide potential window and can be used at a high voltage comparable to a quaternary ammonium salt, the energy density proportional to the square of the capacitance and the voltage is much higher than before. Can be increased.

本発明によるスピロ化合物を含む電解質は、下記一般式(1)で表される。   The electrolyte containing the spiro compound according to the present invention is represented by the following general formula (1).

Figure 2007019491
Figure 2007019491

上式中、Aはsp3混成軌道を有するスピロ原子を表わし、具体的には窒素(N)および炭素(C)から選ばれる。スピロ化合物分子の正電荷は、電荷が周囲の構造体で遮蔽されることで溶媒和の影響が小さくなるようにするため、スピロ原子上に局在することが好ましい。またスピロ原子は、原子半径が比較的小さいという点で窒素であることが好ましい。 In the above formula, A represents a spiro atom having an sp 3 hybrid orbital, and is specifically selected from nitrogen (N) and carbon (C). The positive charge of the spiro compound molecule is preferably localized on the spiro atom so that the influence of solvation is reduced by the charge being shielded by surrounding structures. The spiro atom is preferably nitrogen in that the atomic radius is relatively small.

1およびZ2は、各々独立に、Aを含む環原子数が4以上である飽和環または不飽和環を形成する原子群を表す。Z1およびZ2で表わされる2つの環状構造体は、黒鉛類似炭素材の結晶層間への挿入し易さが分子の向きに左右されにくいようにするため、環原子の種類および/または数が類似していることが好ましく、さらには環原子の種類および数とも同一であることがより好ましい。環原子数は、当該スピロ化合物の合成上の都合から5以上であることが好ましく、また6以上では電導度が小さくなるため、5であることが最も好ましい。環原子は、炭素の他、窒素、硫黄、酸素等を含むことができる。スピロ原子が電解質の正電荷を担わない場合には、スピロ原子以外の環原子に正電荷を担う原子、例えば4級化窒素を配置する必要がある。電解質イオンの大きさは、黒鉛類似炭素材の結晶層間への挿入し易さを左右する重要な因子である。特にカチオンは、ファンデルワールス体積が0.01〜0.06nm3の範囲にあるアニオンと比較すると非常に大きなイオン径を有するため、カチオンのイオン径を小さくすることが電界賦活の促進につながる。したがって、本発明によるスピロ化合物の環原子は、置換基を有する場合には当該置換基は小さい方が好ましく、さらに置換基を一切含まないことがより好ましい。 Z 1 and Z 2 each independently represent an atomic group that forms a saturated or unsaturated ring having 4 or more ring atoms including A. The two cyclic structures represented by Z 1 and Z 2 have different types and / or numbers of ring atoms so that the ease of inserting the graphite-like carbon material between the crystal layers is not easily affected by the orientation of the molecules. It is preferable that they are similar, and more preferably, the kind and number of ring atoms are the same. The number of ring atoms is preferably 5 or more for convenience in the synthesis of the spiro compound, and 5 or more is most preferable because the conductivity decreases when 6 or more. The ring atoms can contain nitrogen, sulfur, oxygen, etc. in addition to carbon. When the spiro atom does not bear the positive charge of the electrolyte, it is necessary to arrange an atom that bears the positive charge on the ring atom other than the spiro atom, for example, quaternized nitrogen. The size of the electrolyte ion is an important factor that affects the ease of inserting the graphite-like carbon material between the crystal layers. In particular cations, van der Waals volume for having a very large ion diameter when compared to anion in the range of 0.01~0.06Nm 3, is possible to reduce the ion diameter of the cation leads to the promotion of the electric field activation. Therefore, when the ring atom of the spiro compound according to the present invention has a substituent, the substituent is preferably small, and more preferably does not contain any substituent.

-は対アニオンを表す。対アニオンとしては、電気化学的な安定性と分子のイオン径の観点から、BF4 -、PF6 -、AsF6 -、ClO4 -、CF3SO3 -、(CF3SO22-、AlCl4 -、SbF6 -等が好ましく、特にBF4 -が好ましい。 X represents a counter anion. Counter anions include BF 4 , PF 6 , AsF 6 , ClO 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N from the viewpoint of electrochemical stability and molecular ion diameter. -, AlCl 4 -, SbF 6 - preferably like, especially BF 4 - are preferable.

以下、本発明において好適に用いられる電解質カチオンの具体例を列挙する。

Figure 2007019491
上式中、R1〜R10は、水素または炭素数1〜5のアルキル基を表わす。 Hereinafter, specific examples of the electrolyte cation suitably used in the present invention will be listed.
Figure 2007019491
In the above formula, R 1 to R 10 represent hydrogen or an alkyl group having 1 to 5 carbon atoms.

本発明による電解質は、常温で液状である場合にはそのまま希釈せずに使用してもよいが、一般には有機溶媒に溶解した電解液として用いることが好ましい。有機溶媒の使用により、電解液の粘度を低くし、電極の直流内部抵抗の増大を抑えることができる。有機溶媒としては、電解質の溶解性や電極との反応性等により選択されるが、炭酸プロピレン(PC)、炭酸エチレン(EC)、炭酸ジメチル(DMC)、炭酸ジエチル(DEC)、ジメトキシエタン、ジエトキシエタン、γ−ブチロラクトン(GBL)、アセトニトリル(AN)、プロピオニトリル等が挙げられる。例えば、電解質が1,1’−スピロビピロリジニウム化合物である場合、炭酸プロピレンに対してテトラエチルアンモニウム塩の3倍以上の溶解度を有するため、電解質の高濃度化により高い電導度を確保することができる。有機溶媒は、単独で使用してもよいし、2種以上を組み合わせた混合溶媒として使用してもよい。電界賦活時に黒鉛類似炭素材の結晶層間に挿入される電解質イオンは周囲の溶媒と溶媒和していると考えられるため、分子容が小さい溶媒を用いることが好ましい。電解液中の電解質の濃度は、0.5モル/L以上であることが好ましく、さらに1.0モル/L以上であることがより好ましい。なお、電解質の濃度上限は、個別具体的な電解質と有機溶媒の組み合わせで決まる溶解度となる。   The electrolyte according to the present invention may be used as it is without being diluted when it is liquid at room temperature, but it is generally preferable to use it as an electrolytic solution dissolved in an organic solvent. By using an organic solvent, the viscosity of the electrolytic solution can be lowered and an increase in the DC internal resistance of the electrode can be suppressed. The organic solvent is selected depending on the solubility of the electrolyte, the reactivity with the electrode, etc., but propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dimethoxyethane, dimethoxyethane, Examples include ethoxyethane, γ-butyrolactone (GBL), acetonitrile (AN), propionitrile and the like. For example, when the electrolyte is a 1,1′-spirobipyrrolidinium compound, it has a solubility three or more times that of tetraethylammonium salt in propylene carbonate, so that high conductivity is secured by increasing the concentration of the electrolyte. Can do. An organic solvent may be used independently and may be used as a mixed solvent which combined 2 or more types. Since electrolyte ions inserted between the crystal layers of the graphite-like carbon material at the time of electric field activation are considered to be solvated with the surrounding solvent, it is preferable to use a solvent having a small molecular volume. The concentration of the electrolyte in the electrolytic solution is preferably 0.5 mol / L or more, and more preferably 1.0 mol / L or more. The upper limit of the electrolyte concentration is the solubility determined by the combination of the individual specific electrolyte and the organic solvent.

