JP2007014171A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2007014171A
JP2007014171A JP2005194566A JP2005194566A JP2007014171A JP 2007014171 A JP2007014171 A JP 2007014171A JP 2005194566 A JP2005194566 A JP 2005194566A JP 2005194566 A JP2005194566 A JP 2005194566A JP 2007014171 A JP2007014171 A JP 2007014171A
Authority
JP
Japan
Prior art keywords
conductor
collector
main circuit
emitter
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005194566A
Other languages
Japanese (ja)
Other versions
JP4823591B2 (en
Inventor
Nobuhiro Takahashi
伸広 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005194566A priority Critical patent/JP4823591B2/en
Publication of JP2007014171A publication Critical patent/JP2007014171A/en
Application granted granted Critical
Publication of JP4823591B2 publication Critical patent/JP4823591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter having a low wiring-inductance structure irrespective of the number of moduled semiconductor elements and a main circuit configuration. <P>SOLUTION: In the power converter, the moduled semiconductor elements 1 constituting a main circuit of the power converter are arranged on a heat receiving block 11 of an element cooling cooler; a collector-side DC conductor 7a is connected to a collector-side terminal C1 of the moduled element 1, via a columnar connecting conductor 9 mounted to the collector-side terminal; and an emitter-side conductor 7b connected to one emitter-side terminal E1 is arranged in parallel with the collector-side conductor 7a, by keeping a necessary distance with the collector-side conductor. By vertically arranging the DC conductors in parallel with each other as above, the low wiring-inductance structure can be obtained irrespective of the number of the module-type semiconductor elements and the main circuit configuration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複数のモジュール型半導体素子、半導体素子冷却器及び導体その他の電気用品等により構成される電力変換装置、例えば整流装置やインバーター装置の構造に関する。   The present invention relates to a structure of a power conversion device, such as a rectifier or an inverter device, including a plurality of module type semiconductor elements, a semiconductor element cooler, a conductor, and other electrical appliances.

整流装置及びインバーター装置などの電力変換装置は、複数の電力用半導体素子とこれを冷却する為のヒートパイプ式等の冷却器及び電気用品等から構成されている。   A power conversion device such as a rectifier and an inverter device includes a plurality of power semiconductor elements, a heat pipe type cooler for cooling the power semiconductor elements, an electrical appliance, and the like.

図3、図4は従来の例を示すものであり、図5は回路図を示す。なお、図3および図4において、上側の図は正面図、下側の図は底面図である。   3 and 4 show a conventional example, and FIG. 5 shows a circuit diagram. 3 and 4, the upper diagram is a front view, and the lower diagram is a bottom view.

従来例としては半導体素子としてIGBT等に代表されるモジュール型の素子1〜6を、素子を冷却する冷却器の受熱ブロック11に実装したものである。   As a conventional example, module-type elements 1 to 6 represented by IGBT or the like as semiconductor elements are mounted on a heat receiving block 11 of a cooler that cools the elements.

図3〜図4において、1〜6はモジュール型半導体素子、7aはコレクタ側導体、7bはエミッタ側導体、8はU,V,W相の交流導体、11は冷却器の受熱ブロックを示す。図3、図4に示される構造は、図5の回路図に示す構成であり、電力変換装置の主回路(整流回路又はインバーター回路)を構成している。   3 to 4, reference numerals 1 to 6 denote module type semiconductor elements, 7a denotes a collector side conductor, 7b denotes an emitter side conductor, 8 denotes a U, V, W phase AC conductor, and 11 denotes a heat receiving block of the cooler. The structure shown in FIG. 3 and FIG. 4 is the configuration shown in the circuit diagram of FIG. 5, and constitutes the main circuit (rectifier circuit or inverter circuit) of the power converter.

電力変換装置の様な大電流、高電圧の機器の主回路において、装置定格の大容量化に伴う半導体素子の発熱損失の増加が問題となる。発熱損失の増加に伴い必然的に冷却器の高性能化や大型化が必要となり、受熱ブロック11や放熱フィン部が大型化する。冷却器の大型化はそれだけでなく同時に装置自体の大型化を伴う問題であり、それぞれ最適な方法が考えられている。   In a main circuit of a high-current, high-voltage device such as a power conversion device, an increase in heat loss of a semiconductor element due to an increase in capacity of the device rating becomes a problem. As the heat loss increases, it is necessary to increase the performance and size of the cooler, and the heat receiving block 11 and the heat radiating fins are increased in size. Increasing the size of the cooler is not only the problem, but also causes the size of the apparatus itself to increase, and an optimum method has been considered for each.

