JP4594956B2 - Underground heat exchanger buried structure - Google Patents

Underground heat exchanger buried structure Download PDF

Info

Publication number
JP4594956B2
JP4594956B2 JP2007120158A JP2007120158A JP4594956B2 JP 4594956 B2 JP4594956 B2 JP 4594956B2 JP 2007120158 A JP2007120158 A JP 2007120158A JP 2007120158 A JP2007120158 A JP 2007120158A JP 4594956 B2 JP4594956 B2 JP 4594956B2
Authority
JP
Japan
Prior art keywords
flow path
underground heat
heat exchanger
spiral
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007120158A
Other languages
Japanese (ja)
Other versions
JP2007315742A (en
Inventor
均 志賀
孝男 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUST THOKAI CO., LTD.
Original Assignee
JUST THOKAI CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUST THOKAI CO., LTD. filed Critical JUST THOKAI CO., LTD.
Priority to JP2007120158A priority Critical patent/JP4594956B2/en
Publication of JP2007315742A publication Critical patent/JP2007315742A/en
Application granted granted Critical
Publication of JP4594956B2 publication Critical patent/JP4594956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、地中に埋設され大地との間で熱交換を行う地中熱交換器の埋設構造に関するものである。 The present invention relates to a buried structure of a ground heat exchanger that is buried in the ground and exchanges heat with the ground.

地中の深部は年間を通じて温度がほぼ一定であり(例えば15℃)、外気と比べて夏は冷たく冬は暖かいという性質を有している。この性質を利用して地中からの採熱、或いは地中への放熱を行うため、地中に埋設する地中熱交換器が知られている。地中熱交換器はヒートポンプ,冷暖房装置,融雪装置等の負荷装置に接続され、負荷装置との間で空気,水,不凍液等の熱媒が循環され、負荷装置において熱媒から冷熱や温熱が取り出されることで大地熱が利用されるものである。
従来の地中熱交換器としては、(特許文献1)に示すような「平行な直管部分の下端部同士を連通したU字管タイプ」、(特許文献2)に示すような「長手方向に延びる複数の貫通孔の下端部同士を連通した貫通孔内蔵タイプ」が知られている。
また、(特許文献1)や(特許文献2)に開示された剛性の高い地中熱交換器とは異なり、(特許文献3)に示す「熱良導体の金属パイプで形成され地中に打ち込まれた中空の基礎杭を利用した竪穴に配設され、基礎杭内部に貯留された井戸水と熱媒とを熱交換させるコイルばね形状の可撓性に富む地中熱交換器」も知られている。
特開平11−182943号公報 特開2001−255081号公報 特開2006−10098号公報
In the deep part of the ground, the temperature is almost constant throughout the year (for example, 15 ° C.), and it has the property that it is colder in summer and warmer in winter than the outside air. An underground heat exchanger embedded in the ground is known to collect heat from the ground using this property or to dissipate heat to the ground. The underground heat exchanger is connected to a load device such as a heat pump, an air conditioner, or a snow melting device, and a heat medium such as air, water, or antifreeze is circulated between the load devices. The earth heat is used by being taken out.
As a conventional underground heat exchanger, as shown in (Patent Document 1), a “U-shaped tube type in which lower end portions of parallel straight pipe portions communicate with each other”, as shown in (Patent Document 2), “longitudinal direction”. There is known a "through-hole built-in type" in which lower end portions of a plurality of through-holes extending in the same direction are communicated.
Also, unlike the highly rigid underground heat exchanger disclosed in (Patent Document 1) and (Patent Document 2), as shown in (Patent Document 3), it is formed of a metal pipe with a good thermal conductor and driven into the ground. Also known is a flexible underground heat exchanger in the form of a coil spring that is arranged in a borehole using a hollow foundation pile and exchanges heat between the well water stored in the foundation pile and the heat medium. .
Japanese Patent Laid-Open No. 11-182943 JP 2001-255081 A JP 2006-10098 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)や(特許文献2)に開示のU字管タイプや貫通孔内蔵タイプの地中熱交換器は、大地と熱交換を行う伝熱面積を大きくするため直管部分を30〜200m程度の長尺にしなければならない。そのため、地中熱交換器を地中に埋設するには地表から30〜200m程度の深さまで竪穴を掘削しなければならないので、多大な掘削コストを要するとともに掘削作業性に欠けるという課題を有していた。
(2)地中熱交換器を埋設するための竪穴が深いので、竪穴を埋め戻すための充填材を多量に要し、さらに埋め戻し作業性に欠けるという課題を有していた。
(3)(特許文献3)に開示の技術は地中に打ち込まれた中空の基礎杭を利用した竪穴に地中熱交換器を配設するものなので、地中熱交換器を配設した後に竪穴を充填材で埋め戻す必要がないため、地中熱交換器のコイルばね形状を維持させることができる。しかしながら、ボーリング等によって地中に形成された竪穴に地中熱交換器を配設し充填材で埋め戻す場合には、充填材の圧力によってコイルばね形状の地中熱交換器が変形して、局部的に過剰な応力が働きピッチング(局部的な腐食による孔部)が生じ易くなり耐久性に欠けるという課題を有していた。
(4)また、充填材の圧力によって、地中熱交換器のコイルばねの間隔が一様ではなくなり狭くなったり広くなったりするので、地中に地中熱交換器を均等に配置させることができず斑が生じるので、熱交換効率が低下するという課題を有していた。
(5)また、基礎杭の内部の空洞に地中熱交換器を配設する場合には、大地内を流動する地下水による伝熱促進効果が基礎杭の外面にしか作用しないため、大地からの伝熱量は基礎杭と大地との接触面積に制限され地中熱交換器の表面積にはほとんど依存しないので、地中熱交換器の熱交換量を大きくすることが困難であるという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The underground heat exchanger of the U-shaped tube type and the built-in through-hole type disclosed in (Patent Document 1) and (Patent Document 2) is a straight pipe portion for increasing the heat transfer area for heat exchange with the ground. Must be about 30-200 m long. For this reason, in order to embed the underground heat exchanger in the ground, it is necessary to drill a pit to a depth of about 30 to 200 m from the surface of the earth. Therefore, there is a problem that it requires a great excavation cost and lacks excavation workability. It was.
(2) Since the potholes for embedding the underground heat exchanger are deep, a large amount of filler is required to refill the potholes, and further, there is a problem that the backfill workability is lacking.
(3) Since the technology disclosed in (Patent Document 3) is to dispose a ground heat exchanger in a borehole using a hollow foundation pile driven into the ground, after the ground heat exchanger is disposed Since it is not necessary to refill the pothole with the filler, the coil spring shape of the underground heat exchanger can be maintained. However, when the underground heat exchanger is disposed in the hole formed in the ground by boring or the like and backfilled with the filler, the coil spring-shaped underground heat exchanger is deformed by the pressure of the filler, There was a problem that excessive stress was applied locally and pitching (holes due to local corrosion) was likely to occur, resulting in lack of durability.
(4) Moreover, since the space | interval of the coil spring of a ground heat exchanger becomes non-uniform | heterogenous and becomes narrow or wide according to the pressure of a filler, it is possible to arrange a ground heat exchanger uniformly in the ground. Since it was not able to be spotted, it had the subject that heat exchange efficiency fell.
(5) In addition, when an underground heat exchanger is installed in the cavity inside the foundation pile, the heat transfer enhancement effect by groundwater flowing in the earth only acts on the outer surface of the foundation pile. Since the amount of heat transfer is limited to the contact area between the foundation pile and the ground and is almost independent of the surface area of the underground heat exchanger, there is a problem that it is difficult to increase the heat exchange amount of the underground heat exchanger. It was.

本発明は上記従来の課題を解決するもので、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために長さを1/3〜1/20程度に短くすることができるので、埋設する竪穴の深さや掘削溝等の長さを従来の1/3〜1/20程度にすることができ掘削コストを大幅に削減でき、また掘削量が少ないので掘削作業性に優れるとともに施工性に優れ、また少量の充填材で竪穴や掘削溝等を埋め戻すことができ埋め戻し作業性にも優れ、また埋め戻される際の充填材の圧力によって変形することがなく局部的に過剰な応力が働き難くピッチングが生じ難いため耐久性に優れ、さらに地中に熱媒の流路を均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる地中熱交換器を用い、竪穴や掘削溝等の掘削部内に充填された充填材や、大地内を流動する地下水による伝熱促進効果によって大きな熱交換量が得られる地中熱交換器の埋設構造を提供することを目的とする。 The present invention solves the above-described conventional problems, and the length is shortened to about 1/3 to 1/20 in order to obtain a heat transfer area equivalent to a ground heat exchanger having a long straight pipe portion. Therefore, the depth of the buried hole and the length of the excavation groove, etc. can be reduced to about 1/3 to 1/20 of the conventional, and the excavation cost can be greatly reduced. Excellent workability and workability, and can fill back potholes and excavation grooves with a small amount of filler material, providing excellent backfilling workability and without deformation due to the pressure of the filler when backfilled It has excellent durability because it is difficult to cause excessive stress locally and it is difficult to cause pitching. Further, the heat medium flow path can be evenly arranged in the ground, and heat exchange spots are hardly generated, and high heat exchange efficiency can be maintained. using a medium heat exchanger, the drilling portion, such as wells or excavation And Hama been filler, and an object thereof is to provide a buried structure of the underground heat exchanger a large amount of heat exchange is obtained by heat transfer promoting effect by the groundwater flowing in the earth.