本発明による電気二重層キャパシタの分極性電極として用いられる黒鉛類似炭素材は、微結晶炭素を有する。黒鉛類似炭素材は、その微結晶炭素の層間距離d002(X線回折法による)が特定の範囲、すなわち0.350〜0.385nmにある場合、定格電圧以上の電圧を印加することにより電解質イオンが微結晶炭素の結晶層間に挿入されて、分極性電極として高い静電容量を示す。この層間距離d002が0.355〜0.370nmの範囲にあると、電解質イオンの層間への挿入による静電容量の発現が顕著に表れるためより好ましい。この層間距離d002が0.350nmを下回ると、電解質イオンの層間への挿入が起こり難くなるため、静電容量の増加率が低くなる。反対にこの層間距離d002が0.385nmを超えると、黒鉛類似炭素材の表面に存在する官能基量が増え、電圧印加時にこれらの官能基が分解することに起因して電気二重層キャパシタの性能が著しく低下するので好ましくない。なお、層間距離d002は、株式会社リガク製のX線回折装置「RINT2000」を用いて、粉末試料を空気中、CuKα線(ターゲット:Cu、励起電圧30kV)で測定した値である。 The graphite-like carbon material used as the polarizable electrode of the electric double layer capacitor according to the present invention has microcrystalline carbon. A graphite-like carbon material has a microcrystalline carbon interlayer distance d 002 (according to X-ray diffractometry) in a specific range, that is, 0.350 to 0.385 nm. Ions are inserted between the crystal layers of microcrystalline carbon to exhibit a high capacitance as a polarizable electrode. When the interlayer distance d 002 is in the range of 0.355~0.370Nm, more preferable because expression of capacitance due to insertion into the interlayer of the electrolyte ions conspicuous. When the interlayer distance d 002 is below 0.350 nm, since the insertion into the interlayer of the electrolyte ions becomes difficult to occur, the rate of increase in the electrostatic capacitance decreases. When the interlayer distance d 002 in the opposite is more than 0.385 nm, increasing the amount of functional groups present on the surface of the graphite-like carbon material, due to that these functional groups are decomposed during voltage application of the electric double layer capacitor This is not preferable because the performance is significantly reduced. The interlayer distance d 002, using the X-ray diffractometer "RINT2000" manufactured by Rigaku Corporation, a powder sample in air, CuKa line (target: Cu, excitation voltage 30 kV) is a value measured by.

この黒鉛類似炭素材の比表面積は、800m2/g以下が好ましく、600m2/g以下がより好ましい。この比表面積が800m2/gを超えると、電界賦活によらなくても十分な静電容量が得られる。また黒鉛類似炭素材の表面に存在する官能基量が増え、電圧印加時にこれらの官能基が分解することに起因して電気二重層キャパシタの性能が著しく低下する。なお、比表面積は、ユアサアイオニクス株式会社製「MONOSORB」を用いてBET1点法にて測定(乾燥温度:180℃、乾燥時間:1時間)した値である。 The specific surface area of this graphite-like carbon material is preferably 800 m 2 / g or less, more preferably 600m 2 / g. When this specific surface area exceeds 800 m 2 / g, sufficient electrostatic capacity can be obtained without depending on the electric field activation. In addition, the amount of functional groups present on the surface of the graphite-like carbon material increases, and the performance of the electric double layer capacitor is significantly lowered due to the decomposition of these functional groups when a voltage is applied. The specific surface area is a value measured by a BET 1-point method using “MONOSORB” manufactured by Yuasa Ionics Co., Ltd. (drying temperature: 180 ° C., drying time: 1 hour).

黒鉛類似炭素材は、賦活が進んでいない低温焼成した炭素材料を用いることができ、活性炭原料として用いられる木材、椰子殻、パルプ廃液、化石燃料系の石炭、石油重質油、それらを熱分解した石炭、石油系ピッチ、コークス、合成樹脂であるフェノール樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニルビニリデン樹脂等の種々の材料を用いて製造することができる。また炭素材を易黒鉛化性炭素、難黒鉛化性炭素で分類する場合には、静電容量の観点では黒鉛類似の微結晶炭素を多量に含む易黒鉛化性炭素を用いることが好ましく、また電界賦活時の電極膨張を抑制するために難黒鉛化性炭素と易黒鉛化性炭素とをナノスケールで複合化した炭素材等を使用することもできる(池田克治、日経Automotive Technology創刊記念セミナー、講演資料、2004年5月21日、日経エレクトロニクス)。また性能をバランスさせるために原料、製法の異なる2種類以上の炭素材を混合して使用することもできる。   The graphite-like carbon material can be a low-temperature calcined carbon material that has not been activated. Wood, coconut husk, pulp waste liquor, fossil fuel-based coal, heavy petroleum oil, and pyrolysis of them It can be produced by using various materials such as coal, petroleum-based pitch, coke, synthetic resin such as phenol resin, furan resin, polyvinyl chloride resin, and polyvinylidene chloride resin. When the carbon material is classified into graphitizable carbon and non-graphitizable carbon, it is preferable to use graphitizable carbon containing a large amount of graphite-like microcrystalline carbon from the viewpoint of capacitance. In order to suppress electrode expansion during electric field activation, it is also possible to use a carbon material that is a composite of non-graphitizable carbon and graphitizable carbon on a nanoscale (Katsuharu Ikeda, Nikkei Automotive Technology launch seminar, (Lecture material, May 21, 2004, Nikkei Electronics). Further, in order to balance the performance, two or more kinds of carbon materials having different raw materials and production methods can be mixed and used.

