JP2007010276A - Underground heat exchanger - Google Patents

Underground heat exchanger Download PDF

Info

Publication number
JP2007010276A
JP2007010276A JP2005194107A JP2005194107A JP2007010276A JP 2007010276 A JP2007010276 A JP 2007010276A JP 2005194107 A JP2005194107 A JP 2005194107A JP 2005194107 A JP2005194107 A JP 2005194107A JP 2007010276 A JP2007010276 A JP 2007010276A
Authority
JP
Japan
Prior art keywords
heat exchanger
ground
pipe section
forward pipe
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194107A
Other languages
Japanese (ja)
Inventor
Keiichi Kimura
恵一 木村
Matsuo Morita
満津雄 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2005194107A priority Critical patent/JP2007010276A/en
Priority to TW094130410A priority patent/TW200702610A/en
Priority to KR1020050088272A priority patent/KR20070003504A/en
Publication of JP2007010276A publication Critical patent/JP2007010276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground heat exchanger generating no heat exchange loss owing to high heat exchange efficiency and for making it easy to process the underground heat exchanger, bore a hole for burying the underground heat exchanger and conduct a burial work. <P>SOLUTION: The underground heat exchanger buried under ground for adjusting temperature of a heat medium flowing inside by subterranean heat is equipped with a resin supply pipe part 1 through which the heat medium spirally flows down near an earth surface and a return pipe part 2 for returning the heat medium to above the ground. The supply pipe part 1 is wound so that its diameter is sequentially enlarged downward and winding form of the supply pipe part 1 is circle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は地中熱交換器に関するものである。   The present invention relates to an underground heat exchanger.

地中はある深さ以下になると年間を通してほぼ一定の温度であるので、その地中熱を利用し空調を行うシステムなどがある。この地中熱を熱媒を介して採熱などを行うのが地中熱交換器で、熱媒を地上から地中の深層部まで下ろしてから反転させて地上へ返すように全体がU字を成す往復路管部を、備え、これを掘削した穴に挿入して埋め、地中と熱媒の間で熱交換を行っており、この往復路管部には耐蝕性、耐久性などの点から樹脂製パイプが用いられている。   Since the underground is below a certain depth, the temperature is almost constant throughout the year. The underground heat exchanger is used to collect this underground heat via a heating medium, and the whole is U-shaped so that the heating medium is lowered from the ground to the deep part of the ground and then reversed and returned to the ground. The reciprocating pipe section is provided, inserted into the excavated hole and buried, and heat exchange is performed between the underground and the heat medium. The reciprocating pipe section has corrosion resistance, durability, etc. From the point, resin pipes are used.

特開2001−289533号公報JP 2001-289533 A

上記のU字状往復路管部で必要な熱量を得るためには、深層部に向け縦穴を特殊な掘削機械で長時間かけて掘らねばならず、しかも穴の崩れ防止や泥土や湧水などの処理も必要で、非常に手間と時間がかかりコスト高となる問題がある。そのために、一つの穴にU字状往復路管部の容量を大きくしたものを埋めたり、一つの穴に複数本を埋めたりすると、地中の狭い範囲で集中して採熱することとなり、例えば冬期では地中から奪う単位体積当りの熱量が多くなって地中温度の回復に長時間かかるため、採熱量が低下し続けて空調運転できなくなったり、凍結防止のために不凍液を使用しなければならないため環境汚染が発生する問題がある。また、U字状往復路管部では往路も復路も同じ経路を熱媒が流れるため、例えば冬期では、熱媒が地表へ戻る際、せっかく採熱温調した熱媒が地上近くで放熱して、熱ロスが生じる問題がある。   In order to obtain the amount of heat necessary for the above U-shaped round-trip pipe section, a vertical hole must be dug for a long time with a special excavator toward the deep layer, and also prevention of collapse of the hole, mud, spring water, etc. This process is also necessary, and there is a problem that it is very laborious and time consuming and increases the cost. Therefore, if you fill in one hole with a large U-shaped round-trip pipe capacity, or if you fill multiple holes in one hole, you will collect heat in a narrow area in the ground, For example, in winter, the amount of heat per unit volume taken from the ground increases and it takes a long time to recover the underground temperature, so the amount of heat collected continues to decline and air conditioning operation cannot be performed, and antifreeze must be used to prevent freezing. Therefore, there is a problem that environmental pollution occurs. Also, in the U-shaped round-trip pipe section, the heating medium flows through the same path in both the forward path and the return path. For example, in the winter season, when the heating medium returns to the ground surface, the heating medium whose temperature is adjusted is dissipated near the ground. There is a problem that heat loss occurs.