上記従来の課題を解決するために本発明の地中熱交換器の埋設構造は、以下の構成を有している。
本発明の請求項1に記載の地中熱交換器の埋設構造は、(a)大地に形成された掘削部と、(b)少なくとも一部が螺旋状に形成され多条に複数並設されて内部を熱媒が流れる螺旋状流路と、下端が前記螺旋状流路の下端に接続され前記螺旋状流路の流路で囲まれる螺旋軸空間内に前記螺旋状流路の螺旋軸と略平行に配設され上端がヘッダで接続された地中熱媒流路と、前記螺旋状流路の間隔を保持する間隔保持部材と、を備え、前記掘削部に配設された地中熱交換器と、(c)前記掘削部に充填された粒状の充填材と、を備え、前記地中熱交換器の前記間隔保持部材が、環状に形成され前記地中熱交換器の前記地中熱媒流路が嵌挿又は嵌着される基部と、前記基部に延設されたアーム部と、前記アーム部の端部に形成され前記地中熱交換器の前記螺旋状流路が嵌着される嵌着部と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)熱媒が内部を流れる螺旋状流路を備えているので、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができる。そのため、埋設する竪穴の深さや掘削溝等の長さを従来の1/3〜1/20程度にすることができ、掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れる。
(2)地中熱交換器を埋設するための竪穴を浅くでき、掘削溝等を短くできるので、少量の充填材で竪穴や掘削溝等を埋め戻すことができ、埋め戻し作業性にも優れる。
(3)螺旋状流路の間隔を保持する間隔保持部材を備えているので、埋め戻される際の充填材の圧力によって螺旋状流路が変形することがなく、局部的に過剰な応力が働き難くピッチングが生じ難いので耐久性に優れる。
(4)また、間隔保持部材を備えているので、充填材の圧力によって螺旋状流路の間隔が狭くなったり広くなったりするのを防止して、地中に螺旋状流路を間隔保持部材の間隔で均等に配置させることができ大地との熱交換斑が生じ難く高い熱交換効率を維持できる。
(5)地中熱媒流路が螺旋状流路の流路で囲まれる螺旋軸空間内に配設されているので、地中に埋設された螺旋状流路の周囲の大地から採熱し、また埋設された螺旋状流路の周囲に放熱させることができ、螺旋状流路の外径より少し大きな内径の竪穴や螺旋状流路の外径より少し幅広の掘削溝等を掘削し、その中に地中熱媒流路を配設することで、大地と螺旋状流路との間で効率的に熱交換できる。
(6)螺旋状流路の螺旋軸空間内に地中熱媒流路が配設されているので、螺旋状流路の螺旋の外径を大きくすることができ流路の全長を長くすることができ、伝熱面積を大きくすることができる。
(7)地中熱交換器の螺旋状流路が分岐して多条に複数配設されているので、各々の螺旋状流路を流れる熱媒の流速は小さいまま螺旋状流路の全体を流れる熱媒の流量を条数倍に増加させることができ、熱媒と大地熱との単位時間当たりの熱交換量を増加させることができる。
(8)間隔保持部材は、螺旋状流路の間隔を保持できるように、その間隔や数量を適宜選択することができる。
(9)地中熱媒流路に間隔保持部材の基部を適当な間隔をあけて配設固定し、地中熱媒流路を螺旋状流路の内側に挿入し、その下端に連結部材を装着した後、連結部材に螺旋状流路の下端を接続して、地中熱媒流路に配設固定した間隔保持部材の嵌着部に螺旋状流路を嵌着しながら、地中熱媒流路の下端から掘削溝に落とし込み、掘削溝の全長に亘って地中熱媒流路及び螺旋状流路を配設することができる。
In order to solve the above conventional problems, the underground heat exchanger embedding structure of the present invention has the following configuration.
The buried structure of the underground heat exchanger according to claim 1 of the present invention includes: (a) an excavation portion formed on the ground; and (b) at least part of which is formed in a spiral shape and arranged in a plurality of rows. A spiral channel through which the heat medium flows, and a spiral axis of the spiral channel in a spiral axis space whose lower end is connected to the lower end of the spiral channel and surrounded by the channel of the spiral channel A ground heat medium flow path disposed substantially in parallel and having an upper end connected by a header, and an interval holding member for maintaining a space between the spiral flow paths, and the underground heat disposed in the excavation part And (c) a granular filler filled in the excavation part, wherein the gap maintaining member of the underground heat exchanger is formed in an annular shape, and the underground of the underground heat exchanger A base portion into which the heat medium flow path is inserted or fitted, an arm portion extended to the base portion, and the underground heat exchanger formed at an end portion of the arm portion And it has a configuration including a fitting portion in which the helical flow path is fitted.
With this configuration, the following effects can be obtained.
(1) Since the heat medium has a spiral flow path through which the heat medium flows, in order to obtain a heat transfer area equivalent to the underground heat exchanger having a long straight pipe portion, the length in the direction of the spiral axis is set. It can be shortened to about 1/3 to 1/20. Therefore, the depth of the buried hole and the length of the excavation groove, etc. can be reduced to about 1/3 to 1/20 of the conventional one, the excavation cost can be greatly reduced, and the excavation amount is small, so excavation workability is excellent. It also has excellent workability.
(2) Since the dredging hole for embedding the underground heat exchanger can be made shallow and the excavation groove etc. can be shortened, the dredging hole or excavation ditch etc. can be backfilled with a small amount of filler, and the backfilling workability is excellent. .
(3) Since the gap holding member for holding the gap between the spiral channels is provided, the spiral channel is not deformed by the pressure of the filler when being backfilled, and excessive stress acts locally. Excellent durability due to difficulty in pitching.
(4) Since the gap holding member is provided, the gap between the spiral channels is prevented from being narrowed or widened by the pressure of the filler, and the spiral channel is placed in the ground. It is possible to arrange them evenly at intervals, and heat exchange spots with the ground hardly occur, and high heat exchange efficiency can be maintained.
(5) Since the underground heat medium flow path is disposed in the spiral shaft space surrounded by the flow path of the spiral flow path, heat is collected from the ground around the spiral flow path embedded in the ground, In addition, heat can be dissipated around the embedded spiral channel, drilling a pit with an inner diameter slightly larger than the outer diameter of the spiral channel, an excavation groove slightly wider than the outer diameter of the spiral channel, etc. By disposing the underground heat medium flow path therein, heat can be efficiently exchanged between the ground and the spiral flow path.
(6) Since the underground heat medium flow path is disposed in the spiral axis space of the spiral flow path, the outer diameter of the spiral of the spiral flow path can be increased and the total length of the flow path is increased. And the heat transfer area can be increased.
(7) Since the spiral flow path of the underground heat exchanger is branched and arranged in multiple lines, the entire flow rate of the spiral flow path is maintained while the flow rate of the heat medium flowing through each spiral flow path is small. The flow rate of the flowing heat medium can be increased several times, and the amount of heat exchange per unit time between the heat medium and the ground heat can be increased.
(8) The interval holding member can appropriately select the interval and quantity so that the interval of the spiral flow path can be maintained.
(9) The base of the spacing member is disposed and fixed at an appropriate interval in the underground heat medium flow path, the underground heat medium flow path is inserted inside the spiral flow path, and a connecting member is provided at the lower end thereof. After mounting, the lower end of the spiral channel is connected to the connecting member, while the spiral channel is fitted to the fitting portion of the spacing member that is disposed and fixed in the underground heat medium channel, It is possible to drop into the excavation groove from the lower end of the medium flow path, and to dispose the underground heat medium flow path and the spiral flow path over the entire length of the excavation groove.

ここで、螺旋状流路や地中熱媒流路としては、ポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で形成されたものが用いられる。なかでも、合成樹脂製が好適に用いられる。成形性に優れるとともに腐食し難く残留応力等によるピッチングも生じ難いからである。   Here, as the spiral flow path and the underground heat transfer medium flow path, those formed of a synthetic resin such as polypropylene, polybutene, or polyamide, or a metal such as titanium are used. Of these, a synthetic resin is preferably used. This is because it is excellent in moldability, hardly corroded, and hardly causes pitting due to residual stress.

螺旋状流路は、例えば、螺旋の外径が10〜20cm程度、螺旋軸方向の長さが10〜20m程度の螺旋状に少なくとも一部が形成されたものが用いられる。螺旋状流路の下端は地中熱媒流路の下端と、エルボ管等の連結部材で接続させることができる。
地中熱媒流路は、螺旋状に形成されたもの、直管状に形成されたもの等を用いることができる。地中熱媒流路も螺旋状に形成した場合、地中熱交換器全体の管摩擦抵抗が地中熱媒流路を直管状に形成した場合の約2倍になる。そのため、熱媒を地中熱交換器に送るポンプの容量を大きくしなければならずランニングコストが増加するため、地中熱媒流路は直管状に形成するのが好ましい。
As the spiral channel, for example, a spiral channel having a spiral outer diameter of about 10 to 20 cm and a spiral axis length of about 10 to 20 m is used. The lower end of the spiral flow path can be connected to the lower end of the underground heat medium flow path by a connecting member such as an elbow pipe.
As the underground heat medium flow path, one formed in a spiral shape, one formed in a straight tube shape, or the like can be used. When the underground heat medium flow path is also formed in a spiral shape, the pipe friction resistance of the entire underground heat exchanger is about twice that when the underground heat medium flow path is formed in a straight tube shape. Therefore, the capacity of the pump that sends the heat medium to the underground heat exchanger must be increased, and the running cost increases. Therefore, the underground heat medium flow path is preferably formed in a straight tube shape.

螺旋状流路や地中熱媒流路は、例えば、5m程度の長さに形成したものを嵌着や螺着,継手等によって施工現場で連結して長尺化させることができる。   The spiral flow path and the underground heat medium flow path can be elongated by connecting them at a construction site by fitting, screwing, joints or the like, for example, having a length of about 5 m.

