JP2009002595A - Efficient heat collection system for underground heat well - Google Patents

Efficient heat collection system for underground heat well Download PDF

Info

Publication number
JP2009002595A
JP2009002595A JP2007164807A JP2007164807A JP2009002595A JP 2009002595 A JP2009002595 A JP 2009002595A JP 2007164807 A JP2007164807 A JP 2007164807A JP 2007164807 A JP2007164807 A JP 2007164807A JP 2009002595 A JP2009002595 A JP 2009002595A
Authority
JP
Japan
Prior art keywords
heat
well
underground
pipe
heat collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007164807A
Other languages
Japanese (ja)
Other versions
JP4486663B2 (en
Inventor
Seikichi Hanada
征吉 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BESCON SERVICE KK
Original Assignee
BESCON SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BESCON SERVICE KK filed Critical BESCON SERVICE KK
Priority to JP2007164807A priority Critical patent/JP4486663B2/en
Publication of JP2009002595A publication Critical patent/JP2009002595A/en
Application granted granted Critical
Publication of JP4486663B2 publication Critical patent/JP4486663B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient heat collection system for an underground heat well capable of efficiently utilizing both underground heat energy and underground water heat energy which are gifts from the earth. <P>SOLUTION: In this underground heat well, underground water is stored in a ring-shaped heat collecting space between an excavated well 1 and a well casing 2, and the periphery of an indirect heat collection pipe 3 is filled with a filter layer 6 for heat exchange promotion or efficiently transmitting underground heat from the filter layer 6 to the heat collection pipe 3. A circulation pump 18 for underground heat collection on the ground is driven for circulating a brine placed in the heat collection pipe 3 through the heat collection pipe 3, a return header 17, the circulation pump 18, a plate heat exchanger 19 for increasing heat source water temperature, a water condenser 15 (the heat pump device utilizing underground heat), a forward header 16, and the heat collection pipe 3 in this order. The underground heat is indirectly utilized as the heat source of the water condenser 15 of the heat pump device utilizing the underground heat. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地中熱エネルギーと地下水熱エネルギーの両方を効率よく利用できる地中熱井戸の高効率な集熱システムに関する。   The present invention relates to a highly efficient heat collection system for a geothermal well that can efficiently use both geothermal energy and groundwater thermal energy.

地球温暖化防止やCO2排出規制に伴い、世界的に環境負荷の少ない自然エネルギーの利用技術が急速に開発され、活用されている。一般的に、自然エネルギーは自然条件に左右されやすく、季節的、時間的にも需要と供給の不均衡が生じ、貯蔵技術などにより平滑化することが必要である。地中熱や地下水熱はエネルギー密度が低いが、定常的で地域的な偏在性が少なく、熱エネルギー資源として安定的に利用が可能である。NEDO(独立行政法人新エネルギー・産業技術総合開発機構)発行の「地球熱利用システム、地中熱利用ヒートポンプシステムの特徴と課題」という小冊子で、世界的には地熱ヒートポンプの利用が延びているとし、その普及状況が記載されている。2005年の世界での地中熱利用ヒートポンプシステムの設備要領(Mwt)の表より、アメリカ7200、スウェーデン3840、中国631、ノルウェー600、スイス532、カナダ435、ドイツ400、デンマーク309、日本4となっている。この表で気がつき驚くことは、地球温暖化防止の京都議定書に反対しているアメリカが7200Mwt、日本が4Mwtとアメリカが日本の1800倍も普及していることです。日本で地中熱利用ヒートポンプシステムが普及しない理由は熱源となる地中熱用井戸の工事費が高いからといわれています。日本はアメリカやヨーロッパ、中国などと比較して地質的に礫(石、岩石)が多く、ボーリング工事費が非常に高額となり、初期投資コストが過大となり普及し難いという問題があります。又これまで日本の地中熱利用ヒートポンプの技術はヨーロッパやアメリカで多く使用されています。Uチューブというポリエチレン管を地中に埋設し管の中にブライン水を入れ循環し地中から熱を回収する方法がそのまま利用されています。日本でもこれまで井水利用のヒートポンプパッケージエアコンやヒートポンプチラーが利用されてきましたが、あまり普及しませんでした。その理由の一つがくみ上げ規制ですが、多くの阻害要因は井水より熱を汲み上げたり熱を放出するコンデンサーやエバポレータが銅管を使ったシェルアンドチューブ型の熱交換器でした。銅は水質が悪いと腐食し、孔が明きます。孔が明くと冷媒ガス(その頃はR12又はR22が主流)が漏洩し、又水がコンプレッサーに浸水し、コンプレッサーの損傷を引き起こし、多大な修理費がかかり需要家から敬遠され大きな普及をしないまま今日に至っています。最近は銅管を使ったシェルアンドチューブ型からSUS製のプレート型に変わってきており、耐久性は大きく向上してきています。最近地中熱利用ヒートポンプシステムは急速にその性能が向上してきております。その理由の一つは新冷媒R410Aの登場です。この冷媒は高温側で効率よく温水を作る能力に優れ、成績係数COPが4.5以上と高いのが特長です。
従来、地下水を熱源とするヒートポンプ設備が特許出願されている(特許文献1を参照)。
この公知技術では、不透水性土層の上下に上部帯水層及び下部帯水層が存在している地盤に下部帯水層に達する井戸を設け、その内部を不透水性土層の位置でパッカーにより上下に仕切り、上部帯水層及び下部帯水層に通じる上部スクリーン及び下部スクリーンを設け、パッカーの近傍にヒートポンプ装置を配置し、パッカーの上下に季節により選択的に運転されてヒートポンプ装置に地下水を供給する上部ポンプ及び下部ポンプ、もしくは地下水の供給経路を切替え可能な単独のポンプを設置し、ヒートポンプ装置は第1熱交換器及び第2熱交換器を有し、地表部には第2熱交換器に対して熱媒体を循環供給するポンプを設けたものである。
また、熱交換パイプと揚液ポンプをユニット化した地下熱採取ユニットが特許出願されている(特許文献2を参照)。
この公知技術は、U字状に折曲した熱交換パイプを複数本筒状に束ね、各パイプの一端はユニット上部の円形の液体槽に接続し、他端は液体槽の中心を貫いて下方に延びるポンプ室筒体の下部に接続し、ポンプ室筒体の中にエアーリフトポンプを収め、熱交換パイプの周りをスクリーンで覆い、地面に掘った穴の中に設置し、熱交換パイプが地下水に浸かるようにしたものである。
特開平9−280689号公報 特開2005−337590号公報
Along with the prevention of global warming and CO2 emission regulations, technologies for utilizing natural energy with a low environmental impact are rapidly being developed and utilized worldwide. In general, natural energy is easily affected by natural conditions, and there is an imbalance between supply and demand both seasonally and temporally, and it is necessary to smooth it by storage technology. Geothermal and groundwater heat have a low energy density, but they are stationary and have little regional uneven distribution and can be used stably as thermal energy resources. A booklet titled “Characteristics and Problems of Geothermal Utilization System and Geothermal Heat Utilization Heat Pump System” issued by NEDO (New Energy and Industrial Technology Development Organization), and the use of geothermal heat pumps is expanding worldwide. , The spread status is described. Based on the table of geothermal heat pump system facilities (Mwt) in the world in 2005, it became USA 7200, Sweden 3840, China 631, Norway 600, Switzerland 532, Canada 435, Germany 400, Denmark 309, Japan 4 ing. What is surprising in this table is that the US, which is against the Kyoto Protocol to prevent global warming, is 7200Mwt, Japan is 4Mwt, and the US is 1800 times as popular as Japan. The reason why geothermal heat pump systems are not widespread in Japan is said to be due to the high construction costs of geothermal wells that serve as heat sources. In Japan, there are many gravels (stones, rocks) in geology compared to the United States, Europe, China, etc., and there is a problem that boring construction costs are very high, initial investment costs are excessive, and it is difficult to spread. Until now, Japanese geothermal heat pump technology has been widely used in Europe and America. A method of recovering heat from the ground by embedding a polyethylene tube called U-tube in the ground, putting brine water in the tube and circulating it is used as it is. In Japan, heat pump packaged air conditioners and heat pump chillers using well water have been used until now, but they have not been widely used. One of the reasons for this is the regulation of pumping up, but many of the obstacles are shell-and-tube heat exchangers that use copper tubes for condensers and evaporators that pump heat from well water and release heat. Copper is corroded and pierced when the water quality is poor. When the hole is opened, refrigerant gas (R12 or R22 is the mainstream at that time) leaks, and water infiltrates into the compressor, causing damage to the compressor. Today. Recently, the shell and tube type using copper pipe has been changed to the SUS plate type, and the durability has been greatly improved. Recently, the performance of geothermal heat pump systems has been improving rapidly. One of the reasons is the appearance of the new refrigerant R410A. This refrigerant has an excellent ability to produce hot water efficiently on the high temperature side, and has a high coefficient of performance COP of 4.5 or more.
Conventionally, a patent application has been filed for a heat pump facility using groundwater as a heat source (see Patent Document 1).
In this known technique, a well reaching the lower aquifer is provided on the ground where the upper aquifer and the lower aquifer exist above and below the impermeable soil layer, and the inside is located at the position of the impermeable soil layer. The upper and lower screens leading to the upper aquifer and the lower aquifer are provided by the packer, and the heat pump device is arranged near the packer, and the heat pump device is selectively operated depending on the season above and below the packer. An upper pump and a lower pump for supplying groundwater, or a single pump capable of switching the groundwater supply path are installed. The heat pump apparatus has a first heat exchanger and a second heat exchanger, and a second surface is provided on the ground surface. A pump that circulates and supplies a heat medium to the heat exchanger is provided.
In addition, a patent application has been filed for an underground heat collection unit in which a heat exchange pipe and a pump are unitized (see Patent Document 2).
In this known technique, a plurality of U-shaped heat exchange pipes are bundled in a cylindrical shape, one end of each pipe is connected to a circular liquid tank at the upper part of the unit, and the other end passes through the center of the liquid tank and goes down. Connected to the lower part of the pump chamber cylinder that extends into the pump chamber, the air lift pump is housed in the pump chamber cylinder, the heat exchange pipe is covered with a screen, installed in a hole dug in the ground, and the heat exchange pipe It is soaked in groundwater.
Japanese Patent Laid-Open No. 9-280689 JP 2005-337590 A

本発明は、地球からの贈り物である地中熱エネルギーと地下水熱エネルギーの両方を効率よく利用できる地中熱井戸の高効率な集熱システムを提供することを目的とする。   An object of the present invention is to provide a highly efficient heat collection system for a geothermal well that can efficiently use both geothermal energy and groundwater thermal energy, which are gifts from the earth.

本発明の地中熱井戸の高効率な集熱システムは、地表から帯水層に達する所定深さまでボーリングにより所定口径の円形断面の掘削孔を掘削して掘削井戸とし、該掘削井戸内には、上下が開口した筒状の井戸ケージングを上部開口が地表で下部開口が井戸底部に位置するように同心円状に設け、前記掘削井戸と前記井戸ケーシングとの間には間接方式の集熱パイプが設置される円環状の集熱空間が形成され、前記掘削井戸の内壁にはラピリ層、細砂流入防止用不織布を設けて帯水層の地下水のみが前記集熱空間内に浸透するように形成し、前記集熱パイプはブラインを循環させ、前記集熱空間を縦断するように地表から井戸底部へ直線的に向かい、井戸底部付近で井戸ケーシングを横断して反対側に突き出し、さらに前記集熱空間を井戸底部付近から地表に直線的に向かう往き及び戻りのU字状に略等間隔に複数組設置され、前記井戸ケーシングの内部には、地表から揚水管により吊り下げた井戸ポンプが少なくとも帯水層レベル以下に位置する部分に設けられ、一方、地表の地中熱井戸周囲には、集熱パイプの往きヘッダー及び戻りヘッダーを設け、該戻りヘッダーから配管を介して地中熱利用ヒートポンプ装置の水式コンデンサーから往きヘッダーへ循環させ、前記集熱パイプにより集熱した地下水熱を地中熱利用ヒートポンプ装置の水式コンデンサーの熱源に利用するものである。
本発明の地中熱井戸の高効率な集熱システムは、戻りヘッダーと地中熱利用ヒートポンプ装置の水式コンデンサーとの途中に熱源水昇温用プレート式熱交換器を設け、井戸ポンプからの地下水が揚水管から前記熱源水昇温用プレート式熱交換器へ供給され、前記集熱パイプのブラインと熱交換されて地中熱利用ヒートポンプ装置の水式コンデンサーの熱源に利用され、自然放流又は還流されるものである。
本発明の地中熱井戸の高効率な集熱システムは、集熱空間の前記集熱パイプの周囲には、熱交換促進用フィルター層が充填され、地下水熱を効率的に前記熱交換促進用フィルター層から集熱パイプへ伝熱することができるものである。
本発明の地中熱井戸の高効率な集熱システムは、井戸ケーシング内部には、サーモスタットを上下に適宜個数配置し、間接方式の集熱パイプで集熱されたブラインの温度が所定の温度以下になるような場合は、井戸ポンプにより井戸周囲の地下水を汲み上げることにより集熱パイプの周囲の温度を上昇させることができるものである。
The highly efficient heat collecting system for geothermal wells according to the present invention excavates a circular cross-section of a predetermined diameter by boring to a predetermined depth reaching the aquifer from the surface of the earth, and in the excavation well A cylindrical well caging with upper and lower openings is provided concentrically so that the upper opening is on the ground surface and the lower opening is located at the bottom of the well, and an indirect heat collecting pipe is provided between the drilling well and the well casing. An annular heat collecting space to be installed is formed, and an inner wall of the excavation well is provided with a rapili layer and a nonwoven fabric for preventing fine sand inflow so that only the groundwater of the aquifer penetrates into the heat collecting space The heat collecting pipe circulates brine, goes straight from the surface to the bottom of the well so as to traverse the heat collecting space, protrudes to the opposite side across the well casing near the bottom of the well, and further The bottom of the well A plurality of sets are installed at approximately equal intervals in a forward and return U-shape that goes straight from the near to the ground surface, and at the inside of the well casing, a well pump suspended from the ground surface by a pump is at least below the aquifer level On the other hand, on the surface of the geothermal well on the ground surface, a forward header and a return header of a heat collecting pipe are provided, and a water condenser of a heat pump device using geothermal heat is provided from the return header through a pipe. The groundwater heat collected from the heat collecting pipe is used as a heat source for the water condenser of the geothermal heat pump device.
The highly efficient heat collecting system of the geothermal well of the present invention is provided with a plate heat exchanger for raising the temperature of the heat source water in the middle of the return header and the water condenser of the heat pump device using geothermal heat. Groundwater is supplied to the plate heat exchanger for raising the temperature of the heat source water from the pumping pipe, is heat-exchanged with the brine of the heat collecting pipe, and is used as a heat source of the water condenser of the underground heat utilization heat pump device. Is to be refluxed.
The highly efficient heat collecting system of the underground heat well according to the present invention includes a heat exchange promoting filter layer around the heat collecting pipe in the heat collecting space to efficiently use groundwater heat for promoting the heat exchange. Heat can be transferred from the filter layer to the heat collecting pipe.
The highly efficient heat collecting system for underground heat wells according to the present invention has an appropriate number of thermostats arranged vertically in the well casing, and the temperature of the brine collected by the indirect heat collecting pipe is below a predetermined temperature. In such a case, the temperature around the heat collecting pipe can be raised by pumping the groundwater around the well with a well pump.

