JP2007013037A - Method of manufacturing reverse blocking insulated-gate bipolar transistor - Google Patents

Method of manufacturing reverse blocking insulated-gate bipolar transistor Download PDF

Info

Publication number
JP2007013037A
JP2007013037A JP2005194936A JP2005194936A JP2007013037A JP 2007013037 A JP2007013037 A JP 2007013037A JP 2005194936 A JP2005194936 A JP 2005194936A JP 2005194936 A JP2005194936 A JP 2005194936A JP 2007013037 A JP2007013037 A JP 2007013037A
Authority
JP
Japan
Prior art keywords
layer
diffusion
trench
forming
reverse blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005194936A
Other languages
Japanese (ja)
Other versions
JP5290491B2 (en
Inventor
Shuzo Waratani
修三 藁谷
Kunio Mochizuki
邦雄 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005194936A priority Critical patent/JP5290491B2/en
Publication of JP2007013037A publication Critical patent/JP2007013037A/en
Application granted granted Critical
Publication of JP5290491B2 publication Critical patent/JP5290491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a reverse blocking insulated-gate bipolar transistor having low ON-voltage and low switching loss characteristics whereby a high temperature heat treatment time under atmosphere of an oxygen required for forming an isolation layer can considerably be reduced, and the isolation layer can be formed without newly bringing in oxygen working as a cause to variations in the impurity concentration profile of a drift layer. <P>SOLUTION: The method of manufacturing the reverse blocking insulated-gate bipolar transistor includes a step of forming a second conductive isolation layer surrounding a front side active region acting like an active region, on the surface of the drift layer of a first conductive drift layer, by forming a gas phase diffusion layer on the inner surface of trenches formed in advance at a forming positions of the isolation layer, and thereafter by depositing and growing a second conductive epitaxial layer into the trenches. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力変換装置などに使用されるパワー半導体装置に係り、特にはマトリックスコンバータなどの用途に必要な逆耐圧を持った逆阻止IGBT(絶縁ゲート型バイポーラトランジスタ)の製造方法に関する。   The present invention relates to a power semiconductor device used for a power conversion device or the like, and more particularly to a method for manufacturing a reverse blocking IGBT (insulated gate bipolar transistor) having a reverse withstand voltage required for applications such as a matrix converter.

図21に示したような従来のプレーナMOS構造を有するIGBT(絶縁ゲート型バイポーラトランジスタ)は、主要な用途であるインバータ回路やチョパー回路では、直流電源下で使用されるので、耐圧については順方向の耐圧さえ確保できれば問題はなく、素子設計の段階から逆方向耐圧確保を考慮せずに作られていた。
しかし、最近、半導体電力変換装置において、AC(交流)/AC変換、AC/DC(直流)変換、DC/AC変換を行うため、直接リンク形変換回路等のマトリクスコンバータの用途に双方向スイッチング素子を使用することにより、回路の小型化、軽量化、高効率化、高速応答化および低コスト化を図るようになった。そこで、前記双方向スイッチング素子をIGBTの逆並列接続として構成するために、有効な逆耐圧を持ったIGBTが要望されるようになった。その他、いっそうの低オン電圧、低スイッチング損失特性も当然ながら求められる。
An IGBT (insulated gate bipolar transistor) having a conventional planar MOS structure as shown in FIG. 21 is used under a direct current power source in an inverter circuit or a chopper circuit which is a main application. As long as the breakdown voltage can be secured, there is no problem, and it has been made without considering the reverse breakdown voltage securing from the element design stage.
However, recently, in a semiconductor power converter, in order to perform AC (alternating current) / AC conversion, AC / DC (direct current) conversion, and DC / AC conversion, a bidirectional switching element is used for a matrix converter such as a direct link type conversion circuit. By using the circuit, the circuit has been made smaller, lighter, more efficient, faster responsive, and lower in cost. Therefore, in order to configure the bidirectional switching element as an antiparallel connection of the IGBT, an IGBT having an effective reverse breakdown voltage has been demanded. In addition, naturally, further low on-voltage and low switching loss characteristics are also required.

従来のIGBT(図21)は、前述のように、有効な逆阻止能力(逆耐圧)を確保するような素子設計および製造方法がとられていないので、逆耐圧を確保するためには直列にダイオードを接続して変換装置を構成する必要がある。そうすると、ダイオードも含めた発生損失が大きくなり、変換装置の変換効率の低下を招く。さらに、素子点数が多くなって変換装置の小型化、軽量化、低コスト化が困難となる。これらの点に、逆阻止能力を持ったIGBTの存在意義が生じる。
前記図21は、前述の逆耐圧を実質的に有しない従来のIGBTの要部断面図である。このIGBT200は逆バイアスされないことを前提としたデバイスとして作製されているので、エミッタ電極104をグラウンド電位とし、コレクタ電極105を負電位とする逆バイアスを加えた場合に電界が集中しやすい符号A(図21)で示すコレクタ接合102表面近傍は、ダイシング等による機械的な切断歪を備えたままの切断部103で何らの処理もされておらず、当然ながら十分な逆耐圧は得られない。
As described above, the conventional IGBT (FIG. 21) does not employ an element design and manufacturing method for ensuring an effective reverse blocking capability (reverse breakdown voltage). It is necessary to configure a conversion device by connecting a diode. If it does so, the generation | occurrence | production loss including a diode will become large and will cause the fall of the conversion efficiency of a converter. Furthermore, the number of elements increases, making it difficult to reduce the size, weight, and cost of the conversion device. In these respects, the existence significance of the IGBT having the reverse blocking ability arises.
FIG. 21 is a cross-sectional view of a main part of a conventional IGBT that does not substantially have the above-described reverse breakdown voltage. Since this IGBT 200 is manufactured as a device on the premise that it is not reverse-biased, a sign A () in which the electric field tends to concentrate when reverse bias is applied with the emitter electrode 104 as the ground potential and the collector electrode 105 as the negative potential. In the vicinity of the surface of the collector junction 102 shown in FIG. 21), no processing is performed by the cutting portion 103 that is still provided with mechanical cutting strain due to dicing or the like, and of course, sufficient reverse breakdown voltage cannot be obtained.

図22は、従来の低オン電圧、低スイッチング損失特性も備える逆阻止IGBT300を示す要部断面図である。この逆阻止IGBT300では、前述の切断歪による接合への影響を無くして逆耐圧を有効にするための分離層107を表面(片面)からの拡散のみによって形成したIGBTである。このIGBTを双方向耐圧600Vのデバイスとする場合、仕上がリ厚さ100μm程度の薄いNPT(Non Punch Through)ウエハ(耐圧1200Vではウエハ厚200μm程度)とすることができる。このIGBTでは、さらにコレクタ層106を薄くし、その不純物濃度を低く制御することにより、オン電圧特性とターンオフ損失に関するトレードオフ関係を解消した逆阻止IGBTとすることができるメリットがある(特願2005−000147号明細書の背景技術の項および図5参照)。   FIG. 22 is a cross-sectional view of a main part showing a reverse blocking IGBT 300 having a conventional low on-voltage and low switching loss characteristics. The reverse blocking IGBT 300 is an IGBT in which the separation layer 107 for making the reverse breakdown voltage effective without the influence of the above-described cutting strain on the junction is formed only by diffusion from the surface (one side). When this IGBT is a device having a bidirectional withstand voltage of 600V, the finish can be a thin NPT (Non Punch Through) wafer with a thickness of about 100 μm (wafer thickness of about 200 μm at a withstand voltage of 1200 V). This IGBT has an advantage that a reverse blocking IGBT in which the trade-off relationship between the on-voltage characteristics and the turn-off loss is eliminated can be obtained by further reducing the thickness of the collector layer 106 and controlling the impurity concentration thereof (Japanese Patent Application No. 2005). (See Background Art section of -000147 and FIG. 5).

しかし、前記図22に示す構造の逆阻止IGBT300の場合、前記分離層107の形成については、初期の厚いウエハに表面(片面)からのボロン拡散により、120μm程度(逆阻止耐圧600V素子用ウエハの仕上がり厚さ100μmの場合)の深さの分離層107を作るために、ウエハ表面にマスク酸化膜の開口部として形成される分離層幅(面に平行な方向)を100μmとすると、熱拡散によって横方向(面に平行な方向)にも約100μm程度、両側に拡がるために最終的には幅が300μmにもなり、チップ面積の利用効率が悪いだけでなく、コスト面でも不利益となる。仕上がりウエハ(基板)厚が200μm(耐圧1200V)の場合は、さらに分離層107は大きく拡がって、チップ面積の利用効率が悪くなるだけでなく、拡散時間も極めて長時間になるので、生産性も悪くなり、実用性が低下する。   However, in the case of the reverse blocking IGBT 300 having the structure shown in FIG. 22, the separation layer 107 is formed by the diffusion of boron from the surface (one side) to an initial thick wafer (about 120 μm). In order to make a separation layer 107 having a depth of 100 μm (finished thickness), if the separation layer width (in the direction parallel to the surface) formed as an opening of the mask oxide film on the wafer surface is 100 μm, thermal diffusion causes In the horizontal direction (the direction parallel to the surface), the width is about 100 μm, and the width is eventually 300 μm. Not only the chip area utilization efficiency is bad, but also the cost is disadvantageous. When the finished wafer (substrate) thickness is 200 μm (withstand voltage 1200V), the separation layer 107 further expands greatly, not only the chip area utilization efficiency deteriorates, but also the diffusion time becomes extremely long, so the productivity is also high. It becomes worse and the practicality decreases.

一方、前述のように片面拡散による分離層形成ではなく、両面からの拡散により分離層を形成する技術も知られており、この方法によれば、拡散時間を一気に半分にすることができるが(逆に言えば、半分にしかならないとも言える)、低オン電圧、低スイッチング損失特性を得るには、半導体基板(ウエハ)の厚さを分離拡散前の段階から、仕上がり厚さの薄いウエハとして工程に流す必要があるので、ウエハ割れが増大し、結果的にコストアップとなってしまう難点がある。
さらに、前記特願2005−000147号明細書の背景技術の項および図5に示される前記分離層を形成するための表面(片面)からのボロン拡散は、基板表面荒れを抑制するために、酸素ガスを含む雰囲気中で行なわれる(この点は前述の両面からの分離拡散方法も同じ)。ただし、片面からの分離拡散方法は特に拡散時間が両面からの拡散に比して約2倍と長いので、特に高濃度の酸素イオンがウエハ中に取り込まれる。取り込まれた酸素は400℃〜500℃の熱処理を受けるとドナー化することが分かっている。このドナー化は拡散プロファイルの変動をもたらすので、大きな問題となる。
On the other hand, a technique for forming a separation layer by diffusion from both sides instead of forming a separation layer by single-sided diffusion as described above is also known. According to this method, the diffusion time can be halved at once ( In other words, it can be said that it is only half), and in order to obtain low on-voltage and low switching loss characteristics, the thickness of the semiconductor substrate (wafer) is changed from the stage before separation diffusion to a wafer with a thin finished thickness. Therefore, there is a problem that wafer cracking increases, resulting in an increase in cost.
Further, boron diffusion from the surface (one side) for forming the separation layer shown in the background art section of the Japanese Patent Application No. 2005-000147 and FIG. It is performed in an atmosphere containing gas (this is also the same as the above-described separation and diffusion method from both sides). However, the separation diffusion method from one side particularly has a diffusion time that is about twice as long as the diffusion from both sides, so that a particularly high concentration of oxygen ions is taken into the wafer. It has been found that the incorporated oxygen is converted into a donor when subjected to a heat treatment at 400 ° C. to 500 ° C. This donorization is a major problem because it causes fluctuations in the diffusion profile.

このドナー化の問題とその対策について詳述すると、前記逆阻止IGBTの製造工程では、500μm以上の厚いn型半導体基板(ウエハ)を工程に投入し、高温長時間を要する分離(拡散)層形成と表面側MOS構造など活性領域の形成工程終了後、前記分離層が裏面に露出するように裏面研削した後に、裏面側にボロンのイオン注入とアニール処理を施すことによって裏面側のpコレクタ層を形成する工程を必要とする。このpコレクタ層の形成工程では、表面側のアルミニウム電極等の表面構造に損傷(500℃以上で発生する)を与えないように、通常400℃〜500℃の範囲のアニール熱処理が行われる。しかし、この400℃〜500℃の熱履歴によって、前述のように酸素のドナー化が進み、ドリフト層のプロファイルが大きく変動するので、前述のように問題となる。従って、前述の酸素のドナー化を避けるためには、裏面アニール温度を400℃以下とせざるを得ない。しかし、このような低温アニールでは、打ち込まれたボロンイオンが十分に活性化されず、またイオンの打ち込みによる結晶欠陥も十分に修復されないため、逆バイアス印加時に大きな漏れ電流が生じるという問題が発生する。しかも400℃以下の低温アニールであっても、取り込まれる酸素の一部はドナー化するので、ドリフト層のプロファイルも、前述よりは少ないとしても変動することを完全には抑えられない。そのため、デバイス設計時に、予め、前記プロファイルの変動を見込んでおく必要があり、デバイス設計を難しくする原因の一つであるプロファイルの変動要因を完全には排除できない。このため、低オン電圧、低スイッチング損失特性を備える逆阻止IGBTの製造技術の一つとして、できる限りドリフト層に高濃度の酸素が取り込まれない分離層の形成方法が望まれる。   This donor problem and countermeasures will be described in detail. In the reverse blocking IGBT manufacturing process, a thick n-type semiconductor substrate (wafer) having a thickness of 500 μm or more is put into the process to form a separation (diffusion) layer that requires a high temperature and a long time. After the formation of the active region such as the surface side MOS structure, after the back surface is ground so that the isolation layer is exposed on the back surface, boron ion implantation and annealing treatment are performed on the back surface side to form a p collector layer on the back surface side. A process of forming is required. In this step of forming the p collector layer, annealing heat treatment is usually performed in the range of 400 ° C. to 500 ° C. so as not to damage the surface structure such as the aluminum electrode on the surface side (occurring at 500 ° C. or higher). However, this thermal history at 400 ° C. to 500 ° C. causes oxygen donors to progress as described above, and the drift layer profile varies greatly. Therefore, in order to avoid the aforementioned oxygen donor formation, the back surface annealing temperature must be 400 ° C. or lower. However, in such low-temperature annealing, implanted boron ions are not sufficiently activated, and crystal defects due to ion implantation are not sufficiently repaired, which causes a problem that a large leakage current occurs when a reverse bias is applied. . Moreover, even if the annealing is performed at a low temperature of 400 ° C. or lower, a part of the incorporated oxygen is converted into a donor, so that even if the profile of the drift layer is smaller than the above, fluctuations cannot be completely suppressed. Therefore, it is necessary to anticipate the variation of the profile in advance at the time of device design, and the variation factor of the profile, which is one of the causes that make the device design difficult, cannot be completely eliminated. For this reason, a method for forming a separation layer in which as high a concentration of oxygen as possible is not taken into the drift layer is desired as one of techniques for manufacturing a reverse blocking IGBT having low on-voltage and low switching loss characteristics.

そのような高濃度酸素が取り込まれない分離層の形成方法の一つとして、ウエハの分離層を形成する位置に合わせて、絶縁膜とフォトレジストをマスクとして、予めトレンチを形成しておき、トレンチ内をボロンドープされたエピタキシャルシリコンで埋め、活性領域内の拡散層(機能領域)の形成のために必要な熱処理により、トレンチの周囲にも同時にボロン拡散層を形成するようにして、分離層の形成のためだけの高温の拡散時間を実質的に無くすようにした発明が出願されている(特願2005−000147号明細書の特許請求の範囲)。   As one method for forming such a separation layer from which high-concentration oxygen is not taken in, a trench is formed in advance using an insulating film and a photoresist as a mask in accordance with the position where the separation layer of the wafer is formed. The isolation layer is formed by filling the inside with boron-doped epitaxial silicon and forming the boron diffusion layer around the trench at the same time by the heat treatment necessary to form the diffusion layer (functional region) in the active region. An invention has been filed in which the high-temperature diffusion time only for the purpose is substantially eliminated (Claims of Japanese Patent Application No. 2005-000147).

しかしながら、前記特願2005−000147号明細書に記載の、分離層用トレンチ形成後にトレンチ内をp型エピタキシャルシリコンで埋めて、その後の活性領域内のMOS構造の拡散領域の形成の際に必要な熱処理により、同時に前記トレンチ周囲にもp型エピタキシャルシリコンを拡散源とする拡散層を形成して分離層とする方法は、トレンチの周囲に形成される拡散層の広がりを均一にコントロールできず、その結果、逆阻止時に分離層側からの空乏層が部分的に異常に拡がることがあり、それに起因する電気特性不良を防ぐ必要からデバイスの微細化設計を困難にさせるなどの問題が見られる。
本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、分離層形成に必要な酸素雰囲気中での高温熱処理時間を大幅に短縮でき、ドリフト層の不純物濃度プロファイル変動の原因となる酸素のドナー化を防ぐために、実質的に新たに酸素を取り込むことなく分離層を形成できる低オン電圧、低スイッチング損失特性を備える逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供することである。
However, as described in Japanese Patent Application No. 2005-000147, it is necessary for filling the trench with p-type epitaxial silicon after the formation of the isolation layer trench and forming a diffusion region of the MOS structure in the active region thereafter. The method of forming a diffusion layer using p-type epitaxial silicon as a diffusion source at the same time around the trench by heat treatment cannot uniformly control the spread of the diffusion layer formed around the trench. As a result, the depletion layer from the separation layer side may partially expand abnormally at the time of reverse blocking, and problems such as making device miniaturization difficult due to the necessity of preventing electrical characteristic defects resulting from it are observed.
The present invention has been made in view of the above points, and an object of the present invention is to greatly shorten the high-temperature heat treatment time in an oxygen atmosphere necessary for forming the separation layer, and to change the impurity concentration profile of the drift layer. In order to prevent oxygen from becoming a source of oxygen, a method of manufacturing a reverse blocking insulated gate bipolar transistor having a low on-voltage and low switching loss characteristics that can form a separation layer without substantially taking in new oxygen is provided. It is to be.

特許請求の範囲の請求項1記載の本発明によれば、第一導電型のドリフト層の表面に、活性領域となる表面側MOS領域を取り囲む第二導電型の分離層が、該分離層の形成位置に予めトレンチを形成し、エッチングマスクとして用いた酸化膜を拡散マスクとして前記トレンチ内表面に拡散層を形成した後、前記トレンチ内に第二導電型のエピタキシャル層を堆積成長させ、前記活性領域内に選択的に形成される第二導電型のベース領域と該ベース領域の表面に選択的に形成される第一導電型のエミッタ領域と前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域表面にゲート絶縁膜を介して形成されるゲート電極とを有する前記表面側MOS領域を形成した後、前記ドリフト層の裏面側を前記分離層が露出するまで研削し、研削後のドリフト層の裏面に、露出した前記分離層と周辺で接続される第二導電型コレクタ層を形成する逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法とすることにより、前記目的は達成される。   According to the first aspect of the present invention, the second conductivity type separation layer surrounding the surface side MOS region serving as the active region is formed on the surface of the first conductivity type drift layer. A trench is previously formed at the formation position, a diffusion layer is formed on the inner surface of the trench using an oxide film used as an etching mask as a diffusion mask, and then an epitaxial layer of a second conductivity type is deposited and grown in the trench, and the active The second conductivity type base region selectively formed in the region, the first conductivity type emitter region selectively formed on the surface of the base region, the drift layer, and the emitter region sandwiched between After forming the surface side MOS region having a gate electrode formed on the surface of the base region through a gate insulating film, the back side of the drift layer is ground until the isolation layer is exposed, and after grinding The back surface of the drift layer, by a method for manufacturing a reverse blocking insulated gate bipolar transistors forming a second conductivity type collector layer connected with the exposed the separation layer and surrounding the object is achieved.

特許請求の範囲の請求項2記載の本発明によれば、第二導電型半導体基板に第一導電型のドリフト層をエピタキシャル成長により形成し、前記ドリフト層表面から前記半導体基板に達する第二導電型の分離層が、該分離層の形成位置に予めトレンチを形成し、エッチングマスクとして用いた酸化膜を拡散マスクとして前記トレンチ内表面に気相拡散層を形成した後、トレンチ内に第二導電型のエピタキシャル層を堆積成長させ、前記活性領域内に選択的に形成される第二導電型のベース領域と該ベース領域の表面に選択的に形成される第一導電型のエミッタ領域と前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域表面にゲート絶縁膜を介して形成されるゲート電極とを有する表面側MOS領域を形成する逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法とすることにより、前記本発明の目的は達成される。   According to the second aspect of the present invention, the first conductivity type drift layer is formed on the second conductivity type semiconductor substrate by epitaxial growth, and the second conductivity type reaches the semiconductor substrate from the drift layer surface. After forming a trench in advance at the formation position of the isolation layer and forming a gas phase diffusion layer on the inner surface of the trench using the oxide film used as an etching mask as a diffusion mask, the second conductivity type is formed in the trench. A second conductive type base region selectively formed in the active region, a first conductive type emitter region selectively formed on the surface of the base region, and the drift layer. And a gate electrode formed on the surface of the base region sandwiched between the emitter region and a gate insulating film to form a surface side MOS region having a reverse blocking type insulated gate type With the manufacturing method of Lee polar transistor, the object of the present invention can be achieved.

特許請求の範囲の請求項3記載の本発明によれば、分離層形成用トレンチ内表面に形成される拡散層が気相拡散法により形成される特許請求の範囲の請求項1または2記載の逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法とすることが好ましい。
特許請求の範囲の請求項4記載の本発明によれば、分離層形成用トレンチ内表面に形成される拡散層が瞬間気相拡散法により形成される特許請求の範囲の請求項3記載の逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法とすることが望ましい。
According to the third aspect of the present invention, the diffusion layer formed on the inner surface of the isolation layer forming trench is formed by a vapor phase diffusion method. A method of manufacturing a reverse blocking insulated gate bipolar transistor is preferred.
According to the present invention as set forth in claim 4, the inverse of claim 3 according to claim 3, wherein the diffusion layer formed on the inner surface of the isolation layer forming trench is formed by an instantaneous vapor phase diffusion method. It is desirable to have a method of manufacturing a blocking insulated gate bipolar transistor.

本発明によれば、分離層形成に必要な酸素雰囲気中で高温熱処理時間を大幅に短縮でき、ドリフト層の不純物濃度プロファイル変動の原因となる酸素のドナー化を防ぐために、実質的に新たに酸素を取り込むことなく分離層を形成できる逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法を提供できる。   According to the present invention, the high-temperature heat treatment time can be significantly shortened in the oxygen atmosphere necessary for forming the separation layer, and oxygen is effectively added to prevent oxygen from becoming a donor that causes fluctuations in the impurity concentration profile of the drift layer. It is possible to provide a method of manufacturing a reverse blocking insulated gate bipolar transistor capable of forming a separation layer without incorporating a gate electrode.

図1〜図12は本発明の実施例1にかかる逆阻止型絶縁ゲート形バイポーラトランジスタ(逆阻止IGBT)の製造方法を示す半導体基板の要部断面図である。図13〜図18は本発明の実施例2にかかる逆阻止IGBTの製造方法を示す半導体基板の要部断面図である。図19は一般的なプレーナ型表面側MOS構造を示す断面図、図20は一般的なトレンチ型表面側MOS構造を示す断面図である。   1 to 12 are main-portion cross-sectional views of a semiconductor substrate showing a method of manufacturing a reverse blocking insulated gate bipolar transistor (reverse blocking IGBT) according to a first embodiment of the present invention. 13 to 18 are cross-sectional views of main parts of a semiconductor substrate showing a method of manufacturing a reverse blocking IGBT according to Embodiment 2 of the present invention. FIG. 19 is a sectional view showing a general planar type surface side MOS structure, and FIG. 20 is a sectional view showing a general trench type surface side MOS structure.

以下、本発明にかかる逆阻止型絶縁ゲート形バイポーラトランジスタ(逆阻止IGBT)の製造方法について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。以下説明する実施例1は特許請求の範囲の請求項1記載の発明にかかるものである。
図1に示すように、不純物濃度1.5×1014cm−3(約30Ωcm)のn型シリコン基板1を準備する。このシリコン基板1の表面に、後の工程で選択的にエピタキシャル成長させる場合のマスクとなるシリコン酸化膜2を熱酸化法やCVD法により、厚さ1.0μmに形成する。次に分離層の形成位置に前記シリコン酸化膜2の開口部を形成するために、所定のフォトリソグラフィ技術により前記開口部に相当するフォトレジストのパターン形成をする。この際、前記フォトレジスト膜6のパターンをトレンチエッチングのマスクとしても使うため、フォトレジスト膜6の厚さを10μm程度に厚くしておくことが望ましい。図2に示すように、前記酸化膜6に開口部8をエッチング形成した後、前記フォトレジスト膜6をそのままにして、図3に示すように、異方性エッチングによりトレンチ9を形成する。不純物濃度1.5×1014cm−3(約30Ωcm)のn型シリコン基板1を用いて、耐圧600Vの逆阻止IGBTを製造する場合、前記トレンチ9の深さは100μm、幅は10μmが適当である。また、たとえば、抵抗率約60〜80Ωcmのn型シリコン基板1を用いて、耐圧1200Vの逆阻止IGBTを製造する場合は、トレンチの深さ200μm、幅20μmとする。前記トレンチ9を形成する異方性エッチングはBoshプロセスにより行う。エッチングガスとしてSFを用い、トレンチ9形成中の側壁保護膜形成のためにCガスを供給する。このようなBoshプロセスによる異方性エッチングを行うことにより、フォトレジストとSiの選択比は50前後になり、たとえば、200μmのエッチングを行う場合でも、充分にマージンをもって行える。トレンチ9を形成した後、フォトレジスト6の剥離を行う(図4)。
Hereinafter, a manufacturing method of a reverse blocking insulated gate bipolar transistor (reverse blocking IGBT) according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist. Example 1 described below is according to the invention described in claim 1 of the scope of claims.
As shown in FIG. 1, an n-type silicon substrate 1 having an impurity concentration of 1.5 × 10 14 cm −3 (about 30 Ωcm) is prepared. A silicon oxide film 2 serving as a mask for selective epitaxial growth in a later step is formed on the surface of the silicon substrate 1 to a thickness of 1.0 μm by a thermal oxidation method or a CVD method. Next, in order to form the opening of the silicon oxide film 2 at the formation position of the isolation layer, a photoresist pattern corresponding to the opening is formed by a predetermined photolithography technique. At this time, since the pattern of the photoresist film 6 is also used as a mask for trench etching, it is desirable that the thickness of the photoresist film 6 is increased to about 10 μm. As shown in FIG. 2, after the opening 8 is formed in the oxide film 6 by etching, the trench 9 is formed by anisotropic etching as shown in FIG. 3 while leaving the photoresist film 6 as it is. When manufacturing a reverse blocking IGBT having a withstand voltage of 600 V using an n-type silicon substrate 1 with an impurity concentration of 1.5 × 10 14 cm −3 (about 30 Ωcm), the depth of the trench 9 is suitably 100 μm and the width is 10 μm. It is. For example, in the case of manufacturing a reverse blocking IGBT having a breakdown voltage of 1200 V using an n-type silicon substrate 1 having a resistivity of about 60 to 80 Ωcm, the trench has a depth of 200 μm and a width of 20 μm. The anisotropic etching for forming the trench 9 is performed by a Bosh process. SF 6 is used as an etching gas, and C 2 H 8 gas is supplied to form a sidewall protective film during the formation of the trench 9. By performing such anisotropic etching by the Bosh process, the selectivity ratio between the photoresist and Si is about 50. For example, even when etching of 200 μm is performed, a sufficient margin can be obtained. After the trench 9 is formed, the photoresist 6 is peeled off (FIG. 4).

次に、前記フォトレジスト6の剥離後のシリコン基板1を図示しない拡散炉に入れ、p型不純物としての拡散源であるジボラン(B)などのガスを前記拡散炉内に供給してシリコン基板1面に吸着させ基板内部に拡散させる。たとえば、800℃に保持した拡散炉中のシリコン基板1にジボランガスを供給すると、ジボランはボロンと水素に分離し、ボロンはシリコン基板1の表面に堆積すると同時に、酸化膜2によりマスクされていないシリコン基板1中に拡散される。ボロン濃度は拡散源としてのジボランの流量と時間、熱処理条件で制御する(瞬間気相拡散)。この方法により、シリコン基板1表面のボロン濃度として1×1020cm−3程度の高濃度を確保しながら、極めて浅い拡散層10をトレンチ9内面のみに形成することができる(図5)。この方法によるボロン拡散層10はトレンチ9の周辺のみに数μm以下の均一、高濃度で、浅い拡散層とすることができるので、素子パターンの微細化にも有効である。また、この瞬間気相拡散方法は、縦型炉でもシリコン基板をバッチ処理することができるため、枚葉処理のイオン注入法などに比べて、拡散工程における作業時間を大幅に削減できる。 Next, the silicon substrate 1 after the removal of the photoresist 6 is put into a diffusion furnace (not shown), and a gas such as diborane (B 2 H 6 ) as a diffusion source as a p-type impurity is supplied into the diffusion furnace. It is adsorbed on the surface of the silicon substrate and diffused inside the substrate. For example, when diborane gas is supplied to the silicon substrate 1 in the diffusion furnace maintained at 800 ° C., the diborane is separated into boron and hydrogen, and boron is deposited on the surface of the silicon substrate 1 and at the same time silicon that is not masked by the oxide film 2. It is diffused into the substrate 1. The boron concentration is controlled by the flow rate and time of diborane as a diffusion source, and heat treatment conditions (instantaneous gas phase diffusion). By this method, the extremely shallow diffusion layer 10 can be formed only on the inner surface of the trench 9 while ensuring a high boron concentration of about 1 × 10 20 cm −3 on the surface of the silicon substrate 1 (FIG. 5). Since the boron diffusion layer 10 by this method can be a uniform, high concentration and shallow diffusion layer of several μm or less only around the periphery of the trench 9, it is also effective for miniaturization of element patterns. In addition, since the instantaneous vapor phase diffusion method can batch-process silicon substrates even in a vertical furnace, the working time in the diffusion process can be greatly reduced as compared with a single wafer processing ion implantation method or the like.

次に、図6に示すように、トレンチ9内に不純物濃度1×1017cm−3以上の高濃度p型エピタキシャルシリコン層11を、シリコン基板面内のすべてのトレンチ9が完全に埋まるまで成長させる。このとき、エピタキシャル成長には選択性があるので酸化膜2の表面に前記エピタキシャルシリコン層11は堆積しない。その後、図7に示すように、酸化膜2を除去すると共にシリコン基板1表面の平坦化を行う。
その後の工程は、前記トレンチ9が無いプレーナ型IGBTと同様のプロセスで、前記トレンチ9に埋め込まれた前記エピタキシャルシリコン層11で取り囲まれたシリコン基板1表面にpベース領域、ゲート酸化膜、ゲート電極、nエミッタ領域、エミッタ電極などの活性領域12を形成して表面側MOS構造を完成させる。この表面側MOS構造が形成される際の拡散熱処理により、前記エピタキシャルシリコン層11と拡散層10は分離層13となる(図8)。前記活性領域12の構造は図19に示すような平面型のMOS構造であっても、図20に示すトレンチMOS構造であってもよい。前述のような活性領域12の形成時の熱処理、たとえば、pベース領域の拡散形成のための1100℃で数時間の熱処理により、前述のエピタキシャルシリコン層11およびその周囲の浅い高濃度拡散層10はアニールおよびドライブされ、分離層13として機能する。しかし、この分離層の形成の際に、加えられる熱処理の温度および時間は、シリコン基板表面からの拡散のみによる従来の分離層形成に要する温度、時間に比べれば、無視できるほどであるので、取り込まれる酸素はほとんど無い。
Next, as shown in FIG. 6, a high concentration p-type epitaxial silicon layer 11 having an impurity concentration of 1 × 10 17 cm −3 or more is grown in the trench 9 until all the trenches 9 in the silicon substrate surface are completely filled. Let At this time, since epitaxial growth has selectivity, the epitaxial silicon layer 11 is not deposited on the surface of the oxide film 2. Thereafter, as shown in FIG. 7, the oxide film 2 is removed and the surface of the silicon substrate 1 is planarized.
Subsequent processes are the same process as the planar type IGBT without the trench 9, and a p base region, a gate oxide film, and a gate electrode are formed on the surface of the silicon substrate 1 surrounded by the epitaxial silicon layer 11 buried in the trench 9. The active region 12 such as the n emitter region and the emitter electrode is formed to complete the surface side MOS structure. By the diffusion heat treatment when the surface side MOS structure is formed, the epitaxial silicon layer 11 and the diffusion layer 10 become the separation layer 13 (FIG. 8). The structure of the active region 12 may be a planar MOS structure as shown in FIG. 19 or a trench MOS structure as shown in FIG. By the heat treatment at the time of forming the active region 12 as described above, for example, heat treatment for several hours at 1100 ° C. for forming the diffusion of the p base region, the above-described epitaxial silicon layer 11 and the shallow high-concentration diffusion layer 10 therearound are Annealed and driven to function as the separation layer 13. However, since the temperature and time of the heat treatment applied during the formation of this separation layer is negligible compared to the temperature and time required for the conventional separation layer formation only by diffusion from the silicon substrate surface, it is incorporated. There is almost no oxygen.

さらに、特願2005−000147号明細書に記載の発明の、埋め込みp型エピタキシャルシリコン層からの分離層形成のように、不均一な拡散による異常な分離層境界(接合)となる問題は、前述のように、本発明では埋め込みp型エピタキシャルシリコン層の周辺に、さらに均一で浅い高濃度拡散層10を設けることにより、回避することができる。
次に、図9の鎖線で示す位置まで、シリコン基板1の裏面から研削して分離層13を裏面に露出させる(図10)。図11に示すように裏面全面にp型不純物をイオン注入し、表面側の前記MOS構造に対して、熱処理による損傷を与えないように、500℃以下の温度でアニールを行い、コレクタ層14を形成する。図12に示すように、鎖線で切断すると、本発明にかかる低オン電圧、低スイッチング損失特性を備える逆阻止IGBTの一チップが完成する。
Further, the problem of an abnormal separation layer boundary (junction) due to non-uniform diffusion, such as the formation of a separation layer from a buried p-type epitaxial silicon layer, in the invention described in Japanese Patent Application No. 2005-000147 is described above. As described above, in the present invention, this can be avoided by providing a more uniform and shallow high-concentration diffusion layer 10 around the buried p-type epitaxial silicon layer.
Next, the separation layer 13 is exposed to the back surface by grinding from the back surface of the silicon substrate 1 to the position indicated by the chain line in FIG. 9 (FIG. 10). As shown in FIG. 11, p-type impurities are ion-implanted into the entire back surface, and annealing is performed at a temperature of 500 ° C. or lower so as not to damage the MOS structure on the front surface side by heat treatment. Form. As shown in FIG. 12, by cutting along the chain line, one chip of reverse blocking IGBT having low on-voltage and low switching loss characteristics according to the present invention is completed.

以上、詳細に説明したように本発明では、従来、高温長時間の熱処理を必要とする分離層の拡散形成に起因してシリコン基板に取り込まれた多量の酸素によるドナー化を避けるために、前述のコレクタ層のアニール温度を400℃以下で行わざるを得ないことに起因したコレクタ層の不十分な活性化やイオン打ち込みによる結晶欠陥の修復が充分に行えないという問題を、分離層形成を伴う逆阻止IGBTにおいても、実質的に新たな酸素の取り込みを防ぐことにより、500℃によるアニール処理を可能にして解消すると共に、さらに、従来分離層の境界となるコレクタ接合に生じていた不具合をも解消することができるようになる。   As described above in detail, in the present invention, in order to avoid donor formation by a large amount of oxygen incorporated into a silicon substrate due to diffusion formation of a separation layer that conventionally requires high-temperature and long-time heat treatment, With the formation of the separation layer, there is a problem that the collector layer cannot be sufficiently activated or the crystal defects cannot be repaired by ion implantation due to the fact that the annealing temperature of the collector layer must be 400 ° C. or less. The reverse blocking IGBT also substantially eliminates the incorporation of new oxygen, thereby enabling an annealing process at 500 ° C. to eliminate the problem, and further, there is a problem that has occurred in the collector junction that is the boundary of the separation layer in the past. Can be resolved.

以下、説明する実施例2は特許請求の範囲の請求項2記載の発明にかかるものである。図13〜図18は実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である。
まず、シリコン基板として、裏面側のコレクタ層となる高濃度p型基板21を用い、このp型基板21の表面に低濃度nドリフト層22をエピタキシャル成長させる(図13)。この低濃度nドリフト層22の不純物濃度は、前記実施例1に記載のシリコン基板1の不純物濃度と同様に、耐圧600V、1200Vの各逆阻止IGBTを製造する場合は、それぞれ不純物濃度を1.5×1014cm−3(約30Ωcm)、7.66×1013cm−3〜5.745×1013cm−3(抵抗率約60〜80Ωcm)で、厚さを80μm、180μmとする。
Hereinafter, Example 2 to be described relates to the invention described in claim 2 of the claims. 13 to 18 are cross-sectional views of main parts of the semiconductor substrate showing the manufacturing process of the reverse blocking IGBT according to the second embodiment.
First, a high-concentration p-type substrate 21 serving as a collector layer on the back side is used as a silicon substrate, and a low-concentration n drift layer 22 is epitaxially grown on the surface of the p-type substrate 21 (FIG. 13). Similar to the impurity concentration of the silicon substrate 1 described in the first embodiment, the impurity concentration of the low-concentration n drift layer 22 is 1. In the case of manufacturing each reverse blocking IGBT having a breakdown voltage of 600V and 1200V, the impurity concentration is 1. The thickness is 5 × 10 14 cm −3 (about 30 Ωcm), 7.66 × 10 13 cm −3 to 5.745 × 10 13 cm −3 (resistivity is about 60 to 80 Ωcm), and the thickness is 80 μm and 180 μm.

その後、前記ドリフト層22表面から実施例1と同様にシリコン酸化膜23とフォトレジスト膜24をトレンチ用マスクとするために、分離層の形成予定位置の酸化膜23に開口部25を形成し(図14)、シリコン基板層21に達する深さのトレンチ26を異方性エッチングにより形成する(図15)。実施例1と同様にトレンチ26に浅い高濃度p型拡散層28を気相拡散により形成し、その後p型エピタキシャルシリコン層27を成長させてトレンチ26を完全に埋め(図16)、酸化膜23を除去し基板表面を平坦化する(図17)。p型エピタキシャルシリコン層27で埋め込まれたトレンチに囲まれたドリフト層22表面の活性領域に表面MOS構造29を形成する(図18)。前記表面MOS構造29の形成時の熱処理により、同時に高濃度p型拡散層28とp型エピタキシャルシリコン層27は活性化し、p型分離層30を形成する。ここで、p型分離層30とシリコン基板層21とは同導電型なので、一体化してコレクタ層を形成する。分離層30の中心で切断すると、逆阻止IGBTが完成する。   Thereafter, in order to use the silicon oxide film 23 and the photoresist film 24 as a trench mask from the surface of the drift layer 22 in the same manner as in the first embodiment, an opening 25 is formed in the oxide film 23 at a position where a separation layer is to be formed ( 14), a trench 26 having a depth reaching the silicon substrate layer 21 is formed by anisotropic etching (FIG. 15). As in the first embodiment, a shallow high-concentration p-type diffusion layer 28 is formed in the trench 26 by vapor phase diffusion, and then a p-type epitaxial silicon layer 27 is grown to completely fill the trench 26 (FIG. 16). Is removed to flatten the substrate surface (FIG. 17). A surface MOS structure 29 is formed in the active region on the surface of the drift layer 22 surrounded by the trench buried with the p-type epitaxial silicon layer 27 (FIG. 18). By the heat treatment at the time of forming the surface MOS structure 29, the high-concentration p-type diffusion layer 28 and the p-type epitaxial silicon layer 27 are activated at the same time to form the p-type isolation layer 30. Here, since the p-type isolation layer 30 and the silicon substrate layer 21 are of the same conductivity type, they are integrated to form a collector layer. Cutting at the center of the separation layer 30 completes the reverse blocking IGBT.

以上、説明した実施例2による本発明でも、実施例1と同様に、多量の酸素の新たな取り込みを実質的に防ぐことができると共に、さらに、従来分離層の境界となるコレクタ接合に生じていた不具合をも解消することができるようになる。   As described above, in the present invention according to the second embodiment described above, as in the first embodiment, it is possible to substantially prevent a large amount of new oxygen from being taken in, and further, it has occurred at the collector junction that is the boundary of the conventional separation layer. It will be possible to solve the problem.

本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その1)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 1). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その2)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 2). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その3)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 3). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その4)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 4). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その5)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 5). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その6)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 6). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その7)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 7). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その8)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 8). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その9)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 9). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その10)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 10). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その11)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 11). 本発明の実施例1にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その12)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 1 of this invention (the 12). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その1)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 1). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その2)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 2). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その3)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 3). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その4)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 4). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その5)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 5). 本発明の実施例2にかかる逆阻止IGBTの製造工程を示す半導体基板の要部断面図である(その6)。It is principal part sectional drawing of the semiconductor substrate which shows the manufacturing process of reverse blocking IGBT concerning Example 2 of this invention (the 6). 従来のプレーナ型表面MOS構造を示す要部断面図である。It is principal part sectional drawing which shows the conventional planar type surface MOS structure. 従来のトレンチ型表面MOS構造を示す要部断面図である。It is principal part sectional drawing which shows the conventional trench type surface MOS structure. 従来のIGBTの要部断面図である。It is principal part sectional drawing of the conventional IGBT. 従来の逆阻止IGBTの要部断面図である。It is principal part sectional drawing of the conventional reverse block IGBT.

符号の説明Explanation of symbols

1… シリコン基板、
2、23… シリコン酸化膜、
6、24、… フォトレジスト膜
8、25… 酸化膜の開口部、
9、26… トレンチ
10、28… p型拡散層
11、27… p型エピタキシャルシリコン層
12… 活性層
13、30… p型分離層
14… コレクタ層。
1 ... Silicon substrate,
2, 23 ... Silicon oxide film,
6, 24, ... Photoresist film 8, 25 ... Opening of oxide film,
9, 26 ... Trench 10, 28 ... p-type diffusion layer 11, 27 ... p-type epitaxial silicon layer 12 ... active layer 13, 30 ... p-type isolation layer 14 ... collector layer.

Claims (4)

第一導電型のドリフト層の表面に、活性領域となる表面側MOS領域を取り囲む第二導電型の分離層が、該分離層の形成位置に予めトレンチを形成し、エッチングマスクとして用いた酸化膜を拡散マスクとして前記トレンチ内表面に拡散層を形成した後、前記トレンチ内に第二導電型のエピタキシャル層を堆積成長させ、前記活性領域内に選択的に形成される第二導電型のベース領域と該ベース領域の表面に選択的に形成される第一導電型のエミッタ領域と前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域表面にゲート絶縁膜を介して形成されるゲート電極とを有する前記表面側MOS領域を形成した後、前記ドリフト層の裏面側を前記分離層が露出するまで研削し、研削後のドリフト層の裏面に、前記露出した分離層と周辺で接続される第二導電型コレクタ層を形成することを特徴とする逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法。 The second conductivity type isolation layer surrounding the surface-side MOS region serving as the active region on the surface of the first conductivity type drift layer has a trench formed in advance at the position where the isolation layer is formed, and an oxide film used as an etching mask After forming a diffusion layer on the inner surface of the trench using a diffusion mask as a diffusion mask, a second conductivity type base layer is selectively formed in the active region by depositing and growing a second conductivity type epitaxial layer in the trench. A first conductivity type emitter region selectively formed on the surface of the base region, and a gate electrode formed on the surface of the base region sandwiched between the drift layer and the emitter region via a gate insulating film; After forming the surface side MOS region having, the back side of the drift layer is ground until the isolation layer is exposed, and the exposed isolation layer and the periphery are ground on the back side of the drift layer after grinding. Method for manufacturing a reverse blocking insulated gate bipolar transistor, and forming a second conductivity type collector layer connected. 第二導電型半導体基板に第一導電型のドリフト層をエピタキシャル成長により形成し、前記ドリフト層表面から前記半導体基板に達する第二導電型の分離層が、該分離層の形成位置に予めトレンチを形成し、エッチングマスクとして用いた酸化膜を拡散マスクとして前記トレンチ内表面に拡散層を形成した後、トレンチ内に第二導電型のエピタキシャル層を堆積成長させ、前記活性領域内に選択的に形成される第二導電型のベース領域と該ベース領域の表面に選択的に形成される第一導電型のエミッタ領域と前記ドリフト層と前記エミッタ領域とに挟まれた前記ベース領域表面にゲート絶縁膜を介して形成されるゲート電極とを有する表面側MOS領域を形成することを特徴とする逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法。 A drift layer of the first conductivity type is formed on the second conductivity type semiconductor substrate by epitaxial growth, and a second conductivity type separation layer reaching the semiconductor substrate from the drift layer surface forms a trench in advance at the formation position of the separation layer Then, after forming a diffusion layer on the inner surface of the trench using the oxide film used as an etching mask as a diffusion mask, a second conductivity type epitaxial layer is deposited and grown in the trench and selectively formed in the active region. A second conductive type base region, a first conductive type emitter region selectively formed on the surface of the base region, a gate insulating film on the surface of the base region sandwiched between the drift layer and the emitter region. A method of manufacturing a reverse blocking insulated gate bipolar transistor, comprising forming a surface side MOS region having a gate electrode formed therebetween. 分離層形成用トレンチ内表面に形成される拡散層が気相拡散法により形成されることを特徴とする請求項1または2記載の逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法。 3. The method of manufacturing a reverse blocking insulated gate bipolar transistor according to claim 1, wherein the diffusion layer formed on the inner surface of the isolation layer forming trench is formed by a vapor phase diffusion method. 分離層形成用トレンチ内表面に形成される拡散層が瞬間気相拡散法により形成されることを特徴とする請求項3記載の逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法。 4. The method of manufacturing a reverse blocking insulated gate bipolar transistor according to claim 3, wherein the diffusion layer formed on the inner surface of the isolation layer forming trench is formed by an instantaneous vapor phase diffusion method.
JP2005194936A 2005-07-04 2005-07-04 Method of manufacturing reverse blocking insulated gate bipolar transistor Expired - Fee Related JP5290491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194936A JP5290491B2 (en) 2005-07-04 2005-07-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194936A JP5290491B2 (en) 2005-07-04 2005-07-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JP2007013037A true JP2007013037A (en) 2007-01-18
JP5290491B2 JP5290491B2 (en) 2013-09-18

Family

ID=37751106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194936A Expired - Fee Related JP5290491B2 (en) 2005-07-04 2005-07-04 Method of manufacturing reverse blocking insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP5290491B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292338A (en) * 1985-06-20 1986-12-23 Toshiba Corp Manufacture of semiconductor device
JPH02161752A (en) * 1988-12-15 1990-06-21 Toshiba Corp Manufacture of semiconductor device
JPH07307469A (en) * 1994-03-14 1995-11-21 Toshiba Corp Semiconductor device
JPH07326715A (en) * 1994-05-26 1995-12-12 Siemens Ag Preparation of silicon capacitor
JP2004336008A (en) * 2003-04-16 2004-11-25 Fuji Electric Holdings Co Ltd Reverse blocking insulated gate type bipolar transistor and its fabrication method
JP2006190730A (en) * 2005-01-04 2006-07-20 Fuji Electric Holdings Co Ltd Manufacturing method of reverse blocking insulating gate bipolar transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292338A (en) * 1985-06-20 1986-12-23 Toshiba Corp Manufacture of semiconductor device
JPH02161752A (en) * 1988-12-15 1990-06-21 Toshiba Corp Manufacture of semiconductor device
JPH07307469A (en) * 1994-03-14 1995-11-21 Toshiba Corp Semiconductor device
JPH07326715A (en) * 1994-05-26 1995-12-12 Siemens Ag Preparation of silicon capacitor
JP2004336008A (en) * 2003-04-16 2004-11-25 Fuji Electric Holdings Co Ltd Reverse blocking insulated gate type bipolar transistor and its fabrication method
JP2006190730A (en) * 2005-01-04 2006-07-20 Fuji Electric Holdings Co Ltd Manufacturing method of reverse blocking insulating gate bipolar transistor

Also Published As

Publication number Publication date
JP5290491B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6402773B2 (en) Semiconductor device and manufacturing method thereof
CN109841616B (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US9941383B2 (en) Fast switching IGBT with embedded emitter shorting contacts and method for making same
JP2007165604A (en) Silicon carbide bipolar semiconductor device
JP2012129492A (en) Silicon carbide semiconductor device and method of manufacturing the same
JP2006186145A (en) Semiconductor device and manufacturing method thereof
WO2018150861A1 (en) Silicon carbide laminated substrate and production method therefor
JP5248741B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
US9385210B2 (en) Method for manufacturing semiconductor device using a gettering layer
JP5011656B2 (en) Manufacturing method of semiconductor device
JP5179703B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JPH10173174A (en) Semiconductor device and its manufacture
JP4951872B2 (en) Manufacturing method of semiconductor device
JP5290491B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP5648379B2 (en) Manufacturing method of semiconductor device
JP5301091B2 (en) Manufacturing method of semiconductor device
JP2017188569A (en) Semiconductor device and manufacturing method of the same
JP2012004174A (en) Reverse-blocking insulating gate type bipolar transistor and method of manufacturing the same
JP2006080269A (en) High breakdown voltage semiconductor device and its manufacturing method
JP2006140309A (en) Method of manufacturing semiconductor device
CN107452621B (en) Fast recovery diode and manufacturing method thereof
JP2015041720A (en) Semiconductor device manufacturing method
JP7331590B2 (en) Silicon carbide semiconductor device
WO2023100454A1 (en) Silicon carbide semiconductor device, and method for producing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120816

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

LAPS Cancellation because of no payment of annual fees