本発明は上記課題を解決するため、地中に埋設されると共に内部を流れる熱媒を地中熱で温度調節する地中熱交換器であって、地表近くで前記熱媒が渦巻き状に下りながら流れる樹脂製の往路管部と、この往路管部から出た前記熱媒を地上へ戻す復路管部と、を備えたこと、また、地表近くで所定間隔を隔てて対向すると共に前記熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部と、この往路管部から出た前記熱媒を地上へ戻す復路管部と、を備えたことを最も主要な特徴とする。   In order to solve the above-mentioned problems, the present invention is a subsurface heat exchanger that adjusts the temperature of a heat medium that is buried in the ground and that flows inside by using ground heat, and the heat medium descends in a spiral shape near the ground surface. And a return pipe section for returning the heat medium that has flowed out of the forward pipe section to the ground, and opposed to the ground surface at a predetermined interval, and the heat medium The main feature is that it comprises a pair of resin-made forward pipe sections that flow while meandering in a meandering manner, and a return pipe section that returns the heat medium that has come out of the forward pipe sections to the ground.

請求項1の発明によれば、地域により異なるが深度1m位までの地中温度は外気の影響を受けて冬は低く夏は高くなるが、熱媒が採熱(冬期)・放熱(夏期)可能な温度差が地中に対してあるため、往路管部1を細くて長い渦巻き状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。そのため、地中温度が回復しやすく、長時間の連続空調運転も可能となり、環境汚染の心配の無い水を熱媒として使用でき、不凍液を使わずに済む。さらに往路管部1は継ぎ目のない1本の管を巻設するだけよいので加工が簡単になり、バネ状に巻設して伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。復路管部2は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部1の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。
請求項2の発明によれば、一巻き毎に往路管部1の径の大きさを変えることで管部同士の熱交換領域の重複部をなくし、地中の広い範囲で満遍なく熱交換させて地中温度の早期回復を図り、かつ熱交換効率を向上させることができる。下方に向かって順次拡径するように巻設した往路管部1では、深くなるにつれて被地中熱量が増えて安定するのに合わせて、往路管部1の径を大きく長くして熱交換量を増やすことにより、熱交換効率を高めることができる。さらに、往路管部1を埋める際、径中央部から土を盛ることにより、往路管部1の形に沿った山形となり、往路管部1の形を崩さずに容易に埋めることができる。下方に向かって順次縮径するように巻設した往路管部1では、その形状に合わせて埋設用穴は擂り鉢状でよいので掘りやすく、一層施工が容易となる。
請求項3の発明によれば、往路管部1が丸状や多角状の巻形状では、地中で一層広範囲に分散して少しずつ採熱でき、さらに地中温度が回復しやすくなる。往路管部1が長円状や長方形の多角状の巻形状では、狭く細長い土地にも容易に埋設することができる。
請求項4の発明によれば、地域により異なるが深度1m位までの地中温度は外気の影響を受けて冬は低く夏は高くなるが、熱媒が採熱(冬期)・放熱(夏期)可能な温度差が地中に対してあるため、往路管部1を細くて長い蛇行状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。そのため、地中温度が回復しやすく、長時間の連続空調運転も可能となり、環境汚染の心配の無い水を熱媒として使用でき、不凍液を使わずに済む。さらに往路管部1は蛇行状にして伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。復路管部2は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部1の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。往路管部1、1を対向させて幅を狭くできるので、狭く細長い土地にも容易に埋設することができる。
請求項5の発明によれば、一蛇行毎に往路管部1、1の間隔の広さを変えることで管部同士の熱交換領域の重複部をなくし、地中の広い範囲で満遍なく熱交換させて地中温度の早期回復を図り、かつ熱交換効率を向上させることができる。間隔が下方に向かって順次広がるように配設した往路管部1、1では、往路管部1、1を埋める際、間隔の中央部から土を盛ることにより、往路管部1の形に沿った山形となり、往路管部1の形を崩さずに容易に埋めることができる。間隔が下方に向かって順次狭くなるように配設した往路管部1、1では、その形状に合わせて埋設用穴はV溝状でよいので掘りやすく、一層施工が容易となる。
請求項6の発明によれば、往路管部1が扁平管なので短径側外面から管中央部の熱媒への伝熱が早く、熱交換効率がさらに良くなる。扁平管なので曲げやすく、往路管部1を渦巻き状や蛇行状に簡単に形成することができる。
請求項7の発明によれば、往路管部1が扁平管で長径側が尖状なので熱媒が乱流となって強制対流により伝熱が促進され、熱交換効率がさらに向上する。
請求項8の発明によれば、往路管部1の外周壁が蛇行状なので伝熱面積が増えかつ内部では熱媒の乱流効果をさらに高めることができ、一層熱交換効率が向上する。
According to the invention of claim 1, the underground temperature up to a depth of about 1 m varies depending on the region, but is affected by the outside air and is low in winter and high in summer, but the heat medium collects heat (winter) and dissipates heat (summer). Since there is a possible temperature difference with respect to the ground, the outgoing pipe section 1 is embedded in the vicinity of the ground surface as a thin and long spiral, and the heat medium is flowed in a counter flow with respect to the geothermal flow, improving the heat exchange efficiency. Dispersed over a wide range in the ground and gradually exchanged heat, it is possible to obtain the amount of geothermal heat required to adjust the temperature of the heating medium, and to reduce the amount of geothermal heat per unit volume taken from the ground . Therefore, it is easy to recover the underground temperature, and long-term continuous air-conditioning operation is possible. Water that does not have to worry about environmental pollution can be used as a heat medium, and it is not necessary to use antifreeze. In addition, the outgoing pipe section 1 can be easily processed by winding only one seamless pipe, and it is wound in a spring shape so that it has elasticity, so it has excellent seismic isolation and durability against earthquakes. Is sufficient to prevent leakage of heat medium due to breakage. The return pipe section 2 may be short because it only needs to return the heat medium to the ground, there is no heat loss due to reheat exchange with the ground, and heat exchange efficiency is improved, so that the heat medium temperature is stabilized. It is only necessary to dig the burial hole in the outgoing pipe section 1 near the ground surface with a normal excavating machine such as a power shovel, and the construction can be facilitated by reducing the excavation time and cost.
According to the invention of claim 2, by changing the size of the diameter of the forward pipe section 1 for each turn, the overlapping part of the heat exchange area between the pipe sections is eliminated, and the heat exchange is performed uniformly over a wide range in the ground. Early recovery of underground temperature can be achieved, and heat exchange efficiency can be improved. In the forward pipe section 1 wound so as to gradually expand in diameter downward, the heat quantity in the ground increases and stabilizes as the depth increases, so that the diameter of the forward pipe section 1 is increased and the heat exchange amount is increased. By increasing, the heat exchange efficiency can be increased. Further, when the forward pipe portion 1 is filled, soil is piled up from the central portion of the diameter to form a mountain shape along the shape of the forward pipe portion 1 and can be easily filled without breaking the shape of the forward pipe portion 1. In the forward path pipe portion 1 wound so as to be gradually reduced in diameter toward the lower side, the embedding hole may be shaped like a bowl, so that it is easy to dig and construction becomes easier.
According to the invention of claim 3, when the forward pipe portion 1 has a round or polygonal winding shape, it can be dispersed in a wider range in the ground and heat can be collected little by little, and the underground temperature can be easily recovered. When the outgoing pipe section 1 is an elliptical or rectangular polygonal winding shape, it can be easily embedded in a narrow and long land.
According to the invention of claim 4, the underground temperature up to about 1 m depth varies depending on the region, but is affected by the outside air and is low in winter and high in summer, but the heat medium collects heat (winter) and dissipates heat (summer). Since there is a possible temperature difference with respect to the ground, the forward pipe section 1 is embedded in the vicinity of the ground surface as a narrow and long meander, and a heat medium is flowed in a counter flow with respect to the geothermal flow, improving the heat exchange efficiency. Dispersed over a wide range in the ground and gradually exchanged heat, it is possible to obtain the amount of geothermal heat required to adjust the temperature of the heating medium, and to reduce the amount of geothermal heat per unit volume taken from the ground . Therefore, it is easy to recover the underground temperature, and long-term continuous air-conditioning operation is possible. Water that does not have to worry about environmental pollution can be used as a heat medium, and it is not necessary to use antifreeze. Further, since the forward pipe section 1 has a meandering shape and is stretchable, it is excellent in seismic isolation, has sufficient durability against earthquakes, and prevents heat medium leakage due to breakage. The return pipe section 2 may be short because it only needs to return the heat medium to the ground, there is no heat loss due to reheat exchange with the ground, and heat exchange efficiency is improved, so that the heat medium temperature is stabilized. It is only necessary to dig the burial hole in the outgoing pipe section 1 near the ground surface with a normal excavating machine such as a power shovel, and the construction can be facilitated by reducing the excavation time and cost. Since the outward pipe sections 1 and 1 can be made to face each other and the width can be narrowed, it can be easily embedded in narrow and long land.
According to the invention of claim 5, the overlap of the heat exchange area between the pipe parts is eliminated by changing the width of the interval between the forward pipe parts 1 and 1 for each meandering, and heat exchange is performed uniformly over a wide range in the ground. By doing so, it is possible to achieve an early recovery of the underground temperature and to improve the heat exchange efficiency. In the forward pipe sections 1 and 1 that are arranged so that the interval gradually spreads downward, when the forward pipe sections 1 and 1 are filled, soil is piled up from the central portion of the interval, thereby following the shape of the forward pipe section 1. It can be easily filled without breaking the shape of the forward pipe section 1. In the forward pipe sections 1 and 1 that are arranged so that the interval is gradually narrowed downward, the embedding holes may be V-grooves according to the shape, so that the construction is easier to dig.
According to the invention of claim 6, since the forward tube portion 1 is a flat tube, heat transfer from the outer surface on the short diameter side to the heat medium in the central portion of the tube is fast, and the heat exchange efficiency is further improved. Since it is a flat tube, it is easy to bend, and the outgoing pipe part 1 can be easily formed in a spiral shape or a meandering shape.
According to the invention of claim 7, since the forward tube portion 1 is a flat tube and the long side is pointed, the heat medium becomes turbulent and heat transfer is promoted by forced convection, and the heat exchange efficiency is further improved.
According to the invention of claim 8, since the outer peripheral wall of the forward pipe section 1 is meandering, the heat transfer area is increased, and the turbulent flow effect of the heat medium can be further enhanced inside, thereby further improving the heat exchange efficiency.

