JP5516443B2 - Weld bead cutting width measurement method - Google Patents

Weld bead cutting width measurement method Download PDF

Info

Publication number
JP5516443B2
JP5516443B2 JP2011018922A JP2011018922A JP5516443B2 JP 5516443 B2 JP5516443 B2 JP 5516443B2 JP 2011018922 A JP2011018922 A JP 2011018922A JP 2011018922 A JP2011018922 A JP 2011018922A JP 5516443 B2 JP5516443 B2 JP 5516443B2
Authority
JP
Japan
Prior art keywords
bead
luminance
bead cutting
measurement
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011018922A
Other languages
Japanese (ja)
Other versions
JP2012159384A (en
Inventor
圭一郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011018922A priority Critical patent/JP5516443B2/en
Publication of JP2012159384A publication Critical patent/JP2012159384A/en
Application granted granted Critical
Publication of JP5516443B2 publication Critical patent/JP5516443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、溶接ビード切削幅測定方法に関し、特に電縫鋼管の外面ビード切削後の溶接ビードの切削幅の測定性能を効果的に向上させる、溶接ビード切削幅測定方法に関する。   The present invention relates to a weld bead cutting width measuring method, and more particularly to a weld bead cutting width measuring method that effectively improves the measurement performance of the welding bead cutting width after outer bead cutting of an electric resistance welded steel pipe.

特許文献1には、電縫管の溶接ビード切削後の形状を計測する際にスリット光とITVカメラによる光切断方法を持って鋼管ビード切削部の映像を捕らえる溶接ビード切削形状計測方法においてその断面形状映像を細線化処理し断面形状を算出しその断面形状の輝度により切削部と非切削部である母材とを区別し、その区別した切削部中央値と切削部右端の値と切削部左端の値とを求め、この三つの計測値をもとに左右計測値と母材中央値とをもって切削深さ量を算出し左右計測値をもって切削傾き量を算出することでビード切削形状を精度良く測定できることを特徴とする電縫管溶接ビード切削形状計測方法が記載されている。   Patent Document 1 discloses a cross section of a weld bead cutting shape measuring method that captures an image of a steel pipe bead cutting portion with a slit light and an optical cutting method using an ITV camera when measuring the shape of the ERW pipe after welding bead cutting. The shape image is thinned and the cross-sectional shape is calculated. The brightness of the cross-sectional shape is used to distinguish between the base material that is the cutting part and the non-cutting part. Based on these three measurement values, the cutting depth is calculated from the left and right measurement values and the base material median value, and the cutting inclination amount is calculated from the left and right measurement values. A method for measuring the shape of an electric-welded pipe weld bead cut is described.

特許文献1の方法はスリット光による撮影画像を用いるものであるが、溶接ビード切削幅のみが測定対象であるときは、スリット(線)光ではなくエリア(面)光による撮影画像が用いられる場合もある。いずれにしても、その原理は、測定したい外面ビード切削部周辺に照明装置で光を照射し、該照射した部位をカメラで撮影し、該撮影した画像をもとに、切削部と非切削部とで光の反射率に差があることを利用して、受光レベル(輝度)の差によって切削部の境界を検出するというものである。   The method of Patent Document 1 uses a photographed image by slit light, but when only the weld bead cutting width is a measurement target, a photographed image by area (surface) light is used instead of slit (line) light. There is also. In any case, the principle is that the outer bead cutting part to be measured is irradiated with light by an illumination device, the irradiated part is photographed with a camera, and the cutting part and the non-cutting part are taken based on the photographed image. By utilizing the fact that there is a difference in the reflectance of light, the boundary of the cutting part is detected by the difference in the light reception level (luminance).