図4ではインバーター回路の上下アーム単位である素子2個を1つの冷却器にて冷却する3つのユニットにより主回路を構成する構造としている。各ユニットにおいてはコレクタ側導体7aとエミッタ側導体7bが必要な絶縁距離を確保し平行にすることで導体のインダクタンスを極力抑える事が出来る構造となっている。なお、各ユニットにおいてコレクタ側導体7aとエミッタ側導体7bが必要な絶縁距離を確保し平行にすることで導体のインダクタンスを極力抑えるようにすることは、例えば、特許文献1に示されている。   In FIG. 4, the main circuit is configured by three units that cool two elements, which are upper and lower arm units of the inverter circuit, by one cooler. In each unit, the collector-side conductor 7a and the emitter-side conductor 7b have a structure capable of minimizing the inductance of the conductor as much as possible by ensuring a necessary insulation distance and making them parallel. For example, Patent Document 1 discloses that the collector-side conductor 7a and the emitter-side conductor 7b in each unit ensure the necessary insulation distance and are parallel to suppress the conductor inductance as much as possible.

また図3の例においては、冷却器の受熱ブロック11の両面に主回路を構成する1〜6の素子を3個ずつ配置し、1つの冷却器と6個の素子で構成する図5に示す主回路を1つのユニットとした構造である。図3の方法においても、図4と同様に、コレクタ側導体7aとエミッタ側導体7bは必要な絶縁距離を確保し平行に配置する事で導体のインダクタンスを極力抑える構造としている。   In the example of FIG. 3, three elements 1 to 6 constituting the main circuit are arranged on both sides of the heat receiving block 11 of the cooler, and the cooler is composed of one cooler and six elements. The main circuit is a single unit. 3, the collector-side conductor 7a and the emitter-side conductor 7b have a structure that suppresses the inductance of the conductor as much as possible by securing a necessary insulation distance and arranging them in parallel.

尚、図3の方法の場合、冷却器の両面に配置されている事から表裏で対象な構造であり、コレクタ側、エミッタ側それぞれの導体長さも同じとする事が出来る為、インダクタンスの低減効果としては更に効果が期待できる。なお、このように、表裏で対象な構造とし、コレクタ側、エミッタ側それぞれの導体長さも同じとすることは、例えば、特許文献2に示されている。
特開平2−174564号公報 特開平7−131978号公報
In the case of the method of FIG. 3, since it is arranged on both sides of the cooler, it is a target structure on both sides, and the conductor length on the collector side and the emitter side can be made the same, so the inductance reduction effect As a result, further effects can be expected. For example, Patent Document 2 discloses that the structure is an object on the front and back sides and the conductor lengths on the collector side and the emitter side are the same.
JP-A-2-174564 Japanese Patent Laid-Open No. 7-131978

しかし、上記の従来例の図4の方法では、エミッタ側とコレクタ側の導体長さが同一では無いため単独配線となる部分があり、インダクタンス低減効果として最適な構造であるとは言えない。これは同一平面上に二次元的に導体を配置し、図5の主回路を構成しようとすると、導体の取り出し方向を変えても必ずコレクタ側導体7a,エミッタ側導体7bと、交流導体8とのいずれか同士が干渉してしまうことが要因となっている。また図4の方式の様に最小ユニットを複数個組み合わせて図5の主回路を構成する場合、分散されたそれぞれのユニット間を接続する導体が必要となる。従ってユニット間接続用の導体の延長分のインダクタンスが増加してしまうこと、また主回路構成によりユニットが増加すればするほど延長される導体分インダクタンスも増加してしまう事が問題となる。   However, in the conventional method shown in FIG. 4, the conductor lengths on the emitter side and the collector side are not the same, so there is a portion that becomes a single wiring, and it cannot be said that the structure is optimal as an inductance reduction effect. If the conductors are arranged two-dimensionally on the same plane and the main circuit shown in FIG. 5 is formed, the collector-side conductor 7a, the emitter-side conductor 7b, the AC conductor 8 One of these causes interference. Further, when the main circuit of FIG. 5 is configured by combining a plurality of minimum units as in the method of FIG. 4, a conductor for connecting the dispersed units is required. Therefore, there is a problem that the inductance of the extension of the conductor for connecting between the units increases, and that the conductor inductance which is extended as the number of units increases due to the main circuit configuration increases.