間隔保持部材としては、例えば、地中熱媒流路に配設固定される基部と、基部に延設されたアーム部と、アーム部に形成され螺旋状流路が嵌着される嵌着部とを備えたものを用いることができる。また、地中熱媒流路と一体に形成されたリブ部と、リブ部に形成され螺旋状流路が嵌着される嵌着部と、を備えたものも用いることができる。いずれも、基部が地中熱媒流路に固定され端部で螺旋状流路を嵌着等によって固定し、螺旋状流路の間隔を保持するものであれば適宜選択して用いることができる。
また、間隔保持部材としては、篭状や枠状等に形成された支持部材を螺旋状流路の外側又は内側に配設し、螺旋状流路を結束バンド等の係止具を用いて支持部材に固定し、螺旋状流路の間隔を保持するものも用いることができる。なお、間隔保持部材の支持部材としては、例えば、金属製や合成樹脂製の線材や棒材等で形成された1乃至複数本の縦材と、環状に形成され縦材に適当な間隔をあけて複数本接合された固定リングと、を備えたものが用いられる。また、その他の支持部材としては、金属製や合成樹脂製等で亀甲状等に形成された網状体を、巻いて筒状に形成したものも用いることができる。
掘削部としては、地中の深部に向かって掘削した竪穴、地表面を横方向に掘削した掘削溝や窪み、竪穴や掘削溝,窪みから地中の横方向に掘削した横孔等が用いられる。竪穴としては、地中にボーリングによって形成された竪穴、先端にスクリュー状のフィンを設けた杭を回転させながら埋設することによって形成された竪穴等が挙げられる。掘削溝や窪みとしては、油圧ショベル等のバケットで掘削した溝等が用いられる。横孔としては、フレキシブルホースから高圧ジェット水を噴射して掘削したもの等が用いられる。
竪穴等の掘削部に地中熱交換器を配設した後、掘削部は充填材を地面又は地面付近まで充填して埋め戻される。
充填材としては、熱伝導率の良いものを用いることが好ましく、例えば、コンクリート,モルタル,土砂,土,砂等を用いることができる。なお、充填材として、コンクリート,モルタル等の水硬材ではなく、土砂,土,砂,ケイ砂,廃シリコン等のケイ素粒等の粒状の充填材を用いることにより、大地内を流動する地下水が掘削部に充填された充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進されるので好ましい。
なお、竪穴に配設された地中熱交換器では、熱媒は、地中熱交換器の往路管(螺旋状流路又は地中熱媒流路のいずれか)を通って地中の深部に向かい復路管から地表に取り出されるが、往路管や復路管の地表から深さ5m程度までの部分を断熱構造にするのが好ましい。地表から深さ5m程度までの大地は季節によって温度変化が大きいからである。特に、復路管を断熱構造にするのが好ましい。大地との熱交換を終えた熱媒の熱損失を防ぐためである。
螺旋状流路の条数としては2〜5条が好適に用いられる。条数が5条より大きくなると、螺旋状流路が密集し螺旋状流路の間隔が狭くなり、埋め戻しの際に充填材が充填できない空隙が生じ易く、地盤沈下の原因となったり充填材との接触面積が小さくなり熱伝導率が低下したりするため好ましくない。
As the spacing member, for example, a base portion disposed and fixed in the underground heat medium flow channel, an arm portion extending to the base portion, and a fitting portion formed in the arm portion and fitted with a spiral flow channel Can be used. Moreover, what was provided with the rib part integrally formed with the underground heat-medium flow path, and the fitting part which is formed in a rib part and the helical flow path is fitted can also be used. In any case, the base can be appropriately selected and used as long as the base is fixed to the underground heat medium flow path, the spiral flow path is fixed by fitting or the like at the end, and the distance between the spiral flow paths is maintained. .
In addition, as the spacing member, a support member formed in a hook shape or a frame shape is disposed outside or inside the spiral flow path, and the spiral flow path is supported using a locking tool such as a binding band. What fixes to a member and hold | maintains the space | interval of a helical flow path can also be used. In addition, as a supporting member of the spacing member, for example, one or a plurality of longitudinal members formed of a metal or synthetic resin wire or rod, and an annularly formed longitudinal member are provided with an appropriate interval. And a plurality of fixing rings joined together. In addition, as the other support member, it is also possible to use a cylindrical body formed by winding a net-like body made of metal or synthetic resin and formed in a turtle shell shape or the like.
As the excavation part, a borehole drilled toward the deep part in the ground, a drilling groove or a depression excavated in the lateral direction on the ground surface, a lateral hole excavated in the lateral direction from the dredging hole, the excavation groove, or the depression is used. . Examples of the pothole include a pothole formed by boring in the ground, and a pothole formed by burying a pile provided with screw-like fins at the tip while rotating. As the excavation groove or depression, a groove excavated with a bucket such as a hydraulic excavator is used. As the horizontal hole, one excavated by jetting high-pressure jet water from a flexible hose is used.
After the underground heat exchanger is disposed in the excavation part such as a pit, the excavation part is backfilled by filling the filler to the ground or near the ground.
As the filler, it is preferable to use a material having a good thermal conductivity. For example, concrete, mortar, earth and sand, earth, sand and the like can be used. In addition, by using granular fillers such as silicon grains such as earth and sand, earth, sand, silica sand, and waste silicon, instead of hydraulic materials such as concrete and mortar as the filler, groundwater flowing in the ground It is preferable because it penetrates between the particles of the filler filled in the excavation part and the ground water promotes heat exchange between the underground heat exchanger and the ground.
In the underground heat exchanger disposed in the pit, the heat medium passes through the forward pipe (either the spiral flow path or the underground heat transfer path) of the underground heat exchanger and is deep in the ground. It is taken out from the return pipe to the ground surface, and it is preferable to make the part of the forward pipe and the return pipe from the ground surface to a depth of about 5 m have a heat insulating structure. This is because the temperature of the earth from the surface to a depth of about 5 m varies greatly depending on the season. In particular, it is preferable that the return pipe has a heat insulating structure. This is to prevent heat loss of the heat medium that has finished heat exchange with the ground.
As the number of spiral channels, 2 to 5 are preferably used. When the number of strips is larger than 5, the spiral channels are densely packed and the intervals between the spiral channels are narrowed, and voids that cannot be filled with the filler during refilling are likely to occur, which may cause ground subsidence or the filler. It is not preferable because the contact area becomes smaller and the thermal conductivity decreases.

前記地中熱交換器の前記地中熱媒流路が、複数の前記螺旋状流路の下端の各々が接続されたヘッダ部を備えた構成を有している場合、地中熱交換器の地中熱媒流路が、分岐した複数の螺旋状流路が接続されたヘッダ部を備えているので地中熱媒流路を一本化させられるため、各々の螺旋状流路に地中熱媒流路を一本ずつ接続して複数の地中熱媒流路を地中に配設する場合と比較して施工性を高めることができる。 When the underground heat medium flow path of the underground heat exchanger has a configuration including a header portion to which each of lower ends of the plurality of spiral flow paths is connected , Since the underground heat medium flow path is provided with a header portion to which a plurality of branched spiral flow paths are connected, the underground heat transfer medium flow path can be unified. Compared with the case where a plurality of underground heat medium flow paths are arranged in the ground by connecting the heat medium flow paths one by one, the workability can be improved.

以上のように、本発明の地中熱交換器の埋設構造によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができるので、竪穴の深さや掘削溝等の長さを従来の1/3〜1/20程度にすることができ掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れた地中熱交換器の埋設構造を提供できる。
(2)地中熱交換器を埋設するための竪穴を浅くでき、掘削溝等を短くできるので、少量の充填材で竪穴や掘削溝等を埋め戻すことができ、埋め戻し作業性にも優れた地中熱交換器の埋設構造を提供できる。
(3)螺旋状流路の間隔を保持する間隔保持部材を備えているので、埋め戻される際の充填材の圧力によって螺旋状流路が変形することがなく、局部的に過剰な応力が働き難く耐久性に優れた地中熱交換器の埋設構造を提供できる。
(4)間隔保持部材を備えているので、充填材の圧力によって螺旋状流路の間隔が狭くなったり広くなったりするのを防止して、地中に螺旋状流路を均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる地中熱交換器の埋設構造を提供できる。
(5)地中に埋設された螺旋状流路の周囲の大地から採熱し、また埋設された螺旋状流路の周囲に放熱させることができ、螺旋状流路の外径より少し大きな内径の竪穴や螺旋状流路の外径より少し幅広の掘削溝等を掘削し、その中に地中熱媒流路を配設することで、大地と螺旋状流路との間で効率的に熱交換できる熱交換効率の高い地中熱交換器の埋設構造を提供できる。
(6)螺旋状流路の螺旋軸空間内に地中熱媒流路が配設されているので、螺旋状流路の螺旋の外径を大きくすることができ流路の全長を長くすることができ、伝熱面積が大きく熱交換効率の高い地中熱交換器の埋設構造を提供できる。
(7)地中熱交換器の螺旋状流路が多条に複数配設され、複数の螺旋状流路の各々が接続されたヘッダを備えているので、各々の螺旋状流路を流れる熱媒の流速は小さいまま螺旋状流路の全体を流れる熱媒の流量を条数倍に増加させることができ、熱媒と大地熱との単位時間当たりの熱交換量を増加させることができ熱交換効率の高い地中熱交換器の埋設構造を提供できる。
As described above, according to the buried structure of the underground heat exchanger of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the length in the direction of the spiral axis can be shortened to about 1/3 to 1/20 in order to obtain a heat transfer area equivalent to the underground heat exchanger having a long straight pipe portion, The depth of the pit and the length of the digging groove can be reduced to about 1/3 to 1/20 of the conventional digging cost, and the excavation cost is greatly reduced. An underground structure for underground heat exchangers can be provided.
(2) Since the dredging hole for embedding the underground heat exchanger can be made shallow and the excavation groove etc. can be shortened, the dredging hole or excavation ditch etc. can be backfilled with a small amount of filler, and the backfilling workability is also excellent. An underground structure for underground heat exchangers can be provided.
(3) Since the gap holding member for holding the gap between the spiral channels is provided, the spiral channel is not deformed by the pressure of the filler when being backfilled, and excessive stress acts locally. It is difficult to provide a buried structure of an underground heat exchanger with excellent durability.
(4) Since the gap holding member is provided, the gap between the spiral channels is prevented from being narrowed or widened by the pressure of the filler, and the spiral channels are evenly arranged in the ground. Therefore, it is possible to provide a buried structure of the underground heat exchanger that can hardly generate heat exchange spots and can maintain high heat exchange efficiency.
(5) Heat can be collected from the ground around the spiral channel embedded in the ground, and can be dissipated to the periphery of the embedded spiral channel. The inner diameter is slightly larger than the outer diameter of the spiral channel. By excavating a trench or a drilling groove that is slightly wider than the outer diameter of the spiral channel, and placing an underground heat transfer channel in it, heat is efficiently transferred between the ground and the spiral channel. It is possible to provide a buried structure of the underground heat exchanger with high heat exchange efficiency that can be exchanged.
(6) Since the underground heat medium flow path is disposed in the spiral axis space of the spiral flow path, the outer diameter of the spiral of the spiral flow path can be increased and the total length of the flow path is increased. It is possible to provide a buried structure of a ground heat exchanger having a large heat transfer area and high heat exchange efficiency.
(7) Since the plurality of spiral flow paths of the underground heat exchanger are arranged in multiple lines and each of the plurality of spiral flow paths is provided with a header, heat flowing through each spiral flow path is provided. The flow rate of the heat medium flowing through the entire spiral flow path can be increased several times while the flow rate of the medium is small, and the heat exchange amount per unit time between the heat medium and the earth heat can be increased. A buried structure of a ground heat exchanger with high exchange efficiency can be provided.