黒鉛類似炭素材の製造時には、賦活前に不活性雰囲気中において熱処理して、賦活が大きく進行しないようにしたり、あるいは賦活操作を短時間とする等の処理を施すことができる。熱処理温度としては、600〜1000℃程度の比較的低温で焼成を行ったものが好ましい。本発明に好適に用いられるその他の黒鉛類似炭素材およびその製法については、特許文献1〜5を参照されたい。   At the time of producing the graphite-like carbon material, heat treatment can be performed in an inert atmosphere before activation so that the activation does not proceed greatly, or the activation operation can be performed for a short time. As the heat treatment temperature, those subjected to firing at a relatively low temperature of about 600 to 1000 ° C. are preferable. For other graphite-like carbon materials suitably used in the present invention and methods for producing the same, see Patent Documents 1 to 5.

黒鉛類似炭素材は、これに後述する導電補助材とバインダーとを合わせた合計質量に対して、50〜99質量%、好ましくは65〜95質量%の範囲内で分極性電極中に含まれる。黒鉛類似炭素材の含有量が50質量%より少ないと、電極のエネルギー密度が低くなる。反対に含有量が99質量%を超えるとバインダーが不足し、電極中への炭素材の保持が困難になる。   The graphite-like carbon material is contained in the polarizable electrode in the range of 50 to 99% by mass, preferably 65 to 95% by mass, based on the total mass of the conductive auxiliary material and binder described later. When the content of the graphite-like carbon material is less than 50% by mass, the energy density of the electrode is lowered. On the other hand, if the content exceeds 99% by mass, the binder is insufficient and it becomes difficult to hold the carbon material in the electrode.

電気二重層キャパシタ用電極は、黒鉛類似炭素材に導電性を付与するための導電補助材を含有する。導電補助材としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、気相成長炭素繊維、フラーレン、カーボンナノチューブ、カーボンナノホーン等のナノカーボン、粉状または粒状グラファイト等を用いることができる。導電補助材は、これに黒鉛類似炭素材とバインダーとを合わせた合計質量に対して、好ましくは1〜40質量%、より好ましくは3〜20質量%の量を添加すればよい。この導電補助材の添加量が1質量%より少ないと電気二重層キャパシタの直流内部抵抗が高くなる。反対に添加量が40質量%を超えると電極のエネルギー密度が低くなる。   The electrode for an electric double layer capacitor contains a conductive auxiliary material for imparting conductivity to the graphite-like carbon material. As the conductive auxiliary material, carbon black such as ketjen black and acetylene black, vapor grown carbon fiber, fullerene, carbon nanotube, nanocarbon such as carbon nanohorn, powdery or granular graphite, and the like can be used. The conductive auxiliary material may be added in an amount of preferably 1 to 40% by mass, more preferably 3 to 20% by mass, based on the total mass of the graphite-like carbon material and the binder. When the addition amount of the conductive auxiliary material is less than 1% by mass, the DC internal resistance of the electric double layer capacitor is increased. On the contrary, when the addition amount exceeds 40% by mass, the energy density of the electrode is lowered.

電気二重層キャパシタ用電極は、黒鉛類似炭素材と導電補助材とを結着するためのバインダーを含有する。バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)等を用いることができる。バインダーは、これに黒鉛類似炭素材と導電補助材とを合わせた合計質量に対して、好ましくは1〜30質量%、より好ましくは3〜20質量%の量を添加すればよい。このバインダーの添加量が1質量%より少ないと炭素材を電極に保持することが困難になる。反対に添加量が30質量%を超えると電気二重層キャパシタのエネルギー密度が低くなり、また直流内部抵抗が高くなる。   The electrode for an electric double layer capacitor contains a binder for binding the graphite-like carbon material and the conductive auxiliary material. As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), or the like can be used. The binder may be added in an amount of preferably 1 to 30% by mass, more preferably 3 to 20% by mass, based on the total mass of the graphite-like carbon material and the conductive auxiliary material. When the added amount of the binder is less than 1% by mass, it is difficult to hold the carbon material on the electrode. On the contrary, when the addition amount exceeds 30% by mass, the energy density of the electric double layer capacitor is lowered, and the direct current internal resistance is increased.

電気二重層キャパシタ用電極は、従来の活性炭を用いた場合と同様のシート成形法、塗工法(コーティング法)により製造することができる。例えばシート成形法の場合、上述の方法で得られた黒鉛類似炭素材を平均粒径D50が5〜200μm程度になるように粒度を整えた後、これに導電補助材と、バインダーとを添加して混錬し、圧延処理してシート状に成形することができる。混錬に際して、水、エタノール、アセトニトリル等の液体助剤を単独または混合して適宜使用してもよい。電気二重層キャパシタ用電極の厚さは50〜500μmが好ましく、60〜300μmがより好ましい。この厚さが50μmを下回るとキャパシタセル形成時に後述する集電体の占める体積が多くなり、エネルギー密度が低くなる。反対に500μmを超えると電極の密度を高くすることができないため、同様にエネルギー密度が低くなる上、電気二重層キャパシタの直流内部抵抗も高くなる。なお、電極の厚さは、株式会社テクロック社製ダイヤルシックネスゲージ「SM−528」を用いて、本体バネ荷重以外の荷重をかけない状態で測定した値である。   The electrode for an electric double layer capacitor can be produced by the same sheet forming method and coating method (coating method) as in the case of using conventional activated carbon. For example, in the case of a sheet molding method, after adjusting the particle size of the graphite-like carbon material obtained by the above method so that the average particle size D50 is about 5 to 200 μm, a conductive auxiliary material and a binder are added thereto. Kneaded and rolled to form a sheet. In kneading, liquid auxiliaries such as water, ethanol and acetonitrile may be used alone or in combination as appropriate. The thickness of the electric double layer capacitor electrode is preferably 50 to 500 μm, more preferably 60 to 300 μm. When this thickness is less than 50 μm, the volume occupied by the current collector, which will be described later, increases when the capacitor cell is formed, and the energy density is lowered. On the other hand, if the thickness exceeds 500 μm, the density of the electrode cannot be increased, so that the energy density is similarly lowered and the DC internal resistance of the electric double layer capacitor is also increased. The thickness of the electrode is a value measured using a dial thickness gauge “SM-528” manufactured by Teclock Co., Ltd. in a state where no load other than the main body spring load is applied.

電気二重層キャパシタ用電極は、一般に集電体と一体化されて使用される。集電体としては、アルミニウム、チタン、ステンレススチール等の金属系シートや、導電性高分子フィルム、導電性フィラー含有プラスチックフィルム等の非金属系シートをはじめとする種々のシート材料を用いることができる。シート状の集電体は、一部または全面に穴を有するものでもよい。シート状電極と集電体を一体化する際は、両者を単に圧着するだけでも機能するが、これらの間の接触抵抗を下げるため、導電性塗料を接着剤として用いて電極と集電体とを接合したり、導電性塗料を電極または集電体に塗布して乾燥した後に電極と集電体を圧着してもよい。塗工法により作製される電極は、電極の成形と集電体との接着が同時に行われる。   The electrode for an electric double layer capacitor is generally used by being integrated with a current collector. As the current collector, various sheet materials including metal sheets such as aluminum, titanium and stainless steel, and nonmetal sheets such as conductive polymer films and conductive filler-containing plastic films can be used. . The sheet-like current collector may have a hole in part or the entire surface. When the sheet electrode and the current collector are integrated, it can function by simply crimping the both, but in order to reduce the contact resistance between them, the electrode and the current collector Or the electrode and the current collector may be pressure-bonded after the conductive paint is applied to the electrode or the current collector and dried. In the electrode produced by the coating method, the electrode is molded and the current collector is bonded at the same time.

電気二重層キャパシタは、1対の分極性電極を、セパレータを介して対向させて正極および負極とする構造を有している。セパレータとしては、微多孔性の紙、ガラスや、ポリエチレン、ポリプロピレン、ポリイミド、ポリテトラフルオロエチレン等のプラスチック製多孔質フィルム等の絶縁材料を用いることができる。セパレータの厚さは、一般に10〜100μm程度である。セパレータは、絶縁材料を2枚以上重ねて用いてもよい。   The electric double layer capacitor has a structure in which a pair of polarizable electrodes are opposed to each other with a separator interposed therebetween to form a positive electrode and a negative electrode. As the separator, an insulating material such as microporous paper, glass, or a plastic porous film such as polyethylene, polypropylene, polyimide, or polytetrafluoroethylene can be used. The thickness of the separator is generally about 10 to 100 μm. The separator may be used by stacking two or more insulating materials.

電界賦活は、比較的小さな電流値で定格電圧以上の電圧を印加することによって行うことができる。電界賦活の方法については、従来の方法を参照されたい(特許文献5)。電界賦活時には、黒鉛類似炭素材が主として両集電体による電圧印加方向に膨張するという特性を示す。このため電気二重層キャパシタの静電容量が増加しても、単位体積当たりの静電容量(体積静電容量密度)は膨張分だけ減殺される。したがって、体積静電容量密度の増大を享受するためには、黒鉛類似炭素材の膨張による電気二重層キャパシタの体積増加を最小限に抑えることが好ましい。電気二重層キャパシタの体積増加を抑制するためには、黒鉛類似炭素材の膨張により生じる圧力(膨張圧)に抗する圧力を外部から電極に加えればよい。例えば、充電の際に0.1〜30MPaの圧力を外部から電極に加えることにより体積静電容量密度を高めることができる。しかしながら、電極の膨張を完全に抑制すると、黒鉛類似炭素材の結晶層間への電解質イオンの挿入が不十分になり、静電容量向上の効果が小さくなるので、5〜100%程度の膨張が起こるように外部圧力を設定することが好ましい。
電解賦活を1度行った後、正極と負極の極性を反転させて再度電解賦活を行うと、両極ともに黒鉛類似炭素材の結晶層間がカチオン(アニオンよりイオン径が大きい)に合った大きさに拡張され、その結果比表面積が大きくなるとともに電解質イオンが移動し易くなり、より高い静電容量と低い直流内部抵抗を実現できるため好ましい。
The electric field activation can be performed by applying a voltage higher than the rated voltage with a relatively small current value. For the method of electric field activation, refer to the conventional method (Patent Document 5). During electric field activation, the graphite-like carbon material exhibits a characteristic that it mainly expands in the direction of voltage application by both current collectors. For this reason, even if the capacitance of the electric double layer capacitor increases, the capacitance per unit volume (volume capacitance density) is reduced by the amount of expansion. Therefore, in order to enjoy the increase in the volume capacitance density, it is preferable to minimize the increase in the volume of the electric double layer capacitor due to the expansion of the graphite-like carbon material. In order to suppress the increase in volume of the electric double layer capacitor, a pressure that resists the pressure (expansion pressure) generated by the expansion of the graphite-like carbon material may be applied to the electrode from the outside. For example, the volume capacitance density can be increased by applying a pressure of 0.1 to 30 MPa to the electrode from the outside during charging. However, if the expansion of the electrode is completely suppressed, the insertion of electrolyte ions between the crystal layers of the graphite-like carbon material becomes insufficient, and the effect of improving the capacitance is reduced, so that the expansion of about 5 to 100% occurs. Thus, it is preferable to set the external pressure.
After the electrolytic activation is performed once, the polarity of the positive electrode and the negative electrode is reversed and the electrolytic activation is performed again so that the crystal layer of the graphite-like carbon material matches the cation (the ion diameter is larger than the anion) in both electrodes. As a result, the specific surface area is increased and the electrolyte ions are easily moved, which is preferable because a higher capacitance and a lower DC internal resistance can be realized.

以下、本発明を実施例により具体的に説明する。
実施例1
石油ピッチ系炭素材料500gを粉砕機で粉砕しD50が20μmの粉末を作製し、これを不活性雰囲気中で800℃の温度で焼成し炭化した材料を得た。この炭化した材料に質量比で2倍量の水酸化カリウムを混合し、不活性雰囲気中700℃において賦活処理を行った。その後室温まで冷却して水洗し、アルカリ分を除去して乾燥させた。得られた黒鉛類似炭素材は、BET比表面積が50m2/gであり、また微結晶性炭素のX線回折法による層間距離d002が0.355nmであった。この黒鉛類似炭素材85質量%と、導電補助材としてケッチェンブラック粉末(ケッチェンブラックインターナショナル株式会社製「EC600JD」)5質量%と、バインダーとしてポリテトラフルオロエチレン粉末(三井デュポンフロロケミカル株式会社製「テフロン(登録商標)6J」)10質量%とからなる混合物にエタノールを加えて混錬し、その後ロール圧延を5回実施することにより、幅100mm、厚さ200μmの分極性シートを得た。幅150mm、厚さ50μmの高純度エッチドアルミニウム箔(KDK株式会社製「C512」)を集電体とし、その両面に、導電性接着剤液(日立粉末冶金株式会社製「GA−37」)を塗布して電極を重ね、これを圧縮ロールに通して圧着し、接触界面同士を貼り合わせた積層シートを得た。この積層シートを、温度150℃に設定したオーブンに入れて10分間保持し、導電性接着剤液層から分散媒を蒸発除去することにより分極性電極を得た。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
A petroleum pitch-based carbon material (500 g) was pulverized with a pulverizer to prepare a powder having a D50 of 20 μm, which was fired at a temperature of 800 ° C. in an inert atmosphere to obtain a carbonized material. This carbonized material was mixed with potassium hydroxide twice the mass ratio and subjected to activation treatment at 700 ° C. in an inert atmosphere. Thereafter, the mixture was cooled to room temperature and washed with water to remove the alkali and dried. The obtained graphite-like carbon material had a BET specific surface area of 50 m 2 / g, and an interlayer distance d 002 of the microcrystalline carbon measured by the X-ray diffraction method was 0.355 nm. 85% by mass of this graphite-like carbon material, 5% by mass of Ketjen black powder (“EC600JD” manufactured by Ketjen Black International Co., Ltd.) as a conductive auxiliary material, and polytetrafluoroethylene powder (Mitsui Dupont Fluoro Chemical Co., Ltd.) as a binder Ethanol was added to a mixture of 10% by mass of “Teflon (registered trademark) 6J”) and kneaded, and then roll rolling was performed 5 times to obtain a polarizable sheet having a width of 100 mm and a thickness of 200 μm. A high-purity etched aluminum foil (“C512” manufactured by KDK Corporation) having a width of 150 mm and a thickness of 50 μm is used as a current collector, and a conductive adhesive solution (“GA-37” manufactured by Hitachi Powdered Metallurgy Co., Ltd.) is provided on both sides thereof. Was applied and the electrodes were stacked, and this was passed through a compression roll and crimped to obtain a laminated sheet in which the contact interfaces were bonded together. The laminated sheet was placed in an oven set at a temperature of 150 ° C. and held for 10 minutes, and the polarizable electrode was obtained by evaporating and removing the dispersion medium from the conductive adhesive liquid layer.

この積層シートを、図1に示したように、分極性電極の炭素電極部の寸法が3cm角で、リード部(集電体上に分極性電極が積層されていない部分)が1×5cmの形状になるように打ち抜いて方形状の分極性電極とした。二枚の分極性電極体を正極、負極とし、その間にセパレータとして厚さ80μm、3.5cm角の親水化処理したePTFEシート(ジャパンゴアテックス株式会社製「BSP0708070−2」)を1枚挿入して、5×10cmの二枚のアルミラミネート材(昭和電工パッケージング株式会社製「PET12/A120/PET12/CPP30ドライラミネート品」)で電極およびセパレータ部を覆い、リード部を含む3辺を熱融着によりシールしてアルミパックセルを作成した。その際、リード部の一部をアルミパックセルの外部に導き出し、リード部とアルミパックセルとの接合部がリード部とアルミラミネート材の熱融着によりシールされるようにした。このアルミパックセルを150℃で24時間真空乾燥した後、アルゴン雰囲気で−60℃以下の露点を保ったグローブボックス内に持ち込み、開口部(シールされていない辺)を上に向けて1.5モル/Lの1,1’−スピロビピロリジニウムテトラフルオロボレートの炭酸プロピレン溶液4mLを電解液としてアルミパックに注入し、−0.05MPaの減圧下に10分間静置して、電極内部のガスを電解液で置換した。最後にアルミパックの開口部を融着密封することにより、単積層型の電気二重層キャパシタを作製した。このキャパシタの使用予定電圧は3.0〜3.5Vである。この電気二重層キャパシタを40℃において24時間保存し、電極内部まで電解液をエージングした。その後キャパシタの面方向から0.2MPaで加圧し、このキャパシタを実施例1とした。   As shown in FIG. 1, this laminated sheet has a 3 cm square dimension of the carbon electrode portion of the polarizable electrode, and a lead portion (a portion where the polarizable electrode is not laminated on the current collector) is 1 × 5 cm. A square-shaped polarizable electrode was punched out in a shape. Two polarizable electrode bodies are used as a positive electrode and a negative electrode, and an ePTFE sheet (“BSP070807-2” manufactured by Japan Gore-Tex Co., Ltd.) having a thickness of 80 μm and a 3.5 cm square is inserted as a separator between them. Cover the electrodes and separator with two 5 x 10 cm aluminum laminates ("PET12 / A120 / PET12 / CPP30 dry laminate" manufactured by Showa Denko Packaging Co., Ltd.) and heat-melt the three sides including the lead The aluminum pack cell was made by sealing by wearing. At that time, a part of the lead part was led out of the aluminum pack cell, and the joint part between the lead part and the aluminum pack cell was sealed by heat fusion of the lead part and the aluminum laminate material. This aluminum pack cell was vacuum-dried at 150 ° C. for 24 hours, and then brought into a glove box that maintained a dew point of −60 ° C. or lower in an argon atmosphere, and the opening (unsealed side) faced upward. 4 mL of a propylene carbonate solution of 1,1′-spirobipyrrolidinium tetrafluoroborate in mol / L was poured into an aluminum pack as an electrolyte, and allowed to stand for 10 minutes under a reduced pressure of −0.05 MPa. The gas was replaced with electrolyte. Finally, a single-layer electric double layer capacitor was fabricated by fusing and sealing the opening of the aluminum pack. The intended use voltage of this capacitor is 3.0-3.5V. This electric double layer capacitor was stored at 40 ° C. for 24 hours, and the electrolyte was aged to the inside of the electrode. Thereafter, pressurization was performed at 0.2 MPa from the surface direction of the capacitor, and this capacitor was referred to as Example 1.

実施例2
電解液として1.5モル/Lの1,1’−スピロビピペリジニウム(6員環構造)テトラフルオロボレートの炭酸プロピレン溶液を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Example 2
A capacitor was assembled in the same manner as in Example 1, except that a 1.5 mol / L 1,1′-spirobipiperidinium (6-membered ring structure) tetrafluoroborate propylene carbonate solution was used as the electrolyte. .

比較例1
電解液として1.5モル/Lのトリエチルメチルアンモニウムテトラフルオロボレートの炭酸プロピレン溶液を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Comparative Example 1
A capacitor was assembled in the same manner as in Example 1 except that a 1.5 mol / L triethylmethylammonium tetrafluoroborate propylene carbonate solution was used as the electrolytic solution.

比較例2
電解液として1.5モル/Lの1,3−ジメチルイミダゾリウムテトラフルオロボレートの炭酸プロピレン溶液を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Comparative Example 2
A capacitor was assembled in the same manner as in Example 1 except that a 1.5 mol / L 1,3-dimethylimidazolium tetrafluoroborate propylene carbonate solution was used as the electrolytic solution.

比較例3
電解液としてN,N−ジエチルピロリジニウムテトラフルオロボレートの炭酸プロピレン溶液を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Comparative Example 3
A capacitor was assembled in the same manner as in Example 1 except that a propylene carbonate solution of N, N-diethylpyrrolidinium tetrafluoroborate was used as the electrolytic solution.

比較例4
炭素材として比表面積1600m2/gの活性炭(クラレケミカル株式会社製「YP−17」)を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Comparative Example 4
A capacitor was assembled in the same manner as in Example 1 except that activated carbon (“YP-17” manufactured by Kuraray Chemical Co., Ltd.) having a specific surface area of 1600 m 2 / g was used as the carbon material.

比較例5
炭素材として比較例4と同じ比表面積1600m2/gの活性炭を使用し、電解液として1.5モル/Lのトリエチルメチルアンモニウムテトラフルオロボレートの炭酸プロピレン溶液を使用したことを除き、実施例1と同様にキャパシタを組み立てた。
Comparative Example 5
Example 1 except that activated carbon having the same specific surface area of 1600 m 2 / g as in Comparative Example 4 was used as the carbon material, and a 1.5 mol / L propylene carbonate solution of triethylmethylammonium tetrafluoroborate was used as the electrolyte. A capacitor was assembled in the same manner as above.

Figure 2007019491
Figure 2007019491

試験1(同条件での性能比較)
上記のように作製した実施例1、2および比較例1〜5のキャパシタセルについて、以下の条件で試験を行い、立上げ20サイクル目の体積静電容量密度、直流内部抵抗、漏れ電流(充電終止電流)を測定した。
1サイクル目の電界賦活および20サイクルの立上げの条件
(電界賦活)
充電:1mA/cm2、4.0V、6時間
放電:1mA/cm2、0V
温度:25℃
サイクル:1
(立上げ)
充電:5mA/cm2、3.0V、30分
放電:5mA/cm2、0V
温度:25℃
サイクル:20
なお、比較例4および5については、高電圧を印加すると電気分解が起こるため、立上げのみ行った。測定結果を以下の表2に示す。
Test 1 (Performance comparison under the same conditions)
The capacitor cells of Examples 1 and 2 and Comparative Examples 1 to 5 manufactured as described above were tested under the following conditions, and the volume capacitance density, DC internal resistance, leakage current (charging) at the start-up 20th cycle (End current) was measured.
Conditions for electric field activation at the first cycle and start-up of the 20th cycle (electric field activation)
Charge: 1 mA / cm 2 , 4.0 V, 6 hours Discharge: 1 mA / cm 2 , 0 V
Temperature: 25 ° C
Cycle: 1
(Start-up)
Charging: 5 mA / cm 2 , 3.0 V, 30 minutes Discharging: 5 mA / cm 2 , 0 V
Temperature: 25 ° C
Cycle: 20
In Comparative Examples 4 and 5, since electrolysis occurred when a high voltage was applied, only startup was performed. The measurement results are shown in Table 2 below.

試験2(耐電圧に合わせた性能比較)
試験1終了後の各セルを使用して、充電電圧を2.7〜4.0Vまで0.1Vづつ増加させながら1サイクルの充放電試験を行い、漏れ電流が5mAになる電圧(耐電圧)を測定した。測定結果を以下の表3に示す。表3中の体積静電容量密度およびエネルギー密度は、耐電圧時の値である。
Test 2 (Performance comparison according to withstand voltage)
Using each cell after completion of test 1, a charge / discharge test of one cycle is performed while increasing the charging voltage by 0.1 V from 2.7 to 4.0 V, and the voltage at which the leakage current becomes 5 mA (withstand voltage) Was measured. The measurement results are shown in Table 3 below. The volume capacitance density and energy density in Table 3 are values at withstand voltage.

(体積静電容量密度)
エネルギー換算法により求め、それを膨張前における集電体を含まない正負極の炭素電極部の体積で除して算出した。
(直流内部抵抗)
放電開始時点から全放電時間の10%の時間までの放電曲線を直線近似し、放電開始時点における直流内部抵抗を算出した。
(漏れ電流)
充電終了時に充電電圧を維持するのに必要とされた電流値(充電終止電流)で示した。
(装置)
充放電試験装置 株式会社パワーシステム社製「CDT5R2−4」
解析用ソフトウェア 株式会社パワーシステム製「CDT Utility Ver.2.02」
(Volume capacitance density)
It calculated | required by the energy conversion method, and divided | segmented by the volume of the carbon electrode part of the positive / negative electrode which does not contain the electrical power collector before expansion | swelling, and computed.
(DC internal resistance)
The discharge curve from the discharge start time to 10% of the total discharge time was linearly approximated, and the DC internal resistance at the discharge start time was calculated.
(Leak current)
The current value (charge end current) required to maintain the charge voltage at the end of charge is shown.
(apparatus)
Charge / Discharge Test Equipment “CDT5R2-4” manufactured by Power Systems
Software for analysis "CDT Utility Ver. 2.02" manufactured by Power System Co., Ltd.

Figure 2007019491
Figure 2007019491

Figure 2007019491
Figure 2007019491

表2および表3からわかるように、本発明によるキャパシタセルは、高いエネルギー密度、低い直流内部抵抗および高い耐電圧を同時に実現できる点で、各比較例によるキャパシタセルより顕著に有利である。特に、実施例1または2と比較例1を比較すると、体積静電容量密度が17%以上高いことから、本発明によるスピロ化合物を含む電解質が従来の4級アンモニウム塩系電解質より電界賦活時に黒鉛類似炭素材の結晶層間に挿入され易いことがわかる。また、電解質自体の電導度が高いため、実施例のキャパシタは直流内部抵抗が約40%も低下したことがわかる。比較例2を見ると、1,3−ジメチルイミダゾリウムは試験1の条件下で分解し、直流内部抵抗および漏れ電流が著しく大きくなるため、使用電圧を上げることができず、その結果エネルギー密度が低くなることがわかる。実施例1と比較例3を比較すると、電解質の構成原子の種類および数がほぼ同等であっても、実施例1の体積静電容量密度およびエネルギー密度の高さから、2つの環状構造体がスピロ原子で結合していることにより電界賦活が促進されることがわかる。比較例4と比較例5は、本発明によるスピロ化合物を含む電解質を活性炭系電極と組み合わせても、従来の4級アンモニウム塩系電解質と比べて体積静電容量密度に実質的な差がないことを示している。すなわち、スピロ化合物を含む電解質は、黒鉛類似炭素材と組み合わされることで体積静電容量密度向上という顕著な効果を発揮するものであるということがいえる。実施例1と実施例2を見ると、1,1’−スピロビピロリジニウム(5員環)の方が1,1’−スピロビピぺリジニウム(6員環)よりも、体積静電容量密度および直流内部抵抗の双方で若干良好であるといえる。   As can be seen from Tables 2 and 3, the capacitor cell according to the present invention is significantly advantageous over the capacitor cells according to the respective comparative examples in that a high energy density, a low DC internal resistance and a high withstand voltage can be realized simultaneously. In particular, when Example 1 or 2 and Comparative Example 1 are compared, the volume capacitance density is 17% or more higher. Therefore, the electrolyte containing the spiro compound according to the present invention is more graphite than the conventional quaternary ammonium salt-based electrolyte when the electric field is activated. It turns out that it is easy to insert between the crystal | crystallization layers of a similar carbon material. In addition, since the conductivity of the electrolyte itself is high, it can be seen that the direct current internal resistance of the capacitor of the example was reduced by about 40%. Looking at Comparative Example 2, 1,3-dimethylimidazolium decomposes under the conditions of Test 1, and the DC internal resistance and leakage current become significantly large, so that the operating voltage cannot be increased, resulting in an energy density of It turns out that it becomes low. When Example 1 and Comparative Example 3 are compared, even if the types and numbers of constituent atoms of the electrolyte are substantially the same, the two annular structures are obtained from the high volumetric capacitance density and energy density of Example 1. It can be seen that electric field activation is promoted by bonding with spiro atoms. Comparative Example 4 and Comparative Example 5 show that there is no substantial difference in volume capacitance density compared to conventional quaternary ammonium salt electrolytes even when an electrolyte containing a spiro compound according to the present invention is combined with an activated carbon electrode. Is shown. That is, it can be said that the electrolyte containing the spiro compound exhibits a remarkable effect of improving the volume capacitance density when combined with the graphite-like carbon material. Looking at Example 1 and Example 2, 1,1′-spirobipyrrolidinium (5-membered ring) has a volume capacitance density higher than 1,1′-spirobipiperidinium (6-membered ring). It can be said that both the DC internal resistance and the DC resistance are slightly better.

実施例1、比較例1および比較例2の各試料について、試験1の前後で、電解質カチオンが吸着する負極中の炭素材の結晶層間距離d002を測定した。具体的には、上記各試料について2つずつキャパシタセルを作製し、一方は試験前(電解液エージング後)に、もう一方は試験後にそれぞれ分解し、負極を炭酸プロピレンで洗浄した。次いで、負極を250℃で12時間加熱し、炭素材シートとアルミ箔集電体を分離した後、炭素材シートを窒素雰囲気下、400℃で3時間加熱し、PTFEバインダーを分解して、炭素材シートを粉末化した。粉末化された炭素材の結晶層間距離d002のX線回折法による測定結果を表4に示す。 For each sample of Example 1, Comparative Example 1, and Comparative Example 2, before and after Test 1, the crystal interlayer distance d002 of the carbon material in the negative electrode on which the electrolyte cations adsorb was measured. Specifically, two capacitor cells were prepared for each of the above samples, one was decomposed before the test (after the electrolyte aging) and the other after the test, and the negative electrode was washed with propylene carbonate. Next, the negative electrode was heated at 250 ° C. for 12 hours to separate the carbon material sheet and the aluminum foil current collector, and then the carbon material sheet was heated at 400 ° C. in a nitrogen atmosphere for 3 hours to decompose the PTFE binder, The material sheet was pulverized. Table 4 shows the measurement result of the crystal interlayer distance d002 of the powdered carbon material by the X-ray diffraction method.

Figure 2007019491
Figure 2007019491

表4からわかるように、1,1’−スピロビピロリジニウムイオン(実施例1)は、テトラエチルメチルアンモニウムイオン(比較例1)および1,3−ジメチルイミダゾリウムイオン(比較例2)より、炭素材の結晶層間を拡張する作用が強く、このことが本発明による高い体積静電容量密度の発現に関係しているものと考えられる。   As can be seen from Table 4, 1,1′-spirobipyrrolidinium ion (Example 1) is more charcoal than tetraethylmethylammonium ion (Comparative Example 1) and 1,3-dimethylimidazolium ion (Comparative Example 2). The action of expanding the crystal layers of the material is strong, and this is considered to be related to the development of a high volume capacitance density according to the present invention.

実施例で用いたキャパシタセルの作製法を示す概略図である。It is the schematic which shows the preparation methods of the capacitor cell used in the Example.

Claims (8)

黒鉛類似の微結晶性炭素を有する炭素材を含む分極性電極と、下記一般式(1)で表されるスピロ化合物を含む電解質とを含んでなる電気二重層キャパシタ。
Figure 2007019491
(上式中、Aはsp3混成軌道を有するスピロ原子を表し、Z1およびZ2は、各々独立に、Aを含む環原子数が4以上である飽和環または不飽和環を形成する原子群を表し、そしてX-は対アニオンを表す。)
An electric double layer capacitor comprising a polarizable electrode containing a carbon material having microcrystalline carbon similar to graphite and an electrolyte containing a spiro compound represented by the following general formula (1).
Figure 2007019491
(In the above formula, A represents a spiro atom having an sp 3 hybrid orbital, and Z 1 and Z 2 are each independently an atom that forms a saturated or unsaturated ring having 4 or more ring atoms including A. Represents a group, and X represents a counter anion.)
該スピロ原子が該電解質の正電荷を担う、請求項1に記載の電気二重層キャパシタ。   The electric double layer capacitor according to claim 1, wherein the spiro atom carries a positive charge of the electrolyte. 該スピロ原子が窒素である、請求項2に記載の電気二重層キャパシタ。   The electric double layer capacitor according to claim 2, wherein the spiro atom is nitrogen. 1とZ2の環原子数が同数である、請求項1〜3のいずれか1項に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 1, wherein Z 1 and Z 2 have the same number of ring atoms. 1とZ2の環原子数が5である、請求項4に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 4, wherein Z 1 and Z 2 have 5 ring atoms. 1とZ2の環構造が同一である、請求項4または5に記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 4 or 5, wherein the ring structures of Z 1 and Z 2 are the same. 該スピロ化合物が1,1’−スピロビピロリジニウムである、請求項1に記載の電気二重層キャパシタ。   The electric double layer capacitor according to claim 1, wherein the spiro compound is 1,1'-spirobipyrrolidinium. 該黒鉛類似の微結晶性炭素を有する炭素材は、BET1点法による未充電時比表面積が800m2/g以下であり、かつ、X線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、請求項1〜7のいずれか1項に記載の電気二重層キャパシタ。 The carbon material having microcrystalline carbon similar to graphite has an uncharged specific surface area of 800 m 2 / g or less by the BET 1-point method, and an interlayer distance d 002 by the X-ray diffraction method of 0.350-0. The electric double layer capacitor according to claim 1, which is in a range of 385 nm.
JP2006162492A 2005-06-10 2006-06-12 Electric double layer capacitor and electrode therefor Pending JP2007019491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162492A JP2007019491A (en) 2005-06-10 2006-06-12 Electric double layer capacitor and electrode therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005171537 2005-06-10
JP2006162492A JP2007019491A (en) 2005-06-10 2006-06-12 Electric double layer capacitor and electrode therefor

Publications (1)

Publication Number Publication Date
JP2007019491A true JP2007019491A (en) 2007-01-25

Family

ID=37756332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162492A Pending JP2007019491A (en) 2005-06-10 2006-06-12 Electric double layer capacitor and electrode therefor

Country Status (1)

Country Link
JP (1) JP2007019491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100777A (en) * 2009-11-04 2011-05-19 Sanyo Chem Ind Ltd Electrolyte and electrochemical element using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
JP2000068164A (en) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk Electric-double-layer capacitors and manufacture thereof
JP2000068165A (en) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk Electric-double-layer capacitor and its manufacture
JP2000077273A (en) * 1998-09-03 2000-03-14 Ngk Insulators Ltd Electric double-layered capacitor and manufacture thereof
JP2000100668A (en) * 1998-09-22 2000-04-07 Okamura Kenkyusho:Kk Manufacture of electric double layer capacitor
JP2005294780A (en) * 2003-12-05 2005-10-20 Masayuki Yoshio Charge storage element and electric double-layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
JP2000068164A (en) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk Electric-double-layer capacitors and manufacture thereof
JP2000068165A (en) * 1998-08-20 2000-03-03 Okamura Kenkyusho:Kk Electric-double-layer capacitor and its manufacture
JP2000077273A (en) * 1998-09-03 2000-03-14 Ngk Insulators Ltd Electric double-layered capacitor and manufacture thereof
JP2000100668A (en) * 1998-09-22 2000-04-07 Okamura Kenkyusho:Kk Manufacture of electric double layer capacitor
JP2005294780A (en) * 2003-12-05 2005-10-20 Masayuki Yoshio Charge storage element and electric double-layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100777A (en) * 2009-11-04 2011-05-19 Sanyo Chem Ind Ltd Electrolyte and electrochemical element using the same

Similar Documents

Publication Publication Date Title
WO2006132444A1 (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
Simon et al. Materials for electrochemical capacitors
JP4959259B2 (en) Electric double layer capacitor
Xie et al. Preparation and electrochemical performance of the layered cobalt oxide (Co 3 O 4) as supercapacitor electrode material
Zhang et al. Carbon-based materials as supercapacitor electrodes
JP4705566B2 (en) Electrode material and manufacturing method thereof
KR101289521B1 (en) Production method for electric double layer capacitor
JP5228531B2 (en) Electricity storage device
Oyedotun et al. Advances in supercapacitor development: materials, processes, and applications
KR101833081B1 (en) Polarizable electrode material for electric double layer capacitor having improved withstand voltage, and electric double layer capacitor using same
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
TW201522219A (en) High-voltage and high-capacitance activated carbon and carbon-based electrodes
Kowsari High-performance supercapacitors based on ionic liquids and a graphene nanostructure
JP2002231585A (en) Electric double-layered capacitor
WO2007037523A9 (en) Carbon material for electric double layer capacitor and electric double layer capacitor
JP2014064030A (en) Electrochemical capacitor
EP2879143B1 (en) Polarizable electrode material and electric double layer capacitor using same
JP2007019491A (en) Electric double layer capacitor and electrode therefor
Saravanakumara et al. Theory, fundamentals and application of supercapacitors
JP2010073793A (en) Electrode for electrical double-layer capacitor and electrical double-layer capacitor
JP6592824B2 (en) Electrochemical capacitor
JP2002313686A (en) Manufacturing method of electric double-layer capacitor
JP2023081681A (en) Carbon material, electrode material for power storage device, electrode sheet for capacitor, and electric double layer capacitor
Patel Investigation on Intercalation Behavior of BCN Compound for Multivalent-Ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213