特許第2618303号公報Japanese Patent No. 2618303

電縫鋼管の電縫溶接部の探傷性能は、溶接ビード切削幅の測定精度に大きく影響され、この測定精度が悪いと電縫溶接部の探傷性能の向上は望めない。ビード切削幅測定にあたり、スリット光、エリア光のいずれの撮影画像を用いる場合でも、輝度による切削部の境界検出を行うが、その際、溶接ビード切削部の表面性状は、管素材板幅の変動、切削部の境界近傍の性状、水乗り等の環境条件、管円周方向の捩れ等々の外乱によって変化するため、切削部の撮影画像が不明瞭なものとなる場合が少なからずある。そのため信号処理として測定値の移動平均、異常データの排除など多くの演算処理が必要となっている。しかし、演算により平均化処理することで、溶接ビード切削幅の細かな変動を正確に測定することが困難であり、そのため電縫溶接部の探傷性能向上には限界があるという課題があった。   The flaw detection performance of the ERW welded portion of the ERW steel pipe is greatly influenced by the measurement accuracy of the weld bead cutting width, and if this measurement accuracy is poor, improvement in the flaw detection performance of the ERW weld cannot be expected. When measuring the bead cutting width, whether the slit light or the area light is used, the boundary of the cutting part is detected by brightness. At that time, the surface property of the weld bead cutting part is a fluctuation of the tube material plate width. Since it changes due to disturbances such as properties near the boundary of the cutting part, environmental conditions such as water riding, twisting in the circumferential direction of the pipe, the photographed image of the cutting part is often unclear. Therefore, many arithmetic processes such as moving average of measured values and elimination of abnormal data are required as signal processing. However, it is difficult to accurately measure fine fluctuations in the weld bead cutting width by performing the averaging process by calculation, and therefore there is a problem that there is a limit to improving the flaw detection performance of the ERW weld.

発明者は上記課題を解決するために鋭意検討し、その結果、溶接ビード切削幅の測定の信頼性を向上させうる撮影画像データ処理方法を見出し、本発明をなした。
すなわち本発明は、溶接ビード切削部を含む測定領域を照明器で照明しつつカメラで撮影し、その撮影画像を画像処理して溶接ビード切削幅を測定する溶接ビード切削幅測定方法において、照明光をエリア光とし、該エリア光を測定領域がビード長手方向で相異なる二以上の輝度部に分かれるように照射し、前記画像処理では、ビード長手方向での輝度変化の最大値のビード幅方向分布から、前記溶接ビード切削幅を求めることを特徴とする溶接ビード切削幅測定方法である。
The inventor diligently studied to solve the above-mentioned problems, and as a result, found a photographed image data processing method capable of improving the reliability of measurement of the weld bead cutting width, and made the present invention.
That is, the present invention relates to a welding bead cutting width measuring method in which a measurement region including a weld bead cutting portion is photographed with a camera while illuminating with a illuminator, and the photographed image is image-processed to measure a weld bead cutting width. The area light is irradiated so that the measurement area is divided into two or more luminance parts different in the bead longitudinal direction, and in the image processing, the maximum value of the luminance change in the bead longitudinal direction is distributed in the bead width direction. The weld bead cutting width measurement method is characterized in that the welding bead cutting width is obtained.

本発明によれば、エリア光を測定領域がビード長手方向で相異なる二以上の輝度部に分かれるように照射し、前記画像処理では、ビード長手方向での輝度変化が最大値のビード幅方向分布から溶接ビード切削幅を求めるようにしたので、ビード長手方向の隣接二輝度部の境界に外乱によらず安定したコントラストを呈するビード切削部と、ビード長手方向の隣接二輝度部の境界のコントラストが明確でない非切削部とについて、それらの位置の同定が可能となり溶接ビード切削幅の測定信頼性が向上する。従って、本発明を電縫鋼管の電縫溶接部に適用した場合、電縫溶接部の探傷性能の向上に寄与する。   According to the present invention, the area light is irradiated so that the measurement area is divided into two or more luminance parts different in the bead longitudinal direction, and in the image processing, the bead width direction distribution in which the luminance change in the bead longitudinal direction is the maximum value. Since the weld bead cutting width is obtained from the above, the bead cutting portion that exhibits a stable contrast regardless of disturbance at the boundary between adjacent two luminance portions in the bead longitudinal direction and the boundary between the adjacent two luminance portions in the bead longitudinal direction are The positions of unclear non-cutting portions can be identified, and the measurement reliability of the weld bead cutting width is improved. Therefore, when the present invention is applied to the ERW welded portion of the ERW steel pipe, it contributes to the improvement of the flaw detection performance of the ERW welded portion.

本発明の実施形態についての説明図である。It is explanatory drawing about embodiment of this invention. 長手方向の輝度分布を示すグラフであり、(a)はビード切削部、(b)は非切削部の例である。It is a graph which shows the luminance distribution of a longitudinal direction, (a) is a bead cutting part, (b) is an example of a non-cutting part. 輝度変化の長手方向分布を示すグラフであり、(a)はビード切削部、(b)は非切削部の例である。It is a graph which shows the longitudinal direction distribution of a brightness | luminance change, (a) is a bead cutting part, (b) is an example of a non-cutting part. 長手方向の輝度変化の最大値の、ビード幅方向の分布を示すグラフである。It is a graph which shows distribution of the maximum value of the luminance change of a longitudinal direction in a bead width direction. 本発明に用いたビード幅測定装置を示す模式図であり、(a)は側面断面模式図、(b)は正面断面模式図である。It is a schematic diagram which shows the bead width measuring apparatus used for this invention, (a) is a side surface cross-sectional schematic diagram, (b) is a front cross-sectional schematic diagram.

本発明は、溶接ビード切削部を含む測定領域を照明器で照明しつつカメラで撮影し、その撮影画像を画像処理して溶接ビード切削幅を測定するという点では、従来技術と同様である。尚、従来技術との重複範囲において、溶接ビード切削部(略してビード切削部)はビード長手方向に移動しつつ測定され、且つ画像処理では、撮影画像からビード幅方向の輝度分布を導出し、その分布内での輝度変化の大きさが第1位と第2位である二つのビード幅方向位置を検出して該二位置間がビード幅であると同定し、該二位置間の距離を算出してビード幅の値とする。   The present invention is the same as the prior art in that a measurement region including a weld bead cutting portion is photographed with a camera while illuminating with a illuminator, and the photographed image is processed to measure the weld bead cutting width. In the overlapping range with the prior art, the weld bead cutting part (bead cutting part for short) is measured while moving in the bead longitudinal direction, and in the image processing, the luminance distribution in the bead width direction is derived from the photographed image, Two bead width direction positions where the magnitude of the luminance change in the distribution is the first and second positions are detected, the bead width is identified between the two positions, and the distance between the two positions is determined. Calculate the bead width value.

本発明では、照明光としてエリア光を用いる。エリア光は、相直交する二方向に広がるのでビード幅方向とビード長手方向との両方向に広がりを持つ測定領域を対象とする本発明に使えるが、スリット光では一方向にしか広がらないので本発明には使えない。
そして本発明では、エリア光を測定領域がビード長手方向で相異なる二以上の輝度部に分かれるように照射する。このようにしてビード長手方向に相異なる二以上の輝度部を現出させると、相異なる2つの輝度部の境界における輝度変化は、ビード切削部では安定したコントラストとして発現し、ビード切削部の幅方向両端の外側では、この境界における輝度変化がビード切削部に比較して明確とならないことを見出した。すなわち、上記隣接二輝度部間の境界はビード幅方向に延在し、該境界のビード幅方向両端の内側(ビード切削幅に対応させる部分)は外側(非切削部)に比べてコントラストが外乱の影響を受けにくく安定しているのである。
In the present invention, area light is used as illumination light. Since the area light spreads in two directions orthogonal to each other, it can be used in the present invention for a measurement region having a spread in both the bead width direction and the bead longitudinal direction, but the slit light spreads in only one direction. It cannot be used.
In the present invention, the area light is irradiated so that the measurement region is divided into two or more luminance portions that are different in the bead longitudinal direction. Thus, when two or more different luminance portions appear in the longitudinal direction of the bead, the luminance change at the boundary between the two different luminance portions appears as a stable contrast in the bead cutting portion, and the width of the bead cutting portion. It has been found that the brightness change at this boundary is not clear outside the both ends in the direction compared to the bead cutting part. That is, the boundary between the adjacent two luminance portions extends in the bead width direction, and the inner side (the portion corresponding to the bead cutting width) of both ends of the boundary in the bead width direction is less disturbed than the outer side (non-cut portion). It is difficult to be affected by and is stable.

そこで、本発明では、画像処理の際、ビード長手方向での輝度変化の最大値のビード幅方向分布からビード切削幅を求めるようにした。ビード長手方向での輝度変化を測定していくと、ビード切削部では二輝度領域の境界におけるコントラストが明瞭となるため、この二輝度領域の境界においてビード長手方向での輝度変化が最大値を示す。一方、非切削部では、外乱の影響を強く受け、二輝度領域の境界においてもコントラストが明瞭とはならないため、ビード長手方向での輝度変化がこの境界で最大値を示さないこともある。そして、非切削部におけるビード長手方向での輝度変化の最大値は、ビード切削部の輝度変化の最大値に比べて必ず低い値を示す。したがって、ビード長手方向での輝度変化の最大値のビード幅方向分布を求めることで、ビード切削部がいずれの位置であるかを正確に判断することができ、よって、正確なビード切削幅を求めることができる。   Therefore, in the present invention, the bead cutting width is obtained from the bead width direction distribution of the maximum value of the luminance change in the bead longitudinal direction during image processing. When the change in luminance in the longitudinal direction of the bead is measured, the contrast at the boundary between the two luminance regions becomes clear in the bead cutting part. Therefore, the luminance change in the longitudinal direction of the bead shows the maximum value at the boundary between the two luminance regions. . On the other hand, the non-cutting portion is strongly influenced by disturbance and the contrast is not clear even at the boundary between the two luminance regions, so that the luminance change in the bead longitudinal direction may not show the maximum value at this boundary. And the maximum value of the brightness | luminance change in the bead longitudinal direction in a non-cutting part necessarily shows a low value compared with the maximum value of the brightness | luminance change of a bead cutting part. Therefore, by calculating the bead width direction distribution of the maximum value of the luminance change in the bead longitudinal direction, it is possible to accurately determine the position of the bead cutting portion, and thus the accurate bead cutting width is determined. be able to.

尚、測定領域を二以上の輝度部に分ける方法としては、フィルタ面内の一方向の二以上の部分で透過率を相異させたフィルタに照明光を通す方法や、反射板を用いて照明光の一部を反射させて、直射光のみの入射域(低輝度)、直射光と乱反射光との重畳入射域(中輝度)、直射光と正反射光との重畳入射域(高輝度)を形成する方法などが挙げられる。
図1は、本発明の実施形態についての説明図である。これは、ビード長手方向に移動中の電縫鋼管を対象として、溶接ビード切削部(略してビード切削部)のビード幅測定に本発明を適用した例である。
In addition, as a method of dividing the measurement area into two or more luminance portions, a method of passing illumination light through a filter having different transmittances in two or more portions in one direction in the filter surface, or illumination using a reflector A part of the light is reflected, the incident area of only direct light (low brightness), the superimposed incident area of direct light and irregularly reflected light (medium brightness), the superimposed incident area of direct light and specularly reflected light (high brightness) The method of forming is mentioned.
FIG. 1 is an explanatory diagram of an embodiment of the present invention. This is an example in which the present invention is applied to the measurement of the bead width of a weld bead cutting portion (bead cutting portion for short) for an ERW steel pipe moving in the bead longitudinal direction.

この例では、図1の撮像画像に示すように、ビード長手方向13に移動12中の電縫鋼管10のビード切削部11を含む測定領域に、該測定領域がビード長手方向13で相異なる三輝度部に分かれるように、エリア光を照射した。すなわち、照明光の照射光量を異ならせて3輝度部(図中のA部(照射光量:大)、B部(照射光量:中)、C部(照射光量:小))が得られるようにしている。この場合、画像処理によって検出されたビード長手方向13での輝度変化が最大となる位置は、A部とB部の境界であった。   In this example, as shown in the captured image of FIG. 1, the measurement region including the bead cutting portion 11 of the ERW steel pipe 10 moving in the bead longitudinal direction 13 is different from the measurement region in the bead longitudinal direction 13. Area light was irradiated so as to be divided into luminance portions. That is, the illumination light intensity is varied to obtain three luminance parts (part A (irradiation light quantity: large), B part (irradiation light quantity: medium), and C part (irradiation light quantity: small)). ing. In this case, the position where the luminance change in the bead longitudinal direction 13 detected by the image processing is maximum is the boundary between the A part and the B part.

得られた画像の画像処理は、A部とB部の境界を含む領域Dについて行なう。そして、得られた画像を画像処理する際に、ビード幅方向に所定の間隔をあけて、長手方向輝度変化測定位置20(以下、単に輝度変化測定位置20という)を配列させて設定し、それぞれの輝度変化測定位置20について、ビード長手方向13の輝度変化の最大値を求める。図2(a)は、溶接ビード切削部である20a位置における長手方向輝度分布を示すグラフであり、図2(b)は非切削部である20b位置における長手方向輝度分布を示すグラフである。図2に示した20aおよび20b位置における長手方向輝度分布から、それぞれの位置20a、20bにおける輝度変化の長手方向分布は、図3(a)および図3(b)に示すグラフのようになる。図3(a)に示すように、溶接ビード切削部では、輝度の異なる二領域の境界において輝度変化は大きい値を示す。そして、ビード切削部においては、輝度領域A部とB部の境界において輝度変化の最大値が出現している。一方、非切削部では、図3(b)に示すように、輝度領域の境界において明瞭な輝度変化は生じず、また輝度変化の最大値はビード切削部に比べても小さい。   Image processing of the obtained image is performed for a region D including the boundary between the A part and the B part. When image processing is performed on the obtained image, longitudinal brightness change measurement positions 20 (hereinafter simply referred to as brightness change measurement positions 20) are arranged and set at predetermined intervals in the bead width direction. For the luminance change measurement position 20, the maximum value of the luminance change in the bead longitudinal direction 13 is obtained. FIG. 2A is a graph showing a longitudinal luminance distribution at a position 20a which is a weld bead cutting portion, and FIG. 2B is a graph showing a longitudinal luminance distribution at a position 20b which is a non-cutting portion. From the longitudinal luminance distribution at the positions 20a and 20b shown in FIG. 2, the longitudinal distribution of the luminance change at the respective positions 20a and 20b is as shown in the graphs of FIG. 3 (a) and FIG. 3 (b). As shown to Fig.3 (a), in a weld bead cutting part, a brightness | luminance change shows a large value in the boundary of two area | regions where brightness | luminances differ. In the bead cutting portion, the maximum value of the luminance change appears at the boundary between the luminance regions A and B. On the other hand, in the non-cut portion, as shown in FIG. 3B, a clear luminance change does not occur at the boundary of the luminance region, and the maximum value of the luminance change is smaller than that of the bead cutting portion.

図4は、長手方向の輝度変化の最大値を、設定した各輝度変化測定位置20それぞれについて求め、この最大値をビード幅方向の分布としてグラフ化したものである。このグラフからもわかるように、ビード切削部に相当する領域において、輝度変化の最大値が大きい値を示す。したがって、この図4に示すように、ビード長手方向の輝度変化の最大値のビード幅方向分布が出せるので、これからビード切削幅を求めることが可能となる。図4におけるx1の位置が図1におけるビード切削部左側端部30に相当し、図4におけるx2の位置が図1におけるビード切削部右側端部31に相当する。ビード切削幅を求めるにあたっては、具体的には、ビード切削部に対応する部分は、非切削部に対応する部分に比較して、ビード長手方向の輝度変化の最大値が大きくなるので、ビード切削部に対応する部分と非切削部に対応する部分と区別するための閾値を設けておき、この閾値よりも輝度変化の最大値が大きい(あるいは閾値以上である)幅方向位置をビード切削部とし、このビード切削部の幅を演算することにより、ビード切削幅を求めることができる。   FIG. 4 is a graph in which the maximum value of luminance change in the longitudinal direction is obtained for each set luminance change measurement position 20 and this maximum value is graphed as a distribution in the bead width direction. As can be seen from this graph, the maximum value of the luminance change is large in the region corresponding to the bead cutting portion. Therefore, as shown in FIG. 4, the bead width direction distribution of the maximum value of the luminance change in the bead longitudinal direction can be obtained, and the bead cutting width can be obtained from this. The position x1 in FIG. 4 corresponds to the bead cutting portion left end 30 in FIG. 1, and the position x2 in FIG. 4 corresponds to the bead cutting portion right end 31 in FIG. In determining the bead cutting width, specifically, the portion corresponding to the bead cutting portion has a larger maximum value of the luminance change in the longitudinal direction of the bead than the portion corresponding to the non-cutting portion. A threshold for distinguishing between a part corresponding to a part and a part corresponding to a non-cutting part is provided, and a position in the width direction where the maximum value of the luminance change is larger (or more than the threshold) than this threshold is defined as a bead cutting part. The bead cutting width can be obtained by calculating the width of the bead cutting portion.

以上の説明において、長手方向輝度変化測定位置20はビード幅方向に所定の間隔をあけてビード幅方向に配列させるが、この間隔があまりに広いと、ビード切削部と非切削部との境界位置の特定精度が悪くなり、結果としてビード切削幅の測定精度も悪くなる。また、この間隔が狭すぎるとデータ処理の時間がかかる。したがって、この間隔はデータ処理能力とビード切削幅の測定精度とを勘案して適宜設定しておく。   In the above description, the longitudinal luminance change measurement positions 20 are arranged in the bead width direction with a predetermined interval in the bead width direction. If this interval is too wide, the boundary position between the bead cutting part and the non-cutting part The specific accuracy is deteriorated, and as a result, the measurement accuracy of the bead cutting width is also deteriorated. If this interval is too small, it takes time for data processing. Therefore, this interval is appropriately set in consideration of the data processing capability and the measurement accuracy of the bead cutting width.

なお、画像処理における信号処理乃至演算機能の詳細は、通常の技術の範囲内の事項で
あるので、詳しい説明は省略する。
Note that details of signal processing or calculation functions in image processing are matters within the scope of ordinary technology, and thus detailed description thereof is omitted.

電縫鋼管の溶接ビード切削幅測定に本発明を適用し、従来と比較した。
なお、本発明例においては、照射光(エリア光)による測定領域が、ビード長さ方向で三輝度領域となるように、反射板を用いて直射光と正反射光との重畳入射域A部(高輝度領域)、直射光と乱反射光との重畳入射域B部(中輝度領域)、直射光のみの入射域C部(低輝度領域)を形成させた。図5は、本発明例で用いたビード幅測定装置を示す模式図であり、(a)は側面断面図、(b)は正面断面図を示す。このビード幅測定装置は、電縫鋼管10のビード切削部11を含む測定領域にエリア光を照射する照明器1を1つの筐体2に内蔵し、筐体2の光射出口部2Aに、照明器1から発した光の一部を反射させて該反射した中の正反射光を測定領域のビード移動方向12の三輝度領域の一端側の一部であるA部に入射させ、前記反射した中の乱反射光を三輝度領域の中央側の一部であるB部に入射させ、前記三輝度領域の他端側の一部であるC部には前記正反射光及び乱反射光を入射させない反射面4Aを有するフード4を配設したものである。そして、筐体2には、測定領域を撮影するカメラ3が内蔵されており、このカメラ3からの撮影画像データを、図示しない画像処理装置に伝送するようにしてある。画像処理装置では、伝送された撮影画像データから、直射光と正反射光との重畳入射域A部と、直射光と乱反射光との重畳入射域B部(中輝度領域)との境界を含む領域を画像処理領域として設定し(図1中の領域D)、上述した方法に従ってビード長手方向での輝度変化の最大値のビード幅方向分布からビード切削幅を求めた。
The present invention was applied to the measurement of the weld bead cutting width of ERW steel pipe and compared with the conventional one.
In the example of the present invention, the overlapping incident area A portion of the direct light and the specularly reflected light using the reflector so that the measurement area by the irradiation light (area light) becomes a three luminance area in the bead length direction. (High luminance region), a superimposed incident region B portion (medium luminance region) of direct light and irregularly reflected light, and an incident region C portion (low luminance region) of only direct light were formed. 5A and 5B are schematic views showing the bead width measuring device used in the example of the present invention. FIG. 5A is a side cross-sectional view, and FIG. 5B is a front cross-sectional view. This bead width measuring device incorporates an illuminator 1 that irradiates area light into a measurement region including a bead cutting portion 11 of an electric resistance steel pipe 10 in one housing 2, and a light exit port 2 A of the housing 2 A part of the light emitted from the illuminator 1 is reflected, and the specularly reflected light in the reflected light is incident on part A which is a part of one end side of the three luminance areas in the bead moving direction 12 of the measurement area, and the reflection The irregularly reflected light is made incident on part B which is a part on the center side of the three luminance areas, and the regular reflected light and irregularly reflected light are not made incident on part C which is a part on the other end side of the three luminance areas. A hood 4 having a reflective surface 4A is provided. The housing 2 incorporates a camera 3 that captures the measurement area, and the captured image data from the camera 3 is transmitted to an image processing device (not shown). The image processing apparatus includes a boundary between the superimposed incident area A part of direct light and specularly reflected light and the superimposed incident area B part (medium luminance area) of direct light and irregularly reflected light from the transmitted captured image data. The region was set as an image processing region (region D in FIG. 1), and the bead cutting width was obtained from the bead width direction distribution of the maximum value of the luminance change in the bead longitudinal direction according to the method described above.

また、従来例としては、図5の本発明例で用いたビード幅測定装置に対して、フード4が設置されていないビード幅測定装置を用いて、測定領域を直射光のみの入射域のみ(一輝度領域)とし、この一輝度領域の撮影画像を用いて、ビード切削部を含む領域についてビード幅方向の輝度分布を求め、この輝度分布からビード切削部の位置を同定することで、ビード切削幅を求めた。   Further, as a conventional example, a bead width measuring device in which the hood 4 is not installed is used for the bead width measuring device used in the example of the present invention in FIG. 1 brightness area), and using the captured image of this brightness area, the brightness distribution in the bead width direction is obtained for the area including the bead cutting part, and the position of the bead cutting part is identified from this brightness distribution, thereby bead cutting. The width was determined.

その結果、従来では約20分間の連続測定において、測定値の半数近くが異常と判定され、実際はそんなに異常値が多いはずはないので、測定の信頼性が不十分であった。尚、この測定異常の検出方法は、過去に蓄積された目視測定による実績データの範囲外に測定値が入ったことをもって測定異常であると判定する方法である。これに対し、本発明例では、約20分間の連続測定において、測定異常が95%以上排除(測定値全数の5%未満まで低減)でき、測定の信頼性が向上した。   As a result, in the past, in about 20 minutes of continuous measurement, nearly half of the measured values were determined to be abnormal, and in reality there were not so many abnormal values, so the measurement reliability was insufficient. Note that this measurement abnormality detection method is a method in which a measurement value is determined to be a measurement abnormality when the measured value is out of the range of the actual data obtained by visual measurement accumulated in the past. On the other hand, in the example of the present invention, the measurement abnormality was eliminated by 95% or more (reduced to less than 5% of the total number of measurement values) in the continuous measurement for about 20 minutes, and the measurement reliability was improved.

1 照明器
2 筐体
3 カメラ
4 フード
4A 反射面
10 電縫鋼管
11 ビード切削部(溶接ビード切削部)
12 移動
13 ビード長手方向
20 長手方向輝度変化測定位置
DESCRIPTION OF SYMBOLS 1 Illuminator 2 Case 3 Camera 4 Hood 4A Reflective surface 10 ERW steel pipe 11 Bead cutting part (weld bead cutting part)
12 Movement 13 Bead longitudinal direction 20 Longitudinal brightness change measurement position

Claims (1)

溶接ビード切削部を含む測定領域を照明器で照明しつつカメラで撮影し、その撮影画像を画像処理して溶接ビード切削幅を測定する溶接ビード切削幅測定方法において、照明光をエリア光とし、該エリア光を測定領域がビード長手方向で相異なる二以上の輝度部に分かれるように照射し、前記画像処理では、ビード長手方向での輝度変化の最大値のビード幅方向分布から、前記溶接ビード切削幅を求めることを特徴とする溶接ビード切削幅測定方法。   In a welding bead cutting width measuring method in which a measurement region including a weld bead cutting portion is photographed with a camera while illuminating with an illuminator, and the photographed image is image-processed to measure a weld bead cutting width, the illumination light is set as area light, The area light is irradiated so that the measurement region is divided into two or more brightness portions different in the longitudinal direction of the bead, and in the image processing, the weld bead is calculated from the distribution of the maximum value of the brightness change in the longitudinal direction of the bead. A welding bead cutting width measuring method characterized by obtaining a cutting width.
JP2011018922A 2011-01-31 2011-01-31 Weld bead cutting width measurement method Active JP5516443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018922A JP5516443B2 (en) 2011-01-31 2011-01-31 Weld bead cutting width measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018922A JP5516443B2 (en) 2011-01-31 2011-01-31 Weld bead cutting width measurement method

Publications (2)

Publication Number Publication Date
JP2012159384A JP2012159384A (en) 2012-08-23
JP5516443B2 true JP5516443B2 (en) 2014-06-11

Family

ID=46840051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018922A Active JP5516443B2 (en) 2011-01-31 2011-01-31 Weld bead cutting width measurement method

Country Status (1)

Country Link
JP (1) JP5516443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045303A1 (en) * 2015-09-15 2017-03-23 苏州中启维盛机器人科技有限公司 Weld seam testing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015577B2 (en) * 2013-06-28 2016-10-26 Jfeスチール株式会社 Measuring device for bending amount of rod-shaped body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045303A1 (en) * 2015-09-15 2017-03-23 苏州中启维盛机器人科技有限公司 Weld seam testing method

Also Published As

Publication number Publication date
JP2012159384A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
KR101702841B1 (en) Method for monitoring defect in polaroid films
RU2650449C1 (en) Device and a method of ultrasound defectoscopy
TW200918882A (en) Edge detection device and defect inspection apparatus
JP2008304306A (en) Device and method for inspecting defects
JP2009139248A (en) Defect detecting optical system and surface defect inspecting device for mounting defect detecting image processing
JP2017148841A (en) Welding processing system and welding failure detection method
JP2014126408A (en) Reflection characteristics measurement device
KR20180019734A (en) Surface defect detection apparatus and surface defect detection method
JP5170622B2 (en) Shape measuring method, program, and shape measuring apparatus
JP5516443B2 (en) Weld bead cutting width measurement method
JP5263051B2 (en) Laser irradiation point detection device and seam position detection device in laser welding machine
JP4868597B2 (en) Edge detection device
JP2019138900A (en) Defect inspection device for steel plate and defect inspection method for steel plate
WO2015146744A1 (en) Tool inspection method and tool inspection device
JP2012159382A (en) Method for measuring weld bead cutting width
JP5644554B2 (en) Weld bead cutting width measurement method
JP2009300137A (en) Line sensor elevation angle measuring apparatus by image processing
JP6170714B2 (en) Ranging device
JP5553038B2 (en) Lighting device for detecting weld bead cutting part
JPH0720059A (en) Method and device for measuring seeing-through deformation
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP2015225042A (en) Defect inspection device and defect inspection method
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP5786631B2 (en) Surface defect inspection equipment
JP2004181471A (en) Method and device for detecting bead shape of electric resistance welded tube

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250