(8)間隔保持部材は、螺旋状流路の間隔を保持できるように、その間隔や数量を適宜選択することができる。
(9)地中熱媒流路に間隔保持部材の基部を適当な間隔をあけて配設固定し、地中熱媒流路を螺旋状流路の内側に挿入し、その下端に連結部材を装着した後、連結部材に螺旋状流路の下端を接続して、地中熱媒流路に配設固定した間隔保持部材の嵌着部に螺旋状流路を嵌着しながら、地中熱媒流路の下端から掘削溝に落とし込み、掘削溝の全長に亘って地中熱媒流路及び螺旋状流路を配設することができる。
(8) The interval holding member can appropriately select the interval and quantity so that the interval of the spiral flow path can be maintained.
(9) The base of the spacing member is disposed and fixed at an appropriate interval in the underground heat medium flow path, the underground heat medium flow path is inserted inside the spiral flow path, and a connecting member is provided at the lower end thereof. After mounting, the lower end of the spiral channel is connected to the connecting member, while the spiral channel is fitted to the fitting portion of the spacing member that is disposed and fixed in the underground heat medium channel, It is possible to drop into the excavation groove from the lower end of the medium flow path, and to dispose the underground heat medium flow path and the spiral flow path over the entire length of the excavation groove.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
参考例1
図1は参考例1における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図であり、図2は参考例1における地中熱交換器の埋設構造を示す模式図である。
図1において、1は本発明の参考例1における地中熱交換器の埋設構造に用いる地中熱交換器、2はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で少なくとも一部が螺旋状に形成され内部を空気,水,不凍液等の熱媒が流れる螺旋状流路、3は螺旋状流路2の内側(螺旋内)の螺旋軸の周囲に形成された螺旋軸空間、4は螺旋状流路2の下端に接続されたエルボ管からなる連結部材、5はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、ステンレス製,チタン等の金属製等で直管状に形成され連結部材4を介して螺旋状流路2の下端と接続され螺旋状流路2の螺旋軸方向と略平行に螺旋軸空間3内に配設された地中熱媒流路、6は地中熱媒流路5に沿って適当な間隔をあけて配設された間隔保持部材、7は環状に形成され地中熱媒流路5が嵌挿又は嵌着された間隔保持部材6の基部、8は基部7に延設されたアーム部、9はアーム部8の端部に形成され螺旋状流路2が嵌着された嵌着部である。
図2において、10は大地、10aは大地10にボーリングや先端にスクリュー状のフィンを設けた杭を回転させながら埋設する等によって形成された掘削部としての竪穴、10bは地中熱交換器1が配設された竪穴10aに充填された砂,土砂,土,モルタル等の充填材である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
( Reference Example 1 )
Figure 1 is a perspective view of the underground heat exchanger for use in buried structure of the underground heat exchanger in Reference Example 1, FIG. 2 is a schematic diagram showing a buried structure of the underground heat exchanger in Reference Example 1.
In FIG. 1, 1 is a ground heat exchanger used for the underground heat exchanger embedment structure in Reference Example 1 of the present invention, 2 is made of a synthetic resin such as polypropylene, polybutene, and polyamide, and is made of a metal such as titanium. Spiral flow path, part of which is formed in a spiral shape and through which a heat medium such as air, water, antifreeze and the like flows, 3 is a spiral axis formed around the spiral axis inside (inside the spiral) of the spiral flow path 2 The space 4 is a connecting member made of an elbow pipe connected to the lower end of the spiral flow path 2, and 5 is made of a synthetic resin such as polypropylene, polybutene, polyamide, etc., made of stainless steel, metal such as titanium, etc. An underground heat transfer medium channel connected to the lower end of the spiral channel 2 via the connecting member 4 and disposed in the spiral axis space 3 substantially parallel to the spiral axis direction of the spiral channel 2, 6 is the underground Spacing maintained at an appropriate interval along the heat medium flow path 5 The base 7 of the space | interval holding member 6 by which the material and 7 were formed cyclically | annularly and the underground heat-medium flow path 5 was inserted or fitted, 8 is the arm part extended in the base 7, and 9 is the edge part of the arm part 8. It is the fitting part in which the spiral flow path 2 was formed.
In FIG. 2, 10 is the ground, 10a is a ground hole as an excavation part formed by boring on the ground 10 and burying a pile provided with screw-like fins at the tip, and the like, 10b is an underground heat exchanger 1 Is a filling material such as sand, earth and sand, earth, and mortar filled in the pit 10a.

以上のように構成された本発明の参考例1における地中熱交換器の埋設構造について、以下その施工方法の一例を説明する。
まず、大地10に所定の径(本参考例1では200mm)で地中熱交換器1の先端部を残して埋設できる深さの竪穴10a(掘削部)を形成する。
螺旋状流路2、地中熱媒流路5、連結部材4、間隔保持部材6を準備し、地中熱媒流路5に間隔保持部材6の基部7を適当な間隔をあけて配設固定する。次に、地中熱媒流路5を螺旋状流路2の内側に挿入し、その下端に連結部材4を装着した後、連結部材4に螺旋状流路2の下端を接続する。地中熱媒流路5に配設固定した間隔保持部材6の嵌着部9に螺旋状流路2を嵌着しながら、地中熱媒流路5の下端から竪穴10aに挿入し、竪穴10aの全長に亘って地中熱媒流路5及び螺旋状流路2を配設する。
最後に、竪穴10a内に配設された地中熱交換器1の地中熱媒流路5及び螺旋状流路2の周囲にコンクリート,モルタル,土砂,土,砂等の充填材10bを地面又は地面付近まで充填して、竪穴10aを埋め戻す。
An example of the construction method will be described below with respect to the buried structure of the underground heat exchanger in Reference Example 1 of the present invention configured as described above.
First, a pothole 10a (excavated portion) having a predetermined diameter (200 mm in the present Reference Example 1 ) and a depth that can be embedded leaving the tip of the underground heat exchanger 1 is formed.
A spiral flow path 2, a ground heat medium flow path 5, a connecting member 4, and a gap holding member 6 are prepared, and a base 7 of the gap holding member 6 is disposed in the ground heat medium flow path 5 at an appropriate interval. Fix it. Next, the underground heat transfer medium channel 5 is inserted inside the spiral channel 2, the connecting member 4 is attached to the lower end thereof, and then the lower end of the spiral channel 2 is connected to the connecting member 4. The helical flow path 2 is fitted to the fitting portion 9 of the spacing member 6 disposed and fixed in the underground heat medium flow path 5, and is inserted into the pit 10 a from the lower end of the underground heat medium flow path 5, The underground heat medium flow path 5 and the spiral flow path 2 are disposed over the entire length of 10a.
Finally, a filler 10b such as concrete, mortar, earth and sand, earth, sand, etc. is ground around the underground heat medium passage 5 and the spiral passage 2 of the underground heat exchanger 1 disposed in the pit 10a. Or it fills to the ground vicinity and refills the pothole 10a.

以上のようにして地中に配設された参考例1における地中熱交換器の埋設構造に用いる地中熱交換器1は、螺旋状流路2及び地中熱媒流路5の上端をヒートポンプ,冷暖房装置,融雪装置等の図示しない負荷装置に接続し、負荷装置で冷熱や温熱が熱交換された熱媒を螺旋状流路2の上端から下端に向かって流し大地10との間で熱交換させ、熱交換した熱媒を地中熱媒流路5の上端から負荷装置に流して循環させる。
なお、熱媒を流す方向はこれに限定するものではなく、これとは逆に、熱媒を地中熱媒流路5の上端から地中熱交換器1に導入し、螺旋状流路2の上端から取り出し、負荷装置に流すようにしてもよい。この場合も同様の作用が得られる。
As described above, the underground heat exchanger 1 used for the underground heat exchanger embedment structure in the reference example 1 disposed in the ground includes the upper ends of the spiral flow path 2 and the underground heat transfer medium path 5. Connected to a load device (not shown) such as a heat pump, a cooling / heating device, a snow melting device, etc., and a heat medium in which cold heat and heat are exchanged by the load device flows from the upper end to the lower end of the spiral flow path 2 and between the ground 10 The heat exchange is performed, and the heat exchanged heat medium is circulated from the upper end of the underground heat medium flow path 5 to the load device.
The direction in which the heat medium flows is not limited to this, and conversely, the heat medium is introduced into the underground heat exchanger 1 from the upper end of the underground heat medium flow path 5, and the spiral flow path 2. You may make it take out from the upper end of this, and let it flow to a load apparatus. In this case, the same effect can be obtained.

以上のように、本発明の参考例1における地中熱交換器の埋設構造は構成されているので、以下のような作用が得られる。
(1)地中熱交換器1が、熱媒が内部を流れる螺旋状流路2を備えているので、長尺状の直管部分を有する従来の地中熱交換器と同等の伝熱面積を得るために螺旋軸方向の長さを1/3〜1/20程度に短くすることができる。そのため、地中熱交換器1を配設する竪穴の深さを、従来の直管状の地中熱交換器の場合の竪穴の深さの1/3〜1/20程度にすることができ、竪穴の掘削コストを大幅に削減でき、さらに掘削量が少ないので掘削作業性に優れるとともに施工性に優れる。
(2)地中熱交換器1を埋設するための竪穴を浅くできるので、少量の充填材で竪穴を埋め戻すことができ、埋め戻し作業性にも優れる。
(3)螺旋状流路2の間隔を保持する間隔保持部材6を備えているので、埋め戻される際の充填材の圧力によって螺旋状流路2が変形することがなく、局部的に過剰な応力が働き難くピッチングが生じ難いので耐久性に優れる。
(4)また、間隔保持部材6を備えているので、充填材の圧力によって螺旋状流路2の間隔が狭くなったり広くなったりするのを防止して、大地に螺旋状流路2を間隔保持部材6の間隔で均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる。
(5)間隔保持部材6で螺旋状流路2の間隔を保持できるので、合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路2を形成することができ、汎用性に著しく優れる。
(6)合成樹脂製でコイル状に形成された伸縮性を有するスパイラルチューブで螺旋状流路2を形成した場合は、螺旋軸方向に伸縮するので施工現場まで輸送する際は縮んだ状態のためコンパクトで搬送性に優れ、施工現場では伸ばしながら間隔保持部材6で固定して容易に施工することができ施工性に優れる。
As described above, since the buried structure of the underground heat exchanger in Reference Example 1 of the present invention is configured, the following operation is obtained.
(1) Since the underground heat exchanger 1 includes the spiral flow path 2 through which the heat medium flows, the heat transfer area equivalent to that of a conventional underground heat exchanger having a long straight pipe portion Therefore, the length in the spiral axis direction can be shortened to about 1/3 to 1/20. Therefore, the depth of the pothole where the underground heat exchanger 1 is disposed can be about 1/3 to 1/20 of the depth of the pothole in the case of a conventional straight tubular underground heat exchanger, The dredging cost for dredging can be greatly reduced, and the excavation work is small and the excavation workability is excellent.
(2) Since the pothole for embedding the underground heat exchanger 1 can be made shallow, the pothole can be backfilled with a small amount of filler, and the backfilling workability is excellent.
(3) Since the gap holding member 6 that holds the gap of the spiral flow path 2 is provided, the spiral flow path 2 is not deformed by the pressure of the filler when being backfilled, and is locally excessive. Since stress is hard to work and pitching is difficult to occur, durability is excellent.
(4) Since the gap holding member 6 is provided, the gap between the spiral channels 2 is prevented from being narrowed or widened by the pressure of the filler, and the spiral channel 2 is spaced from the ground. The holding members 6 can be arranged uniformly at intervals, and heat exchange spots are hardly generated, and high heat exchange efficiency can be maintained.
(5) Since the interval of the spiral channel 2 can be maintained by the interval holding member 6, the spiral channel 2 can be formed of a spiral tube made of a synthetic resin and formed in a coil shape. Remarkably excellent in properties.
(6) When the spiral flow path 2 is formed of a spiral tube made of a synthetic resin and formed in a coil shape, the spiral flow path 2 expands and contracts in the direction of the spiral axis, so it is in a contracted state when transported to the construction site. It is compact and has excellent transportability, and it can be easily installed by being fixed by the interval holding member 6 while being stretched at the construction site, and has excellent workability.

