JP2007017202A - Apparatus for measuring dimensions and shape of rolled material - Google Patents

Apparatus for measuring dimensions and shape of rolled material Download PDF

Info

Publication number
JP2007017202A
JP2007017202A JP2005196691A JP2005196691A JP2007017202A JP 2007017202 A JP2007017202 A JP 2007017202A JP 2005196691 A JP2005196691 A JP 2005196691A JP 2005196691 A JP2005196691 A JP 2005196691A JP 2007017202 A JP2007017202 A JP 2007017202A
Authority
JP
Japan
Prior art keywords
rolled material
shape
light
ccd
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005196691A
Other languages
Japanese (ja)
Inventor
Yoji Ozawa
陽二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005196691A priority Critical patent/JP2007017202A/en
Publication of JP2007017202A publication Critical patent/JP2007017202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring dimensions and a shape which can measure the dimensions and shape of a rolled material such as bar steel and wire rod rolled by a rolling machine constantly and surely. <P>SOLUTION: A light emitting device 4 for emitting a collimated light beam 6 and a first CCD light receiving device 8 for receiving the collimated light beam are arranged by facing each other across the rolled material 1 such as bar steel and wire rod which has been just rolled by the rolling machine and is moving in the longitudinal direction. Second and third CCD light receiving devices 12, 13 which can detect the reflected light of the collimated light beam for each part of the rolled material are arranged by facing each other at both side positions perpendicular to the collimated light and the moving direction of the rolled material. The dimensions and shape of the rolled material are measured on the basis of the light receiving status of the CCD light receiving devices. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は棒鋼,線材等の圧延材の寸法や形状を光学的に測定する装置に関するものである。   The present invention relates to an apparatus for optically measuring the size and shape of a rolled material such as a steel bar or wire.

回転円板の中心に設けられた透孔に線材などの長尺部材を挿通し、該線材を挟むように投光器と受光器とを該回転円板上に対向配置し、該回転円板を回転動することにより該線材の外径を連続的に検出する光学式寸法測定装置は、下記特許文献1,2等により知られている。
特開2000−131021号公報 特開昭54−94064号公報
A long member such as a wire rod is inserted into a through hole provided in the center of the rotating disk, and a projector and a light receiver are arranged on the rotating disk so as to sandwich the wire, and the rotating disk is rotated. An optical dimension measuring apparatus that continuously detects the outer diameter of the wire rod by moving is known from Patent Documents 1 and 2 listed below.
JP 2000-131021 A JP 54-94064 A

ところで、圧延機で圧延されることによって長手方向に移動している棒鋼,線材等の圧延材は、回転円板の回転動と同期した捻れを起こすおそれがあるので、そうすると圧延材の断面形状が楕円形、或いはだるま形等に変形していたり、バリができていても検出できないことがあった。
本発明は上記欠点を解消し、圧延材の寸法および形状を常に確実に測定し得る装置を提供するものである。
By the way, rolling materials such as steel bars and wire rods moving in the longitudinal direction by being rolled by a rolling mill may cause twisting synchronized with the rotational movement of the rotating disk. Even if it is deformed into an elliptical shape, a daruma shape, or has burrs, it may not be detected.
The present invention eliminates the above-mentioned drawbacks and provides an apparatus that can always reliably measure the size and shape of a rolled material.

そのために本発明に係る圧延材の寸法形状測定装置は、平行光線を照射する投光器と該平行光線を受光する第1のCCD受光器とを圧延機により圧延された直後で長手方向に移動している棒鋼,線材等の圧延材を両側から挟むように配置すると共に、該平行光線および該圧延材の移動方向と直交する両側部位に該平行光線の反射光を該圧延材の部位毎に検出し得る第2,第3のCCD受光器を対向配置し、該各CCD受光器の受光状況から該圧延材の寸法,形状が測定されるようにしたことを特徴とする。   For this purpose, the rolled shape and shape measuring apparatus according to the present invention moves the projector in the longitudinal direction immediately after being rolled by the rolling machine and the projector for irradiating the parallel rays and the first CCD receiver for receiving the parallel rays. The rolled material such as steel bars and wire rods are arranged so as to be sandwiched from both sides, and the reflected light of the parallel light beam is detected for each portion of the rolled material at both sides perpendicular to the moving direction of the parallel light beam and the rolled material. The obtained second and third CCD light receivers are arranged to face each other, and the size and shape of the rolled material are measured from the light receiving state of each CCD light receiver.

圧延機により圧延された直後で長手方向に移動している棒鋼,線材等の圧延材の寸法および形状が常に確実に測定し得るようになる。   Immediately after being rolled by a rolling mill, the size and shape of a rolled material such as a steel bar or wire moving in the longitudinal direction can always be reliably measured.

次に本発明の実施例を図面とともに説明する。図1は本発明に係る寸法形状測定装置の概略を示し、1は圧延機(図示せず)により所定径に熱間圧延された直後で長手方向に移動している棒鋼,線材等の圧延材、2は中心に該圧延材1が貫挿される透孔3が形成された回転円板で、該回転円板は図示しないモータによって矢印の方向に回転し得るよう構成されている。4は該回転円板2上に設けられた投光器で、該投光器4は約400nmの波長の青紫色の光を発振するレーザーダイオード5と、その光を平行光線6として圧延材1に照射するコリメーターレンズ7とからなる。また、8は該圧延材1を挟んで該回転円板2上反対側に設けられた第1のCCD受光器で、該受光器はコリメーターレンズ9と基板上に多数のCCD受光素子を並設してなるCCD受光素子基板10とからなり、該コリメーターレンズ9は投光器4から照射された平行光線6を該CCD受光素子基板10に集光させる。なお、11は圧延材1から放射される赤外線を遮断するために設けられたバンドパスフィルタである。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a dimension / shape measuring apparatus according to the present invention, and 1 is a rolled material such as a steel bar or a wire rod which is moved in the longitudinal direction immediately after being hot-rolled to a predetermined diameter by a rolling mill (not shown). Reference numeral 2 denotes a rotating disk formed with a through hole 3 through which the rolled material 1 is inserted, and the rotating disk can be rotated in the direction of an arrow by a motor (not shown). 4 is a projector provided on the rotating disk 2. The projector 4 is a laser diode 5 that oscillates blue-violet light having a wavelength of about 400 nm, and a collimator that irradiates the rolled material 1 with the light as a parallel light beam 6. It consists of a meter lens 7. Reference numeral 8 denotes a first CCD light receiver provided on the opposite side of the rotating disk 2 with the rolled material 1 in between. The light receiver includes a collimator lens 9 and a number of CCD light receiving elements arranged in parallel on the substrate. The collimator lens 9 condenses the parallel light beam 6 emitted from the projector 4 on the CCD light receiving element substrate 10. In addition, 11 is a band pass filter provided in order to block the infrared rays radiated from the rolled material 1.

また、平行光線6および圧延材1の移動方向と直交する両側部位で回転円板2上に第2のCCD受光器12と第3のCCD受光器13を対向配置する。該受光器12,13は、基板上に多数のCCD受光素子を並設してなるCCD受光素子基板4,15と、該CCD受光素子基板に圧延材1からの光を集光させる光学レンズ16,17とからなり、該光学レンズの前面には圧延材1から放射される赤外線を遮断するためのバンドパスフィルタ18,19が設けられている。このため圧延材1に照射された平行光線6の直交方向に反射する反射光を該CCD受光素子基板14,15により該圧延材1の部位毎に検出することができる。   In addition, the second CCD light receiver 12 and the third CCD light receiver 13 are disposed opposite to each other on the rotating disk 2 at both sides orthogonal to the parallel light beam 6 and the moving direction of the rolled material 1. The light receivers 12 and 13 are CCD light receiving element substrates 4 and 15 in which a large number of CCD light receiving elements are arranged in parallel on the substrate, and an optical lens 16 for condensing light from the rolling material 1 on the CCD light receiving element substrate. , 17, and band pass filters 18, 19 for blocking infrared rays radiated from the rolled material 1 are provided on the front surface of the optical lens. Therefore, the reflected light reflected in the orthogonal direction of the parallel light beam 6 irradiated on the rolled material 1 can be detected for each part of the rolled material 1 by the CCD light receiving element substrates 14 and 15.

図2は圧延材1の横断面形状が真円である場合の上記各CCD受光器8,12,13の受光状況を示すもので、前記CCD受光器8は圧延材1の影になる部分の受光量が所定の閾値以下となることから信号処理することによって求められる幅Wにより圧延材1の直径を計測することができる。また、CCD受光器12とCCD受光器13には平行光線6が圧延材1に当たって直交方向に反射した反射光が夫々受光されることから、該各CCD受光器12,13に入射する反射光量は図示したように投光器4側の半部分が際立って大きくなり、これを所定の閾値により信号処理することにより幅Wおよび幅Wが求められる。そして演算により幅Wおよび幅Wが上記幅Wの2分の1であることが確かめられることにより圧延材1は真円であることが検知される。即ち、圧延材1が真円であることの条件は、W/2=W=W である。 FIG. 2 shows the light receiving state of each of the CCD light receivers 8, 12, and 13 when the cross-sectional shape of the rolled material 1 is a perfect circle. The diameter of the rolled material 1 can be measured from the width W 1 obtained by signal processing since the amount of received light is equal to or less than a predetermined threshold. Also, since the CCD light receiver 12 and the CCD light receiver 13 receive the reflected light which is reflected in the orthogonal direction when the parallel light beam 6 hits the rolling material 1, the amount of reflected light incident on the CCD light receivers 12 and 13 is as follows. As shown in the figure, the half portion on the side of the projector 4 is remarkably enlarged, and the width W 2 and the width W 3 are obtained by performing signal processing with a predetermined threshold value. Then, by confirming that the width W 2 and the width W 3 are half of the width W 1 by calculation, it is detected that the rolled material 1 is a perfect circle. That is, the condition that the strip 1 is true circle is W 1/2 = W 2 = W 3.

一方、図3に示したように圧延材1が楕円形で平行光線6に対して斜めに捻れていた場合は、該圧延材1に当たって直交方向に反射した反射光の分布がCCD受光器12とCCD受光器13とでは大きく異なることから上記信号処理によって算出された幅Wの値と幅Wの値とが大きく相違し、これによって圧延材1は真円でないことが検知される。 On the other hand, as shown in FIG. 3, when the rolled material 1 is elliptical and twisted obliquely with respect to the parallel light beam 6, the distribution of the reflected light that hits the rolled material 1 and is reflected in the orthogonal direction is CCD photodetector 13 and different from the value of the value and the width W 3 width W 2 which is calculated by the signal processing is significantly different from the large in, whereby the strip 1 is detected that not a perfect circle.

また、図4或いは図5に示したように圧延材1が楕円形であって平行光線6に対して真直に対向していた場合は、上記幅Wおよび幅Wが幅Wの2分の1ではなくなることから、これによって圧延材1は真円でないことが検知される。同様に圧延材1がだるま形等に変形したものであったり、バリができていたりするものであった場合にも上記WとWおよびWの値が異常を示すことから、これらの形状異常を検知することができる。また、WとWの分布位置の違いからも形状異常を検知することができる。いずれにしても、圧延材1が捻れていたとしても、この3つのCCD受光器8,12,13の受光状況を基に該圧延材の寸法およびその形状異常等を容易に監視することができる。 Further, as shown in FIG. 4 or 5, when the rolled material 1 is elliptical and directly opposed to the parallel light beam 6, the width W 2 and the width W 3 are 2 of the width W 1 . Since it is no longer a fraction, it is detected that the rolled material 1 is not a perfect circle. Similarly, when the rolled material 1 is deformed to a daruma shape or the like, or the burrs are formed, the values of W 1 , W 2, and W 3 show abnormalities. A shape abnormality can be detected. Further, the shape abnormality can be detected from the difference in distribution position between W 2 and W 3 . In any case, even if the rolled material 1 is twisted, it is possible to easily monitor the dimension of the rolled material and the shape abnormality thereof based on the light reception status of the three CCD light receivers 8, 12, and 13. .

本発明に係る圧延材の寸法形状測定装置の概略図である。It is the schematic of the dimension shape measuring apparatus of the rolling material which concerns on this invention. 図1の測定装置における各受光器の受光状況を示す説明図。Explanatory drawing which shows the light reception condition of each light receiver in the measuring apparatus of FIG. 図1の測定装置における各受光器の受光状況を示す説明図。Explanatory drawing which shows the light reception condition of each light receiver in the measuring apparatus of FIG. 図1の測定装置における各受光器の受光状況を示す説明図。Explanatory drawing which shows the light reception condition of each light receiver in the measuring apparatus of FIG. 図1の測定装置における各受光器の受光状況を示す説明図。Explanatory drawing which shows the light reception condition of each light receiver in the measuring apparatus of FIG.

符号の説明Explanation of symbols

1 圧延材
2 回転円板
3 透孔
4 投光器
5 レーザーダイオード
6 平行光線
7 コリメーターレンズ
8 第1のCCD受光器
9 コリメーターレンズ
11 バンドパスフィルタ
12 第2のCCD受光器
13 第3のCCD受光器
16,17 光学レンズ
18,19 バンドパスフィルタ
DESCRIPTION OF SYMBOLS 1 Rolled material 2 Rotating disk 3 Through-hole 4 Projector 5 Laser diode 6 Parallel light 7 Collimator lens 8 1st CCD light receiver 9 Collimator lens 11 Band pass filter 12 2nd CCD light receiver 13 3rd CCD light reception 16 and 17 Optical lens 18 and 19 Band pass filter

Claims (1)

平行光線を照射する投光器と該平行光線を受光する第1のCCD受光器とを圧延機により圧延された直後で長手方向に移動している棒鋼,線材等の圧延材を両側から挟むように配置すると共に、該平行光線および該圧延材の移動方向と直交する両側部位に該平行光線の反射光を該圧延材の部位毎に検出し得る第2,第3のCCD受光器を対向配置し、該各CCD受光器の受光状況から該圧延材の寸法,形状が測定されるようにしたことを特徴する圧延材の寸法形状測定装置。   A projector that irradiates parallel light beams and a first CCD light receiver that receives the parallel light beams are arranged so as to sandwich a rolled material such as a bar or wire that is moved in the longitudinal direction immediately after being rolled by a rolling mill. In addition, second and third CCD receivers that can detect the reflected light of the parallel light beam for each part of the rolled material are arranged opposite to the parallel light beam and the side parts orthogonal to the moving direction of the rolled material, An apparatus for measuring a dimension and shape of a rolled material, wherein the size and shape of the rolled material are measured from the light reception status of each CCD light receiver.
JP2005196691A 2005-07-05 2005-07-05 Apparatus for measuring dimensions and shape of rolled material Pending JP2007017202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196691A JP2007017202A (en) 2005-07-05 2005-07-05 Apparatus for measuring dimensions and shape of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196691A JP2007017202A (en) 2005-07-05 2005-07-05 Apparatus for measuring dimensions and shape of rolled material

Publications (1)

Publication Number Publication Date
JP2007017202A true JP2007017202A (en) 2007-01-25

Family

ID=37754498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196691A Pending JP2007017202A (en) 2005-07-05 2005-07-05 Apparatus for measuring dimensions and shape of rolled material

Country Status (1)

Country Link
JP (1) JP2007017202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152842A1 (en) * 2007-06-13 2008-12-18 Sunx Limited Measurement device and measurement system
JP2018165626A (en) * 2017-03-28 2018-10-25 株式会社東京精密 Surface foreign matter detection device and surface foreign matter detection method using the same
JP7360342B2 (en) 2020-02-20 2023-10-12 株式会社ジャノメ Tool position detection device and robot equipped with the device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152842A1 (en) * 2007-06-13 2008-12-18 Sunx Limited Measurement device and measurement system
JP2018165626A (en) * 2017-03-28 2018-10-25 株式会社東京精密 Surface foreign matter detection device and surface foreign matter detection method using the same
JP2021167845A (en) * 2017-03-28 2021-10-21 株式会社東京精密 Surface foreign matter detection device and surface foreign matter detection method using the same
JP7301914B2 (en) 2017-03-28 2023-07-03 株式会社東京精密 Surface foreign matter detection device and surface foreign matter detection method using the same
JP7360342B2 (en) 2020-02-20 2023-10-12 株式会社ジャノメ Tool position detection device and robot equipped with the device

Similar Documents

Publication Publication Date Title
JP6167821B2 (en) Inspection device
JP6295353B2 (en) Method and apparatus for detecting defects in objects
KR102093108B1 (en) Surface features mapping
JP4943237B2 (en) 疵 inspection device and 疵 inspection method
JP2010500925A (en) Monitoring device for laser processing equipment
JP2008238247A (en) Laser energy measuring system and laser beam machining apparatus
EP2587313B1 (en) Optical measurement system and method for measuring critical dimension of nanostructure
KR20170015936A (en) Method for particle detection on flexible substrates
JP5671873B2 (en) Laser welding monitoring device
JP2007017202A (en) Apparatus for measuring dimensions and shape of rolled material
JP2002288604A (en) Authenticity determining device of card
JP2006146979A5 (en)
WO2006000501A8 (en) Method and device for measuring the beam profile of a laser beam, laser machining device
JP2006301178A (en) Bend sensor and its manufacturing method
JP2008151559A (en) Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
JP4189138B2 (en) Surface inspection method and surface inspection apparatus
JP5516443B2 (en) Weld bead cutting width measurement method
JP2015076491A5 (en)
JP6505396B2 (en) Device and method for measuring the power density distribution of a radiation source
JP6434422B2 (en) Method for reading data represented by periodically polarized nanostructures
JP2018066573A (en) Gap sensor
JP7296769B2 (en) Spatter detection device, laser processing device, and method for detecting spatter
JP6130805B2 (en) Distance measuring apparatus and method
JP4904169B2 (en) Wire surface inspection device
JP2007127539A (en) Encoder