本発明の地中熱井戸の高効率な集熱システムは、従来方式では地下水を集熱パイプの周囲に集めて地下水熱及び地中熱をヒートポンプの熱源として利用するもので集熱パイプの周囲が土やコンクリートやベントナイト等の水に比較して熱伝導率の悪いものを使用していたが、本方式は集熱パイプの周囲を水が流動される熱交換促進用フィルター層を配置し、水の伝導率を生かした、より効率のよい方法でSUS管、銅管、ポリエチレン管、ポリブデン管、VP管等の集熱パイプにより地中熱を採取できる。
本発明の地中熱井戸の高効率な集熱システムは、間接方式の集熱パイプを包囲する掘削井戸と、地下水を複数のサーモスタットにより地下水を汲み上げる井戸ケーシングパイプ、ストレーナーを兼用する井戸ケージングとの二重筒体構造からなり、その井戸ケージング内部には水中ポンプ、汲み上げジェットポンプ、エアーポンプ等の井戸ポンプを設置できる構造となっている。
本発明の地中熱井戸の高効率な集熱システムは、間接方式の集熱パイプで集熱されたブライン(循環水)の温度が所定の温度(0℃)以下になるような場合は(サーモスタットにより連続管理している)井戸ポンプにより集熱パイプ周囲の地下水を汲み上げることにより集熱パイプの周囲の温度を上昇させると共に汲み上げた地下水でプレート式熱交換器を介して所定の温度(+8℃)以上になるように自動的に流量をコントロールできる効果がある。
本発明の地中熱井戸の高効率な集熱システムは、間接方式の集熱パイプの井戸ケーシングへの取付方法において、水中ポンプの設置に支障なく集熱パイプを効果的に取付できる効果がある。
本発明の地中熱井戸の高効率な集熱システムは、帯水層から地下水を井戸ケーシング外側に設置した集熱パイプに誘引し、集熱効果を高めるために集熱パイプに熱交換促進用フィルター層を被せるように設置したものである。
In the conventional method, the high-efficiency heat collection system of the geothermal well of the present invention collects groundwater around the heat collection pipe and uses the groundwater heat and ground heat as a heat source of the heat pump. Although water with low thermal conductivity compared to water such as soil, concrete, and bentonite was used, this method places a filter layer for promoting heat exchange that allows water to flow around the heat collecting pipe. The ground heat can be collected by a heat collecting pipe such as a SUS pipe, a copper pipe, a polyethylene pipe, a polybden pipe, and a VP pipe by a more efficient method making use of the conductivity.
The highly efficient heat collecting system for geothermal wells according to the present invention includes an excavation well that surrounds an indirect heat collecting pipe, a well casing pipe that pumps ground water using a plurality of thermostats, and a well caging that also serves as a strainer. It consists of a double cylinder structure, and it has a structure in which well pumps such as submersible pumps, pumping jet pumps, and air pumps can be installed inside the well casing.
When the temperature of the brine (circulated water) collected by the indirect heat collecting pipe is below a predetermined temperature (0 ° C.), the highly efficient heat collecting system of the underground heat well of the present invention ( The temperature around the heat collection pipe is raised by pumping up the groundwater around the heat collection pipe with a well pump (continuously managed by a thermostat), and at the specified temperature (+ 8 ° C) via the plate heat exchanger with the groundwater pumped up ) Has the effect of automatically controlling the flow rate so that
The highly efficient heat collecting system of the underground heat well according to the present invention has an effect that the heat collecting pipe can be effectively attached without hindering the installation of the submersible pump in the method of attaching the indirect heat collecting pipe to the well casing. .
The highly efficient heat collecting system for underground heat wells of the present invention attracts groundwater from the aquifer to a heat collecting pipe installed outside the well casing, and promotes heat exchange in the heat collecting pipe to enhance the heat collecting effect. It is installed so as to cover the filter layer.

本発明の地中熱井戸の高効率な集熱システムの一実施例を添付図面に基づいて、以下に説明する。
図1の本発明の地中熱井戸の高効率な集熱システムの概略系統図に示すように、地表から帯水層に達する所定の深さまでボーリングにより所定口径の円形断面の掘削孔を掘削して掘削井戸1とする。
前記掘削井戸1内には、上下が開口した筒状の井戸ケージング2を上部開口が地表で下部開口が井戸底部に位置するように同心円状に設け、前記掘削井戸1と前記井戸ケーシング2との間には間接方式の集熱パイプ3が設置される円環状の集熱空間が形成される。
前記集熱パイプ3は、SUS管、銅管、ポリエチレン管、ポリブデン管、VP管等から形成され、図2の縦断面図に示すように、前記集熱空間を縦断するように地表から井戸底部へ直線的に向かい、井戸底部付近で井戸ケーシング2を横断して反対側に突き出し、さらに前記集熱空間を井戸底部付近から地表に直線的に向かうU字状に設置され、このような集熱パイプ3が略等間隔で往き及び戻りの複数組の集熱パイプ3が設置される。
なお、前記井戸底部の集熱パイプ3より下方には、ラピリ(火山礫)が充填されてラピリ層4が形成されている。
図3の拡大横断面図に示すように、前記掘削井戸1の内周壁部分にはラピリ(火山礫)を充填し、ラピリ層4の内側に細砂流入防止用不織布5を設けて帯水層の地下水のみが前記掘削井戸1内に浸透するように形成する。
そして、前記集熱パイプ3の外周囲には前記細砂流入防止用不織布5が配置され、前記集熱パイプ3の隙間にはポリエチレンフィルター等の熱交換促進用フィルター層6が充填され、地下水熱を効率的に前記熱交換促進用フィルター層6から集熱パイプ3へ伝熱するように構成する。
なお、前記熱交換促進用フィルター層6は、ポリエチレンフィルターに限らず、ラピリ(火山礫)を充填したラピリ層4とすることもできる。
One embodiment of a highly efficient heat collecting system for a geothermal well according to the present invention will be described below with reference to the accompanying drawings.
As shown in the schematic system diagram of the high efficiency heat collecting system of the geothermal well of the present invention in FIG. 1, a drilling hole having a circular cross section with a predetermined diameter is drilled by boring from the ground surface to a predetermined depth reaching the aquifer. The borehole 1 is used.
In the excavation well 1, a cylindrical well casing 2 having an upper and lower opening is provided concentrically so that the upper opening is located on the ground surface and the lower opening is located at the bottom of the well, and the excavation well 1 and the well casing 2 are An annular heat collecting space in which the indirect heat collecting pipe 3 is installed is formed therebetween.
The heat collecting pipe 3 is formed of a SUS pipe, a copper pipe, a polyethylene pipe, a polybden pipe, a VP pipe, etc., and as shown in the longitudinal sectional view of FIG. Straightly to the bottom of the well, protruding across the well casing 2 in the vicinity of the well casing 2 and projecting to the opposite side. A plurality of sets of heat collecting pipes 3 in which the pipes 3 are moved forward and return at substantially equal intervals are installed.
In addition, below the heat collecting pipe 3 at the bottom of the well, rapili (volcanic gravel) is filled to form a rapili layer 4.
As shown in the enlarged cross-sectional view of FIG. 3, the inner peripheral wall portion of the excavation well 1 is filled with rapili (volcanic gravel), and the nonwoven fabric 5 for preventing fine sand inflow is provided inside the rapili layer 4. The groundwater is formed so as to penetrate into the well 1.
Further, the fine sand inflow preventing nonwoven fabric 5 is disposed around the outer periphery of the heat collecting pipe 3, and the gap between the heat collecting pipes 3 is filled with a heat exchange promoting filter layer 6 such as a polyethylene filter. Is efficiently transferred from the heat exchange promoting filter layer 6 to the heat collecting pipe 3.
The heat exchange promoting filter layer 6 is not limited to a polyethylene filter, but may be a rapili layer 4 filled with rapili (volcanic gravel).

前記井戸ケーシング2はVP管から形成され、周囲に集水用孔7が多数個貫通されており、地下水が前記井戸ケーシング2内に浸透し、後述の井戸ポンプ8により地下水を地表に揚水できるようにしている。前記井戸ケーシング2の内部には、地表から揚水管9により吊り下げた水中ポンプ、汲み上げジェットポンプ、エアーポンプ等の井戸ポンプ8が少なくとも帯水層レベル以下に位置する部分に設けられる。
また、前記井戸ケーシング2内部には、サーモスタット10を適宜個数配置し、サーモスタット10により水温を連続管理している。間接方式の集熱パイプ3で集熱されたブライン(循環水)の温度が所定の温度(0℃)以下になるような場合は、井戸ポンプ8により井戸周囲の地下水を汲み上げることにより集熱パイプ3の周囲の温度を上昇させる。
The well casing 2 is formed of a VP pipe, and a large number of water collecting holes 7 are formed therethrough so that groundwater can penetrate into the well casing 2 and can be pumped to the ground surface by a well pump 8 described later. I have to. Inside the well casing 2, a well pump 8 such as a submersible pump, a pumping jet pump, an air pump or the like suspended from a ground surface by a pumping pipe 9 is provided at least at a portion below the aquifer level.
Further, an appropriate number of thermostats 10 are arranged inside the well casing 2, and the water temperature is continuously managed by the thermostat 10. When the temperature of the brine (circulated water) collected by the indirect heat collecting pipe 3 is lower than a predetermined temperature (0 ° C.), the ground water around the well is pumped up by the well pump 8 to collect the heat collecting pipe. Increase ambient temperature of 3.

地上には、地中熱利用ヒートポンプ装置を配置し、該地中熱利用ヒートポンプ装置はコンプレッサー11、蒸発器12、膨張弁13、空気式コンデンサー14及び水式コンデンサー15から構成される。
一方、地表の掘削井戸1周囲には、集熱パイプ3の往きヘッダー16及び戻りヘッダー17を設け、該戻りヘッダー17から配管を介して地中熱集熱用循環ポンプ18→熱源水昇温用プレート式熱交換器19→水式コンデンサー15(前記地中熱利用ヒートポンプ装置)→往きヘッダー16→集熱パイプ3(地下熱井戸)→戻りヘッダー17と循環させ、集熱パイプ3により集熱した地下水熱を地中熱利用ヒートポンプ装置の水式コンデンサー15の熱源に利用する。
また、前記井戸ポンプ8からの揚水は、揚水管9から前記熱源水昇温用プレート式熱交換器19へ供給され、前記集熱パイプ3のブラインと熱交換されて、自然放流又は還流される。
A ground heat heat pump device is disposed on the ground, and the ground heat heat pump device includes a compressor 11, an evaporator 12, an expansion valve 13, a pneumatic condenser 14, and a water condenser 15.
On the other hand, a forward header 16 and a return header 17 of the heat collecting pipe 3 are provided around the excavation well 1 on the ground surface, and a ground heat collecting circulation pump 18 is connected from the return header 17 via a pipe to heat source water temperature rising. Plate-type heat exchanger 19 → water condenser 15 (the above-mentioned heat pump using geothermal heat) → forward header 16 → heat collecting pipe 3 (underground heat well) → return header 17 circulates and heat is collected by heat collecting pipe 3 Groundwater heat is used as a heat source for the water condenser 15 of the heat pump device using underground heat.
Further, the pumped water from the well pump 8 is supplied from the pumping pipe 9 to the plate heat exchanger 19 for raising the temperature of the heat source water, and is heat-exchanged with the brine of the heat collecting pipe 3 to be naturally discharged or refluxed. .

次に、本発明の地中熱井戸の高効率な集熱システムの動作操作を添付図面に基づいて、以下に説明する。
図1に示すように、帯水層からの地下水は掘削井戸1、ラピリ層4、細砂流入防止用不織布5を経て集熱空間内へ流入浸透し、地中熱井戸は掘削井戸1と井戸ケーシング2との円環状の集熱空間に地下水を貯水しており、間接方式の集熱パイプ3の周囲には熱交換促進用フィルター層6が充填され、地中熱を効率的に前記熱交換促進用フィルター6層から集熱パイプ3へ伝熱する。
地上の地中熱集熱用循環ポンプ18を駆動すると、集熱パイプ3に充填されているブライン(循環水)が集熱パイプ3→戻りヘッダー17→地中熱集熱用循環ポンプ18→熱源水昇温用プレート式熱交換器19→水式コンデンサー15(前記地中熱利用ヒートポンプ装置)→往きヘッダー16→集熱パイプ3と循環し、地中熱を地中熱利用ヒートポンプ装置の水式コンデンサー15の熱源に間接方式で利用させる。
そして、間接方式の集熱パイプ3で集熱されたブライン(循環水)の温度が所定の温度(0℃)以下になるような場合は、井戸ポンプ8により井戸周囲の地下水を汲み上げることにより、帯水層より新たに地下水を供給して集熱パイプ3の周囲の温度を上昇させる。
さらに、井戸ポンプ8により汲み上げた地下水は熱源水昇温用プレート式熱交換器19を介してブライン(循環水)の温度が所定の温度(+8℃)以上になるように地下水熱をサーモスタット10により連続管理している。
Next, the operation of the highly efficient heat collecting system for the underground heat well according to the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, groundwater from the aquifer flows into the heat collection space through the drilling well 1, the rapili layer 4, and the fine sand inflow preventing nonwoven fabric 5, and the underground heat well is the drilling well 1 and the well. Groundwater is stored in an annular heat collecting space with the casing 2, and a heat exchange promoting filter layer 6 is filled around the indirect heat collecting pipe 3 so that the heat is efficiently exchanged with the ground heat. Heat is transferred from the 6 layers of the filter for promotion to the heat collecting pipe 3.
When the ground heat collecting circulation pump 18 on the ground is driven, the brine (circulating water) filled in the heat collecting pipe 3 becomes the heat collecting pipe 3 → the return header 17 → the ground heat collecting circulation pump 18 → the heat source. Plate heat exchanger 19 for water temperature rising → Water condenser 15 (the above-mentioned heat pump device using geothermal heat) → Outward header 16 → Heat collecting pipe 3 circulates, and the geothermal heat of the heat pump device using geothermal heat The heat source of the condenser 15 is used in an indirect manner.
And when the temperature of the brine (circulated water) collected by the indirect heat collecting pipe 3 is lower than the predetermined temperature (0 ° C.), by pumping up the groundwater around the well by the well pump 8, Groundwater is newly supplied from the aquifer to raise the temperature around the heat collecting pipe 3.
Further, the groundwater pumped up by the well pump 8 is supplied to the thermostat 10 through the plate heat exchanger 19 for raising the temperature of the heat source water so that the temperature of the brine (circulated water) becomes a predetermined temperature (+ 8 ° C.) or higher. Continuous management.

本発明の地中熱井戸の高効率な集熱システムの概略系統図である。It is a schematic system diagram of the highly efficient heat collection system of the underground heat well of this invention. 本発明の地中熱井戸の縦断面図である。It is a longitudinal cross-sectional view of the geothermal well of this invention. 本発明の地中熱井戸の拡大横断面図である。It is an expansion cross-sectional view of the geothermal well of the present invention.

符号の説明Explanation of symbols

1 掘削井戸
2 井戸ケーシング
3 集熱パイプ
4 ラピリ層
5 細砂流入防止用不織布
6 熱交換用フィルター層
7 集水用孔
8 井戸ポンプ
9 揚水管
10 サーモスタット
11 コンプレッサー
12 蒸発器
13 膨張弁
14 空気式コンデンサー
15 水式コンデンサー
16 往きヘッダー
17 戻りヘッダー
18 地中熱集熱用循環ポンプ
19 熱源水昇温用プレート式熱交換器
DESCRIPTION OF SYMBOLS 1 Drilling well 2 Well casing 3 Heat collecting pipe 4 Lapyri layer 5 Non-woven fabric for preventing fine sand inflow 6 Heat exchange filter layer 7 Water collecting hole 8 Well pump 9 Pumping pipe 10 Thermostat 11 Compressor 12 Evaporator 13 Expansion valve 14 Pneumatic type Condenser 15 Water type condenser 16 Outgoing header 17 Return header 18 Geothermal heat collection circulation pump 19 Plate type heat exchanger for heat source water temperature rise

Claims (4)

地表から帯水層に達する所定深さまでボーリングにより所定口径の円形断面の掘削孔を掘削して掘削井戸とし、該掘削井戸内には、上下が開口した筒状の井戸ケージングを上部開口が地表で下部開口が井戸底部に位置するように同心円状に設け、前記掘削井戸と前記井戸ケーシングとの間には間接方式の集熱パイプが設置される円環状の集熱空間が形成され、前記掘削井戸の内壁にはラピリ層、細砂流入防止用不織布を設けて帯水層の地下水のみが前記集熱空間内に浸透するように形成し、前記集熱パイプはブラインを循環させ、前記集熱空間を縦断するように地表から井戸底部へ直線的に向かい、井戸底部付近で井戸ケーシングを横断して反対側に突き出し、さらに前記集熱空間を井戸底部付近から地表に直線的に向かう往き及び戻りのU字状に略等間隔に複数組設置され、前記井戸ケーシングの内部には、地表から揚水管により吊り下げた井戸ポンプが少なくとも帯水層レベル以下に位置する部分に設けられ、一方、地表の地中熱井戸周囲には、集熱パイプの往きヘッダー及び戻りヘッダーを設け、該戻りヘッダーから配管を介して地中熱利用ヒートポンプ装置の水式コンデンサーから往きヘッダーへ循環させ、前記集熱パイプにより集熱した地下水熱を地中熱利用ヒートポンプ装置の水式コンデンサーの熱源に利用することを特徴とする地中熱井戸の高効率な集熱システム。   Drilling a drill hole with a circular cross section with a predetermined diameter by boring to a predetermined depth reaching the aquifer from the surface of the earth to form a drilling well. An annular heat collecting space in which an indirect heat collecting pipe is installed is formed between the drilling well and the well casing so that a lower opening is located at the bottom of the well, and the drilling well is formed. The inner wall is provided with a lapi layer and a nonwoven fabric for preventing fine sand inflow so that only the groundwater of the aquifer permeates into the heat collecting space, the heat collecting pipe circulates brine, and the heat collecting space It goes straight from the surface to the bottom of the well so that it crosses the top of the well, protrudes to the opposite side across the well casing near the bottom of the well, and further, the heat collecting space goes straight from the bottom of the well to the surface of the well. U In the well casing, a well pump suspended from a ground surface by a pumping pipe is provided at a portion located at least below the aquifer level, while on the other hand, Around the heat well, there is a return header and return header for the heat collection pipe, and the return header is circulated from the return condenser to the return header from the water condenser of the underground heat pump using the heat collection pipe. A high-efficiency heat collection system for geothermal wells that uses groundwater heat as a heat source for the water condenser of a heat pump that uses geothermal heat. 前記戻りヘッダーと地中熱利用ヒートポンプ装置の水式コンデンサーとの途中に熱源水昇温用プレート式熱交換器を設け、井戸ポンプからの地下水が揚水管から前記熱源水昇温用プレート式熱交換器へ供給され、前記集熱パイプのブラインと熱交換されて地中熱利用ヒートポンプ装置の水式コンデンサーの熱源に利用され、自然放流又は還流されることを特徴とする請求項1記載の地中熱井戸の高効率な集熱システム。   A plate-type heat exchanger for raising the temperature of the heat source water is provided in the middle of the return header and the water-type condenser of the heat pump device using underground heat, and the plate-type heat exchange for raising the temperature of the heat source water from the pumping pipe through the groundwater from the well pump. 2. The underground of claim 1, wherein the water is supplied to a heat exchanger, is heat-exchanged with a brine of the heat collecting pipe, is used as a heat source of a water condenser of a geothermal heat pump device, and is naturally discharged or refluxed. Highly efficient heat collection system for heat wells. 前記集熱空間の前記集熱パイプの周囲には、熱交換促進用フィルター層が充填され、地下水熱を効率的に前記熱交換促進用フィルター層から集熱パイプへ伝熱することができることを特徴とする請求項1記載の地中熱井戸の高効率な集熱システム。   A heat exchange promoting filter layer is filled around the heat collecting pipe in the heat collecting space, and groundwater heat can be efficiently transferred from the heat exchange promoting filter layer to the heat collecting pipe. The highly efficient heat collection system of a geothermal well according to claim 1. 前記井戸ケーシング内部には、サーモスタットを上下に適宜個数配置し、間接方式の集熱パイプで集熱されたブラインの温度が所定の温度以下になるような場合は、井戸ポンプにより井戸周囲の地下水を汲み上げることにより集熱パイプの周囲の温度を上昇させることができることを特徴とする請求項1記載の地中熱井戸の高効率な集熱システム。   Inside the well casing, an appropriate number of thermostats are arranged up and down, and when the temperature of the brine collected by the indirect heat collecting pipe is below a predetermined temperature, the groundwater around the well is drained by a well pump. 2. A highly efficient heat collecting system for underground heat wells according to claim 1, wherein the temperature around the heat collecting pipe can be raised by pumping.
JP2007164807A 2007-06-22 2007-06-22 Highly efficient heat collection system for geothermal wells Expired - Fee Related JP4486663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007164807A JP4486663B2 (en) 2007-06-22 2007-06-22 Highly efficient heat collection system for geothermal wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007164807A JP4486663B2 (en) 2007-06-22 2007-06-22 Highly efficient heat collection system for geothermal wells

Publications (2)

Publication Number Publication Date
JP2009002595A true JP2009002595A (en) 2009-01-08
JP4486663B2 JP4486663B2 (en) 2010-06-23

Family

ID=40319170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007164807A Expired - Fee Related JP4486663B2 (en) 2007-06-22 2007-06-22 Highly efficient heat collection system for geothermal wells

Country Status (1)

Country Link
JP (1) JP4486663B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559538B1 (en) * 2010-06-04 2010-10-06 文明 柳下 Underground water tank
JP2011007476A (en) * 2009-05-28 2011-01-13 Fujishima Kensetsu:Kk Cold type, warming type, cold-warming type heat pump system
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system
JP2011191014A (en) * 2010-03-16 2011-09-29 Sumitomo Fudosan Kk Underground heat use system
JP2013076515A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Geothermal utilization system and geothermal utilization method
JP2013249985A (en) * 2012-05-30 2013-12-12 Yamadai Kiden Kk Well hot spring heat exchanger
JP2014122712A (en) * 2012-11-20 2014-07-03 Zeneral Heat Pump Kogyo Kk Underground heat exchanger
JP2015052259A (en) * 2013-09-06 2015-03-19 坂本 興平 Heat collecting well enabling simultaneous use of groundwater pumping and heat medium liquid circulation device
JP5690960B1 (en) * 2014-04-25 2015-03-25 健司 福宮 Heat exchange system
JP5842184B1 (en) * 2015-01-19 2016-01-13 株式会社アグリクラスター Regional utilization system of geothermal heat
CN105544654A (en) * 2015-12-29 2016-05-04 武汉卓成机电工程有限公司 Method for treating large sand content of well water of water source heat pump air-conditioner
CN105865085A (en) * 2016-03-28 2016-08-17 天津城建大学 Coupled saline water layer forced convection well type ground-source heat pump system and operation method
JP2016211790A (en) * 2015-05-11 2016-12-15 株式会社 日東 Heat exchange system
JP2017053610A (en) * 2015-09-11 2017-03-16 荏原冷熱システム株式会社 Absorption heat pump system
CN109059310A (en) * 2018-07-30 2018-12-21 浙江陆特能源科技股份有限公司 The system and method for reducing mid-deep strata heat exchange soil heat loss is fed using solar energy
CN110986393A (en) * 2019-11-29 2020-04-10 江西省勘察设计研究院 Shallow geothermal water deep circulation warming system and method
JP2020176749A (en) * 2019-04-16 2020-10-29 三菱マテリアルテクノ株式会社 Pumping-combined heat exchanger and installation method therefor
CN112283967A (en) * 2020-10-29 2021-01-29 董长艳 Efficient geothermal utilization system and method based on solid heat conduction
CN115823757A (en) * 2022-09-28 2023-03-21 天津大学 Multi-pipe backflow type single-well heat taking and water non-taking heat supply system for middle-deep layer geothermal energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280689A (en) * 1996-04-10 1997-10-31 Shimizu Corp Heat pump facility utilizing groundwater as heat source
JP2005337590A (en) * 2004-05-27 2005-12-08 Tsunoda Tadashi Underground heat sampling unit
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device utilizing well

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280689A (en) * 1996-04-10 1997-10-31 Shimizu Corp Heat pump facility utilizing groundwater as heat source
JP2005337590A (en) * 2004-05-27 2005-12-08 Tsunoda Tadashi Underground heat sampling unit
JP2008014530A (en) * 2006-07-04 2008-01-24 Mitsubishi Materials Natural Resources Development Corp Heat pump device utilizing well

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007476A (en) * 2009-05-28 2011-01-13 Fujishima Kensetsu:Kk Cold type, warming type, cold-warming type heat pump system
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system
JP2011191014A (en) * 2010-03-16 2011-09-29 Sumitomo Fudosan Kk Underground heat use system
JP4559538B1 (en) * 2010-06-04 2010-10-06 文明 柳下 Underground water tank
JP2011252367A (en) * 2010-06-04 2011-12-15 Fumiaki Yanagishita Underground water storage tank
JP2013076515A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Geothermal utilization system and geothermal utilization method
JP2013249985A (en) * 2012-05-30 2013-12-12 Yamadai Kiden Kk Well hot spring heat exchanger
JP2014122712A (en) * 2012-11-20 2014-07-03 Zeneral Heat Pump Kogyo Kk Underground heat exchanger
JP2015052259A (en) * 2013-09-06 2015-03-19 坂本 興平 Heat collecting well enabling simultaneous use of groundwater pumping and heat medium liquid circulation device
JP5690960B1 (en) * 2014-04-25 2015-03-25 健司 福宮 Heat exchange system
JP5842184B1 (en) * 2015-01-19 2016-01-13 株式会社アグリクラスター Regional utilization system of geothermal heat
JP2016133263A (en) * 2015-01-19 2016-07-25 株式会社アグリクラスター Geothermal heat regional utilization system
JP2016211790A (en) * 2015-05-11 2016-12-15 株式会社 日東 Heat exchange system
JP2017053610A (en) * 2015-09-11 2017-03-16 荏原冷熱システム株式会社 Absorption heat pump system
CN105544654A (en) * 2015-12-29 2016-05-04 武汉卓成机电工程有限公司 Method for treating large sand content of well water of water source heat pump air-conditioner
CN105865085A (en) * 2016-03-28 2016-08-17 天津城建大学 Coupled saline water layer forced convection well type ground-source heat pump system and operation method
CN105865085B (en) * 2016-03-28 2018-03-02 天津城建大学 Couple salt water layer forced convertion well formula soil source heat pump system and operation method
CN109059310A (en) * 2018-07-30 2018-12-21 浙江陆特能源科技股份有限公司 The system and method for reducing mid-deep strata heat exchange soil heat loss is fed using solar energy
JP2020176749A (en) * 2019-04-16 2020-10-29 三菱マテリアルテクノ株式会社 Pumping-combined heat exchanger and installation method therefor
CN110986393A (en) * 2019-11-29 2020-04-10 江西省勘察设计研究院 Shallow geothermal water deep circulation warming system and method
CN110986393B (en) * 2019-11-29 2024-02-06 江西省勘察设计研究院有限公司 Shallow geothermal water deep circulation warming system and method
CN112283967A (en) * 2020-10-29 2021-01-29 董长艳 Efficient geothermal utilization system and method based on solid heat conduction
CN115823757A (en) * 2022-09-28 2023-03-21 天津大学 Multi-pipe backflow type single-well heat taking and water non-taking heat supply system for middle-deep layer geothermal energy

Also Published As

Publication number Publication date
JP4486663B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4486663B2 (en) Highly efficient heat collection system for geothermal wells
CA2817971C (en) System and method for extracting energy
KR101370640B1 (en) Geothermal system which differ in the depth of the construction of geothermal hole
JP2011524967A (en) Thermal energy system and operating method thereof
US20080128108A1 (en) Convective earrh coil
KR101055350B1 (en) Tube well type heat pump system
KR101172656B1 (en) Open type geothermal system
KR101061494B1 (en) Heat exchange system using an earth heat
KR20130010180A (en) Tube well type heat pump system for removing and sterilizing foreign material and air
KR101591017B1 (en) Thermal energy storage system using depth defference of aquifer
US10401057B2 (en) Induced groundwater flow closed loop geothermal system
JP2012215377A (en) Underground heat exchange system and installing method of heat exchange well
KR101370440B1 (en) Coil type underground heat exchanger construction structure, construction equipment and construction method
CA3121511A1 (en) Groundwater enhanced geothermal heat pump
KR100916761B1 (en) Ground source heat exchange system with thermal storage well
JP2004317102A (en) Heat pump using well water heat
KR200371813Y1 (en) Heating change formation the use of a base rock-subferranean water and heat of the earth
KR20130113395A (en) Method for punching digging hole for heat exchanger having a type of soaking in underground water and structure of digging hole the same
JP6907596B2 (en) How to use groundwater
JP2015148415A (en) Groundwater resource recovery system
KR20070091487A (en) Heating exchanging system using the ground source
KR200482630Y1 (en) Permeable heatpump system with easy installation and object removal
KR101220897B1 (en) equipment for exchanging terrestrial heat
CN106403330B (en) Geothermal utilization method based on source of seawater
KR100940302B1 (en) Ground source heat exchange method with thermal storage well

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100115

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees