JP2018066573A - Gap sensor - Google Patents

Gap sensor Download PDF

Info

Publication number
JP2018066573A
JP2018066573A JP2016203436A JP2016203436A JP2018066573A JP 2018066573 A JP2018066573 A JP 2018066573A JP 2016203436 A JP2016203436 A JP 2016203436A JP 2016203436 A JP2016203436 A JP 2016203436A JP 2018066573 A JP2018066573 A JP 2018066573A
Authority
JP
Japan
Prior art keywords
light
gap
lens
edge
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016203436A
Other languages
Japanese (ja)
Inventor
達也 上野
Tatsuya Ueno
達也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2016203436A priority Critical patent/JP2018066573A/en
Publication of JP2018066573A publication Critical patent/JP2018066573A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To detect a gap amount of a measurement target without being affected by interference of light.SOLUTION: A gap sensor includes: a light projector for radiating light to a gap of a measurement target 100; a lens 2; an optical receiver 3; and a gap detection section 4. The lens 2 and the optical receiver 3 are arranged to allow an optical axis when receiving reflection light from an edge 106 of the measurement target 100 by the optical receiver 3 to be crossed with an optical axis of light from the light projector, and also are arranged to allow a plain surface 20 including a light receiving surface of the optical receiver 3 and a main surface 21 of the lens 2 to cross with each other at a point of one straight line 22, to allow an in-focus object surface 23 to cross with the straight line 22, and to allow whole of the edge 106 to be included in the object surface 23. The gap detection section 4 detects a position of an incident point of reflection light 25 reflected against the edge 106 and made incident to a light receiving surface of the optical receiver 3 after passing the neighborhood of an edge 105 on the basis of a light receiving distribution on the light receiving surface of the optical receiver 3, so as to calculate a gap amount d of the measurement target 100.SELECTED DRAWING: Figure 1

Description

本発明は、計測対象物の隙間量を検出する隙間センサに関するものである。   The present invention relates to a gap sensor that detects a gap amount of a measurement object.

近年、フィルムやシート等の物品の縁部(エッジ)の位置を検出するエッジセンサが実用化されている(例えば、特許文献1参照)。このエッジセンサは、図5に示すように、レーザ1000とコリメータレンズ1001とからなる投光器1002から物品1005に向けて平行光を照射し、物品1005により遮られなかった平行光を、投光器1002と対峙させて配置したリニアイメージセンサ等からなる受光器1003で受光し、エッジ検出部1004が受光器1003における平行光の受光領域と非受光領域(遮光領域)との境界を物品1005のエッジの位置として検出するようにしたものである。   In recent years, an edge sensor that detects the position of an edge of an article such as a film or sheet has been put into practical use (for example, see Patent Document 1). As shown in FIG. 5, the edge sensor irradiates parallel light from a projector 1002 composed of a laser 1000 and a collimator lens 1001 toward the article 1005 and confronts the projector 1002 with the parallel light not blocked by the article 1005. The edge detector 1004 receives the light from a linear image sensor or the like arranged in such a manner that the boundary between the parallel light receiving area and the non-light receiving area (light-blocking area) in the light receiver 1003 is set as the edge position of the article 1005. It is intended to be detected.

また、このようなエッジセンサを応用すれば、例えば2本のローラ間の隙間量を計測する隙間センサを実現することも可能である。   If such an edge sensor is applied, it is possible to realize a gap sensor that measures the amount of gap between two rollers, for example.

特開2004−177335号公報JP 2004-177335 A

上記のように、エッジセンサの技術を応用すれば、隙間センサを実現することが可能である。しかしながら、透過型の隙間センサでは、隙間が狭くなると、光の干渉や反射によって隙間量を正確に計測することが困難になるという問題点があった。   As described above, a gap sensor can be realized by applying the edge sensor technology. However, the transmission type gap sensor has a problem that when the gap becomes narrow, it is difficult to accurately measure the gap amount due to light interference and reflection.

本発明は、上記課題を解決するためになされたもので、光の干渉の影響を受けることなく計測対象物の隙間量を検出することができる隙間センサを提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a gap sensor that can detect the gap amount of a measurement object without being affected by light interference.

本発明の隙間センサは、計測対象物の隙間に光を照射する投光器と、前記計測対象物からの反射光を集光するレンズと、このレンズによって集光された光を受光して電気信号に変換する受光器と、この受光器の出力を解析して前記計測対象物の隙間量を検出する隙間検出手段とを備え、前記レンズと前記受光器とは、前記計測対象物とその隙間との境界である対向する2つのエッジのうち前記レンズから遠い方の第1のエッジからの反射光を前記受光器で受光するときの光軸が、前記投光器からの光の光軸と交わるように配置され、かつ前記受光器の受光面を含む平面と前記レンズの主面とが1つの直線で交わり、ピントが合う物面が同直線で交わり、前記第1のエッジの全てが前記物面に含まれるように配置され、前記隙間検出手段は、前記受光器の受光面での受光分布から、前記2つのエッジのうち前記レンズから遠い方の第1のエッジで反射し、前記レンズから近い方の第2のエッジの近傍を通過して前記受光器の受光面に入射する反射光の入射点の位置を検出して、この入射点の位置から前記計測対象物の隙間量を算出することを特徴とするものである。   The gap sensor of the present invention includes a projector that irradiates light to a gap between measurement objects, a lens that collects the reflected light from the measurement object, and light that is collected by the lens to receive an electrical signal. A light receiving device for converting, and a gap detecting means for analyzing the output of the light receiving device to detect a gap amount of the measuring object, wherein the lens and the light receiving device are provided between the measuring object and the gap. Arranged so that the optical axis of the reflected light from the first edge far from the lens among the two opposing edges that are the boundary intersects the optical axis of the light from the projector The plane including the light receiving surface of the light receiver and the main surface of the lens intersect with one straight line, the object surface in focus intersects with the same straight line, and all the first edges are included in the object surface. The gap detecting means is arranged in front of From the distribution of light received on the light receiving surface of the light receiver, the light is reflected by the first edge farther from the lens among the two edges, and passes through the vicinity of the second edge closer to the lens. The position of the incident point of the reflected light incident on the light receiving surface is detected, and the gap amount of the measurement object is calculated from the position of the incident point.

また、本発明の隙間センサの1構成例において、前記隙間検出手段は、前記受光器の受光面でのピークの受光量に対して、受光量が1/2になる位置を、前記第1のエッジで反射し、前記第2のエッジの近傍を通過して前記受光器の受光面に入射する反射光の入射点の位置として検出することを特徴とするものである。
また、本発明の隙間センサの1構成例において、前記計測対象物は、互いの曲面が対向するように平行に配置された上下2本の円柱形状のローラによって搬送対象の物体を搬送する搬送機構であり、前記投光器は、前記2本のローラの曲面に光を照射し、前記レンズと前記受光器とは、前記レンズから遠い方の第1のローラと前記レンズから近い方の第2のローラのうち、前記第1のローラの、前記第2のローラと最短距離にある曲面の箇所である前記第1のエッジからの反射光を前記受光器で受光するときの光軸が、前記搬送対象の物体の流れ方向と交わるように配置され、前記隙間検出手段は、前記第2のローラの、前記第1のローラと最短距離にある曲面の箇所である前記第2のエッジと、前記第1のエッジとの間の隙間量を検出することを特徴とするものである。
Further, in one configuration example of the gap sensor of the present invention, the gap detection means sets the position where the received light amount is ½ with respect to the peak received light amount on the light receiving surface of the light receiver. It is detected as the position of the incident point of the reflected light that is reflected at the edge and passes through the vicinity of the second edge and enters the light receiving surface of the light receiver.
Further, in one configuration example of the gap sensor of the present invention, the measurement object is a transport mechanism that transports an object to be transported by upper and lower cylindrical rollers arranged in parallel so that the curved surfaces thereof face each other. And the projector projects light onto the curved surfaces of the two rollers, and the lens and the light receiver are a first roller farther from the lens and a second roller closer to the lens. Of the first roller, the optical axis when the reflected light from the first edge, which is a curved surface portion that is the shortest distance from the second roller, is received by the light receiver is the conveyance target. The gap detecting means is arranged so as to intersect with the flow direction of the object, the second edge of the second roller being a curved surface portion having the shortest distance from the first roller, and the first roller The amount of gap between the edges of And it is characterized in and.

本発明によれば、計測対象物の隙間量を、受光器の受光面での受光分布に明確に反映させることができるので、光の干渉の影響を受けることなく計測対象物の隙間量を検出することができ、高精度な隙間検出を実現することができる。   According to the present invention, since the gap amount of the measurement object can be clearly reflected in the light reception distribution on the light receiving surface of the light receiver, the gap amount of the measurement object can be detected without being affected by light interference. And high-accuracy gap detection can be realized.

本発明の実施の形態に係る隙間センサの構成を示す図である。It is a figure which shows the structure of the clearance gap sensor which concerns on embodiment of this invention. 本発明の実施の形態に係る隙間センサの投光器と計測対象物を説明する斜視図である。It is a perspective view explaining the light projector and measurement object of a gap sensor concerning an embodiment of the invention. 本発明の実施の形態に係る隙間センサの受光器の受光面上における受光量を模式的に示す図である。It is a figure which shows typically the light reception amount on the light-receiving surface of the light receiver of the clearance gap sensor which concerns on embodiment of this invention. 本発明の実施の形態に係る隙間センサによる隙間量の検出方法を説明する図である。It is a figure explaining the detection method of the amount of gaps by the gap sensor concerning an embodiment of the invention. 従来のエッジセンサの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional edge sensor.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る隙間センサの構成を示す図、図2は隙間センサの投光器と計測対象物を説明する斜視図である。隙間センサは、計測対象物100に光を照射する投光器1と、計測対象物100からの反射光を集光するレンズ2と、レンズ2によって集光された光を受光して電気信号に変換する例えばCCD(Charge-Coupled Device)センサからなる受光器3と、受光器3の出力を解析して計測対象物100の隙間量dを検出する隙間検出部4とから構成される。なお、図2では、記載を容易にするため、レンズ2と受光器3の記載を省いている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a gap sensor according to an embodiment of the present invention, and FIG. 2 is a perspective view illustrating a projector and a measurement object of the gap sensor. The gap sensor is a projector 1 that irradiates light to the measurement object 100, a lens 2 that collects the reflected light from the measurement object 100, and the light collected by the lens 2 and converts it into an electrical signal. For example, it includes a light receiver 3 composed of a CCD (Charge-Coupled Device) sensor and a gap detector 4 that analyzes the output of the light receiver 3 and detects the gap amount d of the measurement object 100. In FIG. 2, the description of the lens 2 and the light receiver 3 is omitted for ease of description.

計測対象物100は、例えばフィルムなどの物体10を搬送する搬送機構であり、互いの曲面が対向するように平行に配置された上下2本の円柱形状のローラ101,102で物体10を挟持して、ローラ101,102の回転により物体10を送り出す機構である。ローラ101,102は、それぞれの回転軸103,104が平行になるように配置される。この2本のローラ101,102間の隙間量dを適切に設定することは搬送機構にとって重要である。   The measurement object 100 is a transport mechanism that transports an object 10 such as a film, for example, and sandwiches the object 10 between two upper and lower cylindrical rollers 101 and 102 arranged in parallel so that their curved surfaces face each other. Thus, it is a mechanism that sends out the object 10 by the rotation of the rollers 101 and 102. The rollers 101 and 102 are arranged so that the rotation shafts 103 and 104 are parallel to each other. It is important for the transport mechanism to set the gap amount d between the two rollers 101 and 102 appropriately.

本実施の形態では、計測対象物100によって搬送されるフィルムなどの搬送対象の物体10の流れ方向をMD(Machine Direction)、計測対象の隙間の方向をTD(Transverse Direction)、ローラ101,102の回転軸103,104の方向および搬送対象の物体10の幅方向をCD(Crcss Machine Direction)とする。
図1は搬送対象の物体10の流れ方向MDと平行な方向から見た隙間センサの光学系を示している。投光器1は、2本のローラ101,102の曲面に光を照射する。その照射方向は、搬送対象の物体10の流れ方向MDと平行な方向でなくてもよく、流れ方向MDに対して傾いた方向から光を照射してもよい。特にローラ101,102に対して斜め上方から光を照射することが好ましい。
In the present embodiment, the flow direction of the object 10 to be conveyed such as a film conveyed by the measurement object 100 is MD (Machine Direction), the direction of the gap to be measured is TD (Transverse Direction), and the rollers 101 and 102 Let the direction of the rotating shafts 103 and 104 and the width direction of the object 10 to be conveyed be CD (Crcss Machine Direction).
FIG. 1 shows an optical system of a gap sensor viewed from a direction parallel to the flow direction MD of the object 10 to be conveyed. The projector 1 irradiates the curved surfaces of the two rollers 101 and 102 with light. The irradiation direction may not be parallel to the flow direction MD of the object 10 to be transported, and light may be irradiated from a direction inclined with respect to the flow direction MD. In particular, it is preferable that the rollers 101 and 102 are irradiated with light from obliquely above.

シャインプルーフの原理(Scheimpflug principle)によると、受光器3の受光面30を含む平面20とレンズ2の主面21とが1つの直線22(図1の紙面に垂直な直線)で交わるとき、ピントが合う物面23も同じ直線22で交わることが知られている。本実施の形態では、レンズ2から遠い方のローラ102とレンズ2から近い方のローラ101のうち、ローラ102の、ローラ101と最短距離にある曲面の箇所をエッジ106と呼び、ローラ101の、ローラ102と最短距離にある曲面の箇所をエッジ105と呼ぶこととする。本実施の形態では、ローラ102の上端のエッジ106の全てが物面23に含まれるように隙間センサの受光系(レンズ2と受光器3)を設置する。これにより、エッジ106の全てにピントを合わせることができる。   According to the Scheimpflug principle, when the plane 20 including the light receiving surface 30 of the light receiver 3 and the main surface 21 of the lens 2 intersect with one straight line 22 (a straight line perpendicular to the paper surface of FIG. 1), the focus is achieved. It is known that the object planes 23 that meet each other also intersect on the same straight line 22. In the present embodiment, among the roller 102 farther from the lens 2 and the roller 101 closer to the lens 2, the curved surface portion of the roller 102 that is the shortest distance from the roller 101 is referred to as an edge 106, A curved surface located at the shortest distance from the roller 102 is called an edge 105. In the present embodiment, the light receiving system (lens 2 and light receiver 3) of the gap sensor is installed so that the entire upper edge 106 of the roller 102 is included in the object surface 23. Thereby, it is possible to focus on all the edges 106.

また、エッジ106を含む物面23に対して隙間センサの受光系が斜め方向に配置されることになるが、エッジ106からの反射光のうち受光器3で受光する光の光軸が、投光器1からの光源光の光軸24の方向と交わるように受光系を配置する。図2の例では、説明を簡単にするため、光源光の光軸24の方向を搬送対象の物体10の流れ方向MDと平行にしているが、上記のとおり、光軸24の方向は流れ方向MDと平行な方向でなくてもよい。   In addition, the light receiving system of the gap sensor is arranged in an oblique direction with respect to the object surface 23 including the edge 106, and the optical axis of the light received by the light receiver 3 out of the reflected light from the edge 106 is the projector. The light receiving system is arranged so as to intersect the direction of the optical axis 24 of the light source light from 1. In the example of FIG. 2, the direction of the optical axis 24 of the light source light is made parallel to the flow direction MD of the object 10 to be transported for the sake of simplicity, but as described above, the direction of the optical axis 24 is the flow direction. The direction may not be parallel to the MD.

本実施の形態の隙間センサを2本のローラ101,102を含む搬送機構に常時設置する場合、搬送対象の物体10と干渉しないように投光器1とレンズ2と受光器3の位置を設定する必要があることは言うまでもない。   When the gap sensor according to the present embodiment is always installed in the transport mechanism including the two rollers 101 and 102, it is necessary to set the positions of the projector 1, the lens 2, and the light receiver 3 so as not to interfere with the object 10 to be transported. It goes without saying that there is.

また、上記のとおり受光器3は、その受光面30が平面20に含まれるように配置されるが、後述のように特定の反射光が入射する入射点の位置を検出できればよいので、受光素子を2次元状に配置した受光器であってもよいし、図1のRD方向(平面20と平行で、かつ搬送対象の物体10の流れ方向MDに対して垂直な方向)に沿って受光素子を1次元状に配置した受光器(ラインセンサ)であってもよい。   In addition, as described above, the light receiver 3 is disposed so that the light receiving surface 30 is included in the plane 20, but it is only necessary to detect the position of the incident point where the specific reflected light is incident as described later. May be a two-dimensionally arranged light receiver, or a light receiving element along the RD direction in FIG. 1 (a direction parallel to the plane 20 and perpendicular to the flow direction MD of the object 10 to be conveyed). May be a light receiver (line sensor) arranged one-dimensionally.

投光器1から照射された光がローラ102の上端のエッジ106で等方拡散する場合、エッジ106で反射し、ローラ101の下端のエッジ105の近傍を通過して受光器3の受光面30に入射する反射光25の光量は、エッジ105から離れた箇所を通過して受光面30に入射する反射光のピークの光量に対して1/2になる。   When light emitted from the projector 1 isotropically diffuses at the upper edge 106 of the roller 102, it is reflected by the edge 106, passes through the vicinity of the lower edge 105 of the roller 101, and enters the light receiving surface 30 of the light receiver 3. The light quantity of the reflected light 25 is ½ of the peak light quantity of the reflected light that passes through the part away from the edge 105 and enters the light receiving surface 30.

図3はレンズ2側から見た受光器3の受光面30上における受光量を模式的に示す図である。ここでは、受光素子を2次元状に配置した受光器3の例で示している。受光器3の受光面30上には、エッジ105から離れた箇所を通過して受光面30に入射する反射光による高受光量領域31と、低受光量領域32とが現れる。この低受光量領域32には、高受光量領域31のピークの受光量に対して受光量が1/2になる半受光量領域33が含まれる。   FIG. 3 is a diagram schematically showing the amount of light received on the light receiving surface 30 of the light receiver 3 as viewed from the lens 2 side. Here, an example of the light receiver 3 in which the light receiving elements are two-dimensionally arranged is shown. On the light receiving surface 30 of the light receiver 3, a high light receiving amount region 31 and a low light receiving amount region 32 due to reflected light that passes through a portion away from the edge 105 and enters the light receiving surface 30 appear. The low light reception amount region 32 includes a semi-light reception amount region 33 in which the light reception amount is ½ with respect to the peak light reception amount of the high light reception amount region 31.

図4は本実施の形態の隙間量dの検出方法を説明する図である。本実施の形態では、受光器3の受光面30を含む平面20と物面23とがなす角θ1、および平面20とレンズ2の主面21とがなす角θ2は既知の値である。したがって、ローラ102の上端のエッジ106で反射し、ローラ101の下端のエッジ105の近傍を通過して受光面30に入射する反射光25と平面20とがなす角θ3が分かれば、反射光25と物面23とがなす角θ4を計算できることになる。   FIG. 4 is a diagram for explaining a method of detecting the gap amount d according to the present embodiment. In the present embodiment, the angle θ1 formed by the plane 20 including the light receiving surface 30 of the light receiver 3 and the object surface 23 and the angle θ2 formed by the plane 20 and the main surface 21 of the lens 2 are known values. Accordingly, if the angle θ3 formed by the reflected light 25 reflected by the upper edge 106 of the roller 102, passing through the vicinity of the lower edge 105 of the roller 101 and entering the light receiving surface 30 and the plane 20 is known, the reflected light 25 is obtained. The angle θ4 formed by the object surface 23 can be calculated.

上記のとおり、ローラ101の下端のエッジ105の近傍を通過して受光器3の受光面30に入射する反射光25の光量(半受光量領域33の受光量)は、エッジ105から離れた箇所を通過して受光面30に入射する反射光のピークの光量(高受光量領域31のピークの受光量)の1/2になる。   As described above, the amount of the reflected light 25 (the amount of light received by the semi-light-receiving amount region 33) that passes through the vicinity of the edge 105 at the lower end of the roller 101 and enters the light-receiving surface 30 of the light receiver 3 Is half of the peak light amount of the reflected light that passes through the light-receiving surface 30 and enters the light-receiving surface 30 (the peak light-receiving amount of the high light-receiving amount region 31).

したがって、受光器3の出力を解析して半受光量領域33を検出すれば、反射光25が入射する受光面30上の入射点26のRD方向の位置を検出することができ、この入射点26から直線22までの距離L1、および入射点26からレンズ2の中心までの距離L2を計算することができ、これらの距離L1,L2と既知の角度θ2とから、受光面30を含む平面20と反射光25とがなす角θ3を計算することができる。   Therefore, by analyzing the output of the light receiver 3 and detecting the semi-light-receiving amount region 33, the position in the RD direction of the incident point 26 on the light receiving surface 30 on which the reflected light 25 is incident can be detected. The distance L1 from the line 26 to the straight line 22 and the distance L2 from the incident point 26 to the center of the lens 2 can be calculated. From these distances L1 and L2 and the known angle θ2, the plane 20 including the light receiving surface 30 can be calculated. And the angle θ3 formed by the reflected light 25 can be calculated.

上記のとおり、受光面30を含む平面20と物面23とがなす角θ1は既知なので、計算した角度θ3と既知の角度θ1とから、反射光25と物面23とがなす角θ4を計算することができ、またローラ102の上端のエッジ106上での反射光25の反射点27から直線22までの距離L3、および反射点27から反射光25が入射する受光面30上の入射点26までの距離L4を計算することができる。   As described above, since the angle θ1 formed by the plane 20 including the light receiving surface 30 and the object surface 23 is known, the angle θ4 formed by the reflected light 25 and the object surface 23 is calculated from the calculated angle θ3 and the known angle θ1. In addition, the distance L3 from the reflection point 27 of the reflected light 25 on the edge 106 at the upper end of the roller 102 to the straight line 22 and the incident point 26 on the light receiving surface 30 where the reflected light 25 enters from the reflective point 27. Can be calculated.

本実施の形態では、直線22からローラ102のCD方向の端面までの距離L5は既知の値なので、エッジ106上での反射光25の反射点27から直線22までの距離L3を計算できれば、ローラ102のCD方向の端面から反射点27までの距離L6を計算できることになる。そして、この距離L6と角度θ4とから、ローラ101,102間の隙間量dを計算することができる。   In the present embodiment, since the distance L5 from the straight line 22 to the end face in the CD direction of the roller 102 is a known value, if the distance L3 from the reflection point 27 of the reflected light 25 on the edge 106 to the straight line 22 can be calculated, the roller L The distance L6 from the end face in the CD direction of 102 to the reflection point 27 can be calculated. From the distance L6 and the angle θ4, the gap amount d between the rollers 101 and 102 can be calculated.

隙間検出部4は、受光器3の出力を解析して、受光器3の受光面30での受光分布から、上記のように反射光25が入射する受光面30上の入射点26のRD方向の位置を検出して、ローラ101,102間の隙間量dを計算すればよい。   The gap detection unit 4 analyzes the output of the light receiver 3, and based on the light reception distribution on the light receiving surface 30 of the light receiver 3, the RD direction of the incident point 26 on the light receiving surface 30 on which the reflected light 25 is incident as described above. And the gap amount d between the rollers 101 and 102 may be calculated.

こうして、本実施の形態では、ローラ101,102間の隙間量dを、受光器3の受光面30での受光分布に明確に反映させることができるので、光の干渉の影響を受けることなく計測対象物の隙間量dを検出することができ、高精度な隙間検出を実現することができる。   In this way, in the present embodiment, the gap amount d between the rollers 101 and 102 can be clearly reflected in the light reception distribution on the light receiving surface 30 of the light receiver 3, so that measurement is not affected by light interference. The gap amount d of the object can be detected, and high-accuracy gap detection can be realized.

隙間検出部4は、CPU(Central Processing Unit)、記憶装置およびインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を行う。   The gap detection unit 4 can be realized by a computer having a CPU (Central Processing Unit), a storage device, and an interface, and a program for controlling these hardware resources. The CPU performs the processing described in this embodiment in accordance with a program stored in the storage device.

なお、本実施の形態の計算方法は三角測量の原理を利用したものであるが、反射光25が入射する受光面上の入射点26の位置から隙間量dを計算する方法としては様々な方法が考えられる。本発明は、これら様々な計算方法に適用が可能である。   The calculation method of the present embodiment uses the principle of triangulation, but there are various methods for calculating the gap amount d from the position of the incident point 26 on the light receiving surface where the reflected light 25 is incident. Can be considered. The present invention can be applied to these various calculation methods.

例えばローラ101,102と隙間センサの光学系の設定により、入射点26から直線22までの距離L1毎に、反射光25と物面23とがなす角θ4および反射点27から直線22までの距離L3の値を予め登録しておくことが可能である。これにより、隙間検出部4は、受光器3の出力を解析して、入射点26から直線22までの距離L1を算出すれば、この距離L1に対応する角度θ4および距離L3の値を取得することができる。上記のとおり、直線22からローラ102のCD方向の端面までの距離L5は既知の値なので、距離L3を計算できれば、ローラ102のCD方向の端面から反射点27までの距離L6を計算することができ、この距離L6と角度θ4とから、ローラ101,102間の隙間量dを計算することができる。   For example, the angle θ4 formed by the reflected light 25 and the object surface 23 and the distance from the reflection point 27 to the straight line 22 for each distance L1 from the incident point 26 to the straight line 22 by setting the optical system of the rollers 101 and 102 and the gap sensor. It is possible to register the value of L3 in advance. Thus, when the gap detector 4 analyzes the output of the light receiver 3 and calculates the distance L1 from the incident point 26 to the straight line 22, the gap θ4 and the distance L3 corresponding to the distance L1 are acquired. be able to. As described above, since the distance L5 from the straight line 22 to the end surface of the roller 102 in the CD direction is a known value, if the distance L3 can be calculated, the distance L6 from the end surface of the roller 102 in the CD direction to the reflection point 27 can be calculated. The gap amount d between the rollers 101 and 102 can be calculated from the distance L6 and the angle θ4.

本発明は、隙間センサに適用することができる。   The present invention can be applied to a gap sensor.

1…投光器、2…レンズ、3…受光器、4…隙間検出部、10…搬送対象の物体、100…計測対象物、101,102…ローラ。   DESCRIPTION OF SYMBOLS 1 ... Light projector, 2 ... Lens, 3 ... Light receiver, 4 ... Gap detection part, 10 ... Object of conveyance object, 100 ... Measurement object, 101, 102 ... Roller.

Claims (3)

計測対象物の隙間に光を照射する投光器と、
前記計測対象物からの反射光を集光するレンズと、
このレンズによって集光された光を受光して電気信号に変換する受光器と、
この受光器の出力を解析して前記計測対象物の隙間量を検出する隙間検出手段とを備え、
前記レンズと前記受光器とは、前記計測対象物とその隙間との境界である対向する2つのエッジのうち前記レンズから遠い方の第1のエッジからの反射光を前記受光器で受光するときの光軸が、前記投光器からの光の光軸と交わるように配置され、かつ前記受光器の受光面を含む平面と前記レンズの主面とが1つの直線で交わり、ピントが合う物面が同直線で交わり、前記第1のエッジの全てが前記物面に含まれるように配置され、
前記隙間検出手段は、前記受光器の受光面での受光分布から、前記2つのエッジのうち前記レンズから遠い方の第1のエッジで反射し、前記レンズから近い方の第2のエッジの近傍を通過して前記受光器の受光面に入射する反射光の入射点の位置を検出して、この入射点の位置から前記計測対象物の隙間量を算出することを特徴とする隙間センサ。
A projector that irradiates light into the gap of the measurement object;
A lens for collecting the reflected light from the measurement object;
A light receiver that receives the light collected by the lens and converts it into an electrical signal;
A gap detecting means for analyzing the output of the light receiver and detecting the gap amount of the measurement object;
The lens and the light receiver receive reflected light from the first edge farther from the lens among the two opposing edges that are the boundary between the measurement object and the gap between the lens and the light receiver. Is arranged so that the optical axis of the light beam intersects with the optical axis of the light from the projector, and the plane including the light receiving surface of the light receiver and the main surface of the lens intersect with one straight line, and the object surface in focus is Intersecting in the same straight line, arranged so that all of the first edge is included in the object surface,
The gap detection means reflects from the light reception distribution on the light receiving surface of the light receiver at the first edge farther from the lens among the two edges, and in the vicinity of the second edge closer to the lens A gap sensor characterized by detecting the position of an incident point of reflected light that passes through the light receiving surface of the light receiver and calculates the gap amount of the measurement object from the position of the incident point.
請求項1記載の隙間センサにおいて、
前記隙間検出手段は、前記受光器の受光面でのピークの受光量に対して、受光量が1/2になる位置を、前記第1のエッジで反射し、前記第2のエッジの近傍を通過して前記受光器の受光面に入射する反射光の入射点の位置として検出することを特徴とする隙間センサ。
The gap sensor according to claim 1,
The gap detecting means reflects the position where the received light amount becomes ½ with respect to the peak received light amount on the light receiving surface of the light receiver by the first edge, and the vicinity of the second edge. A gap sensor, wherein the gap sensor detects a position of an incident point of reflected light that passes through and is incident on a light receiving surface of the light receiver.
請求項1または2記載の隙間センサにおいて、
前記計測対象物は、互いの曲面が対向するように平行に配置された上下2本の円柱形状のローラによって搬送対象の物体を搬送する搬送機構であり、
前記投光器は、前記2本のローラの曲面に光を照射し、
前記レンズと前記受光器とは、前記レンズから遠い方の第1のローラと前記レンズから近い方の第2のローラのうち、前記第1のローラの、前記第2のローラと最短距離にある曲面の箇所である前記第1のエッジからの反射光を前記受光器で受光するときの光軸が、前記搬送対象の物体の流れ方向と交わるように配置され、
前記隙間検出手段は、前記第2のローラの、前記第1のローラと最短距離にある曲面の箇所である前記第2のエッジと、前記第1のエッジとの間の隙間量を検出することを特徴とする隙間センサ。
The gap sensor according to claim 1 or 2,
The measurement object is a transport mechanism that transports an object to be transported by two upper and lower cylindrical rollers arranged in parallel so that their curved surfaces face each other.
The projector irradiates light onto the curved surface of the two rollers,
The lens and the light receiver are at a shortest distance from the second roller of the first roller of the first roller farther from the lens and the second roller closer to the lens. The optical axis when the reflected light from the first edge that is a curved portion is received by the light receiver is arranged so as to intersect the flow direction of the object to be transported,
The gap detection means detects a gap amount between the second edge of the second roller, which is a curved surface portion having the shortest distance from the first roller, and the first edge. A gap sensor.
JP2016203436A 2016-10-17 2016-10-17 Gap sensor Pending JP2018066573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203436A JP2018066573A (en) 2016-10-17 2016-10-17 Gap sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203436A JP2018066573A (en) 2016-10-17 2016-10-17 Gap sensor

Publications (1)

Publication Number Publication Date
JP2018066573A true JP2018066573A (en) 2018-04-26

Family

ID=62085952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203436A Pending JP2018066573A (en) 2016-10-17 2016-10-17 Gap sensor

Country Status (1)

Country Link
JP (1) JP2018066573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508396A (en) * 2018-12-19 2022-01-19 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Devices and methods for optically measuring the inner contour of a spectacle frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508396A (en) * 2018-12-19 2022-01-19 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Devices and methods for optically measuring the inner contour of a spectacle frame
JP7079381B2 (en) 2018-12-19 2022-06-01 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Devices and methods for optically measuring the inner contour of spectacle frames

Similar Documents

Publication Publication Date Title
US9046349B2 (en) Method and device for contactless determination of the thickness of a web of material, including correction of the alignment error
JP6167821B2 (en) Inspection device
JP6186913B2 (en) Measuring device
JP2014182028A (en) Limited area reflection type photoelectric sensor
JP2017110971A (en) Method for measuring inner diameter of transparent tube
JP2016090584A (en) Sensor
US20140250679A1 (en) Optical inspection apparatus and optical inspection system
TR201807553T4 (en) Device for determining the angle between two flat workpiece surfaces.
JP2018066573A (en) Gap sensor
JP2010271133A (en) Optical scanning type plane inspection device
JP3604549B2 (en) Paper sheet foreign matter detection device
JP2009008643A (en) Optical scanning type plane inspecting apparatus
JP2016205972A (en) Scan type glossy cylindrical-surface-shape inspection device
US10091493B2 (en) Device and method for scanning object outline image
JP2010085395A (en) Optical position angle detector
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
US20070052978A1 (en) Device and method for measuring the thickness of a transparent sample
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JP2018044771A (en) Clearance sensor
JP5487920B2 (en) Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method
JP2003222634A (en) Optical movement detecting device, transferring system, and transfer processing system
JP5599335B2 (en) Thickness measuring device
JP4545580B2 (en) In-plane displacement meter
WO2016002443A1 (en) Distance measurement device and method
JP5656242B2 (en) Shape measuring method, shape measuring device, and machine tool