JP2007010609A - 非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ - Google Patents
非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ Download PDFInfo
- Publication number
- JP2007010609A JP2007010609A JP2005194876A JP2005194876A JP2007010609A JP 2007010609 A JP2007010609 A JP 2007010609A JP 2005194876 A JP2005194876 A JP 2005194876A JP 2005194876 A JP2005194876 A JP 2005194876A JP 2007010609 A JP2007010609 A JP 2007010609A
- Authority
- JP
- Japan
- Prior art keywords
- spherical
- plane wave
- wave
- plane
- lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】測定対象となる非球面毎に専用の光学系を用意する必要がなく、汎用性が高い非球面レンズの偏心測定方法等を提供すること。
【解決手段】平面波101、201として射出された可干渉光を、非球面レンズ10に設けられた平面部13、23に照射し、平面部13、23により反射した光を用いて、所定の基準に対する非球面レンズ10の平面部13、23のチルト誤差を検出するチルト誤差検出工程と、球面波107、207として射出された可干渉光を、非球面レンズ10に設けられた球面部12、22に照射し、球面部12、22により反射した光を用いて、所定の基準に対する非球面レンズ10の球面部12、22のシフト誤差を検出するシフト誤差検出工程と、チルト誤差とシフト誤差とを用いて、非球面レンズ10の非球面の偏心を演算する偏心演算工程とを有する。
【選択図】 図2
【解決手段】平面波101、201として射出された可干渉光を、非球面レンズ10に設けられた平面部13、23に照射し、平面部13、23により反射した光を用いて、所定の基準に対する非球面レンズ10の平面部13、23のチルト誤差を検出するチルト誤差検出工程と、球面波107、207として射出された可干渉光を、非球面レンズ10に設けられた球面部12、22に照射し、球面部12、22により反射した光を用いて、所定の基準に対する非球面レンズ10の球面部12、22のシフト誤差を検出するシフト誤差検出工程と、チルト誤差とシフト誤差とを用いて、非球面レンズ10の非球面の偏心を演算する偏心演算工程とを有する。
【選択図】 図2
Description
本発明は、回転軸対称形状である非球面を少なくとも1つ有する非球面レンズとその製造方法、及びこの非球面レンズの偏心測定方法及び偏心測定装置に関する。
従来、非球面レンズの非球面の偏心測定に関しては、例えば、特許文献1に示すような干渉計を用いた偏心測定技術が知られている。この偏心測定装置は、図10に示すように、非球面レンズLの非球面r1と非球面r2との相対的な位置ずれ(いわゆる偏心)を測定するものである。ここで、まず、非球面波発生光学系E1から、非球面波を射出する。そして、この非球面波と非球面r1で発生した非球面波とで、干渉縞を発生させる。続いて、干渉縞を観察しながら、干渉縞の数が最も少ない状態(以下、適宜「ヌル状態」という。)となるように、非球面レンズLの位置を調整する。このときの非球面レンズLの位置を、測定原点とする。次に、非球面波発生光学系E2から、非球面波を射出する。そして、この非球面波と非球面r2で発生した非球面波とで、干渉縞を発生させる。続いて、この発生した干渉縞がヌル状態となるように、非球面レンズLの位置を調整する。この調整後の非球面レンズLの位置について、測定原点からの変位量を測定する。そして、この変位量、すなわち傾き移動変位量と平行移動変位量から、非球面r1と非球面r2の偏心を求めることができる。
しかしながら、図10に示した従来技術では、非球面r1に対応する非球面波発生光学系E1と、非球面r2に対応する非球面波発生光学系E2が必要である。このため、非球面波発生光学系は、各非球面毎に専用の光学系として設計する必要がある。従って、測定対象となる非球面レンズの非球面の設計式が異なれば、新たな非球面波発生光学系を設計、製作しなければならない。
本発明は、上記に鑑みてなされたものであって、測定対象となる非球面毎に専用の光学系を用意する必要がなく、汎用性が高い非球面レンズの偏心測定方法及び偏心測定装置と、偏心測定が可能な非球面レンズの製造方法、この製造方法により得られる非球面レンズを提供することを目的とする。
上述した課題を解決し、目的を達成するために、第1の本発明によれば、所定軸を中心にして球面を形成する球面形成工程と、所定軸に略直交する平面を形成する平面形成工程と、非球面を形成する非球面形成工程と、を有することを特徴とする非球面レンズ製造方法を提供できる。
また、第2の本発明によれば、非球面レンズの偏心測定方法であって、平面波として射出された可干渉光を、非球面レンズに設けられた平面部に照射し、平面部からの光を用いて、所定の基準に対する非球面レンズの平面部のチルト誤差を検出するチルト誤差検出工程と、球面波として射出された可干渉光を、非球面レンズに設けられた球面部に照射し、球面部からの光を用いて、所定の基準に対する非球面レンズの球面部のシフト誤差を検出するシフト誤差検出工程と、チルト誤差検出工程において検出したチルト誤差と、シフト誤差検出工程において検出したシフト誤差とを用いて、非球面レンズの非球面の偏心を演算する偏心演算工程と、を有することを特徴とする非球面レンズの偏心測定方法を提供できる。
また、本発明の好ましい態様によれば、チルト誤差検出工程において、平面部により反射した光により発生する干渉縞を用い、シフト誤差検出工程において、球面部により反射した光により発生する干渉縞を用いることが望ましい。
また、本発明の好ましい態様によれば、平面波として射出された可干渉光を、基準平面部に照射し、基準平面部により反射した光を用いて、基準平面部のチルト誤差を検出し補正するチルト誤差補正工程と、球面波として射出された可干渉光を、基準球面部に照射し、基準球面部により反射した光を用いて、基準球面部のシフト誤差を検出し補正するシフト誤差補正工程と、を有することが望ましい。
また、本発明の好ましい態様によれば、チルト誤差補正工程において、基準平面部により反射した光により発生する干渉縞を用い、シフト誤差補正工程において、基準球面部により反射した光により発生する干渉縞を用いることが望ましい。
また、第3の本発明によれば、光を射出する光源部と、被測定物に照射する平面波を生成する平面波生成部と、被測定物に照射する球面波を生成する球面波生成部と、被測定物からの光を検出する光検出部と、を有することを特徴とする偏心測定装置を提供できる。
また、本発明の好ましい態様によれば、参照平面波を生成する参照平面波生成部と、被測定物からの光と参照平面波との干渉縞を生成する干渉計部と、有し、光検出部は、干渉縞を検出する撮像部であることが望ましい。
また、本発明の好ましい態様によれば、平面波生成部は、被測定物を挟んで対向する位置に配置されていることが望ましい。
また、本発明の好ましい態様によれば、平面波生成部は、被測定物の一方の面に平面波を照射する第1の平面波生成部と、被測定物の他方の面に平面波を照射する第2の平面波生成部とを有することが望ましい。
また、本発明の好ましい態様によれば、参照平面波生成部は、平面波に対する参照波面を生成し、被測定物の一方の面に平面波を照射する光路に配置された第1の参照平面波生成部と、被測定物の他方の面に平面波を照射する光路に配置された第2の参照平面波生成部とからなることが望ましい。
また、本発明の好ましい態様によれば、球面波生成部は、被測定物を挟んで対向する位置に配置されていることが望ましい。
また、本発明の好ましい態様によれば、球面波生成部は、被測定物の一方の面に球面波を照射する第1の球面波生成部と、被測定物の他方の面に球面波を照射する第2の球面波生成部とを有することが望ましい。
また、本発明の好ましい態様によれば、参照平面波生成部は、球面波に対する参照波面を生成し、被測定物の一方の面に球面波を照射する光路に配置された第3の参照平面波生成部と、被測定物の他方の面に球面波を照射する光路に配置された第4の参照平面波生成部とからなることが望ましい。
また、本発明の好ましい態様によれば、平面波生成部は、第1の参照平面波生成部と第2の参照平面波生成部との機能を兼ねることが望ましい。
また、本発明の好ましい態様によれば、球面波生成部は、第3の参照平面波生成部と第4の参照平面波生成部との機能を兼ねることが望ましい。
また、本発明の好ましい態様によれば、平面波生成部と球面波生成部と参照波面生成部とは、被測定物の一方の面の側に配置されていることが望ましい。
また、本発明の好ましい態様によれば、平面波生成部と球面波生成部とは、同一の回折光学素子であることが望ましい。
また、本発明の好ましい態様によれば、撮像素子は、平面波に基づく干渉縞と球面波に基づく干渉縞の各々を撮像し、撮像結果に基づいて、被測定物における被測定面のチルト誤差とシフト誤差を算出する演算装置を備えることが望ましい。
また、本発明の好ましい態様によれば、光検出器は、位置検出素子であり、位置検出素子は、被測定物からの光の集光位置を検出し、被測定物に照射された平面波の位置検出素子上の集光位置に基づいて被測定物のチルト誤差を検出し、被測定物に照射された球面波の位置検出素子上の集光位置に基づいて被測定物のシフト誤差を検出することが望ましい。
また、第4の本発明によれば、上述の非球面レンズ製造方法により製造された非球面レンズを提供できる。
本発明に係る非球面レンズの偏心測定方法によれば、チルト誤差検出工程において、非球面レンズに設けられた平面部からの光を用いて平面部のチルト誤差を検出する。また、シフト誤差検出工程において、非球面レンズに設けられた球面部からの光を用いて球面部のシフト誤差を検出する。そして、シフト検出誤差とチルト検出誤差とに基づいて非球面レンズの非球面の偏心を演算する。これにより、測定対象となる非球面毎に専用の光学系を用意する必要がない。この結果、汎用性が高い非球面レンズの偏心測定方法を提供できる。
以下に、本発明に係る非球面レンズの偏心測定方法及び偏心測定装置と、偏心測定が可能な非球面レンズの製造方法、この製造方法により得られる非球面レンズの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
図1は、非球面レンズ10の断面構成を示している。図1に示すように、非球面レンズ10は、非球面11と非球面21とを有している。非球面11は、非球面軸L1に対して回転対称な形状である。非球面21は、非球面軸L2に対して回転対称な形状である。
また、非球面11の周囲には、輪帯状の球面部12が形成されている。輪帯状の球面部12は、非球面軸L1上に曲率中心C1を持ち、曲率半径がR1の凹面である。さらに、球面部12の周囲には、非球面軸L1と直交する輪帯状の平面部13が形成されている。同様に、非球面21の周囲には、輪帯状の球面部22が形成されている。輪帯状の球面部22は、非球面軸L2上に曲率中心C2を持ち、曲率半径がR2の凹面である。さらに、球面部22の周囲には、非球面軸L2と直交する輪帯状の平面部23が形成されている。なお、球面部12及び球面部22は、球面形成工程において形成される。また、平面部13及び平面部23は、平面形成工程において形成される。
非球面11は、切削、研削あるいは研磨等により加工する。このとき、非球面レンズ10を加工チャックから外さずに、球面部12と平面部13の加工(同時加工)を行う。また、非球面レンズ10が成形レンズの場合は、非球面11と球面部12と平面部13に各々対応する成形面を、成形用金型を同じ位置に保持して加工(同時加工)しておく。このように、同時加工によって、球面部12、平面部13及び非球面11を形成することにより、非球面軸L1に対する球面部12の曲率中心C1の位置誤差、及び平面部13の直角度誤差が低減される。
同様に、球面部22と平面部23についても、非球面21との同時加工によって、これらの面を形成する。これにより、非球面軸L2に対する球面部22の曲率中心C2の位置誤差、及び平面部23の直角度誤差が低減される。なお、上記の同時加工では、非球面レンズや金型が同じ位置に保持された状態で、加工(非球面、球面部及び平面部の加工、あるいはこれらの面に対応する金型面の加工)が行なわれていれば良い。すなわち、上記の同時加工では、各面の加工が順番に行なわれていても良く、必ずしも各面の加工が同時に行なわれている必要はない。
上述のように、球面部12と平面部13、球面部22と平面部23は、非球面軸に対して少ない誤差で形成されることになる。従って、球面部12の曲率中心C1の位置と平面部13の角度、即ち、平面部13の法線方向が分かれば、非球面11の非球面軸L1が一義的に求められることになる。同様に、球面部22の曲率中心C2の位置と平面部23の角度、即ち、平面部23の法線方向が分かれば、非球面21の非球面軸L2が一義的に求められる。
本実施例において、非球面レンズ10の偏心は、チルト誤差θとシフト誤差δとにより定義できる。チルト誤差θは、非球面軸L1と非球面軸L2のなす角度である。シフト誤差δは、非球面軸L1と非球面21の面頂位置(非球面21と非球面軸L2の交点)との距離である。
なお、本実施例では、説明を簡略化するために、非球面軸L1と非球面軸L2のチルト誤差とシフト誤差は、同一平面上に存在するものとしている。しかしながら、それぞれの軸がねじれた位置関係にあっても、直交座標系のベクトル成分に分離して計算すれば偏心を求めることができる。
図2は、偏心測定装置100の概略構成を示している。この偏心測定装置100は、非球面レンズ10の偏心を測定するための装置である。偏心測定装置100は、4つのレーザ光源111a、111b、211a、211bを備えている。各々のレーザ光源に対応して、4つの光学系が配置されている。
第1の光学系が配置されている光路は、光路1Aと光路1aからなる。光路1Aは、レーザ光源111aから位置調整ステージ170に至る光路である。光路1aは、ビームスプリッタ113aの位置において、光路1Aと直交する光路である。光路1Aには、レーザ光源111a側から順に、コリメータレンズ112a、ビームスプリッタ113a、参照平面レンズ103(第1の平面波生成部)及びハーフミラー108が、一直線状に配置されている。また、光路1aには、結像レンズ114aとCCD(撮像素子)115aが配置されている。ハーフミラー108は、その面の法線が光路1Aの光軸に対して45°となるように、配置されている。
第2の光学系が配置されている光路は、光路1Bと光路1bからなる。光路1Bは、レーザ光源111bから位置調整ステージ170に至る光路である。光路1bは、ビームスプリッタ113bの位置において、光路1Bと直交する光路である。光路1Bには、レーザ光源111b側から順に、コリメータレンズ112b、ビームスプリッタ113b、ミラー105、参照球面レンズ106(第1の球面波生成部)及びハーフミラー108が、配置されている。また、光路1bには、結像レンズ114bとCCD115bが配置されている。
ここで、ミラー105は、その面の法線がコリメータレンズ112bの光軸に対して45°となるように、配置されている。また、ハーフミラー108は、光路1Aと光路1Bとで共通に用いられている。このように、光路1Bでは、ミラー105を境にして光路が90°折れ曲がり、更にハーフミラー108を境にして光路が90°折れ曲がっている。
また、ミラー105、参照球面レンズ106及びハーフミラー108は、ステージ110上に載置されている。ステージ110は、高精度なスライドガイド上に設置され、それぞれZ軸方向に移動可能に構成されている。これにより、Z軸方向の位置座標が測定可能となっている。
第3の光学系が配置されている光路は、光路2Aと光路2aからなる。光路2Aは、レーザ光源211aから位置調整ステージ170に至る光路である。光路2aは、ビームスプリッタ213aの位置において、光路2Aと直交する光路である。光路2Aには、レーザ光源211a側から順に、コリメータレンズ212a、ビームスプリッタ213a、参照平面レンズ203(第2の平面波生成部)及びハーフミラー208が、一直線状に配置されている。また、光路2aには、結像レンズ214aとCCD215aが配置されている。ハーフミラー208は、その面の法線が光路2Aの光軸に対して45°となるように、配置されている。
第4の光学系が配置されている光路は、光路2Bと光路2bからなる。光路2Bは、レーザ光源211bから位置調整ステージ170に至る光路である。光路2bは、ビームスプリッタ213bの位置において、光路2Bと直交する光路である。光路2Bには、レーザ光源211b側から順に、コリメータレンズ212b、ビームスプリッタ213b、ミラー205、参照球面レンズ206(第2の球面波生成部)及びハーフミラー208が、配置されている。また、光路2bには、結像レンズ214bとCCD215bが配置されている。
ここで、ミラー205は、その面の法線がコリメータレンズ212bの光軸に対して45°となるように、配置されている。また、ハーフミラー208は、光路2Aと光路2Bとで共通に用いられている。このように、光路2Bでは、ミラー205を境にして光路が90°折れ曲がり、更にハーフミラー208を境にして光路が90°折れ曲がっている。
また、ミラー205、参照球面レンズ206及びハーフミラー208は、ステージ210上に載置されている。ステージ210は、高精度なスライドガイド上に設置され、それぞれZ軸方向に移動可能に構成されている。これにより、Z軸方向の位置座標が測定可能となっている。
また、本実施例では、位置調整ステージ170を挟んで、第1の光学系と第3の光学系が、対称に形成されている。同様に、位置調整ステージ170を挟んで、第2の光学系と第4の光学系が、対称に形成されている。
CCD115a、115b、215a、215bの各々は、コンピュータ160に接続されている。コンピュータ160は、各CCDから出力された信号の処理を行なう。また、処理した情報を、モニター161に表示する。
位置調整ステージ170は、被測定物である非球面レンズ10を保持する。位置調整ステージ170は、非球面レンズ10に関して、X軸、Y軸、Z軸方向の位置とX軸回り及びY軸回りの傾きについて、調整が可能となるように構成されている。また、位置調整ステージ170は、X軸、Y軸、Z軸方向の位置座標と、X軸回り及びY軸回りの傾き量を測定するスケールを有している。これにより、非球面レンズ10の移動量や傾き量を測定できる。位置調整ステージ170は、コンピュータ160に接続されている。よって、測定したデータは、コンピュータ160に送られる。
4つのレーザ光源111a、111b、211a、211bから、それぞれ、レーザ光が射出される。射出されたレーザ光は、それぞれコリメータレンズ112a、112b、212a、212bにより、平行光束に変換される。すなわち、コリメータレンズ112a、112b、212a、212bからは、平面波101、102、201、202が射出される。ここで、4つの平面波101、102、201、202は、各々の波面における法線の向きがZ軸(図2参照)と平行である。また、平面波101と平面波201、平面波102と平面波202は、対向して非球面レンズ10に到達する。
本実施例では、各平面波101、102、201、202から、参照平面波と測定平面波とがそれぞれ生じる。すなわち、平面波101については第1測定平面波と第1参照平面波が、平面波102については第2測定平面波と第2参照平面波が、平面波201については第3測定平面波と第3参照平面波が、平面波202については第4測定平面波と第4参照平面波が生じる。しかしながら、以下の説明においては、番号を付さずに、単に、「測定平面波」及び「参照平面波」と称して説明をする。
また、初期調整の際と、非球面レンズ10の測定の際で、測定平面波が生じる。初期調整の際は、非球面レンズ10を用いないが、いずれの場合も、単に、「測定平面波」と称する。なお、非球面レンズ10の測定における測定平面波を指す場合には、例えば、「第1測定平面波」というように、番号を付すこととする。
また、測定平面波及び参照平面波は、光学系の存在により、途中で、収束状態あるいは発散状態になる場合もある。このような状態のときも、測定平面波あるいは参照平面波と称して説明する。
まず、平面波101について説明する。平面波101は、ビームスプリッタ113aを透過して参照平面レンズ103(第1の平面波生成部)に入射する。参照平面レンズ103は、参照平面103a(第1の参照平面波生成部)を有している。参照平面レンズ103に入射した平面波101の一部は、参照平面レンズ103の参照平面103aで反射し、参照平面波となる。また、残りは、参照平面レンズ103を透過して、平面波104となる。
次に、平面波102について説明する。コリメータレンズ112bからの平面波102は、ビームスプリッタ113bを透過した後、ミラー105で反射される。ここで、ミラー105により、光路が90度折り曲げられる。よって、反射された平面波102は、入射方向と直交する方向に進む。続いて、平面波102は、参照球面レンズ106(第1の球面波生成部)に入射する。参照球面レンズ106は、平面波102の一部を、集光点109に収束する球面波107として射出する。また、参照球面レンズ106は、参照球面106a(第3の参照平面波生成部)を有している。よって、平面波102の残りは、参照球面106aで反射される。反射された平面波102の残りは、参照球面レンズ106を射出する際に平面波に変換され、参照平面波となる。なお、図2では、参照球面レンズ106は1枚のレンズとして描かれている。しかしながら、通常、参照球面レンズは複数のレンズで構成されている。よって、参照球面106aで反射された平面波102の残りは、参照球面レンズ106を射出する際に平面波に変換される。
さらに、平面波201について説明する。平面波201は、ビームスプリッタ213aを透過して、参照平面レンズ203(第2の平面波生成部)に入射する。参照平面レンズ203は、参照平面203a(第2の参照平面波生成部)を有している。参照平面レンズ203に入射した平面波201の一部は、参照平面レンズ203の参照平面203aにより反射し、参照平面波となる。また、残りは、参照平面レンズ203を透過して、平面波204となる。
次に、平面波202について説明する。コリメータレンズ212bからの平面波202は、ビームスプリッタ213bを透過した後、ミラー205で反射される。ここで、ミラー205により、光路が90度折り曲げられる。よって、反射された平面波202は、入射方向と直交する方向に進む。続いて、平面波202は、参照球面レンズ206(第2の球面波生成部)に入射する。参照球面レンズ206は、平面波202の一部を、集光点209に収束する球面波207として射出する。また、参照球面レンズ206は、参照球面206a(第4の参照平面波生成部)を有している。よって、平面波202の残りは、参照球面206aで反射される。反射された平面波202の残りは、参照球面206を射出する際に平面波に変換され、参照平面波となる。
(初期調整)
ここで、偏心測定装置100に設定誤差が存在すると、偏心測定誤差となってしまう。設定誤差とは、参照平面103aと参照平面203aの相対的な傾き誤差や、参照球面106aと参照球面206aの相対的なX軸、Y軸、Z軸方向の位置誤差である。
ここで、偏心測定装置100に設定誤差が存在すると、偏心測定誤差となってしまう。設定誤差とは、参照平面103aと参照平面203aの相対的な傾き誤差や、参照球面106aと参照球面206aの相対的なX軸、Y軸、Z軸方向の位置誤差である。
そこで本実施例では、非球面レンズ10の偏心を測定する前に、初期調整を行う。初期調整は、図3に示すように、非球面レンズ10が無い状態で行われる。この初期調整により、偏心測定装置100の設定誤差を、キャンセル(あるいは最小に)する。
まず、チルト誤差を無くす(低減する)ための調整が行なわれる。チルト誤差は、参照平面103aと参照平面203aの相対的な傾き誤差である。この調整により、チルト誤差が補正される。この調整では、平面波201は不要である。このため、参照平面レンズ203に平面波201が入射しないように、平面波201を遮光した状態にする。遮光は、レーザ光源211aから参照平面レンズ203までの間に遮光板(シャッタ)を挿入すれば良い。あるいは、レーザ光源211aを消灯(発振あるいは発光を停止)すれば良い。
参照平面レンズ103に入射した平面波101は、一部が参照平面103aで反射する。反射した平面波は、参照平面波となり光路を逆行する。参照平面103aを透過した平面波104は、ハーフミラー108とハーフミラー208を透過して、参照平面レンズ203に入射する。このとき、平面波104の一部が、参照平面203aで反射する。反射した平面波は、測定平面波となり光路を逆行する。測定平面波と参照平面波は、いずれも、ビームスプリッタ113aで反射される。これにより、参照平面波と測定平面波とで、干渉縞が形成される。この干渉縞は、モニター161に表示される。
そして、使用者(測定者)は、この干渉縞をモニター161で観察しながら、参照平面レンズ103と参照平面レンズ203のチルト調整(X軸回り及びY軸回りの傾き調整)を行う。ここで、干渉縞がヌル状態となれば、参照平面103aと参照平面203aとのチルト誤差が存在しない状態、あるいは無視できるほど小さい状態になる。参照平面103aと参照平面203aのチルト調整が完了したら、遮光状態が解除される。
次に、参照球面106aと参照球面206aの相対的なシフト誤差を無くす(低減する)ための調整が行なわれる。この調整により、シフト誤差が補正される。この調整では、平面波202は、不要である。このため、参照球面レンズ206に平面波202が入射しないように、平面波202を遮光した状態にする。遮光は、上述したように、光路中に遮光板を挿入するか、光源を消灯すればよい。
続いて、図3に示すように、ステージ110あるいはステージ210をZ軸方向に移動させ、参照球面レンズ106の集光点109と参照球面レンズ206の集光点209とを一致させる。平面波102は、ミラー105で反射して、参照球面レンズ106に入射する。入射した平面波102の一部が、参照球面106aで反射する。反射した平面波は、参照平面波となり光路を逆行する。平面波102の残りは、参照球面106aを透過して、球面波107となる。球面波107はハーフミラー108で反射して、集光点109にて収束する。そして、球面波107は、収束後に発散光となる。この発散光は、ハーフミラー208で反射して、参照球面レンズ206に入射する。このとき、球面波107の一部が、参照球面206aで反射する。反射した球面波は、測定平面波として光路を逆行する。
測定平面波と参照平面波は、いずれも、ビームスプリッタ113bで反射される。これにより、参照平面波と、測定平面波とで、干渉縞が形成される。この干渉縞は、モニター161に表示される。そして、使用者は、この干渉縞をモニター161で観察しながら、参照球面レンズ106と参照球面レンズ206のシフト調整(X軸、Y軸、Z軸方向の位置調整)を行う。ここで、干渉縞がヌル状態となれば、参照球面106aと参照球面206aのシフト誤差が存在しない状態、あるいは無視できるほど小さい状態になる。このときのステージ110とステージ210のZ軸方向の位置を原点位置とする。
参照球面106aと参照球面206aのシフト調整が完了したら、遮光状態が解除される。次に、参照球面レンズ106の集光点109と参照球面レンズ206の集光点209の間隔が、所定の間隔となるように、ステージ110あるいはステージ210を、原点位置からZ軸方向に移動する。ここでの所定の間隔とは、非球面レンズ10の球面部12の曲率中心C1と、球面部22の曲率中心C2の間隔であって、設計値に基づく間隔である。
以上のようにして、参照平面103aと参照平面203aの傾き調整と、参照球面106aと参照球面206aのX軸、Y軸、Z軸方向の位置調整を行う。これにより、偏心測定装置100の設定誤差を無くすこと、あるいは無視できる程度に小さくすることができる。
(非球面レンズ10の測定)
次に、非球面レンズ10の測定を行なう。まず、非球面レンズ10を、位置調整ステージ170に載置する。上述したように、平面波101は、参照平面レンズ103に入射し、その一部が参照平面103aで反射する。反射した平面波は、参照平面波として光路を逆行する。参照平面103aを透過した平面波104は、ハーフミラー108を透過して、非球面レンズ10の平面部13に到達する。
次に、非球面レンズ10の測定を行なう。まず、非球面レンズ10を、位置調整ステージ170に載置する。上述したように、平面波101は、参照平面レンズ103に入射し、その一部が参照平面103aで反射する。反射した平面波は、参照平面波として光路を逆行する。参照平面103aを透過した平面波104は、ハーフミラー108を透過して、非球面レンズ10の平面部13に到達する。
一方、平面波102は、ミラー105で反射した後、参照球面レンズ106に入射し、その一部が参照球面106aで反射する。反射した平面波は、参照平面波として光路を逆行する。参照球面106aを透過した球面波107は、ハーフミラー108により反射されて、集光点109に一旦集光し、球面波として、非球面レンズ10の球面部12に到達する。
また、平面波201は、参照平面レンズ203に入射し、その一部が参照平面203aで反射する。反射した平面波は、参照平面波として光路を逆行する。参照平面203aを透過した平面波204は、ハーフミラー208を透過して、非球面レンズ10の平面部23に到達する。
また、平面波202は、ミラー205で反射した後、参照球面レンズ206に入射し、その一部が参照球面206aで反射する。反射した平面波は、参照平面波として光路を逆行する。参照球面206aを透過した球面波207は、ハーフミラー208により反射されて、集光点209に一旦集光し、非球面レンズ10の球面部22に到達する。
この状態で、位置調整ステージ170により、非球面レンズ10の位置調整を行う。まず、第1参照平面波と、第1測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞は、モニター161に表示される。そこで、使用者は、干渉縞を観察しながら、この干渉縞がヌル状態となるように、非球面レンズ10のチルト調整(X軸回り及びY軸回りの傾き調整)を行う。
次に、第2参照平面波と、第2測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。そこで、使用者は、干渉縞を観察しながら、この干渉縞がヌル状態となるように、非球面レンズ10のシフト調整(X軸、Y軸、Z軸方向の位置調整)を行う。
この時点(チルト調整とシフト調整が終了した時点)での非球面レンズ10の位置が、測定原点位置である。この測定原点位置は、位置調整ステージ170の位置から求めることができる。測定原点位置は、コンピュータ160に記憶させる。
続いて、第4参照平面波と、第4測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。このとき、参照球面106aに対して、参照球面206a及び非球面レンズ10の球面部12は、それぞれシフト誤差がないように調整されている。従って、球面部12に対して球面部22のシフト誤差がなければ、第4参照平面波と第4測定平面波とで生じる干渉縞は、ヌル状態になるはずである。
しかしながら、参照球面206aに対して球面部22にシフト誤差が存在すると、シフト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、このシフト誤差による干渉縞がヌル状態となるように、非球面レンズ10のシフト調整を行う。具体的には、測定原点位置から、X軸、Y軸、Z軸方向に、非球面レンズ10を移動させる。このとき、測定原点位置からのシフト移動量を、X軸、Y軸、Z軸方向の各々について計測する。シフト移動量は、位置調整ステージ170から求めることができる。測定したシフト移動量は、コンピュータ160に記憶させる。
次に、非球面レンズ10の位置を、測定原点位置に戻す、そして、第3参照平面波と、第3測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。このとき、参照平面103aに対して、参照平面203a及び非球面レンズ10の平面部13は、それぞれチルト誤差がない(参照平面103aと参照平面203a及び平面部13の法線方向が一致する)ように調整されている。従って、平面部13に対して平面部23のチルト誤差がなければ(平面部13と平面部23の法線方向が一致していれば)、第3参照平面波と第3測定平面波との干渉縞は、ヌル状態になるはずである。
しかしながら、参照平面203aに対して平面部23にチルト誤差が存在すると、チルト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、このチルト誤差による干渉縞がヌル状態となるように、非球面レンズ10のチルト調整を行う。具体的には、測定原点位置で、X軸及びY軸の回りに、非球面レンズ10を回転させる。このとき、測定原点位置からのX軸回り及びY軸回りの回転量を、チルト移動量として計測する。測定したチルト移動量は、コンピュータ160に記憶させる。
コンピュータ160は、非球面レンズ10の測定原点位置からのチルト移動量とシフト移動量から、非球面レンズ10の非球面11に対する非球面21の偏心を算出する。ここで、非球面レンズ10の偏心は、チルト誤差θとシフト誤差δである。チルト誤差は、計測したチルト移動量と同じであるのでチルト誤差θとなる。一方、計測したシフト移動量(図1に示したS)は、球面部22の曲率中心C2の移動量である。従って、非球面11と非球面21及び球面部22の位置関係と、チルト移動量θ及びシフト移動量Sからシフト誤差δを演算することができる。
(非球面レンズの変形例)
なお、非球面の周囲に形成する球面部と平面部については、図1に示すような形状に限らない。例えば、図4に示すように、非球面レンズ30の非球面31の周囲に、輪帯状の平面部33を形成する。さらに、その周囲に、輪帯状の球面部32を形成してもよい。ここで、輪帯状の平面部33は、非球面31の非球面軸L3と直交している。また、輪帯状の球面部32は、非球面軸L3上に曲率中心を持ち、曲率半径がR3の凹面である。
なお、非球面の周囲に形成する球面部と平面部については、図1に示すような形状に限らない。例えば、図4に示すように、非球面レンズ30の非球面31の周囲に、輪帯状の平面部33を形成する。さらに、その周囲に、輪帯状の球面部32を形成してもよい。ここで、輪帯状の平面部33は、非球面31の非球面軸L3と直交している。また、輪帯状の球面部32は、非球面軸L3上に曲率中心を持ち、曲率半径がR3の凹面である。
また、図5に示すように、非球面レンズ40の非球面41の周囲に、輪帯状の球面部42を形成する。さらに、その周囲に、輪帯状の平面部43を形成してもよい。ここで、輪帯状の球面部42は、非球面41の非球面軸L4上に曲率中心を持ち、曲率半径がR4の凸面である。また、平面部43は、非球面軸L4と直交している。
また、図6に示すように、非球面レンズ50の非球面51の周囲に、輪帯状の平面部53を形成する。さらに、その周囲に、輪帯状の球面部52を形成してもよい。ここで、輪帯状の平面部53は、非球面51の非球面軸L5と直交している。また、輪帯状の球面部52は、非球面軸L5上に曲率中心を持ち、曲率半径がR5の凸面である。
また、球面部と平面部は必ずしも輪帯状に形成する必要はなく、球面部と平面部を同一円周上の一部に形成してもよい。さらには、非球面レンズは、図1または図4、5、6に示すような球面部と平面部を組み合わせて形成してもよい。
本実施例によれば、測定対象となる非球面レンズ10の周囲に、球面部12、22と平面部13、23を、同時加工で設けている。そして、この球面部12、22と平面部13、23を用いて、非球面の偏心を求めている。これにより、非球面の形状に関わらず偏心測定が可能である。
ここで、球面部(12、22)の大きさが、球面波発生光学系から射出される球面波の範囲に含まれる大きさであれば、球面波発生光学系は、球面部の形状や曲率半径に関わらず、一種類の光学系にすることができる。また、平面部(13、23)の大きさが、平面波発生光学系から射出される平面波の範囲に含まれる大きさであれば、平面波発生光学系は、平面部の大きさや形状に関わらず、一種類の光学系にすることができる。従って、非球面毎に専用の光学系を用意する必要がない。この結果、本実施例の偏心測定装置100では、従来に比べて汎用性を高くすることができる。
また、従来技術では、2つの非球面波発生光学系E1、E2の相対的な偏心誤差が、装置自体の設定誤差となる。この設定誤差は、非球面レンズの偏心測定誤差となってしまう。このため、従来技術では、装置自体の設定誤差をキャンセルするために、非球面レンズを円周方向の角度が0度の状態で測定を行い、さらに非球面レンズを円周方向に180度回転して再度同様の測定を行っている。そして0度の状態と180度の状態の測定結果を用いて演算を行わなければならない。
これに対し、本実施例によれば、非球面レンズの偏心を測定する前に、偏心測定装置100の設定誤差を予めキャンセルすることが可能である。従って、非球面レンズ10を円周方向に回転させる必要は無い。この結果、1回の測定で求めたシフト移動量とチルト移動量から非球面レンズの偏心を演算することができる。
さらに、従来技術では、非球面波を用いて偏心測定を行っているが、非球面波発生光学系に誤差が存在する場合には、所望の非球面波を得ることができない。非球面波に誤差が含まれている場合には、被測定面との干渉縞がヌル状態とならず、偏心測定の測定誤差となる場合もある。所望の非球面波が射出されているかを確認するためには、高精度な非球面原器が必要となる。一方、本実施例によれば、平面波と球面波を用いて偏心測定を行っている。所望の平面波や球面波が射出されているかを確認するためには、高精度な平面原器や球面原器を用いればよい。一般的に、非球面に対して平面や球面の方が、安価でより高精度な原器を製作することが可能である。従って、従来技術に比べて、より安価で高精度な偏心測定が可能となる。
また、本実施例では、第4参照平面波と第4測定平面波との干渉縞がヌル状態となるように、また、第3参照平面波と第3測定平面波との干渉縞がヌル状態となるように、非球面レンズ10の位置調整を行っている。そして、この位置調整から、測定原点位置からのシフト移動量とチルト移動量を計測し、非球面レンズ10の偏心を演算している。
しかしながら、このような演算に限られない。例えば、測定原点位置からのシフト移動量やチルト移動量が小さい場合には、実際に非球面レンズ10を動かさず、発生する干渉縞を解析することにより、移動量を求めてもよい。具体的には、第4参照平面波と第4測定平面波との干渉縞を解析して、シフト誤差量を演算する。また、第3参照平面波と第3測定平面波との干渉縞を解析して、チルト誤差量を演算する。このように、干渉縞を解析演算して偏心を検出するようにすれば、非球面レンズ10の位置調整を行わなくとも偏心を求めることができる。
なお、本実施例では、平面波104の光束中にハーフミラー108を配置し、球面波107を反射する構成としている。従って、平面波104はハーフミラー108を2回透過し、球面波107はハーフミラー108で2回反射する。例えば、ハーフミラー108が50%の反射率(透過率)であるとすると、ハーフミラー108を2回透過あるいは2回反射することにより、光量は1/4になってしまう。
ここで、球面波107のうち、非球面レンズ10の球面部12に入射するのは、輪帯状の領域だけである。従って、ハーフミラー108の半透過・反射面のうち、この輪帯状の領域(球面部12を測定するために必要な球面波107)と対応する位置に、反射率の高い反射コートを蒸着しておく。また、平面波104のうち、非球面レンズ10の平面部13に入射するのも、輪帯状の領域だけである。従って、ハーフミラー108の半透過・反射面のうち、この輪帯状の領域(平面部13を測定するために必要な平面波104)と対応する位置には、何もコーティングを施さないようにしておく。あるいは、反射防止コートのみを施しておく。このように構成することで、球面波107や平面波104の光量ロスが低減でき、観察する干渉縞のS/N比が向上する。ハーフミラー208についても同様である。
なお、ハーフミラー108に、上記の輪帯状のコートを施す必要はない。例えば、透明な平行平面板に、反射コートと反射防止コートが輪帯状に施しても良い。このような光学素子を、ハーフミラー108に代えて、光路中に配置してもよい。
このような光量ロスを低減するための構成は、4つのビームスプリッタ113a、113b、213a、213bの反射面に適用することが望ましい。また、ビームスプリッタの代わりにハーフミラーを用いても良いことは言うまでもない。また、各光源から射出した光を、光学系を用いて輪帯状に変換するようにしても良い。
また、本実施例では、非球面11の非球面軸L1に対する非球面21の偏心を測定するものとして説明した。当然のことながら、非球面21の非球面軸L2に対する非球面11の偏心を測定しても良い。
また、本実施例では、非球面レンズ10は、非球面11と非球面21を有する両面非球面レンズである。そして、非球面11と非球面21の相対的な偏心を測定するものとして説明している。しかしながら、測定対象となる非球面レンズは、両面非球面レンズに限らず、一方の面が周囲に球面部と平面部を有した非球面であり、他方の面が球面あるいは平面からなる片面非球面レンズであっても良い。この場合には、一方の面の非球面軸に対する他方の面の球面のシフト誤差、あるいは平面のチルト誤差を、球面波発生光学系あるいは平面波発生光学系により測定することが可能である。
(偏心測定装置の変形例)
本実施例では、非球面レンズ10の表裏面(非球面11と非球面21)の相対的な偏心を測定するものとして説明している。これに限られず、非球面レンズの表面と裏面の相対的な偏心ではなく、所定の基準軸に対する非球面1面の偏心を評価することも可能である。
本実施例では、非球面レンズ10の表裏面(非球面11と非球面21)の相対的な偏心を測定するものとして説明している。これに限られず、非球面レンズの表面と裏面の相対的な偏心ではなく、所定の基準軸に対する非球面1面の偏心を評価することも可能である。
図7は、変形例に係る偏心測定装置200の概略構成を示す。偏心測定装置200は、例えば、非球面レンズ10に関して、非球面レンズ10の最外周の円筒面であるコバ14の円筒軸を基準軸として、非球面21の偏心を測定する。図2と同じ構成要素には同じ番号を付し、構成要素の説明は省略する。
偏心測定装置200は、図7に示すように、図2における第3の光学系、及び第4の光学系からなる。すなわち、図2の偏心測定装置100において、紙面の左半分に示されている第1の光学系及び第2の光学系(平面波101、102、参照平面レンズ103、参照球面レンズ106等)は不要となる。偏心測定装置200において、非球面レンズ10は、取り付け部150に保持されている。そして、取り付け部150は、位置調整ステージ170に載置されている。取り付け部150は、非球面レンズ10のコバ14をチャックするものである。このとき、平面波発生光学系(参照平面レンズ203)と球面波発生光学系(参照球面レンズ206)に対して、偏心がないように取り付け部150を設置する(初期調整)。
(初期調整)
取り付け部150の設置について説明する。この設置は、実施例1における初期調整に該当する。取り付け部150には、基準球面部と基準平面部とが形成されている。取り付け部150の設置は、この基準球面部と基準平面部を利用する。非球面レンズ10を外した状態で、平面波204を、取り付け部150に入射させる。このとき、基準平面部が、実施例1における参照平面レンズ103に該当する。よって、基準平面部と参照平面レンズ203とで、チルト量が算出される。
取り付け部150の設置について説明する。この設置は、実施例1における初期調整に該当する。取り付け部150には、基準球面部と基準平面部とが形成されている。取り付け部150の設置は、この基準球面部と基準平面部を利用する。非球面レンズ10を外した状態で、平面波204を、取り付け部150に入射させる。このとき、基準平面部が、実施例1における参照平面レンズ103に該当する。よって、基準平面部と参照平面レンズ203とで、チルト量が算出される。
続いて、球面波207を、取り付け部150に入射させる。このとき、基準球面部が、実施例1における参照球面レンズ106に該当する。よって、基準球面部と参照平面レンズ203とで、シフト量が算出される。なお、チルト量とシフト量の算出手順は、実施例1で説明したとおりである。このようにして、取り付け部150のチルト量とシフト量の算出が行なわれる。この算出量に基づいて、位置調整ステージ170により、チルト誤差とシフト誤差が無いように位置の補正が行なわれる。
他の手順としては、外形に対して偏心誤差の無いマスターとなる球面や平面を持つ基準物を、非球面レンズ10の代わりに取り付け部150にチャックしても良い。そして、位置調整ステージ170により、チルト調整とシフト調整とを行う。これにより、チルト誤差とシフト誤差が無いように、取り付け部150の位置を補正することもできる。このようにして、偏心測定装置200に対する取り付け部150の設定誤差をキャンセルすることができる。この状態で、非球面レンズ10を取り付け部150に固定する。また、チルト調整とシフト調整が終わったときの位置を、測定原点位置とする。
(非球面レンズ10の測定)
次に、非球面レンズ10の測定を行なう。まず、第4参照平面波と、第4測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞は、モニター161に表示される。このとき、参照球面206aに対して、取り付け部150の基準球面部は、シフト誤差が存在しないように調整されている。従って、非球面レンズ10のコバ14の基準軸に対して球面部22のシフト誤差がなければ、第4参照平面波と第4測定平面波との干渉縞は、ヌル状態になるはずである。
次に、非球面レンズ10の測定を行なう。まず、第4参照平面波と、第4測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞は、モニター161に表示される。このとき、参照球面206aに対して、取り付け部150の基準球面部は、シフト誤差が存在しないように調整されている。従って、非球面レンズ10のコバ14の基準軸に対して球面部22のシフト誤差がなければ、第4参照平面波と第4測定平面波との干渉縞は、ヌル状態になるはずである。
しかしながら、参照球面206aに対して球面部22にシフト誤差が存在すると、シフト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、シフト誤差による干渉縞がヌル状態となるように、非球面レンズ10のシフト調整を行う。そして、このとき、測定原点位置からのシフト移動量を計測する。
次に、非球面レンズ10の位置を、測定原点位置に戻す、そして、第3参照平面波と第3測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。このとき、参照平面203aに対して、取り付け部150の基準平面部は、チルト誤差が存在しないように調整されている。従って、非球面レンズ10のコバ14の基準軸に対して平面部23のチルト誤差が存在しなければ、換言すると、コバ14の基準軸方向と平面部23の法線方向が一致していれば、第3参照平面波と第3測定平面波との干渉縞は、ヌル状態になるはずである。
しかしながら、参照平面203aに対して平面部23にチルト誤差が存在すると、チルト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、チルト誤差による干渉縞がヌル状態となるように、非球面レンズ10のチルト調整を行う。そして、このとき、測定原点位置からのチルト移動量を計測する。
非球面レンズ10の測定原点位置からのチルト移動量とシフト移動量から、所定の基準軸に対する非球面21の偏心を演算することができる。この変形例では、所定の基準軸は、非球面レンズ10のコバ14で規定される軸になる。これにより、所定の基準軸に対する一つの非球面の偏心を評価することも可能である。
図8は、本発明の実施例2に係る偏心測定装置300の概略構成を示す。偏心測定装置300は、図8に示すように、図2における第1の光学系、及び第3の光学系と類似の構成を有する。偏心測定装置300は、レーザ光源311、411を備えている。各々のレーザ光源に対応して、2つの光学系が配置されている。
第5の光学系が配置されている光路は、光路5Aと光路5aからなる。光路5Aは、レーザ光源311から位置調整ステージ170に至る光路である。光路5aは、ビームスプリッタ313の位置において、光路5Aと直交する光路である。光路5Aには、レーザ光源311側から順に、コリメータレンズ312、ビームスプリッタ313、参照平面レンズ302(第1の平面波生成部)及び回折素子303が、一直線状に配置されている。また、光路5aには、結像レンズ314とCCD(撮像素子)315が配置されている。回折素子303の一面(位置調整ステージ170側の面)には、回折格子303aが形成されている。
第6の光学系が配置されている光路は、光路6Aと光路6aからなる。光路6Aは、レーザ光源411から位置調整ステージ170に至る光路である。光路6aは、ビームスプリッタ413の位置において、光路6Aと直交する光路である。光路6Aには、レーザ光源411側から順に、コリメータレンズ412、ビームスプリッタ413、参照平面レンズ402(第2の平面波生成部)及び回折素子403が、一直線状に配置されている。また、光路6aには、結像レンズ414とCCD415が配置されている。回折素子403の一面(位置調整ステージ170側の面)には、回折格子403aが形成されている。
また、本実施例では、位置調整ステージ170を挟んで、第5の光学系と第6の光学系が、対称に形成されている。CCD315、415の各々は、コンピュータ160に接続されている。コンピュータ160は、各CCDから出力された信号の処理を行なう。また、処理した情報を、モニター161に表示する。
本実施例では、平面波301については第5測定平面波と第5参照平面波が、平面波401については第6測定平面波と第6参照平面波が生じる。さらに、第5測定平面波には、第5A測定平面波(平面部での反射)と、第5B測定平面波(球面部での反射)が含まれる。また、第6測定平面波には、第6A測定平面波(平面部での反射)と、第6B測定平面波(球面部での反射)が含まれる。
まず、平面波301について説明する。レーザ光源311から射出されたレーザ光は、コリメータレンズ312により平面波301に変換される。平面波301は、ビームスプリッタ313を透過する。透過した平面波301は、参照平面レンズ302に入射する。参照平面レンズ302は、参照平面302aを有している。
参照平面レンズ302に入射した平面波301の一部は、参照平面レンズ302から射出する。射出した平面波は、回折素子303に入射する。回折素子303は、平面波を球面波に変換する回折格子303aを有する。ここで、回折格子303aは、回折素子303の一方の面に輪帯状に形成されている。そして、回折格子303aは、非球面レンズ10の球面部12に対応する範囲に、輪帯状の球面波305を発生する構成となっている。よって、回折格子303aに入射した平面波は、回折格子303aにより回折され、集光点305aに収束する球面波305となる。
また、回折格子303a以外の領域(回折格子303aの外周領域)には、反射防止コートが施されている。この領域にも、平面波が入射する。この領域を通過した平面波は平面波304となって、回折素子303を射出する。球面波305は、非球面レンズ10の球面部12に到達する。また、平面波304は、非球面レンズ10の平面部13に到達する。
一方、参照平面レンズ302に入射した平面波301の残りは、参照平面レンズ302の参照平面302aにより反射し、参照平面波となる。
次に、平面波401について説明する。レーザ光源411から射出されたレーザ光は、コリメータレンズ412により平面波401に変換される。平面波401は、ビームスプリッタ413を透過する。透過した平面波401は、参照平面レンズ402に入射する。参照平面レンズ402は、参照平面402aを有している。
参照平面レンズ402に入射した平面波401の一部は、参照平面レンズ402から射出する。射出した平面波は、回折素子403に入射する。回折素子403は、平面波を球面波に変換する回折格子403aを有する。ここで、回折格子403aは、回折素子403の一方の面に輪帯状に形成されている。そして、回折格子403aは、非球面レンズ10の球面部22に対応する範囲に、輪帯状の球面波405を発生する構成となっている。よって、回折格子403aに入射した平面波は、回折格子403aにより回折され、集光点405aに収束する球面波405となる。
また、回折格子403a以外の範囲には、反射防止コートが施されている。この範囲にも、平面波が入射する。この範囲を通過した平面波は平面波404となって、回折素子403を射出する。
球面波405は、非球面レンズ10の球面部22に到達する。また、平面波404は、非球面レンズ10の平面部23に到達する。一方、参照平面レンズ402に入射した平面波401の残りは、参照平面レンズ402の参照平面402aにより反射し、参照平面波となる。
このように、2つの平面波301、401は、各々の光軸がZ軸(図8参照)と平行であり、かつ対向して非球面レンズ10に到達する。また、回折素子303、403は、それぞれZ軸方向に移動可能な高精度なステージ171、172に保持されている。本実施例では、この高精度なステージ171、172の位置を測定することで、Z軸方向の位置座標が測定可能となっている。
さらに、回折素子303と回折素子403との間には、被測定物である非球面レンズ10を保持する位置調整ステージ170が設けられている。位置調整ステージ170は、被測定物のX軸、Y軸、Z軸方向の位置と、X軸回り及びY軸回りの傾き調整が可能である。位置調整ステージ170は、X軸、Y軸、Z軸方向の位置座標と、X軸回り及びY軸回りの傾き量を測定するスケールを有している。これにより、調整に伴う非球面レンズ10の移動量を測定できる。
(初期調整)
ここで、偏心測定装置300に設定誤差が存在すると、偏心測定誤差となってしまう。設定誤差とは、参照平面302aと参照平面402aの相対的な傾き誤差や、回折格子303aと回折格子403aの相対的なX軸、Y軸、Z軸方向の位置誤差である。
ここで、偏心測定装置300に設定誤差が存在すると、偏心測定誤差となってしまう。設定誤差とは、参照平面302aと参照平面402aの相対的な傾き誤差や、回折格子303aと回折格子403aの相対的なX軸、Y軸、Z軸方向の位置誤差である。
そこで、本実施例では、被測定物の偏心を測定する前に、初期調整を行う。初期調整は、非球面レンズ10が無い状態で、行われる。この初期調整により、偏心測定装置300の設定誤差を、キャンセル(あるいは最小に)する。まず、チルト誤差を無くす(低減する)ための調整が行なわれる。チルト誤差は、参照平面302aと参照平面402aの相対的な傾き誤差である。この調整により、チルト誤差が補正される。この調整では、平面波401は不要である。このため、参照平面レンズ402に平面波401が入射しないように、平面波401を遮光した状態にする。遮光は、前述したように、光路中に遮光板を挿入するか、光源を消灯すればよい。
参照平面レンズ302に入射した平面波301は、一部が参照平面302aで反射する。反射した平面波は、参照平面波となり光路を逆行する。参照平面302aを透過した平面波304は、一部が平面波のまま回折素子303と回折素子403を透過して、参照平面レンズ402に入射する。このとき、平面波304の一部が、参照平面402aで反射する。反射した平面波は、測定平面波として光路を逆行する。測定平面波と参照平面波は、いずれも、ビームスプリッタ313で反射される。これにより、参照平面波と測定平面波とで干渉縞が形成される。この干渉縞は、モニター161に表示される。
そこで、使用者(測定者)は、この干渉縞をモニター161で観察しながら、参照平面レンズ302と参照平面レンズ402のチルト調整(X軸回り及びY軸回りの傾き調整)を行う。ここで、干渉縞がヌル状態となれば、参照平面302aと参照平面402aのチルト誤差が存在しない状態、あるいは無視できるほど小さい状態になる。
次に、回折格子303aと回折格子403aの相対的なシフト誤差を無くす(低減する)ための調整が行なわれる。この調整により、シフト誤差が補正される。ステージ171、172をZ軸方向に移動し、回折格子303aの集光点305aと回折格子403aの集光点405aを一致させる。このとき、回折格子303aに入射した平面波は、回折格子303aにより回折され球面波305となる。球面波305は、集光点305aにて収束した後、発散光となる。この発散光は、回折素子403に入射する。そして、回折素子403の回折格子403aにより回折され平面波となり、参照平面レンズ402に入射する。
この平面波の一部が参照平面402aで反射し、測定平面波として光路を逆行する。一方、参照平面402aで反射されることで、参照平面波が生じることは、前述の通りである。測定平面波と参照平面波は、いずれも、ビームスプリッタ313で反射される。これにより、参照平面波と、測定平面波とで干渉縞が形成される。この干渉縞も、モニター161に表示される。そこで、使用者は、この干渉縞をモニター161で観察しながら、回折素子303と回折素子403のシフト調整(X軸、Y軸、Z軸方向の位置調整)を行う。ここで、干渉縞がヌル状態となれば、回折格子303aと回折格子403aのシフト誤差が存在しない状態、あるいは無視できるほど小さい状態になる。このときの各ステージ171、172のZ軸方向の位置を原点位置とする。
参照平面302aと参照平面402aのチルト調整と、回折格子303aと回折格子403aのシフト調整が完了したら、遮光状態が解除される。
次に、回折格子303aの集光点305aと回折格子403aの集光点405aの間隔が、所定の間隔となるように、ステージ171、172を原点位置からZ軸方向に移動する。ここでの所定の間隔とは、非球面レンズ10の球面部12の曲率中心C1と球面部22の曲率中心C2の間隔であって、設計値に基づく間隔である。
以上のようにして、参照平面302aと参照平面402aの傾き調整と、回折格子303aと回折格子403aのX軸、Y軸、Z軸方向の位置調整を行う。これにより、偏心測定装置300の設定誤差が存在しない状態、あるいは無視できる程度に小さい状態にすることができる。
(非球面レンズ10の測定)
次に、非球面レンズ10の測定を行なう。まず、非球面レンズ10を、位置調整ステージ170に載置する。上述したように、平面波301は、参照平面レンズ302に入射し、その一部が参照平面302aで反射する。反射した平面波は、参照平面波として光路を逆行する。一方、参照平面302aを透過した平面波は、一部が回折素子303をそのまま透過して、平面波304となる。この平面波304は、非球面レンズ10の平面部13に到達する。また、回折格子303aにて回折された平面波は、球面波305となる。この球面波305は、集光点305aに一旦集光し、球面波として非球面レンズ10の球面部12に到達する。
次に、非球面レンズ10の測定を行なう。まず、非球面レンズ10を、位置調整ステージ170に載置する。上述したように、平面波301は、参照平面レンズ302に入射し、その一部が参照平面302aで反射する。反射した平面波は、参照平面波として光路を逆行する。一方、参照平面302aを透過した平面波は、一部が回折素子303をそのまま透過して、平面波304となる。この平面波304は、非球面レンズ10の平面部13に到達する。また、回折格子303aにて回折された平面波は、球面波305となる。この球面波305は、集光点305aに一旦集光し、球面波として非球面レンズ10の球面部12に到達する。
一方、平面波401は、参照平面レンズ402に入射し、その一部が参照平面402aで反射する。反射した平面波は、参照平面波として光路を逆行する。一方、参照平面402aを透過した平面波は、一部が回折素子403をそのまま透過して、平面波404となる。この平面波404は、非球面レンズ10の平面部23に到達する。また、回折格子403aにて回折された平面波は、球面波405となる。この球面波405は、集光点405aに一旦集光し、球面波として非球面レンズ10の球面部22に到達する。
この状態で、位置調整ステージ170により、非球面レンズ10の位置調整を行う。まず、第5参照平面波と、第5A測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞は、モニター161に表示される。そこで、使用者は、干渉縞を観察しながら、干渉縞がヌル状態となるように、非球面レンズ10のチルト調整(X軸回り及びY軸回りの傾き調整)を行う。
次に、第5参照平面波と、第5B測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。そこで、使用者は、干渉縞を観察しながら、干渉縞がヌル状態となるように非球面レンズ10のシフト調整(X軸、Y軸、Z軸方向の位置調整)を行う。
この時点(チルト調整とシフト調整が終了した時点)での非球面レンズ10の位置が、測定原点位置である。この測定原点位置は、位置調整ステージ170の位置から求めることができる。測定原点位置は、コンピュータ160に記憶させる。
次に、第6参照平面波と、第6B測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。このとき、回折格子303aに対して、回折格子403a及び非球面レンズ10の球面部12は、それぞれシフト誤差が存在しないように調整されている。
従って、球面部12に対して球面部22のシフト誤差が存在しなければ、第6参照平面波と第6B測定平面波とで生じる干渉縞は、ヌル状態になるはずである。しかしながら、回折格子403aに対して球面部22にシフト誤差が存在すると、シフト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、このシフト誤差による干渉縞がヌル状態となるように、非球面レンズ10のシフト調整を行う。具体的には、測定原点位置から、X軸、Y軸、Z軸方向に、非球面レンズ10を移動させる。このとき、測定原点位置からのシフト移動量を、X軸、Y軸、Z軸方向の各々について計測する。測定したシフト移動量は、コンピュータ160に記憶させる。
次に、非球面レンズ10の位置を、測定原点位置に戻す、そして、第6参照波面と、第6A測定平面波とで生じる干渉縞を使って、調整を行なう。この干渉縞も、モニター161に表示される。このとき、参照平面302aに対して、参照平面402a及び非球面レンズ10の平面部13は、それぞれチルト誤差が存在しないように、換言すると、参照平面302aと参照平面402a及び平面部13の法線方向が一致するように調整されている。
従って、平面部13に対して平面部23のチルト誤差が存在しなければ、即ち、平面部13と平面部23の法線方向が一致していれば、第6参照平面波と第6A測定平面波との干渉縞は、ヌル状態になるはずである。しかしながら、参照平面402aに対して平面部23にチルト誤差があると、チルト誤差による干渉縞が発生する。そこで、使用者は、干渉縞を観察しながら、このチルト誤差による干渉縞がヌル状態となるように、非球面レンズ10のチルト調整を行う。具体的には、測定原点位置で、X軸及びY軸の回りに、非球面レンズ10を回転させる。このとき、測定原点位置からのX軸回り及びY軸回りの回転量を、チルト移動量として計測する。測定したチルト移動量は、コンピュータ160に記憶させる。
コンピュータ160は、非球面レンズ10の測定原点位置からのチルト移動量とシフト移動量から、非球面レンズ10の非球面11に対する非球面21の偏心を算出する。ここで、非球面レンズ10の偏心は、チルト誤差θとシフト誤差δである。チルト誤差は、計測したチルト移動量θと同じであるのでチルト誤差θとなる。一方、計測したシフト移動量(図1に示したS)は、球面部22の曲率中心C2の移動量である。従って、非球面11と非球面21及び球面部22の位置関係と、チルト移動量θ及びシフト移動量Sからシフト誤差δを演算することができる。
本実施例によれば、実施例1と同様の効果を得られるとともに、さらに、平面波発生光学系と球面波発生光学系を共通の光路とすることができる。従って、部品の共通化が可能となり、実施例1の偏心測定装置に比べて、構成要素を少なくすることができ、装置を小型化することが可能となる。なお、本実施例においても、第一実施例と同様に様々な変形が可能である。
図9は、実施例3に係る偏心測定装置500の概略構成を示す。偏心測定装置500は、2つの光源501、511を備えている。各々の光源に対応して、2つの光学系が配置されている。この点で、偏心測定装置500は、偏心測定装置200(図7)と類似した構成になっている。
第7の光学系が配置されている光路は、光路7Aと光路7aからなる。光路7Aは、光源501から位置調整ステージ170に至る光路である。光路7aは、ハーフミラー503の位置において、光路7Aと直交する光路である。光路7Aには、光源501側から順に、ハーフミラー503、コリメータレンズ504、ハーフミラー506が、一直線状に配置されている。また、光路7aには、位置検出素子(CCD)507が配置されている。ハーフミラー503及びハーフミラー506は、その面の法線が光路7Aの光軸に対して45°となるように、配置されている。図9の構成では、ハーフミラー503及びハーフミラー506は、その面の法線が互いに直交するように配置されている。しかしながら、面の法線が互いに平行になるように、ハーフミラー503及びハーフミラー506を配置してもよい。
第8の光学系が配置されている光路は、光路8Aと光路8aからなる。光路8Aは、光源511から位置調整ステージ170に至る光路である。光路8aは、ハーフミラー513の位置において、光路8Aと直交する光路である。光路8Aには、光源511側から順に、ハーフミラー513、コリメータレンズ514、ミラー516、集光レンズ517、ハーフミラー506が、配置されている。また、光路8aには、位置検出素子520が配置されている。
ここで、ミラー516及びハーフミラー513は、その面の法線がコリメータレンズ514の光軸に対して45°となるように、配置されている。また、ハーフミラー506は、光路7Aと光路8Aとで共通に用いられている。このように、光路8Aでは、ミラー516を境にして光路が90°折れ曲がり、更にハーフミラー506を境にして光路が90°折れ曲がっている。
なお、ハーフミラー513及びミラー516は、その面の法線が互いに平行となるように配置されている。しかしながら、面の法線が互いに直交するように、ハーフミラー513及びミラー516を配置してもよい。
また、ミラー516、集光レンズ517及びハーフミラー506は、ステージ530上に載置されている。ステージ530は、高精度なスライドガイド上に設置され、それぞれZ軸方向に移動可能に構成されている。これにより、Z軸方向の位置座標が測定可能となっている。
位置検出素子507、520、位置調整ステージ170の各々は、コンピュータ160に接続されている。コンピュータ160は、各位置検出素子及び位置調整ステージから出力された信号の処理を行なう。また、処理した情報を、モニター161に表示する。
光源501から射出された発散光502は、ハーフミラー503を通過して、コリメータレンズ504に入射する。ここで、発散光502は、コリメータレンズ504により、平面波505としてコリメータレンズ504を射出する。平面波505は、非球面レンズ10の平面部23に到達する。平面部23で反射した平面波505は、光路を逆行し、ハーフミラー503を介して位置検出素子507上に集光する。このスポット(集光)位置を位置検出素子507で検出する。そして、所定の基準に対する位置ずれ量を計測する。これにより、平面部23のチルト誤差を求めることができる。
「所定の基準」としては、以下に掲げるものを用いることができる。
(1)装置の初期調整で決めた基準位置
(2)位置検出素子の中心座標
(3)取り付け部150に設けた基準平面部からの反射光のスポット位置
(1)装置の初期調整で決めた基準位置
(2)位置検出素子の中心座標
(3)取り付け部150に設けた基準平面部からの反射光のスポット位置
また、光源部511からの発散光512は、ハーフミラー513を通過して、コリメータレンズ514に入射する。ここで、発散光512は、コリメータレンズ514により平面波515として射出する。平面波515は、ミラー516で反射される。そして、反射された平面波515は、集光レンズ517により、集光点519に収束する球面波518に変換される。球面波518は、球面部22に到達する。球面部22で反射した球面波518は、光路を逆行し、ハーフミラー513を介して位置検出素子520上に集光する。そこで、球面部22での反射光のスポット位置を、位置検出素子520で検出する。そして、所定の基準(例えば、上述の装置の初期調整で決めた基準位置や、位置検出素子の中心座標、あるいは取り付け部150に設けた基準球面部からの反射光のスポット位置等)に対する位置ずれ量を計測する。これにより、球面部22のシフト誤差を求めることができる。
本実施例によれば、参照平面を有する参照平面レンズや参照球面を有する参照球面レンズを必要としない。従って、偏心測定装置500の構成要素を少なくすることができ、装置を小型化することが可能となる。また、干渉縞を用いた偏心測定に比べて、検出感度は、本実施例のようなオートコリメーション法を用いた偏心測定の方が低い。従って、非球面レンズの偏心量が大きい場合にも偏心測定が可能である。
また、上記各実施例の偏心測定装置において、偏光を利用して光の利用効率を向上させることもできる。このように、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。
以上のように、本発明に係る非球面レンズの偏心測定方法及び偏心測定装置は、測定対象となる非球面毎に専用の光学系を用意する必要がないため、汎用性が高い偏心測定方法及び偏心測定装置に有用である。
10 非球面レンズ
11、21 非球面
12、22 球面部
13、23 平面部
C1、C2 曲率中心
L1、L2 非球面軸
R1、R2 曲率半径
100 偏心測定装置
101、102、201、202 平面波
103、203 参照平面レンズ
103a、203a 参照平面
104、204 平面波
105、205 ミラー
106、206 参照球面レンズ
106a、206a 参照球面
107、207 球面波
108、208 ハーフミラー
109、209 集光点
110、210、530 ステージ
111a、111b、211a、211b レーザ光源
112a、112b、212a、212b コリメータレンズ
113a、113b、213a、213b ビームスプリッタ
114a、114b、214a、214b 結像レンズ
115a、115b、215a、215b 撮像素子
150 取り付け部
160 コンピュータ
161 モニター
170 位置調整ステージ
171、172 高精度ステージ
300 偏心測定装置
301、401 平面波
302、402 参照平面レンズ
302a、402a 参照平面
303、403 回折素子
303a、403a 回折格子
304、404 平面波
305、405 球面波
311、411 レーザ光源
312、412 コリメータレンズ
313、413 ビームスプリッタ
314、414 結像レンズ
315、415 撮像素子
500 偏心測定装置
501、511 光源
503、506、513 ハーフミラー
504、514 コリメータレンズ
516 ミラー
517 集光レンズ
507、520 位置検出素子
502、512 発散光
505、515 平面波
518 球面波
519 集光点
11、21 非球面
12、22 球面部
13、23 平面部
C1、C2 曲率中心
L1、L2 非球面軸
R1、R2 曲率半径
100 偏心測定装置
101、102、201、202 平面波
103、203 参照平面レンズ
103a、203a 参照平面
104、204 平面波
105、205 ミラー
106、206 参照球面レンズ
106a、206a 参照球面
107、207 球面波
108、208 ハーフミラー
109、209 集光点
110、210、530 ステージ
111a、111b、211a、211b レーザ光源
112a、112b、212a、212b コリメータレンズ
113a、113b、213a、213b ビームスプリッタ
114a、114b、214a、214b 結像レンズ
115a、115b、215a、215b 撮像素子
150 取り付け部
160 コンピュータ
161 モニター
170 位置調整ステージ
171、172 高精度ステージ
300 偏心測定装置
301、401 平面波
302、402 参照平面レンズ
302a、402a 参照平面
303、403 回折素子
303a、403a 回折格子
304、404 平面波
305、405 球面波
311、411 レーザ光源
312、412 コリメータレンズ
313、413 ビームスプリッタ
314、414 結像レンズ
315、415 撮像素子
500 偏心測定装置
501、511 光源
503、506、513 ハーフミラー
504、514 コリメータレンズ
516 ミラー
517 集光レンズ
507、520 位置検出素子
502、512 発散光
505、515 平面波
518 球面波
519 集光点
Claims (20)
- 所定軸を中心にして球面を形成する球面形成工程と、
前記所定軸に略直交する平面を形成する平面形成工程と、
非球面を形成する非球面形成工程と、を有することを特徴とする非球面レンズ製造方法。 - 非球面レンズの偏心測定方法であって、
平面波として射出された可干渉光を、前記非球面レンズに設けられた平面部に照射し、前記平面部からの光を用いて、所定の基準に対する前記非球面レンズの前記平面部のチルト誤差を検出するチルト誤差検出工程と、
球面波として射出された可干渉光を、前記非球面レンズに設けられた球面部に照射し、前記球面部からの光を用いて、前記所定の基準に対する前記非球面レンズの前記球面部のシフト誤差を検出するシフト誤差検出工程と、
前記チルト誤差検出工程において検出したチルト誤差と、前記シフト誤差検出工程において検出したシフト誤差とを用いて、前記非球面レンズの非球面の偏心を演算する偏心演算工程と、を有することを特徴とする非球面レンズの偏心測定方法。 - 前記チルト誤差検出工程において、前記平面部により反射した光により発生する干渉縞を用い、
前記シフト誤差検出工程において、前記球面部により反射した光により発生する干渉縞を用いることを特徴とする請求項2に記載の非球面レンズの偏心測定方法。 - 前記平面波として射出された可干渉光を、基準平面部に照射し、前記基準平面部により反射した光を用いて、前記基準平面部のチルト誤差を検出し補正するチルト誤差補正工程と、
前記球面波として射出された可干渉光を、基準球面部に照射し、前記基準球面部により反射した光を用いて、前記基準球面部のシフト誤差を検出し補正するシフト誤差補正工程と、を有することを特徴とする請求項1または2に記載の非球面レンズの偏心測定方法。 - 前記チルト誤差補正工程において、前記基準平面部により反射した光により発生する干渉縞を用い、
前記シフト誤差補正工程において、前記基準球面部により反射した光により発生する干渉縞を用いることを特徴とする請求項4に記載の非球面レンズの偏心測定方法。 - 光を射出する光源部と、
被測定物に照射する平面波を生成する平面波生成部と、
前記被測定物に照射する球面波を生成する球面波生成部と、
前記被測定物からの光を検出する光検出部と、を有することを特徴とする偏心測定装置。 - 参照平面波を生成する参照平面波生成部と、
前記被測定物からの光と前記参照平面波との干渉縞を生成する干渉計部と、有し、
前記光検出部は、前記干渉縞を検出する撮像部であることを特徴とする請求項6に記載の偏心測定装置。 - 前記平面波生成部は、前記被測定物を挟んで対向する位置に配置されていることを特徴とする請求項7に記載の偏心測定装置。
- 前記平面波生成部は、前記被測定物の一方の面に前記平面波を照射する第1の平面波生成部と、前記被測定物の他方の面に前記平面波を照射する第2の平面波生成部とを有することを特徴とする請求項8に記載の偏心測定装置。
- 前記参照平面波生成部は、前記平面波に対する参照波面を生成し、前記被測定物の一方の面に前記平面波を照射する光路に配置された第1の参照平面波生成部と、前記被測定物の他方の面に前記平面波を照射する光路に配置された第2の参照平面波生成部とからなることを特徴とする請求項9に記載の偏心測定装置。
- 前記球面波生成部は、前記被測定物を挟んで対向する位置に配置されていることを特徴とする請求項7に記載の偏心測定装置。
- 前記球面波生成部は、前記被測定物の一方の面に前記球面波を照射する第1の球面波生成部と、前記被測定物の他方の面に前記球面波を照射する第2の球面波生成部とを有することを特徴とする請求項11に記載の偏心測定装置。
- 前記参照平面波生成部は、前記球面波に対する参照波面を生成し、前記被測定物の一方の面に前記球面波を照射する光路に配置された第3の参照平面波生成部と、前記被測定物の他方の面に前記球面波を照射する光路に配置された第4の参照平面波生成部とからなることを特徴とする請求項12に記載の偏心測定装置。
- 前記平面波生成部は、前記第1の参照平面波生成部と前記第2の参照平面波生成部との機能を兼ねることを特徴とする請求項10に記載の偏心測定装置。
- 前記球面波生成部は、前記第3の参照平面波生成部と前記第4の参照平面波生成部との機能を兼ねることを特徴とする請求項13に記載の偏心測定装置。
- 前記平面波生成部と前記球面波生成部と前記参照波面生成部とは、前記被測定物の一方の面の側に配置されていることを特徴とする請求項7に記載の偏心測定装置。
- 前記平面波生成部と前記球面波生成部とは、同一の回折光学素子であることを特徴とする請求項6に記載の偏心測定装置。
- 前記撮像素子は、平面波に基づく干渉縞と前記球面波に基づく干渉縞の各々を撮像し、
撮像結果に基づいて、前記被測定物における被測定面のチルト誤差とシフト誤差を算出する演算装置を備えることを特徴とする請求項7〜17のいずれか一項に記載の偏心測定装置。 - 前記光検出器は、位置検出素子であり、
前記位置検出素子は、前記被測定物からの光の集光位置を検出し、
前記被測定物に照射された平面波の前記位置検出素子上の集光位置に基づいて前記被測定物のチルト誤差を検出し、
前記被測定物に照射された球面波の前記位置検出素子上の集光位置に基づいて前記被測定物のシフト誤差を検出することを特徴とする請求項6に記載の偏心測定装置。 - 請求項1に記載の非球面レンズ製造方法により製造された非球面レンズ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194876A JP2007010609A (ja) | 2005-07-04 | 2005-07-04 | 非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194876A JP2007010609A (ja) | 2005-07-04 | 2005-07-04 | 非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007010609A true JP2007010609A (ja) | 2007-01-18 |
Family
ID=37749306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005194876A Withdrawn JP2007010609A (ja) | 2005-07-04 | 2005-07-04 | 非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007010609A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058872A (ja) * | 2009-09-08 | 2011-03-24 | Konica Minolta Opto Inc | オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法 |
JP2011163970A (ja) * | 2010-02-10 | 2011-08-25 | Fujifilm Corp | 非球面レンズの偏芯測定方法および偏芯測定装置 |
WO2012039341A1 (ja) * | 2010-09-22 | 2012-03-29 | イネイブル株式会社 | 形状測定装置および形状測定方法、ならびにこれらに使用される光軸調整用治具 |
JP2017167133A (ja) * | 2012-09-28 | 2017-09-21 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 回折光学素子 |
-
2005
- 2005-07-04 JP JP2005194876A patent/JP2007010609A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058872A (ja) * | 2009-09-08 | 2011-03-24 | Konica Minolta Opto Inc | オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法 |
JP2011163970A (ja) * | 2010-02-10 | 2011-08-25 | Fujifilm Corp | 非球面レンズの偏芯測定方法および偏芯測定装置 |
WO2012039341A1 (ja) * | 2010-09-22 | 2012-03-29 | イネイブル株式会社 | 形状測定装置および形状測定方法、ならびにこれらに使用される光軸調整用治具 |
JP5334227B2 (ja) * | 2010-09-22 | 2013-11-06 | イネイブル株式会社 | 形状測定装置および形状測定方法、ならびにこれらに使用される光軸調整用治具 |
JP2017167133A (ja) * | 2012-09-28 | 2017-09-21 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 回折光学素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106840027B (zh) | 光学自由曲面的像散补偿型干涉检测装置与检测方法 | |
JP5690827B2 (ja) | 光学表面の形状を測定する方法及び干渉測定デバイス | |
JPH102714A (ja) | 測定方法及び装置 | |
WO2009006919A1 (en) | Method of measuring a deviation an optical surface from a target shape | |
US9606339B2 (en) | Mirror of a projection exposure apparatus for microlithography with mirror surfaces on different mirror sides, and projection exposure apparatus | |
US20100309458A1 (en) | Asphere measurement method and apparatus | |
US20130044332A1 (en) | Surface profile measurement apparatus and alignment method thereof and an improved sub-aperture measurement data acquisition method | |
JP2010164388A (ja) | 測定方法及び測定装置 | |
WO2018000943A1 (zh) | 一种凹柱面及柱面发散镜的检测方法及装置 | |
US20220221269A1 (en) | Measuring apparatus for interferometrically determining a surface shape | |
JP2008089356A (ja) | 非球面測定用素子、該非球面測定用素子を用いた光波干渉測定装置と方法、非球面の形状補正方法、およびシステム誤差補正方法 | |
JP2007010609A (ja) | 非球面レンズ製造方法、非球面レンズの偏心測定方法、偏心測定装置及びこの方法により製造された非球面レンズ | |
JP4232983B2 (ja) | 高精度かつ単純なオペレーションを用いる光学系アライメントシステム及び方法 | |
JP2002296005A (ja) | アライメント方法、点回折干渉計測装置、及び該装置を用いた高精度投影レンズ製造方法 | |
CN102087097A (zh) | 非球面体测定方法以及装置 | |
WO2009006914A1 (en) | Method of measuring a deviation of an actual shape from a target shape of an optical surface | |
JP2002333305A (ja) | 干渉測定装置および横座標計測方法 | |
JP2000097663A (ja) | 干渉計 | |
JP5307528B2 (ja) | 測定方法及び測定装置 | |
JP2002206915A (ja) | 面形状測定装置の横座標較正方法および面形状測定装置 | |
US11333487B2 (en) | Common path mode fiber tip diffraction interferometer for wavefront measurement | |
JP4857619B2 (ja) | 反射非球面光学素子の偏芯測定方法、光学系の製造方法、反射非球面光学素子、及び光学系 | |
JPH07229721A (ja) | 非球面波発生装置及びそれを用いた非球面形状測定方法 | |
JP2000097622A (ja) | 干渉計 | |
CN110455420B (zh) | 波前测量设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080617 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090918 |