図1と図2は、本発明の地中熱交換器の一実施例を示しており、地中に埋設されると共に内部を流れる熱媒を地中熱で温度調節する地中熱交換器であって、地表近くで前記熱媒が渦巻き状に下りながら流れる樹脂製の往路管部1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えている。往路管部1の巻形状の平均径は、すくなくとも略2m以上の大きな曲率に設定する。復路管部2は可能な限り短く細くして熱媒を地上へ迅速に戻すようにする。図例では往路管部1の内径側に沿って立設して外径側にはみ出さないようにしているが、外径側で立設してもよい。往路管部1と復路管部2は、1本の管で一体に形成又は別個の管を接続して成り、例えば深さ3m位の地表近くに掘削された埋設用穴3に埋められ、往路管部1と復路管部2が、水冷ヒートポンプ4などと配管接続され、地中と熱交換された熱媒がポンプにて循環し、空調機の熱源水などとして利用される。なお、熱媒として水を用いる以外に、ブラインやその他各種の液体を用いるも自由である。   FIG. 1 and FIG. 2 show an embodiment of the underground heat exchanger according to the present invention, which is an underground heat exchanger that is buried in the ground and adjusts the temperature of the heat medium flowing inside through the underground heat. In addition, it includes a resin-made forward pipe portion 1 that flows while the heat medium descends in a spiral shape near the ground surface, and a return pipe portion 2 that returns the heat medium that has come out of the forward pipe portion 1 to the ground. . The average diameter of the winding shape of the forward pipe section 1 is set to a large curvature of at least about 2 m. The return pipe section 2 is made as thin as possible so that the heat medium can be quickly returned to the ground. In the example shown in the figure, the tube is erected along the inner diameter side of the forward tube portion 1 so as not to protrude from the outer diameter side, but may be erected on the outer diameter side. The forward pipe section 1 and the backward pipe section 2 are formed integrally with a single pipe or connected to separate pipes, and are buried in, for example, an embedding hole 3 drilled near the ground surface at a depth of about 3 m. The pipe part 1 and the return pipe part 2 are connected to a water-cooled heat pump 4 or the like, and a heat medium exchanged with the ground is circulated by the pump and used as heat source water for an air conditioner. In addition to using water as a heat medium, it is also free to use brine or other various liquids.

往路管部1は、下方に向かって順次拡径するように巻設し、その巻形状を円形状や楕円形状の丸状として、一巻き毎に往路管部1を左右方向にずらして管部同士の熱交換領域(図2の仮想線参照)の重複部をなくすと共に、図1の仮想線で示すように、埋設作業時に往路管部1の径中央部で埋設土が山形となって往路管部1に内側から自然に沿うようにする。往路管部1は、径方向切断面が円形状や楕円形状(図示省略)の丸形管としているが、図3(a)のように、往路管部1の外周壁を周方向に向かって蛇行状となるように形成してもよく、あるいは、図3(b)のように、長径側を両外側に向かって細くなる尖状にした扁平管に形成してもよい。なお、図4(a)のように、往路管部1を、下方に向かって順次縮径するように巻設してもよく、この場合、埋設用穴3を掘りやすい擂り鉢状にすることができる。復路管部2は往路管部1の内径側に立設して外径側にはみ出さないようにし、埋設用穴3に収まり易くして掘削及び埋設作業の迅速化を図る。また、図4(b)のように、往路管部1を全て同径になるよう巻設してもよい。   The forward pipe portion 1 is wound so as to gradually increase in diameter downward, and the winding shape is circular or elliptical, and the forward pipe portion 1 is shifted in the left-right direction for each turn. As shown by the phantom line in FIG. 1, the buried soil becomes a mountain shape at the center of the diameter of the forward pipe portion 1 during the burying operation. It is made to follow the pipe part 1 naturally from the inside. The forward pipe section 1 is a round pipe having a circular or elliptical shape (not shown) in the radial direction, but the outer peripheral wall of the forward pipe section 1 is directed in the circumferential direction as shown in FIG. You may form so that it may meander, or you may form in the flat tube which made the long diameter side the pointed shape which becomes thin toward both outer side like FIG.3 (b). In addition, as shown to Fig.4 (a), you may wind so that the outward pipe part 1 may be diameter-reduced sequentially toward the downward direction, and in this case, make the hole 3 for embedding into the shape of a bowl. Can do. The return pipe section 2 is erected on the inner diameter side of the outgoing pipe section 1 so as not to protrude to the outer diameter side, and is easily accommodated in the embedding hole 3 so as to speed up excavation and embedding work. Further, as shown in FIG. 4 (b), all the outgoing pipe sections 1 may be wound so as to have the same diameter.

図5は往路管部1の巻形状を多角状にした例で、図5(a)は往路管部1を下方に向かって順次拡径するように、図5(b)は、往路管部1を下方に向かって順次縮径するように、図5(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。図例では往路管部1の直線状管部の長さを全て略同一にして正方形状にしているが、部分的に相異させて例えば図6のように長方形状にしてもよく、図6(a)は往路管部1を下方に向かって順次拡径するように、図6(b)は、往路管部1を下方に向かって順次縮径するように、図6(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。このように往路管部1の直線状管部の各長さの設定は自由で、さらに角数を増減させて三角形状や六角形状などにするも自由である。図7は往路管部1の巻形状を長円状にした例で、図7(a)は往路管部1を下方に向かって順次拡径するように、図7(b)は、往路管部1を下方に向かって順次縮径するように、図7(c)は、往路管部1を全て同径になるように、各々巻設した場合を示している。図6と図7の場合、埋設用穴3を掘りやすい幅の狭い溝状にすることができる。なお、前記各実施例は図例に限定されず、往路管部1の巻数(段数)や径の寸法変更は自由で、さらに往路管部1を下方に向かって全体的又は部分的に拡縮させるも自由である。   FIG. 5 shows an example in which the winding shape of the forward tube portion 1 is a polygonal shape. FIG. 5A shows the forward tube portion 1 having a diameter gradually increasing downward, and FIG. 5B shows the forward tube portion. FIG. 5 (c) shows a case where each of the forward pipe sections 1 is wound so as to have the same diameter so that the diameters of the pipes 1 are gradually reduced downward. In the example shown in the figure, the lengths of the straight tube portions of the forward tube portion 1 are all substantially the same and are square, but may be partially different to have a rectangular shape as shown in FIG. FIG. 6B is a diagram in which the diameter of the forward pipe portion 1 is sequentially increased downward, and FIG. The case where each of the outward pipe sections 1 is wound so as to have the same diameter is shown. In this way, the length of each straight tube portion of the forward tube portion 1 can be set freely, and the number of corners can be increased or decreased to form a triangular shape or a hexagonal shape. FIG. 7 shows an example in which the winding shape of the forward tube portion 1 is an ellipse. FIG. 7A shows that the forward tube portion 1 has a diameter gradually increasing downward, and FIG. FIG. 7C shows a case where each of the outward pipe sections 1 is wound to have the same diameter so that the diameter of the section 1 is sequentially reduced downward. In the case of FIG. 6 and FIG. 7, the embedding hole 3 can be formed into a narrow groove shape that is easy to dig. In addition, each said Example is not limited to a figure example, The number of turns (stage number) of the outward pipe part 1 and a dimension change of a diameter are free, and also the outward pipe part 1 is expanded or contracted entirely or partially toward the downward direction. Is also free.

図8は他の実施例で、所定間隔を隔てて対向すると共に熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部1、1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えたもので、その他は前記実施例と同様構成である。図8(a)は一対の往路管部1、1の間隔が下方に向かって順次広がるように、図8(b)は一対の往路管部1、1の間隔が下方に向かって順次狭くなるように、図8(c)は一対の往路管部1、1の間隔が全て同じになるように、各々配設した場合を示している。図8(a)の場合、仮想線で示すように埋設作業時に往路管部1の径中央部で埋設土が山形となって往路管部1、1に内側から自然に沿うようにでき、図8(b)の場合、埋設用穴3を掘りやすいV溝状にすることができ、図8(c)の場合、埋設用穴3を掘りやすい幅の狭い溝状にすることができる。なお、往路管部1の蛇行数や間隔の増減は自由である。また、図例では、往路管部1を、多数の平行な直線状管部の端部で逆方向に交互に折り返すように形成して内部流通熱媒が下るように形成しているが、直線状管部の長さの増減や段数の変更は自由である。   FIG. 8 shows another embodiment, which is a pair of resin-made outward pipe sections 1 and 1 that face each other at a predetermined interval and flow while the heating medium descends in a meandering manner, and the heating medium that has come out of the outgoing pipe section 1. And a return pipe section 2 for returning the ground to the ground, and the other construction is the same as that of the above embodiment. 8A, the distance between the pair of forward pipe sections 1, 1 gradually increases downward, and FIG. 8B, the distance between the pair of forward pipe sections 1, 1 gradually decreases downward. As shown in FIG. 8C, the pair of forward pipe sections 1 and 1 are arranged such that the distance between them is the same. In the case of FIG. 8 (a), as shown by the phantom line, the buried soil becomes a mountain shape at the center of the diameter of the forward pipe section 1 during the burying operation, and can naturally follow the forward pipe sections 1 and 1 from the inside. In the case of 8 (b), the embedding hole 3 can be formed into a V-groove shape that is easy to dig, and in the case of FIG. 8C, the embedding hole 3 can be formed into a narrow groove shape that is easy to dig. In addition, increase / decrease in the number of meanders and intervals of the outward pipe part 1 is free. Further, in the illustrated example, the forward pipe section 1 is formed so as to be alternately folded in the reverse direction at the ends of a large number of parallel straight pipe sections so that the internal circulation heat medium is lowered. The length of the tube can be increased or decreased and the number of steps can be changed.

本発明の一実施例を示す全体簡略斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The whole simplified perspective view which shows one Example of this invention. 往路管部の断面図。Sectional drawing of an outward pipe part. 往路管部の他の形状例の断面図。Sectional drawing of the other shape example of an outward pipe part. 往路管部の他の形状例の簡略斜視図。The simplified perspective view of the other shape example of an outward pipe part. 往路管部の別の形状例の簡略斜視図。The simplified perspective view of another example of a shape of an outward pipe part. 往路管部のさらに別の形状例の簡略斜視図。The simplified perspective view of another example of shape of an outward pipe part. 往路管部のさらに別の形状例の簡略斜視図。The simplified perspective view of another example of shape of an outward pipe part. 本発明の他の実施例を示す簡略斜視図。The simplified perspective view which shows the other Example of this invention.

符号の説明Explanation of symbols

1 往路管部
2 復路管部
1 Outbound pipe section 2 Inbound pipe section

Claims (8)

地中に埋設されると共に内部を流れる熱媒を地中熱で温度調節する地中熱交換器であって、地表近くで前記熱媒が渦巻き状に下りながら流れる樹脂製の往路管部1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えたことを特徴とする地中熱交換器。   A subsurface heat exchanger that adjusts the temperature of a heat medium that is buried in the ground and that flows through the interior by means of underground heat, and a resin-made forward pipe section 1 that flows while the heat medium descends spirally near the ground surface; An underground heat exchanger comprising: a return pipe section 2 for returning the heat medium from the forward pipe section 1 to the ground. 往路管部1を、下方に向かって順次拡径するように、又は、下方に向かって順次縮径するように、巻設した請求項1記載の地中熱交換器。   The underground heat exchanger according to claim 1, wherein the forward pipe section 1 is wound so as to be gradually expanded in diameter downward or sequentially reduced in diameter downward. 往路管部1の巻形状を、丸状、多角状又は長円状にした請求項1又は2記載の地中熱交換器。   The underground heat exchanger according to claim 1 or 2, wherein the winding shape of the forward pipe section 1 is round, polygonal, or oval. 地中に埋設されると共に内部を流れる熱媒を地中熱で温度調節する地中熱交換器であって、地表近くで所定間隔を隔てて対向すると共に前記熱媒が蛇行状に下りながら流れる一対の樹脂製の往路管部1、1と、この往路管部1から出た前記熱媒を地上へ戻す復路管部2と、を備えたことを特徴とする地中熱交換器。   A subsurface heat exchanger that adjusts the temperature of a heat medium that is buried in the ground and that flows through the inside by means of underground heat, and is opposed to the ground surface at a predetermined interval and flows while the heat medium descends in a meandering manner. A ground heat exchanger comprising a pair of resin-made forward pipe sections 1 and 1 and a return pipe section 2 for returning the heat medium that has come out of the forward pipe section 1 to the ground. 一対の往路管部1、1の間隔が、下方に向かって順次広がるように、又は、下方に向かって順次狭くなるように、配設した請求項4記載の地中熱交換器。   The underground heat exchanger according to claim 4, wherein the ground heat exchanger is disposed so that a distance between the pair of forward pipe sections 1 and 1 is gradually expanded downward or is gradually decreased downward. 往路管部1を扁平管とした請求項1、2、3、4又は5記載の地中熱交換器。   The underground heat exchanger according to claim 1, 2, 3, 4 or 5, wherein the forward pipe section 1 is a flat pipe. 往路管部1の長径側を尖状とした請求項6記載の地中熱交換器。   The underground heat exchanger according to claim 6, wherein the long-diameter side of the forward pipe section 1 is pointed. 往路管部1を丸管とし、その外周壁を周方向に向かって蛇行状となるように形成した請求項1、2、3、4又は5記載の地中熱交換器。   The underground heat exchanger according to claim 1, 2, 3, 4 or 5, wherein the forward pipe section 1 is a round pipe and an outer peripheral wall thereof is formed in a meandering shape in the circumferential direction.
JP2005194107A 2005-07-01 2005-07-01 Underground heat exchanger Pending JP2007010276A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005194107A JP2007010276A (en) 2005-07-01 2005-07-01 Underground heat exchanger
TW094130410A TW200702610A (en) 2005-07-01 2005-09-05 A geothermal heat exchanger and geothermal air conditioner with heat pump
KR1020050088272A KR20070003504A (en) 2005-07-01 2005-09-22 Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194107A JP2007010276A (en) 2005-07-01 2005-07-01 Underground heat exchanger

Publications (1)

Publication Number Publication Date
JP2007010276A true JP2007010276A (en) 2007-01-18

Family

ID=37749020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194107A Pending JP2007010276A (en) 2005-07-01 2005-07-01 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JP2007010276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455973C (en) * 2007-07-31 2009-01-28 任丙辉 Deep burying chamber type heat exchanger
EP1972869A3 (en) * 2007-03-22 2009-08-26 FREISOLAR GmbH Geothermal collector
EP3026367A3 (en) * 2014-11-20 2016-08-10 Geointech S.r.l. Hollow geothermal probe body and geothermal probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972869A3 (en) * 2007-03-22 2009-08-26 FREISOLAR GmbH Geothermal collector
CN100455973C (en) * 2007-07-31 2009-01-28 任丙辉 Deep burying chamber type heat exchanger
EP3026367A3 (en) * 2014-11-20 2016-08-10 Geointech S.r.l. Hollow geothermal probe body and geothermal probe

Similar Documents

Publication Publication Date Title
JP4594956B2 (en) Underground heat exchanger buried structure
US5623986A (en) Advanced in-ground/in-water heat exchange unit
EP1974168B1 (en) Pipe and system for utilizing low-energy
US20090025902A1 (en) Probe For Collecting Thermal Energy From The Ground For A Heat Pump, And A Collection Network Equipped With Such Probes
JP4182961B2 (en) Geothermal heat pump air conditioner
JP4727761B1 (en) Cast-in-place concrete piles with steel pipes for underground heat collection
JP2007321383A (en) Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP2009002595A (en) Efficient heat collection system for underground heat well
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
KR101299826B1 (en) Depth geothermal system unit
WO2012140324A1 (en) Apparatus for implementing a ground source heat system and method for exploiting the same
JP2004309124A (en) Underground heat exchanger
JP2007010276A (en) Underground heat exchanger
JP6089472B2 (en) Holding member and underground heat exchanger
JP2007120781A (en) Water-cooled heat pump air-conditioning system utilizing ground heat
JP2013234782A (en) Heat exchange unit
JP4990593B2 (en) Underground heat exchanger buried structure
CN208547147U (en) A kind of underground buried tube heat-exchanger rig
KR20170003809A (en) Heat exchange system for geothermal borehole and constructing method for the same
TWI310076B (en)
KR101606830B1 (en) Tube Well-type Heat Exchanger for Heat Pump System
KR100991002B1 (en) A heatexchanger for the underground
JP6303361B2 (en) Thermal well and snow melting method
KR101998637B1 (en) Combined turbulent type ground heat exchange system
GB2463237A (en) Geothermal heating or cooling apparatus and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090916