これに対し、図3の方法では、冷却器の受熱ブロック11の表裏にこれを配置する事で表裏の各アームが対称な構造となるので、図4の様な配線長さの不均衡が無い構造を実現する事が出来る。しかし、図3の方法においても、平行配置となる位置までの単独の配線部分は構造上不可欠であること、加えて素子発熱量増加に伴い受熱ブロック11が大型化すれば更に単独配線部が延長されインダクタンスは増加する。更には主回路の素子直列数が増加した場合、配線の総長さ及び単独部分の配線長は何れも増加し、本方法では配線インダクタンスの低減効果を得る事が困難となる。   On the other hand, in the method of FIG. 3, since the arms on the front and back are symmetrical by arranging them on the front and back of the heat receiving block 11 of the cooler, there is no wiring length imbalance as shown in FIG. The structure can be realized. However, in the method of FIG. 3 as well, the single wiring portion up to the position where it is arranged in parallel is indispensable in terms of structure, and in addition, if the heat receiving block 11 becomes larger as the element heat generation increases, the single wiring portion is further extended. Inductance increases. Furthermore, when the number of series elements in the main circuit increases, the total length of the wiring and the wiring length of the single part both increase, and it is difficult to obtain the effect of reducing the wiring inductance with this method.

インダクタンスの低減効果を得る為の基本的な対策としては、コレクタ側導体7aとエミッタ側導体7bとを極力近接させて平行に最短距離で配置する事が必要であるが、幾何学的な条件を加えると導体は極力薄い程それぞれ相対する導体の中心間距離が短くなる事もインダクタンス低減効果を得る条件となる。   As a basic measure for obtaining an inductance reduction effect, it is necessary to place the collector-side conductor 7a and the emitter-side conductor 7b as close as possible and arrange them in parallel at the shortest distance. In addition, as the conductor is as thin as possible, the distance between the centers of the opposing conductors becomes shorter, which is another condition for obtaining the inductance reduction effect.

ところで導体厚さを薄くした場合は、熱設計上所定定格電流値に対する導体の必要断面積を確保するには幅方向寸法を大型化する必要がある。この条件を図4に適用した場合は高さ方向の寸法が大型化してしまい、装置大型化は避けられない。同様に図3に適用した場合それぞれコレクタ側、エミッタ側端子に干渉してしまい必要な絶縁距離の確保との両立が出来ない。   When the conductor thickness is reduced, it is necessary to increase the size in the width direction in order to ensure the necessary cross-sectional area of the conductor for a predetermined rated current value in terms of thermal design. When this condition is applied to FIG. 4, the dimension in the height direction is increased, and an increase in the size of the apparatus is inevitable. Similarly, when applied to FIG. 3, it interferes with the collector-side and emitter-side terminals, respectively, so that it is impossible to achieve a necessary insulation distance.

そこで、本発明は上記問題を解決する為に、複数個のモジュール型半導体素子により構成される主回路をもつ電力変換装置において、モジュール型半導体素子の数量及び主回路構成に関わらず低い配線インダクタンス構造を有する電力変換装置を提供する事を目的とする。   Therefore, in order to solve the above problems, the present invention provides a power converter having a main circuit composed of a plurality of module type semiconductor elements, and has a low wiring inductance structure regardless of the number of module type semiconductor elements and the main circuit configuration. It aims at providing the power converter device which has.

上記目的を達成する為、請求項1記載の発明は、電力変換装置の主回路を構成するモジュール型半導体素子を半導体素子冷却器の受熱ブロック上に配置し、モジュール型半導体素子の第1および第2の端子のうちの少なくとも1つに取り付けた柱状の導体を介して、第1および第2の直流導体を第1および第2の端子にそれぞれ接続し、第1および第2の直流導体を上下に平行に配置したことを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, the module type semiconductor element constituting the main circuit of the power converter is arranged on the heat receiving block of the semiconductor element cooler, and the first and second module type semiconductor elements are arranged. The first and second DC conductors are respectively connected to the first and second terminals via a columnar conductor attached to at least one of the two terminals, and the first and second DC conductors are moved up and down. It is characterized by being arranged in parallel with.

請求項2記載の発明は、電力変換装置の主回路を構成するモジュール型半導体素子複数個を半導体素子冷却器の受熱ブロック上の片面に配置し、モジュール型半導体素子の複数の端子のうちの少なくとも1つに取り付けた柱状の導体を介して、複数の導体を複数の端子にそれぞれ接続し、ユニットもしくは主回路を、上下に平行に配置された複数の導体により接続したことを特徴とする。   According to a second aspect of the present invention, a plurality of module type semiconductor elements constituting a main circuit of a power conversion device are arranged on one side of a heat receiving block of a semiconductor element cooler, and at least of a plurality of terminals of the module type semiconductor element A plurality of conductors are connected to a plurality of terminals via columnar conductors attached to one unit, and a unit or a main circuit is connected by a plurality of conductors arranged in parallel vertically.

本発明によれば、電力変換装置の主回路を構成する導体を、主回路の構成如何に関わらず最小にする事が出来るので、配線インダクタンスが小さくスイッチング動作への悪影響を最小限に抑えた主回路を有する電力変換装置を提供することが出来る。   According to the present invention, the conductor constituting the main circuit of the power converter can be minimized regardless of the configuration of the main circuit. Therefore, the main wiring line inductance is small and the adverse effect on the switching operation is minimized. A power conversion device having a circuit can be provided.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の図において、同符号は同一部分または対応部分を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following drawings, the same symbols indicate the same or corresponding parts.

(第1の実施形態)
本発明の第1の実施形態について、図1を用いて説明する。なお、図1の上側の図は平面図、下側の図は正面図である。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG. 1 is a plan view, and the lower view is a front view.

図1に示すように、電力変換装置の主回路を構成するモジュール型半導体素子1を素子冷却用冷却器の受熱ブロック11上に配置し、モジュール型半導体素子1のコレクタ側端子C1に取り付けた柱状の接続導体9を介して直流導体であるコレクタ側導体7aが接続され、一方のエミッタ側端子E1に接続された直流導体であるエミッタ側導体7bがコレクタ側導体7aと必要な絶縁距離を保ち平行に配置される様に構成されている。   As shown in FIG. 1, the module type semiconductor element 1 constituting the main circuit of the power conversion device is arranged on the heat receiving block 11 of the element cooling cooler and attached to the collector side terminal C1 of the module type semiconductor element 1. The collector-side conductor 7a, which is a DC conductor, is connected via the connecting conductor 9, and the emitter-side conductor 7b, which is a DC conductor connected to one emitter-side terminal E1, is parallel to the collector-side conductor 7a while maintaining a necessary insulation distance. It is comprised so that it may be arrange | positioned.

この様にして構成された電力変換装置の主回路はユニットとして複数個組み合わせられる事で、図5に示す様な整流回路やインバーター回路を構成する。電力変換装置においてこれら複数個を組み合わせて主回路を構成する場合、装置外形の小型化を考慮した上で水平方向及び鉛直方向に複数配置する事が必要となるが、図1の様に半導体素子1の上下方向に一定の絶縁距離をもって配置される事で、上下左右どの方向に対してもそれぞれコレクタ側導体7a、エミッタ側導体7bが交差することなく接続する事が出来る。また2個以上で奇数個のユニット構成の場合でも上下方向に配置される事でそれぞれの導体が交差しないので、端子間を接続する導体長さを最短且つ均等とすることが可能となる。   A plurality of main circuits of the power conversion device configured as described above are combined as a unit, thereby forming a rectifier circuit or an inverter circuit as shown in FIG. When a main circuit is configured by combining a plurality of these in a power conversion device, it is necessary to arrange a plurality of devices in the horizontal direction and the vertical direction in consideration of downsizing of the outer shape of the device. 1, the collector-side conductor 7a and the emitter-side conductor 7b can be connected to each other without crossing in any of the upper, lower, left and right directions. Even in the case of two or more units and an odd number of unit configurations, the conductors do not cross each other by being arranged in the vertical direction, so that the conductor lengths connecting the terminals can be made the shortest and even.

また電力変換装置の定格電流の大型化に伴いコレクタ側7a及びエミッタ側導体7bの必要通電面積が増加し導体幅が大きくなっても、上下に平行に配置されており相対する極の端子に干渉しないので容易に幅方向寸法を大きくとる事が出来る事から、装置外形の変更をすることなく容易に装置定格の増加に対応する事が出来る。   Moreover, even if the required energization area of the collector side 7a and the emitter side conductor 7b increases and the conductor width increases as the rated current of the power converter increases, it interferes with the terminals of the opposite poles arranged in parallel vertically. Therefore, the size in the width direction can be easily increased, so that it is possible to easily cope with an increase in the device rating without changing the outer shape of the device.

尚、コレクタ側導体7a及びエミッタ側導体7bが上下に近接して平行に配置される事が特徴であり、上側と下側の位置関係を特定するものでは無い。またコレクタ側端子C1側にのみ柱状の接続導体9を取り付けるのでは無くエミッタ側端子E1に取り付ける場合、もしくは双方に高さ違いの導体を取り付ける場合もありこれらを限定するものでは無い。また柱状の接続導体は、直流導体が平行導体を構成する為のものであり円柱型、角柱型等その断面形状及び素子の端子部との接続方法を限定するものでは無い。   The collector-side conductor 7a and the emitter-side conductor 7b are characterized by being arranged close to each other in parallel in the vertical direction, and do not specify the positional relationship between the upper side and the lower side. In addition, the columnar connection conductor 9 is not attached only to the collector side terminal C1 side, but may be attached to the emitter side terminal E1, or conductors of different heights may be attached to both sides. The columnar connection conductor is used for the DC conductor to form a parallel conductor, and does not limit the cross-sectional shape such as a cylindrical shape or a prismatic shape and the connection method with the terminal portion of the element.

(第2の実施形態)
次に、本発明の第2の実施形態について、図2を用いて説明する。なお、図2の左上側の図は側面図、右上側の図は正面図、右下側の図はコレクタ側導体7aを取り除いた状態を示す正面図である。電力変換装置の主回路を構成するモジュール型半導体素子1〜6を素子冷却用冷却器の受熱ブロック11上に配置し、モジュール型素子4〜6のコレクタ側端子C4〜C6に取り付けた柱状の接続導体9を介して直流導体であるコレクタ側導体7aが接続され、一方のエミッタ側端子E4〜E6とモジュール型半導体素子1〜3のコレクタ側端子C1〜C3に接続した交流導体8、及び他方のエミッタ側導体E1〜E3に接続されたエミッタ側導体7b各々が上下方向に近接して平行に配置されている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 2 is a side view, the upper right view is a front view, and the lower right view is a front view showing a state in which the collector-side conductor 7a is removed. Module-type semiconductor elements 1 to 6 constituting the main circuit of the power conversion device are arranged on the heat receiving block 11 of the element cooling cooler and attached to the collector side terminals C4 to C6 of the module type elements 4 to 6 A collector-side conductor 7a, which is a DC conductor, is connected via a conductor 9, and the AC conductor 8 connected to one of the emitter-side terminals E4 to E6 and the collector-side terminals C1 to C3 of the module type semiconductor elements 1 to 3, and the other Each of the emitter-side conductors 7b connected to the emitter-side conductors E1 to E3 is disposed close to and parallel to each other in the vertical direction.

この様にして図5に示す様な電力変換装置である整流回路やインバーター回路を構成するものである。この様に構成することで交流側導体8、エミッタ側導体7a及びコレクタ側導体7bの何れも干渉する事無く、装置として最適な位置にてそれぞれの導体を取り出す事が出来る。また複数の分割ユニットでは無く1ユニットで構成することと、ブロック11の片側の面すなわち1平面にて図5の回路が構成出来ることから、ユニット間接続用の導体部分の長さを最小に抑える事が出来るので、配線インダクタンスを最小限にする事が出来る。   In this way, a rectifier circuit and an inverter circuit which are power converters as shown in FIG. 5 are configured. With this configuration, each conductor can be taken out at an optimum position as an apparatus without any interference from the AC side conductor 8, the emitter side conductor 7a, and the collector side conductor 7b. In addition, since the circuit of FIG. 5 can be configured on one side of the block 11, that is, one plane, instead of a plurality of divided units, the length of the conductor portion for connecting the units is minimized. Wiring inductance can be minimized.

また電力変換装置の定格電流の大型化に伴いコレクタ側導体7a、エミッタ側導体7b及び交流導体8の必要通電面積が増加しても上下に配置されており相対する極の端子に干渉しないので容易に幅方向寸法を大きくとる事が出来るので、装置外形の変更をすることなく容易に装置定格の増加に対応する事が出来る。   Moreover, even if the required energizing areas of the collector-side conductor 7a, the emitter-side conductor 7b, and the AC conductor 8 increase as the rated current of the power converter increases, it is easy because it is arranged vertically and does not interfere with the terminals of the opposite poles. In addition, since the size in the width direction can be increased, it is possible to easily cope with an increase in the device rating without changing the outer shape of the device.

尚、コレクタ側導体7a、エミッタ側導体7b及び交流導体8が上下に近接して平行に配置される事が特徴であり、上側と下側の位置関係を特定するものでは無い。またモジュール型半導体素子4〜6のコレクタ側端子C4〜C6側にのみ柱状の接続導体9を取り付けるのでは無くこれら以外の端子部分に取り付ける場合もありこれらを限定するものでは無い。また柱状の接続導体9は、コレクタ側導体7a、エミッタ側導体7b及び交流導体8が平行導体を構成する為のものであり円柱型、角柱型等その断面形状及び素子の端子部との接続方法を限定するものでは無い。   Note that the collector-side conductor 7a, the emitter-side conductor 7b, and the AC conductor 8 are arranged close to each other in parallel in the vertical direction, and do not specify the positional relationship between the upper side and the lower side. Further, the columnar connection conductor 9 is not attached only to the collector side terminals C4 to C6 side of the module type semiconductor elements 4 to 6, but may be attached to other terminal portions, and these are not limited. The columnar connection conductor 9 is for the collector-side conductor 7a, the emitter-side conductor 7b, and the AC conductor 8 to constitute a parallel conductor. It is not what limits.

本発明に係わる電力変換装置の第1の実施形態を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic block diagram which shows 1st Embodiment of the power converter device concerning this invention. 本発明に係わる電力変換装置の第2の実施形態を示す概略構成図。The schematic block diagram which shows 2nd Embodiment of the power converter device concerning this invention. 従来例の一例を示す概略構成図。The schematic block diagram which shows an example of a prior art example. 従来例の他の例を示す概略構成図。The schematic block diagram which shows the other example of a prior art example. 本発明の第1、第2の実施形態及び従来例の電力変換装置の回路図。The circuit diagram of the power converter device of the 1st, 2nd embodiment of this invention, and a prior art example.

符号の説明Explanation of symbols

1〜6…モジュール型半導体素子
7a…コレクタ側導体(直流導体)
7b…エミッタ側導体(直流導体)
8…交流導体
9…柱状接続導体
10…接続導体
11…冷却器受熱ブロック
C1〜C6…素子のコレクタ側端子
E1〜E6…素子のコレクタ側端子

1 to 6 Module type semiconductor element 7a Collector side conductor (DC conductor)
7b Emitter-side conductor (DC conductor)
DESCRIPTION OF SYMBOLS 8 ... AC conductor 9 ... Columnar connection conductor 10 ... Connection conductor 11 ... Cooler heat receiving block C1-C6 ... Element collector side terminal E1-E6 ... Element collector side terminal

Claims (2)

電力変換装置の主回路を構成するモジュール型半導体素子を半導体素子冷却器の受熱ブロック上に配置し、前記モジュール型半導体素子の第1および第2の端子のうちの少なくとも1つに取り付けた柱状の導体を介して、第1および第2の直流導体を前記第1および第2の端子にそれぞれ接続し、前記第1および第2の直流導体を上下に平行に配置したことを特徴とした電力変換装置。   A module type semiconductor element constituting the main circuit of the power conversion device is arranged on a heat receiving block of a semiconductor element cooler, and is attached to at least one of the first and second terminals of the module type semiconductor element. The first and second DC conductors are connected to the first and second terminals through conductors, respectively, and the first and second DC conductors are arranged in parallel vertically. apparatus. 電力変換装置の主回路を構成するモジュール型半導体素子複数個を半導体素子冷却器の受熱ブロック上の片面に配置し、前記モジュール型半導体素子の複数の端子のうちの少なくとも1つに取り付けた柱状の導体を介して、複数の導体を前記複数の端子にそれぞれ接続し、ユニットもしくは主回路を、上下に平行に配置された前記複数の導体により接続したことを特徴とした電力変換装置。

A plurality of module type semiconductor elements constituting the main circuit of the power conversion device are arranged on one side of the heat receiving block of the semiconductor element cooler and attached to at least one of the plurality of terminals of the module type semiconductor element. A power converter, wherein a plurality of conductors are connected to the plurality of terminals via conductors, and a unit or a main circuit is connected by the plurality of conductors arranged in parallel vertically.

JP2005194566A 2005-07-04 2005-07-04 Power converter Active JP4823591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194566A JP4823591B2 (en) 2005-07-04 2005-07-04 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194566A JP4823591B2 (en) 2005-07-04 2005-07-04 Power converter

Publications (2)

Publication Number Publication Date
JP2007014171A true JP2007014171A (en) 2007-01-18
JP4823591B2 JP4823591B2 (en) 2011-11-24

Family

ID=37751884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194566A Active JP4823591B2 (en) 2005-07-04 2005-07-04 Power converter

Country Status (1)

Country Link
JP (1) JP4823591B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174564A (en) * 1988-12-26 1990-07-05 Toshiba Corp Main circuitry for inverter
JPH07131978A (en) * 1993-11-05 1995-05-19 Nissan Motor Co Ltd Power converter
JPH11275867A (en) * 1998-03-18 1999-10-08 Shinko Electric Co Ltd Wiring method for output circuit of inverter device
JP2000350475A (en) * 1999-05-31 2000-12-15 Hitachi Ltd Semiconductor circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174564A (en) * 1988-12-26 1990-07-05 Toshiba Corp Main circuitry for inverter
JPH07131978A (en) * 1993-11-05 1995-05-19 Nissan Motor Co Ltd Power converter
JPH11275867A (en) * 1998-03-18 1999-10-08 Shinko Electric Co Ltd Wiring method for output circuit of inverter device
JP2000350475A (en) * 1999-05-31 2000-12-15 Hitachi Ltd Semiconductor circuit

Also Published As

Publication number Publication date
JP4823591B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
AU2007232027B2 (en) Power conversion device and fabricating method for the same
JP6160780B2 (en) 3-level power converter
JP2019118164A (en) Power conversion system
JP5354083B2 (en) Semiconductor device
JP2011029262A (en) Power converter
JP6429721B2 (en) Power converter and railway vehicle
JP2008294069A (en) Semiconductor module and inverter
JP2018190901A (en) Electric power conversion device
JP2016213945A (en) Electric power conversion system and railway vehicle
JP2014036509A (en) Three-level power conversion device
JP5438752B2 (en) Semiconductor stack and power conversion device using the same
EP2034602A1 (en) Power converter
JP2007043064A (en) Cooling apparatus for power module
JP7375797B2 (en) power converter
JP6784197B2 (en) Power converter
JP2019221048A (en) Electric power conversion device
JP2009239995A (en) Power conversion device
JP4823591B2 (en) Power converter
JP4697025B2 (en) Power semiconductor module
JP4664104B2 (en) Power converter
JP2000023462A (en) Main circuit structure of power converter
JP5743811B2 (en) Power converter
JP3642548B2 (en) Power converter
JP5926835B2 (en) Power converter
JP2017050498A (en) Power semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250