(7)地中熱媒流路5に配設固定された間隔保持部材6は、螺旋状流路2の間隔を保持できるように、その間隔や数量を適宜選択することができる。 (7) The interval holding member 6 disposed and fixed in the underground heat medium passage 5 can be appropriately selected for the interval and quantity so that the interval of the spiral passage 2 can be maintained.

(8)竪穴10aに、螺旋状流路2を有する地中熱交換器1が配設され充填材10bが充填されているので、竪穴10aが浅くても充填材10bと螺旋状流路2との接触面積を広くすることができ、竪穴10aの単位深さ当たりの熱交換量を大きくすることができる。 (8) Since the underground heat exchanger 1 having the spiral channel 2 is disposed in the pothole 10a and filled with the filler 10b, the filler 10b and the spiral channel 2 can be used even if the pothole 10a is shallow. The contact area can be increased, and the amount of heat exchange per unit depth of the hole 10a can be increased.

ここで、本参考例1においては、竪穴10aの全長に亘って地中熱交換器1の螺旋状流路2が配設された場合について説明したが、竪穴10aの一部、例えば、深さ5m以上の深部にだけ螺旋状流路2を配設し、そこから地表までは直管状の流路を接続する場合もある。地表から深さ5m程度までの大地は季節によって温度変化が大きく、熱媒との熱交換に適さないため(冬季は地表付近の大地10の温度が低下するため熱媒が大地10へ放熱したり、夏季は地表付近の大地10の温度が上昇するため熱媒が大地10から採熱したりする。)、地表付近の大地10内を熱媒が通過する時間を短くして熱損失を少なくするためである。
また、同様の理由から、グラスウール等の断熱材を地中熱交換器1の地表付近の流路の外面に配設する場合もある。また、竪穴10a内に充填する充填材10bとして、地表付近だけ軽石,発泡ガラス等の断熱材を用いる場合もある。これにより、熱媒と地表付近の大地10との熱交換を抑制して熱損失を少なくすることができる。
Here, in this reference example 1 , although the case where the spiral flow path 2 of the underground heat exchanger 1 was arrange | positioned over the full length of the pothole 10a was demonstrated, a part of pothole 10a, for example, depth In some cases, the spiral flow path 2 is disposed only at a depth of 5 m or more, and a straight tubular flow path is connected from there to the ground surface. The temperature of the earth from the ground surface to a depth of about 5m varies greatly depending on the season and is not suitable for heat exchange with the heat medium (in winter, the temperature of the earth 10 near the surface decreases, so the heat medium radiates heat to the earth 10) In summer, the temperature of the ground 10 near the surface rises, so the heat medium collects heat from the ground 10.) To reduce the heat loss by shortening the time for the heat medium to pass through the ground 10 near the surface. It is.
For the same reason, a heat insulating material such as glass wool may be disposed on the outer surface of the channel near the ground surface of the underground heat exchanger 1. In some cases, a heat insulating material such as pumice or foamed glass is used only near the ground surface as the filler 10b to be filled in the pothole 10a. Thereby, heat exchange between the heat medium and the ground 10 near the ground surface can be suppressed and heat loss can be reduced.

また、本参考例1における地中熱交換器の埋設構造においては、地中熱交換器1が掘削部としての竪穴10aに配設された場合について説明したが、竪穴10aに代えて、油圧ショベル等のバケットで掘削して、地表面に掘削部としての掘削溝が形成される場合もある。この場合は、まず地中熱交換器1を配設できる掘削溝を形成する。掘削溝の深さ,幅,長さは、地中熱交換器1の螺旋状流路2の外径及び長さを考慮して決められる。次に、螺旋状流路2、地中熱媒流路5、連結部材4、間隔保持部材6を準備し、地中熱媒流路5に間隔保持部材6の基部7を適当な間隔をあけて配設固定する。次に、地中熱媒流路5を螺旋状流路2の内側に挿入し、その下端に連結部材4を装着した後、連結部材4に螺旋状流路2の下端を接続する。地中熱媒流路5に配設固定した間隔保持部材6の嵌着部9に螺旋状流路2を嵌着しながら、地中熱媒流路5の下端から掘削溝に落とし込み、掘削溝の全長に亘って地中熱媒流路5及び螺旋状流路2を配設する。最後に、掘削溝内に配設された地中熱交換器1の地中熱媒流路5及び螺旋状流路2の周囲にコンクリート,モルタル,土砂,土,砂等の充填材を充填して、掘削溝を埋め戻す。
この構成により、竪穴内に地中熱交換器を配設する場合に比較して、掘削コストを削減できるという作用が得られる。
なお、地中熱媒流路5が直管状に形成された場合について説明したが、直管状の複数の地中熱媒流路を、エルボ管等を用いて接続することにより、地中熱媒流路5を曲線状やU字状等に形成し、地中熱交換器の全長をコンパクト化する場合もある。この場合は、掘削溝の幅を広げた窪みを掘削部として用いることにより、地中熱交換器を埋設することができる。これにより、敷地や地形の関係で長い掘削溝を形成できない場合でも、地中熱交換器を埋設することができ自在性に優れる。
Moreover, in the buried structure of the underground heat exchanger according to the first reference example , the case where the underground heat exchanger 1 is disposed in the pothole 10a as the excavating portion has been described. However, instead of the pothole 10a, a hydraulic excavator is used. In some cases, a digging groove as a digging portion is formed on the ground surface by digging with a bucket such as. In this case, first, a excavation groove in which the underground heat exchanger 1 can be disposed is formed. The depth, width, and length of the excavation groove are determined in consideration of the outer diameter and length of the spiral channel 2 of the underground heat exchanger 1. Next, the spiral flow path 2, the underground heat medium flow path 5, the connecting member 4, and the interval holding member 6 are prepared, and the base portion 7 of the interval holding member 6 is provided at an appropriate interval in the underground heat medium flow path 5. To fix. Next, the underground heat transfer medium channel 5 is inserted inside the spiral channel 2, the connecting member 4 is attached to the lower end thereof, and then the lower end of the spiral channel 2 is connected to the connecting member 4. While the helical flow path 2 is fitted to the fitting portion 9 of the spacing member 6 disposed and fixed in the underground heat medium flow path 5, it is dropped into the excavation groove from the lower end of the underground heat medium flow path 5, and the excavation groove The underground heat medium flow path 5 and the spiral flow path 2 are disposed over the entire length. Finally, fillers such as concrete, mortar, earth and sand, earth, and sand are filled around the underground heat medium passage 5 and the spiral passage 2 of the underground heat exchanger 1 disposed in the excavation groove. Backfill the excavation groove.
With this configuration, there is an effect that the excavation cost can be reduced as compared with the case where the underground heat exchanger is disposed in the pothole.
In addition, although the case where the underground heat-medium flow path 5 was formed in the straight tube shape was demonstrated, the underground heat medium is connected by connecting several straight-tube underground heat-medium flow paths using an elbow pipe etc. The flow path 5 may be formed in a curved shape, a U shape, or the like, and the overall length of the underground heat exchanger may be reduced. In this case, the underground heat exchanger can be embedded by using a recess having a wider excavation groove as an excavation part. Thereby, even when a long excavation groove cannot be formed due to the site or topography, the underground heat exchanger can be embedded and the flexibility is excellent.

参考例2
図3(a)は参考例2における地中熱交換器の埋設構造に用いる地中熱交換器の側面図であり、図3(b)は参考例2における地中熱交換器の埋設構造に用いる地中熱交換器の横断面図である。
図中、11は本発明の参考例2における地中熱交換器の埋設構造に用いる地中熱交換器、12はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製で形成されたパイプ部材、12aはパイプ部材12と一体にパイプ部材12の外周面に断面が略方形状に形成された螺旋状流路である。本参考例2においては、螺旋状流路12aがパイプ部材12と一体に形成されたことによって螺旋状流路12aの間隔が保持されているので、パイプ部材12が間隔保持部材として機能している。13は螺旋状流路12aの内側の螺旋軸の周囲に形成されたパイプ部材12内の螺旋軸空間、14はパイプ部材12の下端に装着され内部に後述する地中熱媒流路15の下端と螺旋状流路12aの下端とを連結する連結流路14aが形成された蓋状の連結部材、14bは連結部材14の内側に形成された嵌合部、15はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で形成され下部が嵌合部14bに嵌合されて連結流路14aに接続され螺旋状流路12aの螺旋軸方向と略平行に螺旋軸空間13内(パイプ部材12内)に配設された直管状の地中熱媒流路である。
( Reference Example 2 )
3A is a side view of the underground heat exchanger used in the underground heat exchanger embedded structure in Reference Example 2 , and FIG. 3B is the embedded structure of the underground heat exchanger in Reference Example 2 . It is a cross-sectional view of the underground heat exchanger to be used.
In the figure, 11 is a geothermal heat exchanger used for the underground heat exchanger embedding structure in Reference Example 2 of the present invention, 12 is a pipe member made of a synthetic resin such as polypropylene, polybutene, and polyamide, and 12a is a pipe. The spiral flow path is formed integrally with the member 12 and has a substantially square cross section on the outer peripheral surface of the pipe member 12. In the present reference example 2 , since the spiral flow path 12a is formed integrally with the pipe member 12, the distance between the spiral flow paths 12a is maintained, so that the pipe member 12 functions as a distance maintaining member. . Reference numeral 13 denotes a spiral shaft space in the pipe member 12 formed around the spiral shaft inside the spiral flow path 12a. Reference numeral 14 denotes a lower end of the underground heat medium flow path 15 which is attached to the lower end of the pipe member 12 and will be described later. A lid-like connecting member formed with a connecting channel 14a that connects the lower end of the spiral channel 12a, 14b is a fitting portion formed inside the connecting member 14, 15 is a polypropylene, polybutene, polyamide, or the like It is made of a synthetic resin, a metal such as titanium, and the like, and the lower part is fitted to the fitting portion 14b and connected to the connecting channel 14a. The spiral shaft space 13 is substantially parallel to the spiral axis direction of the spiral channel 12a ( This is a straight tubular underground heat medium flow path disposed in the pipe member 12).

以上のように、本発明の参考例2における地中熱交換器の埋設構造に用いる地中熱交換器は構成されているので、参考例1に記載した作用に加え、以下のような作用が得られる。
(1)螺旋状流路12aがパイプ部材12と一体に形成されて螺旋状流路12aの間隔が保持されているので、充填材によって螺旋状流路12aが変形することがなく耐久性に優れるとともに、地中に螺旋状流路12aを均等に配置させることができ熱交換斑が生じ難く高い熱交換効率を維持できる。
(2)竪穴に配設した後、埋め戻す際に螺旋状流路12aと地中熱媒流路15との間に充填材を充填しなければ、螺旋状流路12aと地中熱媒流路15とはパイプ部材12内の空気で断熱することができる。このため、地上の負荷装置で冷熱や温熱が取り出された熱媒を螺旋状流路12aの上端から下端に向かって流すことで採熱若しくは放熱させることができ、次いで、地中熱媒流路15の下端から上端に向かって流すことで、螺旋状流路12aや大地の熱の影響を受けずに熱媒を取り出すことができ熱交換効率を高めることができる。
As described above, since the underground heat exchanger used for the underground heat exchanger embedment structure in Reference Example 2 of the present invention is configured, in addition to the actions described in Reference Example 1 , the following actions are provided. can get.
(1) Since the spiral flow path 12a is formed integrally with the pipe member 12 and the interval between the spiral flow paths 12a is maintained, the spiral flow path 12a is not deformed by the filler and has excellent durability. At the same time, the spiral flow paths 12a can be evenly arranged in the ground, and heat exchange spots hardly occur, and high heat exchange efficiency can be maintained.
(2) If the filler is not filled between the spiral flow path 12a and the underground heat medium flow path 15 when being refilled after being disposed in the pothole, the spiral flow path 12a and the underground heat medium flow The passage 15 can be insulated with air in the pipe member 12. For this reason, it is possible to collect or dissipate heat by flowing the heat medium from which cold heat or heat is extracted by the ground load device from the upper end to the lower end of the spiral flow path 12a. By flowing from the lower end of 15 toward the upper end, the heat medium can be taken out without being affected by the heat of the spiral flow path 12a or the ground, and the heat exchange efficiency can be increased.

参考例2においては、螺旋状流路12aの断面が略方形状に形成された場合について説明したが、これに限定されるものではなく、円形,半円形等適宜選択することができる。これらの場合も同様の作用が得られる。なお、充填材の充填斑を少なくするためには、螺旋状流路12aの外形は角張らせずに丸みを付けるのが望ましい。 In the second reference example , the case where the cross section of the spiral flow path 12a is formed in a substantially rectangular shape has been described. However, the present invention is not limited to this, and a circular shape, a semicircular shape, or the like can be appropriately selected. In these cases, the same effect can be obtained. In order to reduce filling spots of the filler, it is desirable to round the outer shape of the spiral flow path 12a without making it angular.

実施の形態1
図4は実施の形態1における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図である。
図中、21は本発明の実施の形態1における地中熱交換器の埋設構造に用いる地中熱交換器、22,22はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で少なくとも一部が螺旋状に形成され内部を空気,水,不凍液等の熱媒が流れる螺旋状流路であり、本実施の形態においては2本並設されて2条に形成されている。22aは螺旋状流路22,22の上端の各々が接続されたヘッダ、23は螺旋状流路22,22の内側の螺旋軸の周囲に形成された螺旋軸空間、24,24は螺旋状流路22,22の下端の各々に接続されたエルボ管からなる連結部材、25,25はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製、チタン等の金属製等で直管状に形成され連結部材24,24を介して螺旋状流路22,22の下端と接続され螺旋状流路22,22の螺旋軸方向と略平行に螺旋軸空間23内に配設された地中熱媒流路、25aは地中熱媒流路25,25の上端が接続されたヘッダ、26は地中熱媒流路25,25に沿って適当な間隔をあけて配設された間隔保持部材、27は地中熱媒流路25,25が嵌挿された間隔保持部材26の基部、28は基部27に延設されたアーム部、29はアーム部28の端部に形成され螺旋状流路22,22が嵌着された嵌着部である。
( Embodiment 1 )
Figure 4 is a perspective view of the underground heat exchanger for use in buried structure of the underground heat exchanger of the first embodiment.
In the figure, 21 is a ground heat exchanger used in the underground heat exchanger embedment structure in Embodiment 1 of the present invention, 22 and 22 are made of synthetic resin such as polypropylene, polybutene, polyamide, etc., metal such as titanium, etc. In this embodiment, at least a part is formed in a spiral shape, and a heat medium such as air, water, or antifreeze liquid flows through the inside, and in the present embodiment, two are arranged in parallel and formed in two strips. 22a is a header to which the upper ends of the spiral flow paths 22 and 22 are connected, 23 is a spiral axis space formed around the spiral axis inside the spiral flow paths 22 and 22, and 24 and 24 are spiral flows. The connecting members 25 and 25 are elbow pipes connected to the lower ends of the paths 22 and 22, and 25 and 25 are made of a synthetic resin such as polypropylene, polybutene, polyamide, etc., made of metal such as titanium, etc. An underground heat transfer medium passage 25a, which is connected to the lower ends of the helical flow paths 22 and 22 through 24 and disposed in the helical shaft space 23 substantially parallel to the spiral axis direction of the helical flow paths 22 and 22, A header to which the upper ends of the underground heat medium flow paths 25, 25 are connected, 26 is a spacing member disposed at an appropriate interval along the underground heat medium flow paths 25, 25, and 27 is underground heat. The base part of the interval holding member 26 into which the medium flow paths 25, 25 are inserted, Arm portion extending 27, 29 is a fitting portion with a helical flow path 22 is formed at the end of the arm portion 28 is fitted.

以上のように、本発明の実施の形態1における地中熱交換器の埋設構造に用いる地中熱交換器は構成されているので、参考例1に記載した作用に加え、以下のような作用が得られる。
(1)螺旋状流路22,22が2条に配設され、2本の螺旋状流路22,22の上端の各々が接続されたヘッダ22aを備えているので、各々の螺旋状流路22,22を流れる熱媒の流速は小さいまま螺旋状流路22,22の全体を流れる熱媒の流量を2倍に増加させることができ、熱媒と大地熱との単位時間当たりの熱交換量を増加させることができる。
As described above, since the underground heat exchanger used in the underground heat exchanger embedding structure in Embodiment 1 of the present invention is configured, the following operation is performed in addition to the operation described in Reference Example 1. Is obtained.
(1) Since the spiral flow paths 22 and 22 are arranged in two strips and each of the spiral flow paths 22 and 22 includes the header 22a to which the upper ends of the spiral flow paths 22 and 22 are connected, each spiral flow path is provided. The flow rate of the heat medium flowing through the spiral flow paths 22 and 22 can be doubled while the flow velocity of the heat medium flowing through the heat transfer medium 22 and 22 is small, and heat exchange per unit time between the heat medium and the ground heat is performed. The amount can be increased.

なお、本実施の形態においては、螺旋状流路が2本並設されて2条に形成された場合について説明したが、条数は熱媒の流量との関係で適宜選択することができ、3本以上並設させて3条以上にする場合もある。これらの場合も同様の作用が得られる。
また、ヘッダ25aが地中熱媒流路25,25の上端に接続されている場合について説明したが、ヘッダ25aを螺旋状流路22,22の下端に接続する場合もある。この場合は、螺旋状流路22,22の下端に接続されたヘッダ25aで熱媒を集約して、螺旋状流路22,22の流路内(螺旋内)に地中熱媒流路を一本挿入し、挿入した地中熱媒流路の下端とヘッダ25aとを接続する。この場合も同様の作用が得られる。
In addition, in this Embodiment, although the case where two spiral flow paths were provided in parallel and formed in two strips was described, the number of strips can be appropriately selected in relation to the flow rate of the heat medium, In some cases, three or more are arranged side by side to form three or more. In these cases, the same effect can be obtained.
Moreover, although the case where the header 25a is connected to the upper ends of the underground heat medium flow paths 25, 25 has been described, the header 25a may be connected to the lower ends of the spiral flow paths 22, 22. In this case, the heat medium is gathered by the header 25a connected to the lower ends of the spiral flow paths 22 and 22, and the underground heat medium flow path is formed in the flow paths of the spiral flow paths 22 and 22 (in the spiral). One is inserted, and the lower end of the inserted underground heat medium flow path is connected to the header 25a. In this case, the same effect can be obtained.

参考例3
図5(a)は参考例3における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図であり、図5(b)はA−A線における地中熱交換器の縦断面図である。なお、実施の形態1と同様のものは、同じ符号を付して説明を省略する。
図中、31は本発明の参考例3における地中熱交換器の埋設構造に用いる地中熱交換器、32は後述する地中熱媒流路34の下端部に一体に形成されたヘッダ部、33はヘッダ部32に接続され螺旋状流路22,22の下端が接続された継手部、34はポリプロピレン,ポリブテン,ポリアミド等の合成樹脂製等でヘッダ部32と一体に直管状に形成され螺旋状流路22,22の螺旋軸方向と略平行に螺旋軸空間23内に配設された地中熱媒流路、34aは地中熱媒流路34の上端側の内径を細く絞った絞り部、34bは絞り部34aの周囲に配設されたグラスウール,ロックウール等の断熱材、35は地中熱媒流路34の長手方向に沿って対称状に一体に形成された2枚のリブ部、36はリブ部35の外側に長手方向に沿って適当な間隔をあけて凹状に形成され螺旋状流路22,22が嵌着された嵌着部である。
( Reference Example 3 )
Fig.5 (a) is a perspective view of the underground heat exchanger used for the underground structure of the underground heat exchanger in the reference example 3 , FIG.5 (b) is a longitudinal cross-section of the underground heat exchanger in the AA line. FIG. In addition, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 31 is a ground heat exchanger used in the underground heat exchanger embedment structure in Reference Example 3 of the present invention, and 32 is a header portion formed integrally with the lower end of a ground heat medium passage 34 to be described later. , 33 is connected to the header portion 32 and connected to the lower ends of the spiral flow paths 22 and 22, and 34 is made of a synthetic resin such as polypropylene, polybutene, polyamide, etc., and is formed in a straight tube integrally with the header portion 32. The underground heat medium flow path 34 a disposed in the spiral shaft space 23 substantially parallel to the spiral axis direction of the spiral flow paths 22, 22 has a narrowed inner diameter on the upper end side of the underground heat medium flow path 34. The restricting portion 34b is a heat insulating material such as glass wool or rock wool disposed around the restricting portion 34a, and 35 is a single piece symmetrically formed along the longitudinal direction of the underground heat medium passage 34. The ribs 36 are spaced at appropriate intervals along the longitudinal direction outside the ribs 35. Only spiral flow path 22 is formed concavely is fitted portion which is fitted.

以上のように、本発明の参考例3における地中熱交換器の埋設構造に用いる地中熱交換器は構成されているので、実施の形態1に記載した作用に加え、以下のような作用が得られる。
(1)地中熱媒流路34が2本の螺旋状流路22,22が接続されたヘッダ部32と一体に形成されているので、2本の螺旋状流路22,22が地中熱媒流路34に確実に接続され施工性に優れる。
(2)地中熱媒流路34の長手方向に沿ってリブ部35が形成されているので、地中熱媒流路34を堅牢にすることができる。
(3)地中熱媒流路34の上端側に内径を細く絞った絞り部34aが形成されているので、絞り部34aを通過する熱媒は流速が速いため、埋設された大地と熱交換する時間が短くなる。また、絞り部34aの外表面積を小さくすることができ、大地との伝熱面積を狭くすることができる。このため、地表から深さ5m程度までのところに絞り部34aが位置するように地中熱交換器31を埋設すれば、季節によって温度変化が大きい地表付近の温度変動の影響を受け難くすることができ熱損失を防止できる。
(4)地中熱媒流路34の絞り部34aの外周に断熱材34bが配設されているので、地表から深さ5m程度までのところに断熱材34bが配設された絞り部34aが位置するように地中熱交換器31を埋設すれば、断熱材34bの断熱性によって温度変化が大きい地表付近の温度変動の影響を受け難くすることができ熱損失を防止できる。
As described above, since the underground heat exchanger used in the underground heat exchanger embedding structure in Reference Example 3 of the present invention is configured, in addition to the operations described in the first embodiment , the following operations are performed. Is obtained.
(1) Since the underground heat medium flow path 34 is integrally formed with the header portion 32 to which the two spiral flow paths 22 and 22 are connected, the two spiral flow paths 22 and 22 are underground. It is securely connected to the heat medium passage 34 and has excellent workability.
(2) Since the rib portion 35 is formed along the longitudinal direction of the underground heat medium flow path 34, the underground heat medium flow path 34 can be made robust.
(3) Since the narrowed portion 34a having a narrow inner diameter is formed on the upper end side of the underground heat medium flow path 34, the heat medium passing through the narrowed portion 34a has a high flow rate, so heat exchange with the buried ground is performed. The time to do is shortened. Moreover, the outer surface area of the throttle part 34a can be reduced, and the heat transfer area with the ground can be reduced. For this reason, if the underground heat exchanger 31 is embedded so that the constricted portion 34a is located at a depth of about 5 m from the ground surface, it is less likely to be affected by temperature fluctuations near the ground surface where the temperature changes greatly depending on the season. Can prevent heat loss.
(4) Since the heat insulating material 34b on the outer periphery of the diaphragm portion 34a of the ground heat medium flow path 34 is provided, the diaphragm portion 34a of the heat insulating material 34b is disposed at up to about 5m in depth from the ground surface If the underground heat exchanger 31 is buried so as to be located, the heat insulating property of the heat insulating material 34b makes it difficult to be affected by temperature fluctuations near the ground surface where the temperature change is large, and heat loss can be prevented.

なお、本参考例3においては、リブ部35が2本形成された場合について説明したが、3本以上形成する場合もある。この場合も同様の作用が得られる。
また、ヘッダ部32が地中熱媒流路34と一体に形成された場合について説明したが、ヘッダ部を地中熱媒流路34とは別個に形成して、地中熱媒流路34の下端に接着,溶着,嵌着,螺着等の手段で固定する場合もある。この場合も同様の作用が得られる。
また、断熱材34bは、充填材として軽石状の多孔質セラミックスやガラス発泡体等を用いることによっても同様の作用が得られる。
In the reference example 3 , the case where two rib portions 35 are formed has been described, but three or more rib portions 35 may be formed. In this case, the same effect can be obtained.
Moreover, although the case where the header part 32 was formed integrally with the underground heat-medium flow path 34 was demonstrated, the header part was formed separately from the underground heat-medium flow path 34, and the underground heat-medium flow path 34 was formed. In some cases, it is fixed to the lower end of the plate by means of adhesion, welding, fitting, screwing or the like. In this case, the same effect can be obtained.
Further, the heat insulating material 34b can obtain the same effect by using a pumice-like porous ceramic or glass foam as a filler.

参考例4
図6は参考例4における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図である。なお、参考例1で説明したものと同様のものは、同じ符号を付して説明を省略する。
図中、41は本発明の参考例4における地中熱交換器の埋設構造に用いる地中熱交換器、42は後述する支持部材45及び係止具46を備えた地中熱交換器41の外側に配設された間隔保持部材、43は金属製や合成樹脂製の線材や棒材等で形成された縦材、44は環状に形成され縦材43に適当な間隔をあけて溶着等によって複数本接合された固定リング、45は縦材43と固定リング44とにより枠状に形成され螺旋状流路2の外側に配設された支持部材、46は支持部材45の縦材43や固定リング44に螺旋状流路2を固定する結束バンド等の係止具である。
( Reference Example 4 )
FIG. 6 is a perspective view of the underground heat exchanger used in the buried structure of the underground heat exchanger in Reference Example 4 . In addition, the thing similar to what was demonstrated in the reference example 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 41 is a ground heat exchanger used in the underground heat exchanger embedding structure in Reference Example 4 of the present invention, and 42 is a ground heat exchanger 41 provided with a support member 45 and a locking tool 46 described later. An interval holding member disposed on the outside, 43 is a vertical member formed of a metal or synthetic resin wire or bar, 44 is an annular shape, and is welded at an appropriate interval to the vertical member 43 by welding or the like. A plurality of fixed rings joined together, 45 is a support member formed in a frame shape by the vertical members 43 and the fixed ring 44 and disposed outside the spiral flow path 2, and 46 is a vertical member 43 of the support member 45 or fixed. A locking tool such as a binding band for fixing the spiral flow path 2 to the ring 44.

以上のように、本発明の参考例4における地中熱交換器の埋設構造に用いる地中熱交換器は構成されているので、参考例1に記載した作用に加え、以下のような作用が得られる。
(1)間隔保持部材42が螺旋状流路2の外側に配設された支持部材45を備えており、螺旋状流路2が外側から取り囲まれているので、支持部材45で螺旋状流路2や地中熱媒流路5を保護して掘削した竪穴や掘削溝等にスムーズに挿入することができ、挿入作業性に優れる。
As described above, since the underground heat exchanger used for the underground heat exchanger embedment structure in Reference Example 4 of the present invention is configured, the following actions are provided in addition to the actions described in Reference Example 1. can get.
(1) Since the spacing member 42 includes a support member 45 disposed outside the spiral flow path 2 and the spiral flow path 2 is surrounded from the outside, the support member 45 forms the spiral flow path. 2 and the underground heat medium flow path 5 can be smoothly inserted into a pit or excavation groove excavated, and the insertion workability is excellent.

ここで、本参考例4においては、縦材43と固定リング44とにより枠状に形成された支持部材45を用いた場合について説明したが、金属製や合成樹脂製等で亀甲状等に形成された網状体を、巻いて筒状に形成したものを支持部材として用いる場合もある。この場合は、網フェンス等に用いられる網状体を利用して支持部材を形成することができるため、汎用性に優れる。 Here, in this reference example 4 , the case where the support member 45 formed in a frame shape by the vertical member 43 and the fixing ring 44 has been described, but it is formed in a turtle shell shape or the like made of metal or synthetic resin. In some cases, the formed net-like body is rolled and formed into a cylindrical shape as a support member. In this case, since the support member can be formed using a net-like body used for a net fence or the like, the versatility is excellent.

本発明は、地中に埋設され大地との間で熱交換を行う地中熱交換器の埋設構造に関し、長尺状の直管部分を有する地中熱交換器と同等の伝熱面積を得るために長さを1/3〜1/20程度に短くすることができるので、埋設する竪穴の深さ等を従来の1/3〜1/20程度に浅くすることができ掘削コストを大幅に削減でき、また掘削量が少ないので掘削作業性に優れるとともに施工性に優れ、また少量の充填材で竪穴等を埋め戻すことができ埋め戻し作業性にも優れ、また埋め戻される際の充填材の圧力によって変形することがなく局部的に過剰な応力が働き難く耐久性に優れ、さらに地中に熱媒の流路を均等に配置させることができ斑が生じ難く高い熱交換効率を維持できる地中熱交換器を用い、竪穴等の掘削部内に充填された充填材や大地内を流動する地下水による伝熱促進効果によって大きな熱交換量が得られる地中熱交換器の埋設構造を提供することができる。 The present invention relates to a buried structure of a ground heat exchanger that is buried in the ground and exchanges heat with the ground, and obtains a heat transfer area equivalent to that of a ground heat exchanger having a long straight pipe portion. Therefore, since the length can be shortened to about 1/3 to 1/20, the depth of the pothole to be buried can be reduced to about 1/3 to 1/20 of the conventional depth, and the excavation cost is greatly increased. It can be reduced and the excavation amount is small, so excavation workability is excellent and workability is excellent. Also, filling holes can be backfilled with a small amount of filling material, and backfilling workability is excellent. It is not deformed by the pressure of the material, and it is difficult to apply excessive stress locally and has excellent durability. Furthermore, the flow path of the heat medium can be evenly arranged in the ground, and the high heat exchange efficiency can be maintained without causing spots. with underground heat exchanger, filler Ya filled in the drilling portion of such wells Chinai can provide buried structure of the underground heat exchanger a large heat exchange amount can be obtained by the promotion of heat transfer by groundwater flowing.

参考例1における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図The perspective view of the underground heat exchanger used for the underground structure of the underground heat exchanger in the reference example 1 参考例1における地中熱交換器の埋設構造の模式図Schematic diagram of buried structure of underground heat exchanger in Reference Example 1 (a)参考例2における地中熱交換器の埋設構造に用いる地中熱交換器の側面図 (b)参考例2における地中熱交換器の埋設構造に用いる地中熱交換器の横断面図(A) cross-section of the underground heat exchanger for use in buried structure of the underground heat exchanger in side view (b) Reference Example 2 of the underground heat exchanger for use in buried structure of the underground heat exchanger in Reference Example 2 Figure 実施の形態1における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図The perspective view of the underground heat exchanger used for the underground structure of the underground heat exchanger in Embodiment 1 (a)参考例3における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図 (b)A−A線における地中熱交換器の縦断面図(A) Perspective view of the underground heat exchanger used for the buried structure of the underground heat exchanger in Reference Example 3 (b) Vertical sectional view of the underground heat exchanger at line AA 参考例4における地中熱交換器の埋設構造に用いる地中熱交換器の斜視図The perspective view of the underground heat exchanger used for the underground structure of the underground heat exchanger in the reference example 4

1,11,21,31,41 地中熱交換器
2,12a,22 螺旋状流路
3,13,23 螺旋軸空間
4,14,24 連結部材
5,15,34 地中熱媒流路
6,26 間隔保持部材
7,27 基部
8,28 アーム部
9,29,36 嵌着部
10 大地
10a 竪穴
10b 充填材
12 パイプ部材(間隔保持部材)
14b 嵌合部
22a,25a ヘッダ
32 ヘッダ部
33 継手部
34a 絞り部
34b 断熱材
35 リブ部
42 間隔保持部材
43 縦材
44 固定リング
45 支持部材
46 係止具
1,11,21,31,41 Underground heat exchanger 2,12a, 22 Spiral flow path 3,13,23 Spiral axial space 4,14,24 Connecting member 5,15,34 Underground heat transfer path 6 , 26 Interval holding member 7, 27 Base portion 8, 28 Arm portion 9, 29, 36 Fitting portion 10 Ground 10a Groove 10b Filler 12 Pipe member (interval holding member)
14b Fitting part 22a, 25a Header 32 Header part 33 Joint part 34a Throttle part 34b Heat insulating material 35 Rib part 42 Spacing member 43 Vertical member 44 Fixing ring 45 Support member 46 Locking tool

Claims (1)

(a)大地に形成された掘削部と、(b)少なくとも一部が螺旋状に形成され多条に複数並設されて内部を熱媒が流れる螺旋状流路と、下端が前記螺旋状流路の下端に接続され前記螺旋状流路の流路で囲まれる螺旋軸空間内に前記螺旋状流路の螺旋軸と略平行に配設され上端がヘッダで接続された地中熱媒流路と、前記螺旋状流路の間隔を保持する間隔保持部材と、を備え、前記掘削部に配設された地中熱交換器と、(c)前記掘削部に充填された粒状の充填材と、を備え、前記地中熱交換器の前記間隔保持部材が、環状に形成され前記地中熱交換器の前記地中熱媒流路が嵌挿又は嵌着される基部と、前記基部に延設されたアーム部と、前記アーム部の端部に形成され前記地中熱交換器の前記螺旋状流路が嵌着される嵌着部と、を備えていることを特徴とする地中熱交換器の埋設構造。 (A) excavation part formed in the ground; (b) a spiral flow path in which at least a part is formed in a spiral shape and a plurality of strips are arranged side by side and a heat medium flows through the inside; and a lower end is the spiral flow A ground heating medium flow path that is connected to the lower end of the path and surrounded by the flow path of the spiral flow path and is arranged substantially parallel to the spiral axis of the spiral flow path and has an upper end connected by a header. And an interval holding member that holds the interval between the spiral flow paths, and a ground heat exchanger disposed in the excavation part, and (c) a granular filler filled in the excavation part, The gap maintaining member of the underground heat exchanger is formed in an annular shape, and a base portion into which the underground heat medium flow path of the underground heat exchanger is inserted or fitted, and extends to the base portion. includes a set by an arm portion, a fitting portion to which the spiral flow path is formed at an end portion of the arm portion and the underground heat exchanger is fitted, the Buried structure of underground heat exchanger, wherein the door.
JP2007120158A 2006-04-28 2007-04-27 Underground heat exchanger buried structure Expired - Fee Related JP4594956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120158A JP4594956B2 (en) 2006-04-28 2007-04-27 Underground heat exchanger buried structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126151 2006-04-28
JP2007120158A JP4594956B2 (en) 2006-04-28 2007-04-27 Underground heat exchanger buried structure

Publications (2)

Publication Number Publication Date
JP2007315742A JP2007315742A (en) 2007-12-06
JP4594956B2 true JP4594956B2 (en) 2010-12-08

Family

ID=38849752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120158A Expired - Fee Related JP4594956B2 (en) 2006-04-28 2007-04-27 Underground heat exchanger buried structure

Country Status (1)

Country Link
JP (1) JP4594956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321921A1 (en) * 2013-03-15 2014-10-30 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US20180135270A1 (en) * 2016-11-11 2018-05-17 Bauer Spezialtiefbau Gmbh Foundation element and method for producing a foundation element

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007004243U1 (en) * 2007-03-22 2007-05-31 Renersys Gmbh Earth collector for transferring heat energy, has flexible pipes, which are arranged and attached at lattice units in meander shape in such a manner that pipes form and pass number of lattice units corresponding to number of running planes
JP2009092350A (en) * 2007-10-11 2009-04-30 Atom Kankyo Kogaku:Kk Pipe for collecting subterranean heat, subterranean heat exchanger, and heat pump utilizing subterranean heat
DE202008005197U1 (en) * 2008-04-15 2008-07-10 Frei, Peter ground collector
KR100927227B1 (en) * 2008-11-28 2009-11-16 주식회사 지지케이 Fluid circulator of closed type geothermal system
KR100907811B1 (en) * 2008-11-28 2009-07-16 주식회사 지지케이 Spiral fluid circulator of closed type geothermal system
KR101095921B1 (en) * 2009-04-03 2011-12-21 주식회사 지지케이 Fluid circulator of closed type geothermal system
KR101154042B1 (en) 2009-10-09 2012-06-07 이한출 Heat Exchanger Unit of Heating Apparatus Using Solar Heat
FI20096291A0 (en) 2009-12-04 2009-12-04 Mateve Oy Earth circuit in a low energy system
ITAN20100091A1 (en) * 2010-06-07 2011-12-08 Energy Resources S R L MODULAR STRUCTURE FOR THE WINDING OF A PIPE
FR2971578B1 (en) * 2011-02-11 2013-06-07 Ryb Sa ENHANCED SPIRAL GEOTHERMAL SENSOR
CA2771608C (en) * 2011-03-22 2018-11-20 Tai-Her Yang Pipe member equipped with heat insulation core pipeline and u-shaped annularly-distributed pipeline
JP5828474B2 (en) * 2011-10-03 2015-12-09 株式会社イノアック住環境 Installation method of heat exchanger
JP2013228171A (en) * 2012-04-27 2013-11-07 Taisei Corp Heat recovery device
JP2014185822A (en) * 2013-03-25 2014-10-02 Mitsui Kagaku Sanshi Kk Geothermal heat utilization heat exchanger and heat pump system using the same
JP5779206B2 (en) * 2013-05-17 2015-09-16 ジオシステム株式会社 Underground heat exchanger
JP5584839B1 (en) * 2014-02-19 2014-09-03 博明 上山 Hybrid spiral pile with integrated underground heat collection function
JP6529151B2 (en) * 2014-05-02 2019-06-12 国立大学法人山形大学 Groundwater heat utilization system
KR20180015543A (en) * 2016-08-03 2018-02-13 김천원 Close looped type geothermal heat pump system and a construction method of close looped type geothermal heat pump system
WO2019090116A1 (en) * 2017-11-04 2019-05-09 Hubbell Incorporated Helical pile with heat exchanger
JP7299084B2 (en) * 2019-07-03 2023-06-27 三菱ケミカルインフラテック株式会社 HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND HEAT EXCHANGE DEVICE
CN115041124B (en) * 2022-08-15 2022-11-04 山东福尔特种设备有限公司 Coil heating and cooling mixed reaction kettle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837088U (en) * 1981-08-31 1983-03-10 株式会社日立製作所 Support structure of heat transfer coil
JPH0462392A (en) * 1990-06-29 1992-02-27 Toshiba Corp Heat exchanger
JPH0571682U (en) * 1992-02-28 1993-09-28 大阪瓦斯株式会社 Coil support for cylindrical heat exchanger
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JP2001255081A (en) * 2000-03-10 2001-09-21 Sekisui Chem Co Ltd Underground heat exchanger
JP2002054850A (en) * 2000-08-08 2002-02-20 Nippon Steel Corp Underground heat exchange system
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2004324913A (en) * 2003-04-22 2004-11-18 Yasui Kenchiku Sekkei Jimusho:Kk In-situ concrete pile and geothermy utilizing method using the same
JP2006010098A (en) * 2004-06-22 2006-01-12 Trusty Home:Kk House air conditioning equipment utilizing geothermal-heat

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837088U (en) * 1981-08-31 1983-03-10 株式会社日立製作所 Support structure of heat transfer coil
JPH0462392A (en) * 1990-06-29 1992-02-27 Toshiba Corp Heat exchanger
JPH0571682U (en) * 1992-02-28 1993-09-28 大阪瓦斯株式会社 Coil support for cylindrical heat exchanger
JPH11182943A (en) * 1997-12-22 1999-07-06 Kubota Corp Underground heat exchanger
JP2001255081A (en) * 2000-03-10 2001-09-21 Sekisui Chem Co Ltd Underground heat exchanger
JP2002054850A (en) * 2000-08-08 2002-02-20 Nippon Steel Corp Underground heat exchange system
JP2003014385A (en) * 2001-07-03 2003-01-15 Yutaka Kenchiku Sekkei Jimusho:Kk Pipe for ground heat collection, ground heat exchanger, and ground heat utilization heat exchange system
JP2004324913A (en) * 2003-04-22 2004-11-18 Yasui Kenchiku Sekkei Jimusho:Kk In-situ concrete pile and geothermy utilizing method using the same
JP2006010098A (en) * 2004-06-22 2006-01-12 Trusty Home:Kk House air conditioning equipment utilizing geothermal-heat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140321921A1 (en) * 2013-03-15 2014-10-30 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US9897347B2 (en) * 2013-03-15 2018-02-20 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US20180238591A1 (en) * 2013-03-15 2018-08-23 Thomas Scott Breidenbach Screw-in geothermal heat exchanger systems and methods
US11892201B2 (en) * 2013-03-15 2024-02-06 Thomas Scott Breidenbach Installation apparatus/tool for tubular geothermal heat exchanger systems and methods
US20180135270A1 (en) * 2016-11-11 2018-05-17 Bauer Spezialtiefbau Gmbh Foundation element and method for producing a foundation element
US10711424B2 (en) * 2016-11-11 2020-07-14 Bauer Spezialtiefbau Gmbh Foundation element and method for producing a foundation element

Also Published As

Publication number Publication date
JP2007315742A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4594956B2 (en) Underground heat exchanger buried structure
JP5100270B2 (en) Heat exchanger and heat exchanger construction method
US20060191719A1 (en) Method of geothermal loop installation
US8136611B2 (en) Method and system for installing micropiles with a sonic drill
JP2006052588A (en) Pile with underground heat exchanging outer pipe, and method of constructing underground heat exchanger using the pile
JP2004233031A (en) Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP2003148079A (en) Manufacturing method for equipment for exchanging heat with ground, and pile for civil engineering and construction, used for the manufacturing method
KR101299826B1 (en) Depth geothermal system unit
JP2011007395A (en) Underground heat exchanger and filler
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP4136847B2 (en) Buried pipe for heat exchange
JP6284796B2 (en) Slope stabilization method for soil and earthquake resistance
KR20090108795A (en) Geothermal exchanging system and constructing method the same
KR101795583B1 (en) Heat exchange system for geothermal borehole
JP3902515B2 (en) Excavation of heat exchange well and underground heat exchange system and its installation method
JP2008096015A (en) Burying structure of underground heat exchanger
JP5183703B2 (en) Heat exchange pile and its installation structure
JP6796689B1 (en) How to install the heat collection tube
JP2007010276A (en) Underground heat exchanger
JP2012255337A (en) Method for installing heat exchange pile
KR101714709B1 (en) Heat exchange system for geothermal borehole and constructing method for the same
JP4859871B2 (en) Buried pipe for heat exchange
JP2005069537A (en) Buried pipe for heat exchange
JP2006214242A (en) Structure and construction method for preventing lift of manhole
JP5786014B2 (en) Closed loop underground heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090227

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees