JP2010073793A - Electrode for electrical double-layer capacitor and electrical double-layer capacitor - Google Patents

Electrode for electrical double-layer capacitor and electrical double-layer capacitor Download PDF

Info

Publication number
JP2010073793A
JP2010073793A JP2008237927A JP2008237927A JP2010073793A JP 2010073793 A JP2010073793 A JP 2010073793A JP 2008237927 A JP2008237927 A JP 2008237927A JP 2008237927 A JP2008237927 A JP 2008237927A JP 2010073793 A JP2010073793 A JP 2010073793A
Authority
JP
Japan
Prior art keywords
electrode
carbon material
carbon
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008237927A
Other languages
Japanese (ja)
Inventor
Kotaro Kobayashi
康太郎 小林
Hiroyuki Norieda
博之 則枝
Tetsuo Shiode
哲夫 塩出
嘉則 ▲高▼木
Yoshinori Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Gore Tex Inc
JFE Chemical Corp
Original Assignee
Japan Gore Tex Inc
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore Tex Inc, JFE Chemical Corp filed Critical Japan Gore Tex Inc
Priority to JP2008237927A priority Critical patent/JP2010073793A/en
Publication of JP2010073793A publication Critical patent/JP2010073793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel polarized electrode which improves manufacturing efficiency, particularly in a rolling sheet process of the polarized electrode using a carbon material which has graphite-like microcrystalline carbon. <P>SOLUTION: The electrode is the sheet-like electrode for an electrical double layer capacitor which contains: the carbon material which has the graphite-like microcrystalline carbon; and a binder wherein the average sphericity (X-axis Y-axis aspect ratio) of the carbon material by a flow type image analysis method is 0.65 or larger. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用電極および電気二重層キャパシタに関する。   The present invention relates to an electrode for an electric double layer capacitor and an electric double layer capacitor.

近年、大電流で充放電できる電気二重層キャパシタが、電気自動車用補助電源、太陽電池用補助電源、風力発電用補助電源等の充放電頻度の高い蓄電デバイスとして有望視されている。そのため、エネルギー密度が高く、急速充放電が可能で、耐久性に優れた電気二重層キャパシタが望まれている。   In recent years, electric double layer capacitors that can be charged and discharged with a large current are promising as power storage devices with high charge / discharge frequency, such as an auxiliary power source for electric vehicles, an auxiliary power source for solar cells, and an auxiliary power source for wind power generation. Therefore, an electric double layer capacitor having a high energy density, capable of rapid charge / discharge, and excellent in durability is desired.

電気二重層キャパシタは、1対の分極性電極を、セパレータを介して対向させて正極および負極とする構造を有している。各分極性電極には水系電解質溶液または非水系電解質溶液が含浸させられ、各分極性電極はそれぞれ集電極と接合させられる。   The electric double layer capacitor has a structure in which a pair of polarizable electrodes are opposed to each other with a separator interposed therebetween to form a positive electrode and a negative electrode. Each polarizable electrode is impregnated with an aqueous electrolyte solution or a non-aqueous electrolyte solution, and each polarizable electrode is joined to a collector electrode.

電気二重層キャパシタの蓄電エネルギーは電圧の2乗に比例するため、できるだけ高い電圧で動作させることが好ましい。しかしながら、従来の活性炭は比表面積が1000〜3000m/g程度と非常に大きく、その表面には賦活時に生成した−OH、−COOHなどの官能基が0.3eq/g以上多く付いている。これらの官能基の耐電圧は低く、2V程度の電圧を印加すると分解し、HO、COなどを発生し、これが電極に組み込まれていた場合には、キャパシタの劣化を招いたため、実際的に3V程度の高電圧を印加して寿命が長いキャパシタを作製することはできなかった。 Since the energy stored in the electric double layer capacitor is proportional to the square of the voltage, it is preferable to operate at the highest possible voltage. However, the conventional activated carbon has a very large specific surface area of about 1000 to 3000 m 2 / g, and the surface has many functional groups such as —OH and —COOH generated at the time of activation of 0.3 eq / g or more. Since the withstand voltage of these functional groups is low, when a voltage of about 2 V is applied, it decomposes and generates H 2 O, CO 2, etc., and when this is incorporated in the electrode, it causes deterioration of the capacitor. In particular, it was impossible to produce a capacitor having a long life by applying a high voltage of about 3V.

電気二重層キャパシタに用いられる分極性電極材料として、黒鉛類似の微結晶性炭素を有する非多孔質の炭素材が知られている(特許文献1〜9)。この炭素材は、原料の賦活処理を制御することにより、黒鉛類似の微結晶性炭素の結晶子の層間距離が0.350〜0.385nmの範囲内になるように調製されたものである。このような特定の層間距離を有する微結晶性炭素は、電解質溶液と接触させて通常使用する電圧を印加しても、その比表面積が小さい(数100m/g程度である)ために低い静電容量しか得られないが、一度使用する電圧を超える高い電圧を印加すると、層間に電解質イオンが挿入され、その結果高い静電容量を示すようになる。この炭素材は、一度イオンが挿入されると、その後通常使用する電圧(2.8〜4.0V)で繰り返し使用しても高い静電容量を維持する。この炭素材は、電気二重層キャパシタ用の炭素材として一般的に用いられている活性炭と比較して、耐電圧が高く、エネルギー密度を格段に高くできることから、活性炭に代わる炭素材として注目を集めている。 As a polarizable electrode material used for an electric double layer capacitor, a non-porous carbon material having graphite-like microcrystalline carbon is known (Patent Documents 1 to 9). This carbon material is prepared so that the interlayer distance of the crystallites of microcrystalline carbon similar to graphite is within the range of 0.350 to 0.385 nm by controlling the activation treatment of the raw material. Microcrystalline carbon having such a specific interlayer distance has a low specific surface area because it has a small specific surface area (about several hundred m 2 / g) even when a normally used voltage is applied in contact with the electrolyte solution. Only a capacitance can be obtained, but once a high voltage exceeding the voltage used once is applied, electrolyte ions are inserted between the layers, and as a result, a high capacitance is exhibited. This carbon material maintains a high capacitance even if it is repeatedly used at a normally used voltage (2.8 to 4.0 V) after that, once ions are inserted. This carbon material has attracted attention as a carbon material that can replace activated carbon because it has a higher withstand voltage and significantly higher energy density than activated carbon generally used as a carbon material for electric double layer capacitors. ing.

特開平11−317333号公報JP 11-317333 A 特開2000−068165号公報JP 2000-068165 A 特開2000−068164号公報JP 2000-068164 A 特開2000−077273号公報JP 2000-077273 A 特開2000−100668号公報Japanese Patent Laid-Open No. 2000-1000066 特開2002−025867号公報JP 2002-025867 A 特開2002−083747号公報JP 2002-083747 A 特開2003−051430号公報JP 2003-051430 A 特開2003−086469号公報JP 2003-086469 A

電気二重層キャパシタの電極を製造する方法には、電極材料を集電体上にコーティングするコーティング製法と、電極材料を圧延成形するシート製法がある。コーティング製法は、シート製法と比較して、電極の薄膜化が容易であるが、電極の密度が低くなるため、高いエネルギー密度が要求される用途には向かない。これに対して、シート製法は、電極材料自体を圧延処理して製造するため、圧延によりシートを薄くするほど電極の密度が高くなり、高いエネルギー密度が得られるため、黒鉛類似の微結晶性炭素を有する炭素材を用いて高いエネルギー密度の電極を製造するのに適している。しかし、黒鉛類似の微結晶性炭素を有する炭素材は、グラフェン構造が比較的平行に積層された構造を有するため一般的な活性炭と異なり細長い棒状粒子となることが多い。このような棒状粒子を多く含む炭素材を用いて圧延により電極を作製しようとすると、炭素材粒子の流動性が低く、シートの成形性が極端に悪い。このため、シート製法で所望の厚さにするためは圧延処理を何度も繰り返す必要があり、製造効率が極めて低い。   As a method for manufacturing an electrode of an electric double layer capacitor, there are a coating manufacturing method in which an electrode material is coated on a current collector and a sheet manufacturing method in which the electrode material is rolled. Compared with the sheet manufacturing method, the coating manufacturing method can easily reduce the thickness of the electrode, but the electrode density is low, so that it is not suitable for applications requiring a high energy density. On the other hand, the sheet manufacturing method is produced by rolling the electrode material itself, so the thinner the sheet by rolling, the higher the density of the electrode and the higher the energy density, so graphite-like microcrystalline carbon It is suitable for producing a high energy density electrode using a carbon material having However, a carbon material having graphite-like microcrystalline carbon has a structure in which graphene structures are laminated relatively in parallel, and thus is often formed into elongated rod-like particles unlike general activated carbon. If an electrode is produced by rolling using such a carbon material containing a large amount of rod-like particles, the fluidity of the carbon material particles is low and the formability of the sheet is extremely poor. For this reason, in order to make it a desired thickness by a sheet manufacturing method, it is necessary to repeat a rolling process many times, and manufacturing efficiency is very low.

そこで、本発明は、黒鉛類似の微結晶性炭素を有する炭素材を用いた分極性電極の、特に圧延シート製法における製造効率を向上させた新規な分極性電極を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel polarizable electrode that improves the production efficiency of a polarizable electrode using a carbon material having microcrystalline carbon similar to graphite, particularly in a rolled sheet manufacturing method.

本発明によると、
(1)黒鉛類似の微結晶性炭素を有する炭素材とバインダーとを含んでなる、シート状の電気二重層キャパシタ用電極であって、該炭素材のフロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上であることを特徴とする電極が提供される。
According to the present invention,
(1) A sheet-like electrode for an electric double layer capacitor comprising a carbon material having microcrystalline carbon similar to graphite and a binder, wherein the average sphericity of the carbon material by a flow image analysis method (X An electrode is provided in which the aspect ratio (axis Y-axis aspect ratio) is 0.65 or more.

さらに本発明によると、
(2)該電極が圧延処理によりシート状にされたものである、(1)に記載の電極が提供される。
Furthermore, according to the present invention,
(2) The electrode according to (1) is provided, wherein the electrode is formed into a sheet by rolling.

さらに本発明によると、
(3)該炭素材の円相当径が5μm以上である、(1)または(2)に記載の電極が提供される。
Furthermore, according to the present invention,
(3) The electrode according to (1) or (2), wherein the equivalent circle diameter of the carbon material is 5 μm or more.

さらに本発明によると、
(4)該炭素材の比表面積が200m/g以下である、(1)〜(3)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(4) The electrode according to any one of (1) to (3), wherein the carbon material has a specific surface area of 200 m 2 / g or less.

さらに本発明によると、
(5)該炭素材のX線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、(1)〜(4)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(5) The electrode according to any one of (1) to (4), wherein an interlayer distance d 002 of the carbon material by an X-ray diffraction method is in a range of 0.350 to 0.385 nm. .

さらに本発明によると、
(6)該炭素材がピッチ系炭素前駆体から得られたものである、(1)〜(5)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(6) The electrode according to any one of (1) to (5), wherein the carbon material is obtained from a pitch-based carbon precursor.

さらに本発明によると、
(7)該バインダーがポリテトラフルオロエチレン(PTFE)である、(1)〜(6)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(7) The electrode according to any one of (1) to (6), wherein the binder is polytetrafluoroethylene (PTFE).

さらに本発明によると、
(8)さらに導電補助材を含む、(1)〜(7)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(8) The electrode according to any one of (1) to (7), further including a conductive auxiliary material.

さらに本発明によると、
(9)該電極の厚さが400μm以下である、(1)〜(8)のいずれか1項に記載の電極が提供される。
Furthermore, according to the present invention,
(9) The electrode according to any one of (1) to (8), wherein the electrode has a thickness of 400 μm or less.

さらに本発明によると、
(10)(1)〜(9)のいずれか1項に記載の電極を含む電気二重層キャパシタが提供される。
Furthermore, according to the present invention,
(10) An electric double layer capacitor including the electrode according to any one of (1) to (9) is provided.

さらに本発明によると、
(11)(1)〜(9)のいずれか1項に記載の電気二重層キャパシタ用電極の製造方法であって、前記炭素材の原料を、400〜600℃の範囲内で熱処理し、次いで高速気流中衝撃法により球形化処理することを特徴とする方法が提供される。
Furthermore, according to the present invention,
(11) The method for producing an electrode for an electric double layer capacitor according to any one of (1) to (9), wherein the carbon material is heat-treated within a range of 400 to 600 ° C, There is provided a method characterized in that the spheronization treatment is performed by a high-speed in-air impact method.

さらに本発明によると、
(12)黒鉛類似の微結晶性炭素を有する電気二重層キャパシタ電極用炭素材であって、フロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上であることを特徴とする炭素材が提供される。
Furthermore, according to the present invention,
(12) A carbon material for an electric double layer capacitor electrode having microcrystalline carbon similar to graphite, and having an average sphericity (X-axis Y-axis aspect ratio) of 0.65 or more by a flow image analysis method. A characteristic carbon material is provided.

さらに本発明によると、
(13)円相当径が5μm以上である、(12)に記載の炭素材が提供される。
Furthermore, according to the present invention,
(13) The carbon material according to (12), wherein the equivalent circle diameter is 5 μm or more.

さらに本発明によると、
(14)比表面積が200m/g以下である、(12)または(13)に記載の炭素材が提供される。
Furthermore, according to the present invention,
(14) The carbon material according to (12) or (13), wherein the specific surface area is 200 m 2 / g or less.

さらに本発明によると、
(15)X線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、(12)〜(14)のいずれか1項に記載の炭素材が提供される。
Furthermore, according to the present invention,
(15) an interlayer distance d 002 by X-ray diffraction method is within the range of 0.350~0.385nm, (12) a carbon material according to any one of - (14) are provided.

さらに本発明によると、
(16)ピッチ系炭素前駆体から得られたものである、(12)〜(15)のいずれか1項に記載の炭素材が提供される。
Furthermore, according to the present invention,
(16) The carbon material according to any one of (12) to (15), which is obtained from a pitch-based carbon precursor.

さらに本発明によると、
(17)(12)〜(16)のいずれか1項に記載の電気二重層キャパシタ電極用炭素材の製造方法であって、前記炭素材の原料を、温度400℃〜600℃の範囲内で熱処理し、次いで高速気流中衝撃法により球形化処理することを特徴とする方法が提供される。
Furthermore, according to the present invention,
(17) The method for producing a carbon material for an electric double layer capacitor electrode according to any one of (12) to (16), wherein the material of the carbon material is within a temperature range of 400 ° C to 600 ° C. There is provided a method characterized by heat-treating and then spheronizing by a high-speed air current impact method.

本発明によると、特にフロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上である炭素材を用いたことにより、黒鉛類似の微結晶性炭素を有する炭素材を用いた分極性電極の圧延シート製法における製造効率が向上する。さらに、まったく意外なことに、本発明による炭素材を用いると、電気二重層キャパシタの耐久性が向上する。   According to the present invention, a carbon material having microcrystalline carbon similar to graphite can be obtained by using a carbon material having an average sphericity (X-axis Y-axis aspect ratio) of 0.65 or more according to a flow image analysis method. The production efficiency of the polarizable electrode used in the method for producing a rolled sheet is improved. Furthermore, surprisingly, the use of the carbon material according to the present invention improves the durability of the electric double layer capacitor.

本発明による電気二重層キャパシタ用電極は、黒鉛類似の微結晶性炭素を有する炭素材とバインダーとを含んでなる、シート状の電気二重層キャパシタ用電極であって、該炭素材のフロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上であることを特徴とするものである。本発明による電気二重層キャパシタ用電極は、特に圧延処理によりシート状にされたものであることが好ましい。   An electrode for an electric double layer capacitor according to the present invention is a sheet-like electrode for an electric double layer capacitor comprising a carbon material having microcrystalline carbon similar to graphite and a binder, and a flow image of the carbon material. The average sphericity (X-axis Y-axis aspect ratio) by the analysis method is 0.65 or more. The electric double layer capacitor electrode according to the present invention is particularly preferably formed into a sheet by rolling.

平均球形度(X軸Y軸アスペクト比)は、球状の程度を示すパラメータで、シスメックス株式会社製フロー式粒子像分析装置「FPIA−3000」を用い、フロー式画像解析法により粒子の最大長(X軸)と最大長垂直長(Y軸)から以下の式より求めたアスペクト比の平均値である。
アスペクト比=(最大長垂直長)/(最大長)
アスペクト比の上限は1で、その場合、当該粒子が完全球体であることを意味する。本発明による炭素材は、平均球形度が0.65未満であると、特に圧延処理に際して炭素材粒子の流動性が不十分となり、電極シートの成形性が悪化する。本発明による炭素材は、平均球形度が0.68以上であることが好ましく、さらには0.70以上であることがより好ましい。
The average sphericity (X-axis Y-axis aspect ratio) is a parameter indicating the degree of sphericity, and the maximum particle length (by flow image analysis method using a flow particle image analyzer “FPIA-3000” manufactured by Sysmex Corporation). It is an average value of aspect ratios obtained from the following formula from the X axis) and the maximum length vertical length (Y axis).
Aspect ratio = (Maximum vertical length) / (Maximum length)
The upper limit of the aspect ratio is 1, which means that the particle is a perfect sphere. When the average sphericity of the carbon material according to the present invention is less than 0.65, the fluidity of the carbon material particles becomes insufficient particularly during the rolling process, and the formability of the electrode sheet is deteriorated. The carbon material according to the present invention preferably has an average sphericity of 0.68 or more, and more preferably 0.70 or more.

本発明による炭素材は、円相当径が5μm以上であることが好ましく、さらには10μm以上であることがより好ましい。本発明による炭素材は、円相当径が5μm未満であると、後述するバインダーによる固定が不十分となり、電極が劣化しやすくなる。反対に円相当径が20μm以上になると、トップ粒径が電極の厚さ以上になる可能性があるため好ましくない。   The carbon material according to the present invention preferably has an equivalent circle diameter of 5 μm or more, and more preferably 10 μm or more. When the carbon material according to the present invention has an equivalent circle diameter of less than 5 μm, fixing with a binder described later becomes insufficient, and the electrode is likely to deteriorate. On the contrary, if the equivalent circle diameter is 20 μm or more, the top particle diameter may be more than the thickness of the electrode, which is not preferable.

本発明による炭素材(以下「黒鉛類似炭素材」ともいう。)は、黒鉛類似の微結晶性炭素を有する。この黒鉛類似炭素材は、比表面積が小さいので、活性炭を使用していた従来の基準からは、電気二重層キャパシタ用電極として適さないものである。しかしながら、この炭素材は、その微結晶炭素の層間距離d002(X線回折法による)が特定の範囲、すなわち0.350〜0.385nmにある場合、その比表面積が小さいにもかかわらず、分極性電極として高い静電容量を示す。この層間距離d002が0.365〜0.380nmの範囲にあると、電解質イオンの層間への挿入による静電容量の発現が顕著に表れるためより好ましい。この層間距離d002が0.350nmを下回ると、電解質イオンの層間への挿入が起こり難くなるため、静電容量が低くなる。反対にこの層間距離d002が0.385を超える場合も、電解質イオンの層間への挿入が起こり難くなり静電容量が低くなるので好ましくない。 The carbon material according to the present invention (hereinafter also referred to as “graphite-like carbon material”) has microcrystalline carbon similar to graphite. Since this graphite-like carbon material has a small specific surface area, it is not suitable as an electrode for an electric double layer capacitor from the conventional standard in which activated carbon is used. However, when the interlayer distance d 002 (by X-ray diffraction method) of the microcrystalline carbon is in a specific range, that is, 0.350 to 0.385 nm, this carbon material has a small specific surface area. High capacitance as a polarizable electrode. When the interlayer distance d 002 is in the range of 0.365~0.380Nm, more preferable because expression of capacitance due to insertion into the interlayer of the electrolyte ions conspicuous. When the interlayer distance d 002 is below 0.350 nm, since the insertion into the interlayer of the electrolyte ions becomes difficult to occur, the electrostatic capacitance decreases. Even if the interlayer distance d 002 in the opposite is more than 0.385, the capacitance hardly occur inserted into the interlayer of the electrolyte ions decreases undesirably.

本発明による炭素材は、比表面積が20〜200m/gの範囲内にあることが好ましく、さらに50〜150m/gの範囲内にあることがより好ましい。この比表面積が200m/gを超えると、黒鉛類似炭素材の表面に存在する官能基量が増え、電圧印加時にこれらの官能基が分解することに起因する電気二重層キャパシタの性能低下が著しくなる。比表面積は、ユアサアイオニクス株式会社製「MONOSORB」を用いてBET1点法にて測定(乾燥温度:180℃、乾燥時間:1時間)した値である。 Carbon material according to the present invention has a specific surface area is preferably in the range of 20 to 200 m 2 / g, further more preferably in the range of 50 to 150 m 2 / g. When this specific surface area exceeds 200 m 2 / g, the amount of functional groups present on the surface of the graphite-like carbon material increases, and the performance degradation of the electric double layer capacitor due to the decomposition of these functional groups when a voltage is applied is marked. Become. The specific surface area is a value measured by a BET 1-point method using “MONOSORB” manufactured by Yuasa Ionics Co., Ltd. (drying temperature: 180 ° C., drying time: 1 hour).

黒鉛類似炭素材は、これに後述する導電補助材とバインダーとを合わせた合計質量に対して、50〜99質量%、好ましくは65〜95質量%の範囲内で電極中に含まれる。黒鉛類似炭素材の含有量が50質量%より少ないと、電極のエネルギー密度が低くなる。反対に含有量が99質量%を超えるとバインダーが不足し、連続したシート状の電極が形成できなくなる。   The graphite-like carbon material is contained in the electrode in the range of 50 to 99% by mass, preferably 65 to 95% by mass, based on the total mass of the conductive auxiliary material and binder described later. When the content of the graphite-like carbon material is less than 50% by mass, the energy density of the electrode is lowered. On the other hand, if the content exceeds 99% by mass, the binder is insufficient and a continuous sheet-like electrode cannot be formed.

黒鉛類似炭素材は、電気二重層キャパシタ用電極として用いられた場合に、高い静電容量を示すと共に、電圧印加の際に膨張するという特性を示す。すなわち、黒鉛類似炭素材は、これをシート状に成形して集電体の片面または両面に積層した電気二重層キャパシタを組み立てて、両集電体間に電圧を印加すると、黒鉛類似炭素材が主として両集電体による電圧印加方向に膨張するという特性を示す。電極として用いた黒鉛類似炭素材が膨張すると、電気二重層キャパシタの体積が大きくなるため、該キャパシタの静電容量が増加しても、単位体積当たりの電気二重層キャパシタの静電容量の増加はその分減殺される。したがって、静電容量の増大を享受するためには、黒鉛類似炭素材の膨張による電気二重層キャパシタの体積増加を最小限に抑えることが好ましい。電気二重層キャパシタの体積増加を抑制するためには、黒鉛類似炭素材の膨張により生じる圧力(膨張圧)に抗する圧力を外部から電極に加えればよい。実際、電極の体積膨張を完全に抑制しても、電極間に発生する静電容量は、自由な膨張を許容した場合と変わらない。   When used as an electrode for an electric double layer capacitor, the graphite-like carbon material exhibits a high capacitance and a characteristic of expanding when a voltage is applied. That is, when a graphite-like carbon material is formed into a sheet shape and an electric double layer capacitor in which the current collector is laminated on one or both sides is assembled and a voltage is applied between the current collectors, the graphite-like carbon material is It exhibits the characteristic of expanding mainly in the direction of voltage application by both current collectors. When the graphite-like carbon material used as the electrode expands, the volume of the electric double layer capacitor increases. Therefore, even if the capacitance of the capacitor increases, the capacitance of the electric double layer capacitor per unit volume increases. It is diminished accordingly. Therefore, in order to enjoy the increase in capacitance, it is preferable to minimize the increase in volume of the electric double layer capacitor due to the expansion of the graphite-like carbon material. In order to suppress the increase in volume of the electric double layer capacitor, a pressure that resists the pressure (expansion pressure) generated by the expansion of the graphite-like carbon material may be applied to the electrode from the outside. In fact, even if the volume expansion of the electrodes is completely suppressed, the capacitance generated between the electrodes is not different from the case where free expansion is allowed.

本発明による炭素材は、以下のように調製することができる。まず、活性炭原料として用いられる木材、果実殻、石炭、ピッチ、コークス等の種々の材料を、不活性雰囲気中で、400〜600℃、好ましくは450〜550℃の範囲内の温度で熱処理(一次焼成)する。この一次焼成は、後述の高速気流中衝撃法による球形化処理を促進するため、比較的低温での熱処理とすべきことに留意されたい。次いで、固化した一次焼成炭素材を、例えば気流式粉砕法で粉砕することによって、上述の円相当径を調整する。その後、高速気流中衝撃法により、上記平均球形度が0.65以下になるまで球形化処理する。高速気流中衝撃法の実施には、例えば、株式会社奈良機械製作所より市販されているハイブリダイゼーションシステム(NHS)を使用すると便利である。ハイブリダイゼーションシステムによると、炭素材粒子を気相中に分散させながら衝撃力を主体とする機械的熱的エネルギーが粒子に与えられ、棒状粒子の角がとれることにより球形化する。さらに、球形化処理済炭素材を700℃〜1000℃の温度で熱処理(二次焼成)することにより炭化させる。その後、水酸化カリウム等のアルカリを使用し、不活性雰囲気中、800℃程度の温度で賦活処理を実施する。本発明に好適に用いられる黒鉛類似炭素材の、球形化処理以外の処理工程の詳細については、特許文献1〜9を参照されたい。   The carbon material according to the present invention can be prepared as follows. First, various materials such as wood, fruit shells, coal, pitch and coke used as activated carbon raw materials are heat-treated (primary at a temperature in the range of 400 to 600 ° C., preferably 450 to 550 ° C. in an inert atmosphere. Bake). It should be noted that this primary firing should be a heat treatment at a relatively low temperature in order to promote a spheronization treatment by a high-speed air current impact method described later. Next, the above-described equivalent circle diameter is adjusted by pulverizing the solidified primary baked carbon material by, for example, an airflow pulverization method. Thereafter, spheronization is performed by the impact method in high-speed airflow until the average sphericity becomes 0.65 or less. For example, a hybridization system (NHS) commercially available from Nara Machinery Co., Ltd. is convenient for carrying out the high-speed air current impact method. According to the hybridization system, mechanical thermal energy mainly composed of impact force is applied to the particles while dispersing the carbon material particles in the gas phase, and the rod-shaped particles are rounded to form a sphere. Further, the carbonized carbon material is carbonized by heat treatment (secondary firing) at a temperature of 700 ° C. to 1000 ° C. Thereafter, an activation treatment is performed at a temperature of about 800 ° C. in an inert atmosphere using an alkali such as potassium hydroxide. For details of the processing steps other than the spheroidizing treatment of the graphite-like carbon material suitably used in the present invention, see Patent Documents 1 to 9.

本発明による電極は、導電補助材を含有することが好ましい。導電補助材としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノホーン等のナノカーボン、粉末グラファイト等を用いることができる。導電補助材は、これに黒鉛類似炭素材とバインダーとを合わせた合計質量に対して、好ましくは1〜40質量%、より好ましくは3〜20質量%の量を添加すればよい。この導電補助材の添加量が1質量%より少ないと電気二重層キャパシタの内部抵抗が高くなる。反対に添加量が40質量%を超えると電極のエネルギー密度が低くなる。   The electrode according to the present invention preferably contains a conductive auxiliary material. As the conductive auxiliary material, carbon black such as ketjen black and acetylene black, nanocarbon such as fullerene, carbon nanotube, and carbon nanohorn, powder graphite, and the like can be used. The conductive auxiliary material may be added in an amount of preferably 1 to 40% by mass, more preferably 3 to 20% by mass, based on the total mass of the graphite-like carbon material and the binder. When the addition amount of the conductive auxiliary material is less than 1% by mass, the internal resistance of the electric double layer capacitor is increased. On the contrary, when the addition amount exceeds 40% by mass, the energy density of the electrode is lowered.

本発明による電極は、黒鉛類似炭素材と導電補助材を結着してシート化するためのバインダーを含有する。バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)等を用いることができる。バインダーは、これに黒鉛類似炭素材と導電補助材とを合わせた合計質量に対して、好ましくは1〜30質量%、より好ましくは3〜20質量%の量を添加すればよい。このバインダーの添加量が1質量%より少ないと連続したシート状の電極が形成できなくなる。反対に添加量が30質量%を超えると電気二重層キャパシタの内部抵抗が高くなる。   The electrode according to the present invention contains a binder for binding a graphite-like carbon material and a conductive auxiliary material into a sheet. As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), or the like can be used. The binder may be added in an amount of preferably 1 to 30% by mass, more preferably 3 to 20% by mass, based on the total mass of the graphite-like carbon material and the conductive auxiliary material. If the amount of the binder added is less than 1% by mass, a continuous sheet-like electrode cannot be formed. On the contrary, when the addition amount exceeds 30% by mass, the internal resistance of the electric double layer capacitor is increased.

本発明による電極は、従来の活性炭を用いた場合と同様の方法により製造することができる。例えば、上述の方法で得られた黒鉛類似炭素材に導電補助材とバインダーとを添加して混錬した後、好ましくは圧延処理によりシート状に成形することができる。混錬に際して、水、エタノール、アセトニトリル、シロキサン等の液体助剤を単独または混合して適宜使用してもよい。本発明により球形化された黒鉛類似炭素材は、特に圧延処理に際して流動性が高くなり、滑らかに移動する。したがって、所望の厚さ、例えば400μm以下、を得るのに要する圧延処理回数が大幅に削減され、電極の製造効率が飛躍的に向上する。   The electrode according to the present invention can be produced by the same method as in the case of using conventional activated carbon. For example, after adding a conductive auxiliary material and a binder to the graphite-like carbon material obtained by the above-mentioned method and kneading, it can be preferably formed into a sheet by a rolling process. In kneading, liquid auxiliaries such as water, ethanol, acetonitrile, siloxane and the like may be used alone or in combination as appropriate. The graphite-like carbon material spheroidized according to the present invention has high fluidity and moves smoothly especially during rolling. Therefore, the number of rolling processes required to obtain a desired thickness, for example, 400 μm or less is greatly reduced, and the electrode manufacturing efficiency is dramatically improved.

本発明による電極の厚さは、400μm以下であることが好ましく、100〜150μmの範囲がより好ましい。この厚さが100μmを下回ると電極にピンホールが発生しやすくなる。反対に400μmを上回ると電極の密度が高くできないため、電極のエネルギー密度が低くなる。   The thickness of the electrode according to the present invention is preferably 400 μm or less, and more preferably in the range of 100 to 150 μm. If this thickness is less than 100 μm, pinholes are likely to occur in the electrode. On the other hand, if it exceeds 400 μm, the density of the electrode cannot be increased, so that the energy density of the electrode is lowered.

本発明によるシート状の電極に、電気二重層キャパシタに一般に用いられる適当な集電体とセパレータを組み合わせ、さらに適当な電解液を電極に含浸することにより、本発明による電気二重層キャパシタを組み立てることができる。集電体としては、アルミニウム、チタン、ステンレススチール等の金属系シートや、導電性高分子フィルム、導電性フィラー含有プラスチックフィルム等の非金属系シートをはじめとする種々のシート材料を用いることができる。シート状の集電体は、一部または全面に穴を有するものでもよい。シート状電極と集電体は、両者を単に圧着するだけでも機能するが、これらの間の接触抵抗を下げるため、導電性塗料を接着剤として用いて電極と集電体とを接合しても、また導電性塗料を電極または集電体に塗布して乾燥した後に電極と集電体を圧着してもよい。セパレータとしては、微多孔性の紙、ガラスや、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン等のプラスチック製多孔質フィルム等の絶縁材料を用いることができる。セパレータの厚さは、一般に10〜100μm程度である。電解液としては、液状電解質を使用しても、また電解質を有機溶媒に溶かした電解質溶液を使用してもよい。電解液の具体例については、特開2004−289130号公報を参照されたい。   An electric double layer capacitor according to the present invention is assembled by combining a sheet-like electrode according to the present invention with an appropriate current collector and separator generally used for electric double layer capacitors, and impregnating the electrode with an appropriate electrolyte. Can do. As the current collector, various sheet materials including metal sheets such as aluminum, titanium and stainless steel, and nonmetal sheets such as conductive polymer films and conductive filler-containing plastic films can be used. . The sheet-like current collector may have a hole in part or the entire surface. The sheet-like electrode and the current collector can function by simply crimping them together, but in order to reduce the contact resistance between them, the electrode and the current collector can be joined using a conductive paint as an adhesive. Alternatively, the electrode and the current collector may be pressure-bonded after the conductive paint is applied to the electrode or the current collector and dried. As the separator, an insulating material such as microporous paper, glass, or a plastic porous film such as polyethylene, polypropylene, or polytetrafluoroethylene can be used. The thickness of the separator is generally about 10 to 100 μm. As the electrolytic solution, a liquid electrolyte may be used, or an electrolyte solution in which the electrolyte is dissolved in an organic solvent may be used. For specific examples of the electrolytic solution, refer to JP-A-2004-289130.

このように組み立てられた電気二重層キャパシタは、使用する電圧より3〜100%高い電圧(通常、3.0〜4.2V程度)を印加して充電することにより、電解質イオンが(有機溶媒の存在下では溶媒も伴って)黒鉛類似炭素材の組織内に挿入され、その後電気二重層を形成する。   The electric double layer capacitor assembled in this way is charged by applying a voltage 3 to 100% higher than the voltage to be used (usually about 3.0 to 4.2 V), so that the electrolyte ions (of the organic solvent) It is inserted into the structure of the graphite-like carbon material (with a solvent in the presence) and then forms an electric double layer.

以下、本発明を実施例により具体的に説明する。
実施例1
ピッチ系炭素前駆体を不活性雰囲気中で450℃の温度で焼成し一次焼成品を作製した。この一次焼成炭素材を、株式会社奈良機械製作所製ハイブリダイゼーションNHS−3型を用いて回転数4000rpmで10分間処理することにより、平均球形度0.72の球形化処理炭素材を得た。その後、球形化処理炭素材を再度800℃の温度で焼成し炭化した材料を用い、これに質量比で2倍量の水酸化カリウムを混合し、不活性雰囲気中800℃において賦活処理を行い、BET比表面積125m/gの黒鉛類似炭素材を調製した。この黒鉛類似炭素材は、その微結晶性炭素のX線回折法による層間距離d002が最大0.360nmの範囲内にある。この黒鉛類似炭素材80質量%と、導電補助材としてケッチェンブラック粉末(ケッチェンブラックインターナショナル株式会社製「EC600JD」)10質量%と、バインダーとしてポリテトラフルオロエチレン粉末(三井デュポンフロロケミカル株式会社製「テフロン(登録商標)6J」)10質量%とからなる混合物にエタノールを加えて混錬し、その後ロール圧延を3回実施することにより、幅100mm、厚さ200μmの分極性シートを得た。幅150mm、厚さ50μmの高純度エッチドアルミニウム箔(KDK株式会社製「C512」)を集電体とし、その両面に、導電性接着剤液(日立粉末冶金株式会社製「GA−37」)を塗布ロールで30g/m塗布した。この塗布量は、乾燥質量で6g/mとなる。塗布後、集電体の塗布部分(両面)に、上記長尺の分極性シートを重ね、これを圧縮ロールに通して圧着し、接触界面同士を確実に貼り合わせた積層シートを得た。この積層シートを、温度150℃に設定した連続熱風乾燥機に通し、導電性接着剤液層から分散媒を蒸発除去することにより長尺の分極性電極を得た。なお、乾燥機内の通過速度は、積層シートのすべての部分が乾燥機内に3分間滞留する速度とした。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
The pitch-based carbon precursor was fired in an inert atmosphere at a temperature of 450 ° C. to produce a primary fired product. The primary baked carbon material was treated for 10 minutes at a rotation speed of 4000 rpm using a hybridization NHS-3 type manufactured by Nara Machinery Co., Ltd. to obtain a spheroidized carbon material having an average sphericity of 0.72. Then, using a carbonized material obtained by firing and carbonizing the spheroidized carbon material again at a temperature of 800 ° C., this was mixed with twice the amount of potassium hydroxide in a mass ratio, and an activation treatment was performed at 800 ° C. in an inert atmosphere. A graphite-like carbon material having a BET specific surface area of 125 m 2 / g was prepared. The graphite-like carbon material, the interlayer distance d 002 by X-ray diffraction of the microcrystalline carbon in the range of up to 0.360 nm. 80% by mass of this graphite-like carbon material, 10% by mass of Ketjen black powder (“EC600JD” manufactured by Ketjen Black International Co., Ltd.) as a conductive auxiliary material, and polytetrafluoroethylene powder (manufactured by Mitsui Dupont Fluoro Chemical Co., Ltd.) as a binder Ethanol was added to a mixture of 10% by mass of “Teflon (registered trademark) 6J”) and kneaded, and then roll rolling was performed three times to obtain a polarizable sheet having a width of 100 mm and a thickness of 200 μm. A high-purity etched aluminum foil (“C512” manufactured by KDK Corporation) having a width of 150 mm and a thickness of 50 μm is used as a current collector, and a conductive adhesive solution (“GA-37” manufactured by Hitachi Powdered Metallurgy Co., Ltd.) is provided on both sides thereof. Was applied with 30 g / m 2 by an application roll. This coating amount is 6 g / m 2 in terms of dry mass. After the application, the above long polarizable sheet was superimposed on the application part (both sides) of the current collector, and this was pressed through a compression roll to obtain a laminated sheet in which the contact interfaces were securely bonded together. The laminated sheet was passed through a continuous hot air dryer set at a temperature of 150 ° C., and the dispersion medium was evaporated and removed from the conductive adhesive liquid layer to obtain a long polarizable electrode. The passing speed in the dryer was a speed at which all portions of the laminated sheet stayed in the dryer for 3 minutes.

この長尺シート状の積層シートを分極性電極の炭素電極部の寸法が10cm角で、リード部(集電体上に分極性電極が積層されていない部分)が2×10cmの形状になるように打ち抜いて方形状の分極性電極とした。二枚の分極性電極体を正極、負極とし、その間にセパレータとして厚さ80μmの親水化処理したePTFEシート(ジャパンゴアテックス株式会社製「BSP0708070」)を1枚挿入して単セルを作製した。次いで、その単セルを、230℃で24時間真空乾燥した後、アルゴン雰囲気で−60℃以下の露点を保ったグローブボックス内にてアルミパックに収納した。アルミパックは、昭和電工パッケージング株式会社製「PET12/Al20/PET12/CPP30 ドライラミネート品」を裁断し、25×20cmの袋状に融着加工したもの(短辺の一辺が開口し、他の三辺が融着シールされたもの)を用いた。電極への電解液の含浸は−0.05MPaの減圧下で、1.8モル/Lのトリエチルメチルアンモニウムテトラフルオロボレートの炭酸プロピレン溶液を電解液としてアルミパックに注入し、10分間静置して行った。最後にアルミパックの開口部を融着密封することにより、角形電気二重層キャパシタを製造した。このキャパシタの使用予定電圧は3.3Vである。   In this long sheet-like laminated sheet, the size of the carbon electrode portion of the polarizable electrode is 10 cm square, and the lead portion (the portion where the polarizable electrode is not laminated on the current collector) is 2 × 10 cm. A rectangular polarizable electrode was punched out. A single cell was fabricated by inserting one sheet of ePTFE sheet (“BSP07008070” manufactured by Japan Gore-Tex Co., Ltd.) having a thickness of 80 μm between the two polarizable electrode bodies as a positive electrode and a negative electrode. Next, the single cell was vacuum-dried at 230 ° C. for 24 hours, and then housed in an aluminum pack in a glove box maintained at −60 ° C. or lower in an argon atmosphere. The aluminum pack was cut from “PET12 / Al20 / PET12 / CPP30 dry laminate product” made by Showa Denko Packaging Co., Ltd. and fused into a 25 × 20 cm bag (one short side opened, other Three sides were fusion sealed. The electrode was impregnated with the electrolytic solution under a reduced pressure of −0.05 MPa, and a 1.8 mol / L propylene carbonate solution of triethylmethylammonium tetrafluoroborate as an electrolytic solution was poured into the aluminum pack and left to stand for 10 minutes. went. Finally, a square electric double layer capacitor was manufactured by fusing and sealing the opening of the aluminum pack. The intended use voltage of this capacitor is 3.3V.

角形電気二重層キャパシタを25℃において24時間保存した。その後、このキャパシタの両面方向から2.45×10Paの加圧力(面加圧力)で加圧し、この加圧状態のまま、初期充電として、40℃の恒温槽内で5mA/cmの電流密度にて3.5Vまで充電し、その後同電流密度において0Vまで放電させた。このキャパシタを実施例1とした。 The square electric double layer capacitor was stored at 25 ° C. for 24 hours. Thereafter, the capacitor was pressurized with a pressing force (surface pressing force) of 2.45 × 10 6 Pa from both sides of the capacitor, and in this pressurized state, the initial charge was 5 mA / cm 2 in a constant temperature bath of 40 ° C. The battery was charged to 3.5 V at a current density, and then discharged to 0 V at the same current density. This capacitor was referred to as Example 1.

実施例2〜5
前記ハイブリダイゼーション装置での処理回転数および処理時間を表1に示すように変化させて作製した以外は、実施例1と同様に作製した。
Examples 2-5
It was produced in the same manner as in Example 1 except that it was produced by changing the treatment rotation speed and treatment time in the hybridization apparatus as shown in Table 1.

実施例6、7
ピッチ系炭素前駆体を不活性雰囲気中で焼成する時の温度を表1に示すように変化させて作製した以外は、実施例1と同様に作製した。
Examples 6 and 7
It was produced in the same manner as in Example 1 except that the pitch-based carbon precursor was produced by changing the temperature when firing in an inert atmosphere as shown in Table 1.

実施例8〜10
賦活処理条件を変更し、比表面積を表1に示すように変化させて作製した以外は、実施例1と同様に作製した。
Examples 8-10
It was produced in the same manner as in Example 1 except that the activation treatment conditions were changed and the specific surface area was changed as shown in Table 1.

比較例1
ピッチ系炭素前駆体を不活性雰囲気中で焼成、賦活する前に球形化処理を施さなかった以外は、実施例1と同様に作製した。
Comparative Example 1
It was produced in the same manner as in Example 1 except that the spheroidizing treatment was not performed before firing and activating the pitch-based carbon precursor in an inert atmosphere.

実施例1〜10および比較例1の電気二重層キャパシタについて、体積静電容量密度および内部抵抗、電極膨張率、耐久性能を測定した。測定条件は以下の通り。電極加工性の指標としては、弊社製法にて最も薄膜化可能な厚みとして判断した。
(体積静電容量密度)
測定器:株式会社パワーシステム製「CDT510−4」
温度:20℃
充電:5mA/cm、3.3V、3600秒
放電:5mA/cm、0V
5サイクル目の静電容量をエネルギー換算法により求め、それを膨張後における集電体を含まない正負極の炭素電極部の体積で除して算出した。算出には解析ソフト(株式会社パワーシステム製「CDT Utility」)を使用した。
(直流内部抵抗)
体積静電容量密度の測定時に、V=IR式から算出した。算出には解析ソフト(株式会社パワーシステム製「CDT Utility」)を使用した。
(膨張率)
後述の充放電条件における5サイクル目の充電後の電極部厚さ(面加圧力を取り除いて測定した厚さ)を、その初期厚200μmで除して算出した(100%は変化無し)。
(耐久性能)
上記電気二重層キャパシタについて、45℃の温度下で5mA/cm、3.3Vで1時間充電、5mA/cm条件で0Vになるまで放電を行う操作を1サイクルとし、スタート時の静電容量、直流抵抗を確認後、同条件にて1000時間フロート充電し、20時間ごとに静電容量、直流抵抗を確認した。1サイクル目と1000時間経過時の静電容量を、静電容量密度について上記した方法で求め、結果は、測定スタート時(1サイクル目)に対する1000時間経過時の静電容量の維持率[100×(1000時間経過時のサイクルの静電容量)/(1サイクル目の静電容量)](%)で評価した。内部抵抗についても同様に算出した。
For the electric double layer capacitors of Examples 1 to 10 and Comparative Example 1, volume capacitance density and internal resistance, electrode expansion coefficient, and durability performance were measured. The measurement conditions are as follows. As an index of electrode processability, it was judged as the thickness that can be thinned most by our manufacturing method.
(Volume capacitance density)
Measuring instrument: “CDT510-4” manufactured by Power System Co., Ltd.
Temperature: 20 ° C
Charge: 5 mA / cm 2 , 3.3 V, 3600 seconds Discharge: 5 mA / cm 2 , 0 V
The capacitance at the fifth cycle was determined by an energy conversion method, and calculated by dividing the capacitance by the volume of the positive and negative carbon electrode parts not including the current collector after expansion. Analysis software (“CDT Utility” manufactured by Power System Co., Ltd.) was used for the calculation.
(DC internal resistance)
At the time of measuring the volume capacitance density, V = IR was calculated. Analysis software (“CDT Utility” manufactured by Power System Co., Ltd.) was used for the calculation.
(Expansion rate)
The electrode part thickness (thickness measured by removing the surface pressure) after charging in the fifth cycle under the charge / discharge conditions described later was calculated by dividing by the initial thickness of 200 μm (100% is unchanged).
(Durability)
For the electric double layer capacitor described above, an operation of charging at 5 mA / cm 2 at a temperature of 45 ° C. for 1 hour at 3.3 V and discharging until reaching 0 V at 5 mA / cm 2 was performed as one cycle, After confirming the capacity and direct current resistance, float charging was performed under the same conditions for 1000 hours, and the electrostatic capacity and direct current resistance were confirmed every 20 hours. The capacitance at the first cycle and after 1000 hours is obtained by the above-described method for the capacitance density, and the result is the retention rate of capacitance at the time when 1000 hours have elapsed with respect to the measurement start time (first cycle) [100 × (Capacitance of cycle after elapse of 1000 hours) / (Capacitance of first cycle)] (%) The internal resistance was similarly calculated.

表2からわかるように、本発明による各実施例のキャパシタ用電極は、弊社製法により電極を作製した場合、未処理の比較例電極と比べより薄膜化が可能であった。すなわち電極加工性が非常に良いという結果であった。これは、球形化処理を施すことにより粒子のアスペクト比が改善されより球形に近くなることにより粒子の流動性が向上し電極加工性が向上したものと思われる。   As can be seen from Table 2, the capacitor electrode of each example according to the present invention can be made thinner than the untreated comparative electrode when the electrode is produced by our manufacturing method. That is, the electrode processability was very good. This is considered to be because the aspect ratio of the particles was improved by applying the spheroidizing treatment, and the fluidity of the particles was improved and the electrode processability was improved by becoming closer to a spherical shape.

体積静電容量密度、直流抵抗に関しては比較例と同等であるが、耐久性能については未処理の比較例電極を用いたキャパシタよりも1000時間後の静電容量維持率、直流抵抗増加率は優れていた。   Although the volume capacitance density and DC resistance are the same as those of the comparative example, the durability performance and the DC resistance increase rate after 1000 hours are superior to the capacitor using the untreated comparative electrode. It was.

Figure 2010073793
Figure 2010073793

Figure 2010073793
Figure 2010073793

Claims (17)

黒鉛類似の微結晶性炭素を有する炭素材とバインダーとを含んでなる、シート状の電気二重層キャパシタ用電極であって、該炭素材のフロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上であることを特徴とする電極。   A sheet-like electrode for an electric double layer capacitor comprising a carbon material having microcrystalline carbon similar to graphite and a binder, wherein the average sphericity (X axis and Y axis) of the carbon material by a flow image analysis method An electrode having an aspect ratio of 0.65 or more. 該電極が圧延処理によりシート状にされたものである、請求項1に記載の電極。   The electrode according to claim 1, wherein the electrode is formed into a sheet by a rolling process. 該炭素材の円相当径が5μm以上である、請求項1または2に記載の電極。   The electrode according to claim 1, wherein the equivalent circle diameter of the carbon material is 5 μm or more. 該炭素材の比表面積が200m/g以下である、請求項1〜3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the carbon material has a specific surface area of 200 m 2 / g or less. 該炭素材のX線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、請求項1〜4のいずれか1項に記載の電極。 Interlayer distance d 002 by X-ray diffractometry of the carbon material is within the range of 0.350~0.385Nm, electrode according to any one of claims 1 to 4. 該炭素材がピッチ系炭素前駆体から得られたものである、請求項1〜5のいずれか1項に記載の電極。   The electrode according to any one of claims 1 to 5, wherein the carbon material is obtained from a pitch-based carbon precursor. 該バインダーがポリテトラフルオロエチレン(PTFE)である、請求項1〜6のいずれか1項に記載の電極。   The electrode according to claim 1, wherein the binder is polytetrafluoroethylene (PTFE). さらに導電補助材を含む、請求項1〜7のいずれか1項に記載の電極。   Furthermore, the electrode of any one of Claims 1-7 containing a conductive support material. 該電極の厚さが400μm以下である、請求項1〜8のいずれか1項に記載の電極。   The electrode according to claim 1, wherein the electrode has a thickness of 400 μm or less. 請求項1〜9のいずれか1項に記載の電極を含む電気二重層キャパシタ。   The electric double layer capacitor containing the electrode of any one of Claims 1-9. 請求項1〜9のいずれか1項に記載の電気二重層キャパシタ用電極の製造方法であって、前記炭素材の原料を、400〜600℃の範囲内で熱処理し、次いで高速気流中衝撃法により球形化処理することを特徴とする方法。   It is a manufacturing method of the electrode for electric double layer capacitors of any one of Claims 1-9, Comprising: The raw material of the said carbon material is heat-processed within the range of 400-600 degreeC, Then, the impact method in a high-speed airflow A spheronization process according to claim 1. 黒鉛類似の微結晶性炭素を有する電気二重層キャパシタ電極用炭素材であって、フロー式画像解析法による平均球形度(X軸Y軸アスペクト比)が0.65以上であることを特徴とする炭素材。   A carbon material for an electric double layer capacitor electrode having microcrystalline carbon similar to graphite, characterized in that an average sphericity (X-axis Y-axis aspect ratio) by a flow image analysis method is 0.65 or more. Carbon material. 円相当径が5μm以上である、請求項12に記載の炭素材。   The carbon material according to claim 12, wherein the equivalent circle diameter is 5 μm or more. 比表面積が200m/g以下である、請求項12または13に記載の炭素材。 The carbon material according to claim 12 or 13, wherein the specific surface area is 200 m 2 / g or less. X線回折法による層間距離d002が0.350〜0.385nmの範囲内にある、請求項12〜14のいずれか1項に記載の炭素材。 Interlayer distance d 002 by X-ray diffraction method is within the range of 0.350~0.385Nm, carbon material according to any one of claims 12 to 14. ピッチ系炭素前駆体から得られたものである、請求項12〜15のいずれか1項に記載の炭素材。   The carbon material according to any one of claims 12 to 15, which is obtained from a pitch-based carbon precursor. 請求項12〜16のいずれか1項に記載の電気二重層キャパシタ電極用炭素材の製造方法であって、前記炭素材の原料を、温度400℃〜600℃の範囲内で熱処理し、次いで高速気流中衝撃法により球形化処理することを特徴とする方法。   It is a manufacturing method of the carbon material for electric double layer capacitor electrodes of any one of Claims 12-16, Comprising: The raw material of the said carbon material is heat-processed within the range of the temperature of 400 to 600 degreeC, Then, it is high-speed. A method characterized in that spheronization treatment is performed by an impact-in-air method.
JP2008237927A 2008-09-17 2008-09-17 Electrode for electrical double-layer capacitor and electrical double-layer capacitor Pending JP2010073793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237927A JP2010073793A (en) 2008-09-17 2008-09-17 Electrode for electrical double-layer capacitor and electrical double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237927A JP2010073793A (en) 2008-09-17 2008-09-17 Electrode for electrical double-layer capacitor and electrical double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2010073793A true JP2010073793A (en) 2010-04-02

Family

ID=42205333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237927A Pending JP2010073793A (en) 2008-09-17 2008-09-17 Electrode for electrical double-layer capacitor and electrical double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2010073793A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041250A (en) * 2010-08-23 2012-03-01 Nec Corp Carbon nanohorn aggregate, method of producing the aggregate, battery including carbon nanohorn, and method of manufacturing the battery
EP2397442A3 (en) * 2010-06-17 2013-03-13 Samsung SDI Co., Ltd. Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201517A (en) * 1989-12-28 1991-09-03 Isuzu Motors Ltd Electric double layer capacitor
JP2003086469A (en) * 2001-06-27 2003-03-20 Honda Motor Co Ltd Carbonized material used for manufacturing activated carbon for electrode of electric double-layer capacitor
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
JP2007095194A (en) * 2005-09-29 2007-04-12 Hitachi Maxell Ltd Single reel type tape cartridge
JP2007251025A (en) * 2006-03-17 2007-09-27 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201517A (en) * 1989-12-28 1991-09-03 Isuzu Motors Ltd Electric double layer capacitor
JP2004511422A (en) * 2000-10-25 2004-04-15 ハイドロ−ケベック Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
JP2003086469A (en) * 2001-06-27 2003-03-20 Honda Motor Co Ltd Carbonized material used for manufacturing activated carbon for electrode of electric double-layer capacitor
JP2007095194A (en) * 2005-09-29 2007-04-12 Hitachi Maxell Ltd Single reel type tape cartridge
JP2007251025A (en) * 2006-03-17 2007-09-27 Japan Gore Tex Inc Electrode for electric double layer capacitor and electric double layer capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397442A3 (en) * 2010-06-17 2013-03-13 Samsung SDI Co., Ltd. Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same
US8894964B2 (en) 2010-06-17 2014-11-25 Samsung Sdi Co., Ltd. Crystalline carbonaceous material with controlled interlayer spacing and method of preparing same
JP2012041250A (en) * 2010-08-23 2012-03-01 Nec Corp Carbon nanohorn aggregate, method of producing the aggregate, battery including carbon nanohorn, and method of manufacturing the battery

Similar Documents

Publication Publication Date Title
Ma et al. Graphene‐based materials for lithium‐ion hybrid supercapacitors
US9053870B2 (en) Supercapacitor with a meso-porous nano graphene electrode
JP2006261599A (en) Manufacturing method of electric double layer capacitor
JP6599106B2 (en) Negative electrode material for lithium secondary battery and method for producing the same, composition for negative electrode active material layer for lithium secondary battery using the negative electrode material, negative electrode for lithium secondary battery, and lithium secondary battery
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP5015146B2 (en) ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE
US20110043968A1 (en) Hybrid super capacitor
JP7148396B2 (en) Carbon materials, electrode materials for power storage devices, and power storage devices
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
JP2008227481A (en) Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry
JP2016538715A (en) Ultracapacitor with improved aging performance
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
WO2020080520A1 (en) Capacitor, and capacitor electrode
US20210188647A1 (en) Carbon material and method for producing same, electrode material for electrical storage device, and electrical storage device
JP2013098575A (en) Electrode active material composition and method of manufacturing the same, and electrochemical capacitor with the same
EP3616248B1 (en) Battery comprising an electrode having carbon additives
JP5164418B2 (en) Carbon material for electricity storage device electrode and method for producing the same
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP2010073793A (en) Electrode for electrical double-layer capacitor and electrical double-layer capacitor
JP2008130740A (en) Electric double-layer capacitor electrode and manufacturing method therefor
Talib et al. An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device
WO2018033912A1 (en) Asymmetric supercapacitor electrode having a combination of carbon allotropes
JP2006295153A (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
Saravanakumara et al. Theory, fundamentals and application of supercapacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113