JP2000100668A - Manufacture of electric double layer capacitor - Google Patents

Manufacture of electric double layer capacitor

Info

Publication number
JP2000100668A
JP2000100668A JP26821198A JP26821198A JP2000100668A JP 2000100668 A JP2000100668 A JP 2000100668A JP 26821198 A JP26821198 A JP 26821198A JP 26821198 A JP26821198 A JP 26821198A JP 2000100668 A JP2000100668 A JP 2000100668A
Authority
JP
Japan
Prior art keywords
voltage
double layer
electric double
layer capacitor
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26821198A
Other languages
Japanese (ja)
Other versions
JP3973183B2 (en
Inventor
Michio Okamura
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Power System Co Ltd
Original Assignee
OKAMURA KENKYUSHO KK
Jeol Ltd
Okamura Laboratory Inc
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMURA KENKYUSHO KK, Jeol Ltd, Okamura Laboratory Inc, Power System Co Ltd filed Critical OKAMURA KENKYUSHO KK
Priority to JP26821198A priority Critical patent/JP3973183B2/en
Publication of JP2000100668A publication Critical patent/JP2000100668A/en
Application granted granted Critical
Publication of JP3973183B2 publication Critical patent/JP3973183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To put the effect of activation forward further to its depth, by making the voltage where activation does not occur the application start voltage, and performing the charge for a long time while raising the voltage to applicable maximum voltage. SOLUTION: A polarizable electrode is activated by performing the initial charge to the polarizable electrode consisting of carbonic material which expands at application of voltage. At this time, the voltage where activation does not occur is made the application start voltage, and the charge is started. Then, the voltage is raised gradually to the applicable maximum voltage, and charge is performed for a long time, getting over the rated charge time. At this time, a long time charge is made for a long time of one hundred times the ΩF seconds, which is the time constant expressed by the product of the internal resistance of the electric double layer capacitor and the capacitance or over, or three times the rated charge time or over. As a result, the effect of activation advances uniformly to its depth, thus an electrolytic double layer capacitor which has large capacitance and is low in leak currents is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、静電容量の大きな
電気二重層コンデンサに関するものであり、電気二重層
コンデンサの分極性電極に電解質を充填した大容量の電
気二重層コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having a large capacitance, and more particularly to a large electric double layer capacitor in which a polarizable electrode of the electric double layer capacitor is filled with an electrolyte.

【0002】[0002]

【従来の技術】電気二重層コンデンサは、電極と電解液
の界面に形成される電気二重層の大きな静電容量を利用
したコンデンサである。本発明者等は、電気二重層コン
デンサと電子回路を組み合わせて電力エネルギー貯蔵方
式を提案している。とくに、電気二重層コンデンサは、
二次電池のような化学反応を伴わないので、短時間の充
電が可能で充放電効率が優れ、長寿命という特徴を有し
ており、電気自動車、電力負荷の平準化などの用途に期
待が高まっている。
2. Description of the Related Art An electric double layer capacitor is a capacitor utilizing a large capacitance of an electric double layer formed at an interface between an electrode and an electrolytic solution. The present inventors have proposed a power energy storage method by combining an electric double layer capacitor and an electronic circuit. In particular, electric double layer capacitors
Since it does not involve a chemical reaction unlike secondary batteries, it can be charged in a short time, has excellent charge / discharge efficiency, and has a long service life.It is expected to be used in applications such as electric vehicles and power load leveling. Is growing.

【0003】電気二重層コンデンサは、主材料である比
表面積の大きな活性炭に少量の導電剤および結合剤を加
えて混練圧延するか、あるいは同様な材料をスラリー状
に溶解して集電極に塗布する、活性炭に少量の未炭化樹
脂類を混合して焼結する、等の方法で得た分極性電極を
用い、セパレータを介して対向させ、集電極に接触させ
るとともに、水溶性電解質溶液あるいは非水溶媒電解質
溶液を含浸させたものが用いられている。電気二重層コ
ンデンサの静電容量は、分極性電極の表面積にほぼ比例
するとの考えから、大きな比表面積を有する活性炭が用
いられている。活性炭は、800℃以下の温度で炭素質
材料を炭化した後に、600ないし1000℃で、水蒸
気、二酸化炭素等の雰囲気で、あるいは、塩化亜鉛、水
酸化カリウム等を混合して不活性雰囲気で賦活すること
によって製造されている。賦活過程では炭素化過程で生
じた炭素材の表面に吸着に適した多数の細孔を生成させ
る等の方法によって製造されている。
In an electric double layer capacitor, a small amount of a conductive agent and a binder are added to activated carbon having a large specific surface area as a main material and kneaded and rolled, or a similar material is dissolved in a slurry to be applied to a collecting electrode. Using a polarizable electrode obtained by a method such as mixing activated carbon with a small amount of non-carbonized resin, sintering, using a polarizable electrode, facing through a separator, contacting the collector electrode, and using a water-soluble electrolyte solution or non-aqueous What is impregnated with a solvent electrolyte solution is used. Activated carbon having a large specific surface area is used because the capacitance of the electric double layer capacitor is considered to be substantially proportional to the surface area of the polarizable electrode. Activated carbon is obtained by carbonizing a carbonaceous material at a temperature of 800 ° C. or less and then activating at 600 to 1000 ° C. in an atmosphere of steam, carbon dioxide, or the like, or in an inert atmosphere by mixing zinc chloride, potassium hydroxide, etc. It is manufactured by: In the activation process, the carbon material is produced by a method of forming a large number of pores suitable for adsorption on the surface of the carbon material generated in the carbonization process.

【0004】そして、電気二重層コンデンサとしての容
量をできるだけ大きくするために、活性炭として表面積
が大きな活性炭を用いることが行われている。例えば、
特開昭63−78513号公報には、従来例として挙げ
られている電気二重層用コンデンサ用の活性炭では、比
表面積が最高1500m2/g 程度であったが、単位体
積当たりの表面積が充分ではなかったので、石油コーク
スを原料とし、石油コークスに水酸化カリウムを混合し
たものを焼成して得られた比表面積が2000ないし3
500m2/g である活性炭を用いることが提案されて
いる。
In order to increase the capacity of the electric double layer capacitor as much as possible, an activated carbon having a large surface area is used as the activated carbon. For example,
Japanese Patent Application Laid-Open No. 63-78513 discloses that activated carbon for electric double layer capacitors, which is mentioned as a conventional example, has a specific surface area of up to about 1500 m 2 / g, but the surface area per unit volume is not sufficient. Therefore, the specific surface area obtained by calcining a mixture of petroleum coke and potassium hydroxide with petroleum coke as a raw material was 2000 to 3
It has been proposed to use 500 m 2 / g of activated carbon.

【0005】しかし、活性炭の表面積を増大するために
活性炭を強く賦活すると、賦活の進行に伴って活性炭重
量当たりの比表面積は増すが、同時に空隙率も増加する
ため、体積当たりの表面積は一定の賦活レベルを境にし
てかえって減少する。しかも強く賦活した活性炭では、
電気二重層面積当たりの静電容量が、賦活を進めるほど
減少する傾向を示す。
However, when activated carbon is strongly activated in order to increase the surface area of activated carbon, the specific surface area per activated carbon weight increases as the activation proceeds, but the porosity also increases at the same time, so that the surface area per volume is constant. Instead, it decreases at the activation level. In addition, activated carbon activated strongly
The capacitance per electric double layer area tends to decrease as the activation proceeds.

【0006】本発明者等は、一定限度以上に賦活を進め
ても、より大きな静電容量密度は得られないという問題
点を見出し、活性炭の比表面積に依存した分極性電極を
用いて得られる静電容量密度の限界を改善し、エネルギ
ー密度の大きな電気二重層コンデンサを得ることを特願
平10−50862号において提案している。これは、
電極として電圧印加時に膨張する炭素質材料を用いると
ともに、分極性電極を電圧印加時の膨張を制限する寸法
制限構造体中に保持されることによって単位体積当たり
のエネルギー密度が大きな電気二重層コンデンサを得る
ものである。
[0006] The present inventors have found that even if activation is carried out beyond a certain limit, a larger capacitance density cannot be obtained, and it can be obtained by using a polarizable electrode depending on the specific surface area of activated carbon. Japanese Patent Application No. 10-50862 proposes to improve the limit of the capacitance density and obtain an electric double layer capacitor having a large energy density. this is,
An electric double layer capacitor having a large energy density per unit volume by using a carbonaceous material that expands when a voltage is applied as an electrode and holding a polarizable electrode in a size limiting structure that limits expansion when a voltage is applied. What you get.

【0007】電圧印加時に膨張する炭素質材料を用いた
電気二重層コンデンサでは、炭素電極が充電に伴って厚
さ方向に例えば4V当たり2倍ほども膨張する。容量が
増加しても体積が膨張したのでは体積当たりのエネルギ
ー密度が低下するので、コンデンサの容器に強度を持た
せて膨張できないように寸法を制限し、エネルギー密度
を確保するものである。寸法の制限方法には種々の方法
が考えられるが、想定される膨張圧力が10kg/cm
2 程度となるため、小型コンデンサの電極寸法が縦横1
0cmとしても1トンの膨張力に耐える容器あるいは寸
法構造制限体が必要となり、従来の活性炭を用いた同等
な大きさの電極での200kgほどの圧迫圧力を想定す
るのに比べ、設計及び製造上の問題があった。このよう
に、寸法制限構造体あるいはコンデンサの容器は大きな
強度が必要であるために、容易に軽量のコンデンサの集
合体を形成することは困難であり、電気自動車用の電源
等のように重量等に制限を受ける用途においては、使用
が困難という問題があった。
In an electric double layer capacitor using a carbonaceous material that expands when a voltage is applied, the carbon electrode expands in the thickness direction, for example, about twice per 4 V with charging. Even if the capacity is increased, if the volume expands, the energy density per volume decreases. Therefore, the dimensions are limited so that the container of the capacitor cannot be expanded due to the strength, and the energy density is secured. Although various methods can be considered as a method for limiting the size, the assumed expansion pressure is 10 kg / cm.
Since the electrode size is about 2 , the electrode size of the small capacitor is
Even if it is 0 cm, a container or a dimensional structure restricting body that can withstand the expansion force of 1 ton is required, and the design and manufacturing are more complicated than the conventional 200-kg electrode with the same size using activated carbon. There was a problem. As described above, since the size-limiting structure or the container of the capacitor requires a large strength, it is difficult to easily form an aggregate of a lightweight capacitor. However, there is a problem in that the use is difficult in applications that are restricted by the above.

【0008】そこで、本発明者等は、電圧印加時に膨張
する炭素質材料が大きく膨張するのは、電圧を未印加の
炭素質材料に電圧を始めて印加して炭素質材料を賦活す
る電界賦活期間のみであり、それ以外の期間は当初の膨
張圧の半分程度である点に着目し、大きな膨張圧が発生
する際には、寸法制限構造体によって寸法を制限した状
態で賦活を行った後に、通常の使用時に発生する小さな
膨張圧に抗することができる容器等に収容することによ
って、取り扱いが容易で静電容量が大きな電気二重層コ
ンデンサを得ることを特願平10−234319号およ
び特願平10−234320号として提案している。こ
こでは、図4に示すように、最初の充電サイクルもしく
はその後の2ないし3サイクルで賦活を行うものであ
る。
The inventors of the present invention have found that the reason why the carbonaceous material that expands when a voltage is applied greatly expands is that an electric field activation period in which a voltage is first applied to a carbonaceous material to which no voltage is applied to activate the carbonaceous material. It is only in the other period, paying attention to the fact that it is about half of the initial inflation pressure, and when a large inflation pressure is generated, after activating in a state where the dimensions are limited by the dimension limiting structure, Japanese Patent Application No. Hei 10-234319 and Japanese Patent Application No. 10-234319 disclose obtaining an electric double layer capacitor which is easy to handle and has a large capacitance by housing it in a container or the like which can withstand a small expansion pressure generated during normal use. No. 10-234320. Here, as shown in FIG. 4, the activation is performed in the first charging cycle or in the subsequent two or three cycles.

【0009】[0009]

【発明が解決しようとする課題】ところが、電界賦活で
は、電気二重層コンデンサの通常の使用電圧に比べて高
電圧で賦活するので、数サイクルであっても電気二重層
コンデンサの構成部材を劣化させる、電圧が低ければ充
分な賦活は困難であるという電気二重層コンデンサの劣
化と充分な賦活という相反する問題があった。電気二重
層コンデンサは、正極および負極の両集電体の間をセパ
レータを介して、微少な炭素質粒子が導電性粒子ととも
に存在している。そして、集電体に直接接触している炭
素質粒子、あるいは集電体の近傍の炭素質粒子と、集電
体から離れた粒子では電気的には異なった条件に置かれ
ており、抵抗と静電容量の複雑な配列になっていると見
なされる。
However, in the electric field activation, the electric double layer capacitor is activated at a higher voltage than the normal operating voltage, so that the components of the electric double layer capacitor are deteriorated even in several cycles. However, there is a contradictory problem that deterioration of an electric double layer capacitor is insufficient and sufficient activation is difficult if the voltage is low. In an electric double layer capacitor, fine carbonaceous particles are present together with conductive particles between a positive electrode collector and a negative electrode collector via a separator. The carbonaceous particles that are in direct contact with the current collector, or the carbonaceous particles in the vicinity of the current collector, and the particles that are away from the current collector are placed under electrically different conditions. Considered to be a complex array of capacitances.

【0010】このため電気二重層コンデンサを電気的な
等価回路で表すと、図1に一例を示す抵抗−コンデンサ
配列を用いて実物の特性に当てはめると、実物の時定数
を数パーセントの誤差で表現し得ることが示されている
(岡村廸夫、清水雅彦:信学技報,Vol.95,N
o.462,P45−52)。図1に示す等価回路に充
電し一定の電圧に達すると放電をするという、充放電の
サイクルを繰り返すと、コンデンサの抵抗と静電容量に
よって定まる時定数の影響を受け、初期の充電では、C
1〜Cnのコンデンサが全て満充電になるわけではな
く、端子に近い部分だけが充電され、後段のコンデンサ
は何10回もの充放電サイクルによって徐々に充電され
ることが知られている。
For this reason, when an electric double layer capacitor is represented by an electrical equivalent circuit, if the characteristics of a real product are applied using a resistor-capacitor arrangement shown in FIG. 1, the time constant of the real product is expressed by an error of several percent. (Dio Okamura, Masahiko Shimizu: IEICE Technical Report, Vol. 95, N
o. 462, P45-52). When the charging and discharging cycle is repeated, in which the equivalent circuit shown in FIG. 1 is charged and discharged when the voltage reaches a certain voltage, the time constant determined by the resistance and capacitance of the capacitor is affected.
It is known that not all of the capacitors 1 to Cn are fully charged, but only the portion near the terminal is charged, and the subsequent capacitor is gradually charged by dozens of charge / discharge cycles.

【0011】図2は、完全放電状態から電気二重層コン
デンサの充放電を繰り返した場合の利用率の変化の測定
結果の一例を説明する図であり、3サイクル程度の充放
電を行った後には、利用率は83%程度に達し、5サイ
クル程度では90%に達し、さらに充放電を繰り返すと
徐々に上昇することを示している。このような現象から
見て、実際の電気二重層コンデンサを充放電すると、充
電時の充放電サイクルでは、図1で示す入り口側に近
い、すなわち集電体に近い電気二重層コンデンサのみし
か設定された電圧に達しないことを意味する。
FIG. 2 is a view for explaining an example of a measurement result of a change in utilization rate when charging and discharging of the electric double layer capacitor are repeated from a completely discharged state. The utilization rate reaches about 83%, reaches about 90% in about 5 cycles, and gradually increases when charging and discharging are repeated. In view of such a phenomenon, when the actual electric double layer capacitor is charged and discharged, only the electric double layer capacitor close to the entrance side shown in FIG. 1, that is, close to the current collector is set in the charge / discharge cycle during charging. Means that the voltage reached is not reached.

【0012】一方、深部まで、設定した値に達するよう
な電圧を印加すると、入口側では、設定値よりも高い電
圧が印加されることとなる。賦活用の4Vという通常の
使用電圧に比べて高い電圧を長時間印加すると、電気二
重層コンデンサの賦活は進行するものの、とくに入口に
近いコンデンサは長時間にわたり高電圧が印加されると
いう問題があった。
On the other hand, when a voltage that reaches the set value is applied to the deep part, a voltage higher than the set value is applied on the entrance side. When a voltage higher than the normal operating voltage of 4 V for activation is applied for a long time, the activation of the electric double layer capacitor proceeds, but there is a problem that a high voltage is applied for a long time particularly to the capacitor near the entrance. Was.

【0013】本発明は、高い電圧や高い温度で多くの充
放電サイクルを与えると、分極性電極の炭素質材料の賦
活が進行して電気二重層コンデンサとしての静電容量が
大きくなるが、同時に高い電圧の印加によって電解液の
構成成分の分解等が進み電気二重層コンデンサが劣化す
るという現象も進行するという二律背反的要素を軽減す
る方法を提供することを課題とするものである。
According to the present invention, when a large number of charge / discharge cycles are given at a high voltage or a high temperature, the activation of the carbonaceous material of the polarizable electrode proceeds to increase the capacitance as an electric double layer capacitor. It is an object of the present invention to provide a method for reducing a trade-off factor that a component such as an electrolytic solution is decomposed by application of a high voltage and a phenomenon that an electric double layer capacitor is deteriorated also progresses.

【0014】[0014]

【課題を解決するための手段】本発明は、電気二重層コ
ンデンサの製造方法において、電圧印加時に膨張する炭
素質材料からなる分極性電極を初期充電を行って、分極
性電極を賦活する際に、賦活が起こらない電圧を印加開
始電圧として充電を開始した後に、印加可能な最大電圧
まで電圧を上昇させながら定格充電時間を超えて長時間
充電を行う電気二重層コンデンサの製造方法である。長
時間充電が、電気二重層コンデンサの静電容量と内部抵
抗の積で表される時定数であるΩF秒の100倍以上の
長時間、もしくは定格充電時間の3倍以上の時間の長時
間である前記の電気二重層コンデンサの製造方法であ
る。印加開始電圧から印加可能な最高電圧までの充電電
圧パターンに応じた電圧パターンを電圧発生器によって
発生させて、充電器を電圧制御する前記の電気二重層コ
ンデンサの製造方法である。充電を電気二重層コンデン
サを常圧もしくは減圧下で封口前に充電する前記の電気
二重層コンデンサの製造方法である。電圧印加時に膨張
する炭素質材料の膨張圧に抗する寸法制限構造体を取り
付けた状態で電圧を印加して製造したものである前記の
電気二重層コンデンサの製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing an electric double layer capacitor, which comprises the steps of initially charging a polarizable electrode made of a carbonaceous material that expands when a voltage is applied to activate the polarizable electrode. And a method for manufacturing an electric double layer capacitor in which charging is started using a voltage at which activation does not occur as an application start voltage, and then charging is performed for a long time exceeding a rated charging time while increasing the voltage to a maximum applicable voltage. Long-time charging is longer than 100 times the ΩF second, which is the time constant expressed by the product of the capacitance of the electric double layer capacitor and internal resistance, or longer than 3 times the rated charging time. This is a method for manufacturing the electric double layer capacitor. This is a method for manufacturing the electric double-layer capacitor, wherein the voltage generator generates a voltage pattern according to a charging voltage pattern from an application start voltage to a maximum applicable voltage and controls the voltage of the charger. The method for manufacturing an electric double layer capacitor according to the above is for charging the electric double layer capacitor before sealing under normal pressure or reduced pressure. The method for manufacturing an electric double layer capacitor according to the above, wherein the electric double layer capacitor is manufactured by applying a voltage in a state where a dimensional restriction structure against the expansion pressure of a carbonaceous material that expands when a voltage is applied.

【0015】また、印加開始電圧から印加可能電圧まで
の充電電圧パターンに応じた電圧パターンを電圧発生器
によって発生させて、充電器を電圧制御する前記の電気
二重層コンデンサの製造方法である。電気二重層コンデ
ンサが電圧印加時に分極性電極の膨張に抗して寸法を制
限した状態で、電極には2kg/cm2 以上の膨張圧が
発生するものである前記の電気二重層コンデンサの製造
方法である。電解液として非水溶媒電解質を使用すると
ともに、分極性電極がX線回折法で測定した層間距離d
002 が0.365〜0.385nmに存在する炭素質材
料を用いたものである前記の電気二重層コンデンサの製
造方法である。
Further, the present invention is the above-mentioned method for manufacturing an electric double layer capacitor, wherein a voltage generator generates a voltage pattern corresponding to a charging voltage pattern from an application start voltage to an applicable voltage and controls the voltage of the charger. The method for producing an electric double layer capacitor as described above, wherein an expansion pressure of 2 kg / cm 2 or more is generated in the electrode in a state where the size of the electric double layer capacitor is limited against expansion of the polarizable electrode when a voltage is applied. It is. A non-aqueous solvent electrolyte is used as the electrolyte, and the interlayer distance d of the polarizable electrode measured by the X-ray diffraction method.
002 is a method for manufacturing an electric double layer capacitor using a carbonaceous material present at 0.365 to 0.385 nm.

【0016】[0016]

【発明の実施の形態】本発明の電気二重層コンデンサ
は、電圧印加時に膨張する炭素質材料からなる分極性電
極を有するものであって、分極性電極に賦活用の電圧の
印加を徐々に行って、長時間をかけた充電によって電圧
印加による賦活の効果が深部まで一様に進んだことによ
り、大きな静電容量を有し、漏れ電流等が少ない性能の
優れた電気二重層コンデンサを提供するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An electric double layer capacitor according to the present invention has a polarizable electrode made of a carbonaceous material which expands when a voltage is applied, and gradually applies a voltage for application to the polarizable electrode. Thus, the effect of activation by voltage application has progressed uniformly to the deep part by charging over a long period of time, thereby providing an electric double layer capacitor having a large capacitance, excellent performance with little leakage current and the like. Things.

【0017】本発明の電気二重層コンデンサに使用する
ことができる分極性電極に使用する炭素質材料は、賦活
が進行していない炭素質材料である。本発明の炭素質材
料は、600〜900℃で熱処理して従来の活性炭原料
よりも炭素化を進行させ、これに重量比で1〜5倍の水
酸化カリウムを混合して不活性雰囲気で約700〜90
0℃において2時間程度加熱すると、熱処理をしていな
い炭素質材料であれば活性炭になるが、熱処理の効果で
炭素化が進んでいるため賦活は進行せず、比表面積で1
000m2/g以下に留まる。
The carbonaceous material used for the polarizable electrode that can be used in the electric double layer capacitor of the present invention is a carbonaceous material that has not been activated. The carbonaceous material of the present invention is heat-treated at 600 to 900 ° C. to promote carbonization more than the conventional activated carbon raw material, and is mixed with 1 to 5 times by weight of potassium hydroxide in an inert atmosphere. 700-90
When heated at 0 ° C. for about 2 hours, if the carbonaceous material has not been heat-treated, it will be activated carbon. However, since the carbonization has progressed due to the effect of the heat treatment, the activation has not progressed and the specific surface area is 1
2,000 m 2 / g or less.

【0018】しかし、この炭素質材料は通常の手法で洗
浄、粉砕などの工程を経て、ポリテトラフルオロエチレ
ンなどのバインダ、カーボンブラックなどの導電材を加
えて混練してシート状に形成して、十分に脱水して電解
液、例えばテトラエチルアンモニウムテトラフルオロボ
ーレート1モルのプロピレンカーボネート溶液を含浸し
て電気二重層コンデンサを作製すると、28F/ccを
超える静電容量密度の大きな電気二重層コンデンサが得
られる。このような賦活が進行していない炭素質材料を
用いて電圧を印加すると、電圧の印加に伴って、炭素質
材料は膨張し、炭素質材料の賦活が進行する。炭素質材
料の膨張を外部から圧力を加えることによって制限する
ことができれば、体積当たりのエネルギー密度の大きな
電気二重層コンデンサを得ることができる。
However, this carbonaceous material is subjected to washing, pulverization, and the like by a usual method, and a binder such as polytetrafluoroethylene and a conductive material such as carbon black are added and kneaded to form a sheet. When an electric double layer capacitor is produced by sufficiently dehydrating and impregnating with an electrolytic solution, for example, a 1 mol propylene carbonate solution of tetraethylammonium tetrafluoroborate, an electric double layer capacitor having a large capacitance density exceeding 28 F / cc can be obtained. . When a voltage is applied using such a carbonaceous material that has not been activated, the carbonaceous material expands with the application of the voltage, and the activation of the carbonaceous material proceeds. If the expansion of the carbonaceous material can be limited by applying pressure from the outside, an electric double layer capacitor having a large energy density per volume can be obtained.

【0019】このような炭素質材料を使用した電気二重
層コンデンサでは、炭素質材料の賦活の過程で高電圧ま
で充電するときに大きな膨張圧力が生じる。電界賦活に
必要な高電圧は、その際に加えるだけで、その後のコン
デンサの使用状態においては、このような高い電圧とす
ることはない。しかも高電圧の印加は、電気二重層コン
デンサの劣化を招くことが避けられない。コンデンサに
印加可能な電圧は、電気二重層コンデンサの構成材料に
よって異なるとともに、高電圧を印加すると電気二重層
コンデンサの使用可能サイクル数は減少することとな
る。そこで、印加可能な最大電圧よりも低い電圧を長時
間印加して分極性電極の細部まで充分な賦活を行い、そ
の後、印加可能な最大電圧を短時間印加して最終的な賦
活を行うものである。
In an electric double layer capacitor using such a carbonaceous material, a large expansion pressure is generated when charging to a high voltage in the process of activating the carbonaceous material. The high voltage necessary for the electric field activation is applied only at that time, and does not become such a high voltage in the subsequent use state of the capacitor. Moreover, application of a high voltage inevitably causes deterioration of the electric double layer capacitor. The voltage that can be applied to the capacitor differs depending on the constituent material of the electric double layer capacitor, and when a high voltage is applied, the number of usable cycles of the electric double layer capacitor decreases. Therefore, a voltage lower than the maximum voltage that can be applied is applied for a long time to sufficiently activate the details of the polarizable electrode, and then a maximum voltage that can be applied is applied for a short time to perform final activation. is there.

【0020】ここで、電気二重層コンデンサの充電時間
について説明する。一般に電気二重層コンデンサの充電
時間は、電気二重層コンデンサの分極性電極の厚み等の
電極構造の特性等に応じて決定することができる。電気
二重層コンデンサを大電流で充電すると、短時間に充電
を完了することが可能であるが、電気二重層コンデンサ
の内部抵抗によって損失が大きくなる。したがって、実
際に電気二重層コンデンサを充放電する際には、充放電
効率を考慮して最適な充放電時間を決定することが必要
となる。
Here, the charging time of the electric double layer capacitor will be described. Generally, the charging time of the electric double layer capacitor can be determined according to the characteristics of the electrode structure such as the thickness of the polarizable electrode of the electric double layer capacitor. When the electric double layer capacitor is charged with a large current, the charging can be completed in a short time, but the loss increases due to the internal resistance of the electric double layer capacitor. Therefore, when actually charging / discharging the electric double layer capacitor, it is necessary to determine an optimal charging / discharging time in consideration of charging / discharging efficiency.

【0021】コンデンサの充放電効率は、以下のように
定義される。定電流Iでt時間充電または放電したとき
の電荷をQとすると、 Q=I・t コンデンサに蓄えられる電力量Uは、 U=(1/2)・(Q2/C) となる。コンデンサの抵抗Rで失われる電力量Lは、 L=I2R・t =R・(Q2/t) である。したがって、これらの式から、コンデンサの充
放電の際に抵抗で失われる損失η(比)を電力量から求
めると、 η=L/U =2CR/t となる。効率をPとすると、 P=1−η =1−2CR/t となる。充電時間tが長いほど損失は少なくなり、効率
は向上することを示している。
The charge / discharge efficiency of a capacitor is defined as follows. Assuming that the charge after charging or discharging with the constant current I for t time is Q, the electric energy U stored in the Q = I · t capacitor is as follows: U = (1 /) · (Q 2 / C) The amount of power L lost by the resistance R of the capacitor is as follows: L = I 2 R · t = R · (Q 2 / t) Therefore, when the loss η (ratio) lost by the resistance during charging and discharging of the capacitor is calculated from the electric energy from these equations, η = L / U = 2CR / t. Assuming that the efficiency is P, P = 1−η = 1−2CR / t. This shows that the longer the charging time t, the smaller the loss and the higher the efficiency.

【0022】例えば、時定数が20ΩF秒の電気二重層
コンデンサでは、t=600秒とすると、効率は、1−
(2×20/600)=93.3%となり、充放電効率
は、充電効率と放電効率の積で表されるので、87%の
効率が得られることとなる。また、上記の値を実用的な
最低効率とすれば最短充電時間は、時定数の30倍の値
であることも示される。
For example, in an electric double layer capacitor having a time constant of 20 ΩF seconds, if t = 600 seconds, the efficiency becomes 1-
(2 × 20/600) = 93.3%, and the charge / discharge efficiency is represented by the product of the charge efficiency and the discharge efficiency, so that an efficiency of 87% is obtained. Further, if the above value is regarded as the practical minimum efficiency, it is also shown that the shortest charging time is 30 times the time constant.

【0023】そして、本発明の電気二重層コンデンサの
製造において、長時間の充電時間、すなわち時定数の1
00倍以上の時間は、時定数が20ΩF秒である電気二
重層コンデンサの場合には、2000秒以上となり、実
用的な最短充電時間である600秒の3倍程度、すなわ
ち定格充電期間の3サイクル分程度の値とも表現するこ
とができる。本発明の充電による分極性電極の賦活にお
いては、賦活が開始する前の電圧から充電を開始して、
最高賦活電圧まで長時間の充電を行った後に、分極性電
極を完全に賦活するものである。
In the production of the electric double layer capacitor of the present invention, a long charging time, ie, a time constant of 1
The time of 00 times or more is 2000 seconds or more in the case of an electric double layer capacitor having a time constant of 20 ΩF seconds, and is about three times the practical minimum charging time of 600 seconds, ie, three cycles of the rated charging period. It can also be expressed as a value on the order of minutes. In the activation of the polarizable electrode by charging according to the present invention, charging is started from a voltage before the activation starts,
After charging for a long time to the maximum activation voltage, the polarizable electrode is completely activated.

【0024】図3は、本発明の長時間の充電方法の一例
を説明する図である。図3において、Aは、従来の方法
によって印加可能最大電圧である4Vの電圧まで3サイ
クルにわたって充電した場合の電圧曲線の一例を説明す
る図であり、Bは0Vから充電電圧を印加して、水の分
解が始まる電圧からは電圧上昇の傾斜を小さくして充電
を行った後に、最後に印加可能電圧である4Vの電圧を
印加する方法を挙げることができる。このような方法を
用いることによって、分極性電極が長時間高い電圧にさ
らされることはなくなるので、分極性電極を劣化させる
ことなく、分極性電極の細部まで十分な賦活が可能とな
る。
FIG. 3 is a diagram for explaining an example of the long-time charging method of the present invention. In FIG. 3, A is a diagram illustrating an example of a voltage curve when charging is performed over 3 cycles to a voltage of 4 V, which is the maximum voltage that can be applied by a conventional method, and B illustrates a case where a charging voltage is applied from 0 V. From the voltage at which the decomposition of water starts, a method of applying a voltage of 4 V, which is an applicable voltage, after charging the battery by decreasing the slope of the voltage rise. By using such a method, the polarizable electrode is not exposed to a high voltage for a long time, so that it is possible to sufficiently activate the polarizable electrode without deteriorating the polarizable electrode.

【0025】また、電気二重層コンデンサにおいては、
賦活のための充電と同時に、電解液、炭素質材料等を始
めとした電気二重層コンデンサの構成要素中に含まれれ
ている気体を排出したり、水などの漏洩電流を増加させ
る好ましくない物質を除去することによって、漏洩電流
を減少し、寿命を延ばす効果があることが認められる
が、本発明の電気二重層コンデンサの分極性電極の賦活
を電気二重層コンデンサの封口を行わずに充電すること
によって賦活と同時に好ましくない物質の除去を行うこ
とが可能となる。
In an electric double layer capacitor,
At the same time as charging for activation, an electrolyte, a carbonaceous material and other electric double layer capacitors are discharged from the gas contained in the constituent elements, or undesired substances that increase leakage current such as water. By removing, it is recognized that there is an effect of reducing the leakage current and extending the life.However, the activation of the polarizable electrode of the electric double layer capacitor of the present invention is performed by charging without closing the electric double layer capacitor. This makes it possible to remove undesirable substances simultaneously with the activation.

【0026】この場合には、電解液中に混入している物
質の電気分解が起こらない電圧を印加開始電圧として充
電を開始した後に、印加可能最大電圧まで電圧を上昇さ
せながら定格充電時間を超えて長時間充電を行った後に
封口することが好ましく、このようにすることによっ
て、分解生成物の蓄積によって電気二重層コンデンサが
劣化させるということなく、好ましくない物質を除去す
ることができる。
In this case, after starting charging with a voltage at which electrolysis of the substance mixed in the electrolyte does not occur in the application start voltage, the voltage exceeds the rated charging time while increasing the voltage to the maximum applicable voltage. It is preferable to seal the battery after charging for a long time, so that undesired substances can be removed without deteriorating the electric double layer capacitor due to accumulation of decomposition products.

【0027】また、長時間充電工程においては、電解液
中から気体状の物質が生成するので、気体状物質の電解
液中の溶解度を減少させて電解液中から速やかに放出さ
せるために、減圧下で長時間充電工程を行うことが好ま
しい。また、雰囲気中から水分等が侵入することを防止
するために、窒素、アルゴン等の不活性な乾燥雰囲気に
おいて処理を行うことが好ましい。
In the long-time charging step, a gaseous substance is generated from the electrolytic solution. Therefore, in order to reduce the solubility of the gaseous substance in the electrolytic solution and to promptly release the gaseous substance from the electrolytic solution, the pressure is reduced. It is preferable to perform the charging step for a long time under the following conditions. In order to prevent moisture and the like from entering the atmosphere, the treatment is preferably performed in an inert dry atmosphere such as nitrogen or argon.

【0028】[0028]

【実施例】以下に、実施例を示し本発明を説明する。 実施例1 (電気二重層コンデンサの作製)石油コークスを不活性
雰囲気中で750℃において2時間の熱処理を行い、得
られた炭素質材料に重量比で2倍量の水酸化カリウムを
混合し、不活性雰囲気で800℃において賦活に相当す
る熱処理をした。得られた炭素質材料は、賦活処理前の
熱処理による炭素化の効果によって賦活は充分には進行
せず、BET比表面積は300m2/g であり、電気二
重層コンデンサで大静電容量を得る活性炭の水準には到
達し得ないものであった。得られた炭素質材料を平均粒
径30μmに粉砕したものを82mg、カーボンブラッ
ク9mg、ポリテトラフルオロエチレン粉末9mgを混
合して直径20mmの円盤状に圧粉成形し、真空デシケ
ータ中で10-2torrに減圧し120℃において4時
間乾燥して分極性電極を作製した。
The present invention will be described below with reference to examples. Example 1 (Production of Electric Double Layer Capacitor) Petroleum coke was subjected to a heat treatment at 750 ° C. for 2 hours in an inert atmosphere, and the obtained carbonaceous material was mixed with twice the amount of potassium hydroxide in a weight ratio. A heat treatment corresponding to activation was performed at 800 ° C. in an inert atmosphere. In the obtained carbonaceous material, activation does not proceed sufficiently due to the effect of carbonization by heat treatment before activation treatment, the BET specific surface area is 300 m 2 / g, and a large capacitance is obtained with an electric double layer capacitor. The level of activated carbon could not be reached. 82 mg of the obtained carbonaceous material pulverized to an average particle diameter of 30 μm, 9 mg of carbon black, and 9 mg of polytetrafluoroethylene powder were mixed, compacted into a disc shape having a diameter of 20 mm, and placed in a vacuum desiccator at 10 −2. The pressure was reduced to torr, and the film was dried at 120 ° C. for 4 hours to produce a polarizable electrode.

【0029】2枚の分極性電極を低湿度に保ったグロー
ブボックス内でガラスセパレータを介して対向させて、
両分極性電極の外側をアルミニウム製電極で挟み電気二
重層コンデンサ素子として、O−リングで密封したアル
ミニウム製気密容器に入れて、テトラエチルアンモニウ
ムテトラフルオロボレートの1モルを溶解したプロピレ
ンカーボネートを電解液として充分含浸させて試験用電
気二重層コンデンサとした。
The two polarizable electrodes are opposed to each other via a glass separator in a glove box kept at a low humidity.
As an electric double layer capacitor element, the outside of the bipolar electrode is sandwiched between aluminum electrodes, placed in an aluminum hermetic container sealed with an O-ring, and propylene carbonate in which 1 mol of tetraethylammonium tetrafluoroborate is dissolved is used as an electrolyte. It was sufficiently impregnated to obtain a test electric double layer capacitor.

【0030】(賦活充電)作製した試験用電気二重層コ
ンデンサを充電開始電圧1V、最終電圧4Vに設定し、
最終電圧に達するまでの時間を3.2時間としてその間
を直線状にほぼ一定の勾配で上昇するような波形を電圧
発生器によって作り、これにしたがって充電器を電圧制
御して充電して賦活した。
(Activated Charging) The prepared test electric double layer capacitor was set at a charging start voltage of 1 V and a final voltage of 4 V,
The time required to reach the final voltage was set to 3.2 hours, and a waveform was generated by the voltage generator so as to linearly rise with a substantially constant gradient during that time. .

【0031】(電気的特性の測定)充電した電気二重層
コンデンサを一度完全に放電し、充放電試験器を用いて
3Vを最高電圧として、電流10mAで充電し、0Vま
で電流10mAで放電する充放電試験を繰り返し行い、
得られた第3サイクルのトレースを用いて、放電開始時
のステップから内部抵抗を測定し、放電曲線の積分値か
ら静電容量を測定し、その結果を表1に示す。
(Measurement of Electrical Characteristics) The charged electric double layer capacitor is completely discharged once, charged at a current of 10 mA with a maximum voltage of 3 V using a charge / discharge tester, and discharged at a current of 10 mA to 0 V. Repeat the discharge test,
Using the obtained trace of the third cycle, the internal resistance was measured from the step at the start of discharge, and the capacitance was measured from the integrated value of the discharge curve. The results are shown in Table 1.

【0032】実施例2 最終電圧に達するまでの時間を12時間とした以外の点
を除き実施例1と同様に充電して賦活し、実施例1と同
様の方法で内部抵抗と静電容量を測定し、その結果を表
1に示す。
Example 2 A battery was charged and activated in the same manner as in Example 1 except that the time required to reach the final voltage was 12 hours, and the internal resistance and the capacitance were measured in the same manner as in Example 1. The measurement was performed, and the results are shown in Table 1.

【0033】比較例1 実施例1と同様に作製した電気二重層コンデンサを、0
〜4Vの充放電サイクルを充電時間25分間、緩和充電
時間10分間、放電時間25分間で繰り返す合計1時間
のサイクル試験を3回行い、そののち実施例1と同様の
方法で、内部抵抗と静電容量を測定し、その結果を表1
に示す。
Comparative Example 1 An electric double layer capacitor manufactured in the same manner as in Example 1
A charge / discharge cycle of 44 V is repeated three times for a charging time of 25 minutes, a relaxation charging time of 10 minutes, and a discharging time of 25 minutes, and a total of 1 hour cycle test is performed three times. The capacitance was measured, and the results are shown in Table 1.
Shown in

【0034】比較例2 実施例1と同様に作製した電気二重層コンデンサを、0
〜4Vの充放電サイクルを充電時間10分間、緩和充電
時間10分間、放電時間10分間で繰り返す、合計30
分間のサイクル試験を実施例2に準ずる試験を12時間
に24サイクル繰り返した。その後、実施例1と同様の
方法で、内部抵抗と静電容量を測定し、その結果を表1
に示す。
Comparative Example 2 An electric double layer capacitor manufactured in the same manner as in Example 1
44 V charge / discharge cycle is repeated for a charge time of 10 minutes, a relaxation charge time of 10 minutes, and a discharge time of 10 minutes, for a total of 30
The test in accordance with Example 2 was repeated 24 times in 12 hours. Thereafter, the internal resistance and the capacitance were measured in the same manner as in Example 1, and the results were shown in Table 1.
Shown in

【0035】[0035]

【表1】 [Table 1]

【0036】比較例1に記載のものは、実施例1および
2に記載のものに比べて静電容量の増加が充分ではな
く、また比較例2のものは、静電容量が実施例1および
実施例2のものに比べて若干小さかったが、内部抵抗が
大幅に増加した。内部抵抗の増大は、電気二重層コンデ
ンサの劣化が進行していることを示している。
In the case of Comparative Example 1, the increase in capacitance was not sufficient as compared with those of Examples 1 and 2, and in the case of Comparative Example 2, the capacitance of Examples 1 and 2 was not sufficient. Although slightly smaller than that of Example 2, the internal resistance was greatly increased. The increase in the internal resistance indicates that the deterioration of the electric double layer capacitor is progressing.

【0037】[0037]

【発明の効果】本発明の電気二重層コンデンサは、電圧
印加時に膨張する炭素質材料からなる分極性電極を用い
た電気二重層コンデンサの賦活時の高電圧の印加による
電気二重層コンデンサの劣化を防止することができ、大
容量で漏れ電流の小さな電気二重層コンデンサを得るこ
とができる。
The electric double-layer capacitor of the present invention is capable of preventing deterioration of the electric double-layer capacitor due to the application of a high voltage during activation of the electric double-layer capacitor using a polarizable electrode made of a carbonaceous material which expands when a voltage is applied. Thus, an electric double layer capacitor having a large capacity and a small leakage current can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、電気二重層コンデンサの等価回路の一
例を示す図である。
FIG. 1 is a diagram illustrating an example of an equivalent circuit of an electric double layer capacitor.

【図2】図2は、電気二重層コンデンサの充放電サイク
ルと効率の関係を説明する図である。
FIG. 2 is a diagram for explaining a relationship between a charge / discharge cycle and an efficiency of the electric double layer capacitor.

【図3】図3は、本発明の電気二重層コンデンサの充電
方法の一例を説明する図である。
FIG. 3 is a diagram illustrating an example of a method for charging an electric double layer capacitor according to the present invention.

【図4】図4は、電気二重層コンデンサの賦活時の圧力
の変化を説明する図である。
FIG. 4 is a diagram illustrating a change in pressure at the time of activation of the electric double layer capacitor.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電気二重層コンデンサの製造方法におい
て、電圧印加時に膨張する炭素質材料からなる分極性電
極を初期充電を行って、分極性電極を賦活する際に、賦
活が起こらない電圧を印加開始電圧として充電を開始し
た後に、印加可能な最大電圧まで電圧を上昇させながら
定格充電時間を超えて長時間充電を行うことを特徴とす
る電気二重層コンデンサの製造方法。
In a method for manufacturing an electric double layer capacitor, when a polarizable electrode made of a carbonaceous material that expands when a voltage is applied is initially charged to activate the polarizable electrode, a voltage that does not cause activation is applied. A method for manufacturing an electric double layer capacitor, comprising: starting charging as a starting voltage, and then charging for a long time exceeding a rated charging time while increasing a voltage to a maximum applicable voltage.
【請求項2】 長時間充電が、電気二重層コンデンサの
静電容量と内部抵抗の積で表される時定数であるΩF秒
の100倍以上の長時間、もしくは定格充電時間の3倍
以上の時間の長時間であることを特徴とする請求項1記
載の電気二重層コンデンサの製造方法。
2. Long-time charging is performed for a long time of 100 times or more of ΩF seconds which is a time constant expressed by a product of the capacitance of an electric double layer capacitor and an internal resistance, or three times or more of a rated charging time. 2. The method for manufacturing an electric double layer capacitor according to claim 1, wherein the time is long.
【請求項3】 印加開始電圧から印加可能な最高電圧ま
での充電電圧パターンに応じた電圧パターンを電圧発生
器によって発生させて、充電器を電圧制御することを特
徴とする請求項1ないし2のいずれか1項に記載の電気
二重層コンデンサの製造方法。
3. The voltage generator according to claim 1, wherein a voltage pattern corresponding to a charging voltage pattern from an application start voltage to a maximum applicable voltage is generated by a voltage generator to control the voltage of the charger. A method for manufacturing an electric double layer capacitor according to any one of the preceding claims.
【請求項4】 充電を電気二重層コンデンサを常圧もし
くは減圧下で封口前に充電することを特徴とする請求項
1または2のいずれか1項に記載の電気二重層コンデン
サの製造方法。
4. The method for producing an electric double layer capacitor according to claim 1, wherein the charging is performed before sealing the electric double layer capacitor under normal pressure or reduced pressure.
【請求項5】 電圧印加時に膨張する炭素質材料の膨張
圧に抗する寸法制限構造体を取り付けた状態で電圧を印
加して製造したものであることを特徴とする請求項4記
載の電気二重層コンデンサの製造方法。
5. The electric device according to claim 4, wherein the electric device is manufactured by applying a voltage while attaching a dimension limiting structure against the expansion pressure of the carbonaceous material which expands when the voltage is applied. Manufacturing method of multilayer capacitor.
【請求項6】 印加開始電圧から印加可能最大電圧まで
の充電電圧パターンに応じたパターンによって充電器を
電圧制御することを特徴とする請求項1ないし3のいず
れか1項に記載の電気二重層コンデンサの製造方法。
6. The electric double layer according to claim 1, wherein the voltage of the charger is controlled by a pattern according to a charging voltage pattern from an application start voltage to a maximum applicable voltage. Manufacturing method of capacitor.
【請求項7】 電気二重層コンデンサが電圧印加時に分
極性電極の膨張に抗して寸法を制限した状態で、電極に
は2kg/cm2 以上の膨張圧が発生するものであるこ
とを特徴とする請求項1ないし6のいずれかに記載の電
気二重層コンデンサの製造方法。
7. An electrode in which an expansion pressure of 2 kg / cm 2 or more is generated in a state where the size of the electric double layer capacitor is limited against expansion of the polarizable electrode when a voltage is applied. The method for manufacturing an electric double layer capacitor according to any one of claims 1 to 6.
【請求項8】 電解液として非水溶媒電解質を使用する
とともに、分極性電極がX線回折法で測定した層間距離
002 が0.365〜0.385nmに存在する炭素質
材料を用いたことを特徴とする請求項1ないし7のいず
れかに記載の電気二重層コンデンサの製造方法。
8. A non-aqueous solvent electrolyte is used as an electrolytic solution, and a polarizable electrode is made of a carbonaceous material having an interlayer distance d 002 of 0.365 to 0.385 nm measured by an X-ray diffraction method. The method for manufacturing an electric double layer capacitor according to any one of claims 1 to 7, wherein
JP26821198A 1998-09-22 1998-09-22 Manufacturing method of electric double layer capacitor Expired - Fee Related JP3973183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26821198A JP3973183B2 (en) 1998-09-22 1998-09-22 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26821198A JP3973183B2 (en) 1998-09-22 1998-09-22 Manufacturing method of electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2000100668A true JP2000100668A (en) 2000-04-07
JP3973183B2 JP3973183B2 (en) 2007-09-12

Family

ID=17455469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26821198A Expired - Fee Related JP3973183B2 (en) 1998-09-22 1998-09-22 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3973183B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143167A2 (en) 2000-04-03 2001-10-10 Nissan Motor Co., Ltd. Toroidal continuously variable transmission
JP2007019491A (en) * 2005-06-10 2007-01-25 Japan Gore Tex Inc Electric double layer capacitor and electrode therefor
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
US7771495B2 (en) 2005-03-18 2010-08-10 Japan Gore-Tex Inc. Production method for electric double layer capacitor
US7799894B2 (en) 2004-02-06 2010-09-21 Yamaguchi University Electrode for energy storage device and process for producing the same
US7803898B2 (en) 2004-01-13 2010-09-28 Nissan Chemical Industries, Ltd. Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
WO2012056050A3 (en) * 2010-10-31 2012-07-26 OÜ Skeleton Technologies A method of conditioning a supercapacitor to its working voltage
JP2013065639A (en) * 2011-09-16 2013-04-11 Kyushu Institute Of Technology Manufacturing method of electric double layer capacitor
JP2014212242A (en) * 2013-04-19 2014-11-13 太陽誘電株式会社 Electrochemical device
JP2022526441A (en) * 2019-03-29 2022-05-24 コントロラマティクス コーポレーション Method for manufacturing electrodes highly activated by electrical activation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143167A2 (en) 2000-04-03 2001-10-10 Nissan Motor Co., Ltd. Toroidal continuously variable transmission
US7803898B2 (en) 2004-01-13 2010-09-28 Nissan Chemical Industries, Ltd. Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
US7799894B2 (en) 2004-02-06 2010-09-21 Yamaguchi University Electrode for energy storage device and process for producing the same
US7771495B2 (en) 2005-03-18 2010-08-10 Japan Gore-Tex Inc. Production method for electric double layer capacitor
JP2007019491A (en) * 2005-06-10 2007-01-25 Japan Gore Tex Inc Electric double layer capacitor and electrode therefor
JP2008258213A (en) * 2007-03-30 2008-10-23 Nippon Chemicon Corp Manufacturing method of electrode for electric double-layer capacitor
WO2012056050A3 (en) * 2010-10-31 2012-07-26 OÜ Skeleton Technologies A method of conditioning a supercapacitor to its working voltage
US8911510B2 (en) 2010-10-31 2014-12-16 Oü Skeleton Technologies Group Electrical double layer capacitor with enhanced working voltage
EP2978003A3 (en) * 2010-10-31 2016-05-25 OÜ Skeleton Technologies Group Method of conditioning a supercapacitor to its working voltage and supercapacitor
EA025540B1 (en) * 2010-10-31 2017-01-30 Ою Скелетон Технолоджис Груп Electrical double layer capacitor with enhanced working voltage
JP2013065639A (en) * 2011-09-16 2013-04-11 Kyushu Institute Of Technology Manufacturing method of electric double layer capacitor
JP2014212242A (en) * 2013-04-19 2014-11-13 太陽誘電株式会社 Electrochemical device
JP2022526441A (en) * 2019-03-29 2022-05-24 コントロラマティクス コーポレーション Method for manufacturing electrodes highly activated by electrical activation
JP7441855B2 (en) 2019-03-29 2024-03-01 コントロラマティクス コーポレーション Method for manufacturing highly activated electrodes by electrical activation

Also Published As

Publication number Publication date
JP3973183B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP7114260B2 (en) Carbon materials with improved electrochemical properties
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
US8273683B2 (en) Active carbon, production method thereof and polarizable electrode
JPH11317333A (en) Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
JPH09275042A (en) Activated charcoal for organic solvent-based electric double layer capacitor
JP2014530502A (en) High voltage electrochemical double layer capacitor
JP3973183B2 (en) Manufacturing method of electric double layer capacitor
JP4117056B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP4733707B2 (en) Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
KR101166696B1 (en) Supercapacitor and manufacturing method of the same
KR101268872B1 (en) Supercapacitor and manufacturing method of the same
JP3522119B2 (en) Electric double layer capacitor and method of manufacturing the same
KR100792853B1 (en) Carbonoxide composites having high capacity, manufacturing method thereof, electrode and energy storage apparatus comprising the same
JP4053955B2 (en) Manufacturing method of electric double layer capacitor
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
KR20220057948A (en) Manufacturing method of porous activated carbon performing spray activation after acid treatment and supercapacitor using the same and method of manufacturing thereof
JP2001176757A (en) Electric double-layer capacitor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JPH1187191A (en) Electric double layer capacitor
KR102116279B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor
JPH10149957A (en) Manufacturing method of activated carbon for electrode of organic solvent-based electrical double layered capacitor
JP2000100672A (en) Manufacture of electric double layer capacitor
KR101215555B1 (en) manufacturing method of high efficiency expanded graphite and energy storage devices thereby
JP3853094B2 (en) Electric double layer capacitor
KR20220057949A (en) Manufacturing method of porous activated carbon using hydrothermal pretreatment and supercapacitor using the same and method of manufacturing thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R255 Notification of exclusion from application

Free format text: JAPANESE INTERMEDIATE CODE: R2525

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees