JP2007009731A - Turbine - Google Patents

Turbine Download PDF

Info

Publication number
JP2007009731A
JP2007009731A JP2005188510A JP2005188510A JP2007009731A JP 2007009731 A JP2007009731 A JP 2007009731A JP 2005188510 A JP2005188510 A JP 2005188510A JP 2005188510 A JP2005188510 A JP 2005188510A JP 2007009731 A JP2007009731 A JP 2007009731A
Authority
JP
Japan
Prior art keywords
turbine
casing
lower half
half casing
upper half
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005188510A
Other languages
Japanese (ja)
Other versions
JP4347269B2 (en
Inventor
Tomoyuki Onishi
智之 大西
Tamiaki Nakazawa
民暁 中澤
Shin Nishimoto
西本  慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005188510A priority Critical patent/JP4347269B2/en
Publication of JP2007009731A publication Critical patent/JP2007009731A/en
Application granted granted Critical
Publication of JP4347269B2 publication Critical patent/JP4347269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine wherein cat back is prevented from occurring (a turbine casing 1 is prevented from being warped in a cat-back-like shape). <P>SOLUTION: The turbine casing 1 comprises a lower half casing 2 and an upper half casing 3 connected to each other. Projection sections 4 projecting from both ends of the lower half casing 2 are supported by columnar supports 6. Supported surfaces 4a of the respective projection sections 4 are on the same plane as a connecting plane C between the lower half casing 2 and the upper half casing 3. Surfaces of the lower half casing 2 including the projection sections 4 and the upper half casing 3 are covered with a heat insulator 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸気タービンやガスタービンといったように、蒸気や燃焼ガス等の作動流体により主軸を回転させて動力を得るタービンに関する。   The present invention relates to a turbine that obtains power by rotating a main shaft using a working fluid such as steam or combustion gas, such as a steam turbine or a gas turbine.

一般のタービンにおいては、外形を構成するタービン車室内に、これに対して軸回転可能に主軸が設けられている。この主軸には、これと同軸上で複数段に亘ってロータディスクが設けられ、各ロータディスクの外周からは複数の動翼が放射状に延出している。このロータディスクと動翼とは、主軸と一体で回転する。また、タービン車室の内壁には、主軸に沿って動翼と交互に配置される態様で静翼が取り付けられている。   In a general turbine, a main shaft is provided in a turbine casing that forms an outer shape so as to be rotatable relative to the turbine casing. The main shaft is provided with a rotor disk in a plurality of stages coaxially therewith, and a plurality of blades extend radially from the outer periphery of each rotor disk. The rotor disk and the rotor blade rotate integrally with the main shaft. In addition, stationary blades are attached to the inner wall of the turbine casing in such a manner that they are alternately arranged with the moving blades along the main shaft.

このようなタービンでは、タービン車室の一端からその内部へ作動流体が送り込まれ、この作動流体が動翼と静翼とを交互に経てタービン車室の他端へ向けて流動する過程で、動翼(ロータディスク)に回転力を与える。これにより、主軸が回転駆動されて回転の動力が得られる。この回転の動力は発電等に活用される。ここでの作動流体としては、蒸気タービンの場合は、ボイラ等で生成された高圧蒸気であり、ガスタービンの場合は、燃焼器において圧縮空気と燃料との燃焼により生じた高温高圧の燃焼ガスである。   In such a turbine, working fluid is fed into one end of the turbine casing, and the working fluid flows through the rotor blades and the stationary blades alternately toward the other end of the turbine casing. A rotational force is applied to the wing (rotor disk). As a result, the main shaft is rotationally driven to obtain rotational power. This rotational power is used for power generation and the like. In the case of a steam turbine, the working fluid here is high-pressure steam generated by a boiler or the like, and in the case of a gas turbine, high-temperature and high-pressure combustion gas generated by combustion of compressed air and fuel in a combustor. is there.

続いて、従来のタービンの具体的な構造について、図面を参照しながら説明する。先ず図7〜図9に示すように、その一例であるタービン車室1は、概ね円筒状であり、上下に分割された下半車室2と上半車室3とより成る。下半車室2と上半車室3とは、共に鋳鉄品や鋳鋼品であって、下半車室2の上に上半車室3が載せられ、両者がボルト(不図示)等で締結されることにより接合される。ここでの下半車室2と上半車室3との接合面C(分割面)上に、主軸(不図示)の中心軸が含まれる。   Next, a specific structure of the conventional turbine will be described with reference to the drawings. First, as shown in FIGS. 7 to 9, the turbine casing 1 as an example is generally cylindrical and includes a lower half casing 2 and an upper half casing 3 which are divided into upper and lower portions. The lower half compartment 2 and the upper half compartment 3 are both cast iron products or cast steel products. The upper half compartment 3 is placed on the lower half compartment 2 and both are bolted (not shown) or the like. It is joined by being fastened. The central axis of the main shaft (not shown) is included on the joint surface C (divided surface) between the lower half casing 2 and the upper half casing 3 here.

また、下半車室2の両端からは、それぞれ一対の突出部4が張り出している。これらの各突出部4の上面は、下半車室2と上半車室3との接合面Cと同一平面上にある。一方、上半車室3の両端からは、下半車室2の各突出部4のつけ根付近にそれぞれ接合される突出部5が張り出している。   A pair of projecting portions 4 protrude from both ends of the lower half compartment 2. The upper surface of each projecting portion 4 is on the same plane as the joint surface C between the lower half casing 2 and the upper half casing 3. On the other hand, from both ends of the upper half passenger compartment 3, projecting portions 5 respectively projecting near the bases of the respective projecting portions 4 of the lower half passenger compartment 2 protrude.

下半車室2の各突出部4の下方には、地盤の基礎に固定された支柱6がそれぞれ配置されており、タービン車室1は、それらの各支柱6の上に各突出部4が載せられて支持される。この支持にあたっては、図9に示すように、支持する側である各支柱6の上面と、支持される側である各突出部4の被支持面4aと、の間にそれぞれ敷板7が挟み込まれており、それぞれ上方から突出部4及び敷板7を貫通するボルト8が支柱6にねじ込まれることにより、各突出部4と各支柱6とが各敷板7を介在した状態で締結されて固定される。なお、支持される側の下半車室2の各突出部4は、その形状から猫足と呼ばれ、支持する側の各支柱6は猫足台と呼ばれることがある。   Below each protrusion 4 of the lower half casing 2 is disposed a column 6 fixed to the foundation of the ground, and in the turbine casing 1, each protrusion 4 is placed on each column 6. It is placed and supported. In this support, as shown in FIG. 9, a floor plate 7 is sandwiched between the upper surface of each support column 6 which is a support side and the supported surface 4a of each protrusion 4 which is a supported side. The bolts 8 penetrating the protrusions 4 and the bottom plate 7 from above are screwed into the pillars 6 so that the protrusions 4 and the pillars 6 are fastened and fixed with the respective floor plates 7 interposed. . In addition, each protrusion part 4 of the lower half compartment 2 on the side to be supported is sometimes referred to as a claw foot due to its shape, and each supporting column 6 on the side to be supported is sometimes referred to as a claw footrest.

このような図7〜図9に示すタービンでは、タービン車室1の支持される面、すなわち下半車室2の突出部4における被支持面4aが、下半車室2と上半車室3との接合面Cより、下方に高さHずれている。つまり、タービン車室1が、その中心軸から高さHの分低い面(被支持面4a)で支持されている。このような支持方式は、その態様から非センターサポート式と呼ばれることがある。   In the turbine shown in FIGS. 7 to 9, the supported surface 4 a of the turbine casing 1, that is, the supported surface 4 a in the projecting portion 4 of the lower half casing 2, has the lower half casing 2 and the upper half casing. 3, the height H is shifted downward from the joint surface C. That is, the turbine casing 1 is supported by a surface (supported surface 4a) that is lower than the central axis by a height H. Such a support system may be called a non-center support type from the aspect.

こういった非センターサポート式のタービンとは別に、図10〜図12に示すようなタービンがある。このタービンは、上記した図7〜図9に示すタービンと比較して、下半車室2の各突出部4の形状が異なる以外は同じである。つまり、図10〜図12に示すように、下半車室2の両端からの各突出部4は、つけ根付近ではそれらの各上面が下半車室2と上半車室3との接合面Cと同一平面上となるように突出しつつ、その後上方へ折れ曲がって更に張り出している。   Apart from these non-center support type turbines, there are turbines as shown in FIGS. This turbine is the same as the turbine shown in FIGS. 7 to 9 except that the shape of each protrusion 4 of the lower half casing 2 is different. That is, as shown in FIGS. 10 to 12, the protrusions 4 from both ends of the lower half compartment 2 have their upper surfaces in the vicinity of the base, and their upper surfaces are the joint surfaces of the lower half compartment 2 and the upper half compartment 3. While projecting so as to be on the same plane as C, it then bends upward and protrudes further.

このような図10〜図12に示すタービンでは、タービン車室1の支持される面、すなわち下半車室2の突出部4における被支持面4aが、下半車室2と上半車室3との接合面Cと同一平面上にある。つまり、タービン車室1が、その中心軸を含む面(被支持面4a)で支持されている。このような支持方式は、その態様からセンターサポート式と呼ばれることがある。   In the turbine shown in FIGS. 10 to 12, the supported surface 4 a of the turbine casing 1, that is, the supported surface 4 a in the protruding portion 4 of the lower half casing 2, has the lower half casing 2 and the upper half casing. 3 is on the same plane as the joint surface C. That is, the turbine casing 1 is supported by the surface (the supported surface 4a) including the central axis. Such a support system may be called a center support system from the aspect.

ところで、運転中のタービンを停止させたときには、次第に、タービン車室1内の空気の対流によって温度の高い空気が上半車室3内に移り、上半車室3の温度が下半車室2の温度よりも高くなる。すると、その上下温度差の影響で、上半車室3の方が下半車室2よりも熱伸びした様相になり、その結果、タービン車室1が下半車室2の各突出部4における被支持面4aを支点に猫の背のように反る現象、いわゆるキャットバックが発生する。キャットバックが生じると、タービン車室1が鉛直上方へ変位して回転系と静止系との鉛直方向での隙間が下側で狭まるため、この狭まった個所で両者が干渉してしまい損傷に至る危険性がある。   By the way, when the turbine in operation is stopped, the high-temperature air gradually moves into the upper half casing 3 due to the convection of the air in the turbine casing 1, and the temperature of the upper half casing 3 becomes lower in the lower half casing. It becomes higher than the temperature of 2. Then, due to the difference in temperature between the upper and lower sides, the upper half passenger compartment 3 is more thermally expanded than the lower half passenger compartment 2, and as a result, the turbine compartment 1 is connected to each protrusion 4 of the lower half passenger compartment 2. This causes a phenomenon of warping like a cat's back with the supported surface 4a as a fulcrum, so-called catback. When the catback occurs, the turbine casing 1 is displaced vertically upward, and the vertical gap between the rotating system and the stationary system is narrowed on the lower side. There is a risk.

特に、上記した非センターサポート式のタービンでは、キャットバックによるタービン車室1の鉛直上方への変位が大きくなる傾向にある。下半車室2の各突出部4における高さHの部分にも被支持面4aから鉛直上方への熱伸びが生じるため、これがキャットバックによるタービン車室1の鉛直上方への変位に加算されるからである。従って、センターサポート式のタービンの方が非センターサポート式のタービンよりもキャットバックの変位低減に優れると言える。   In particular, in the above-described non-center support type turbine, the displacement of the turbine casing 1 vertically upward due to the catback tends to increase. Since the thermal expansion from the supported surface 4a to the vertical upward direction also occurs in the height H portion of each protrusion 4 of the lower half casing 2, this is added to the vertical upward displacement of the turbine casing 1 due to the catback. This is because that. Therefore, it can be said that the center support type turbine is superior in reducing the displacement of the catback than the non-center support type turbine.

ここで、上記のセンターサポート式、非センターサポート式のタービンに対して、キャットバックが発生しても、回転系と静止系との鉛直方向下側での隙間を確保すべく、運転中のタービンを停止させたとき、下半車室2の各突出部4を強制冷却し、これによりタービン車室1全体を鉛直下方へ下げるように工夫したものがある(例えば特許文献1、2参照)。これとは別に、下半車室2の各突出部4に対して上半車室3の各突出部5から放射される熱を遮断して、下半車室2の各突出部4からの放熱を促進させるように工夫したものもある(例えば、特許文献1〜3参照)。
特開平10−18806号公報 特開平10−54209号公報 特開平4−262006号公報
Here, even if a catback occurs with respect to the above-mentioned center support type and non-center support type turbines, the turbine in operation is secured in order to ensure a clearance on the lower side in the vertical direction between the rotating system and the stationary system. When the engine is stopped, there is a device in which each projecting portion 4 of the lower half casing 2 is forcibly cooled so that the entire turbine casing 1 is lowered vertically (see, for example, Patent Documents 1 and 2). Separately from this, the heat radiated from the projections 5 of the upper half casing 3 is cut off from the projections 4 of the lower half casing 2 to the projections 4 of the lower half casing 2. Some have been devised to promote heat dissipation (see, for example, Patent Documents 1 to 3).
Japanese Patent Laid-Open No. 10-18806 Japanese Patent Laid-Open No. 10-54209 JP-A-4-262006

しかし、上記した従来のタービンでは、下半車室2と上半車室3との温度差が生じることには変わりはなく、キャットバックは依然発生してしまう。特に、下半車室2の各突出部4を強制冷却したり、それらの各突出部4からの放熱を促進させたりした場合、下半車室2の保有する熱が積極的に各突出部4に伝わって、下半車室2の温度が低下していくことが想定されため、下半車室2と上半車室3との温度差がより顕著になって、キャットバックによる変位が大きくなるおそれがある。   However, in the conventional turbine described above, the temperature difference between the lower half casing 2 and the upper half casing 3 is not changed, and the catback still occurs. In particular, when each of the protrusions 4 of the lower half compartment 2 is forcibly cooled or heat radiation from each of the protrusions 4 is promoted, the heat held by the lower half compartment 2 is positively 4, it is assumed that the temperature of the lower half compartment 2 is lowered, so that the temperature difference between the lower half compartment 2 and the upper half compartment 3 becomes more prominent, and the displacement due to the catback is reduced. May grow.

そこで本発明は、上記の問題に鑑みてなされたものであり、キャットバックの発生を抑制できるタービンを提供することを目的とするものである。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a turbine capable of suppressing the occurrence of catback.

上記目的を達成するため、本発明によるタービンは、下半車室と上半車室とが互いに上下に接合されて成るタービン車室が、前記下半車室の両端それぞれから突出する突出部を支柱で支持されており、前記突出部における被支持面が前記下半車室と前記上半車室との接合面と同一平面上にあるタービン、すなわちセンターサポート式のタービンにおいて、前記突出部を含む前記下半車室、及び前記上半車室の表面が、保温材で覆われている。   In order to achieve the above object, a turbine according to the present invention has a turbine casing in which a lower half casing and an upper half casing are joined to each other in the vertical direction. In a turbine supported by a column and having a supported surface in the projecting portion on the same plane as a joint surface between the lower half cabin and the upper half cabin, that is, a center support type turbine, the projecting portion is The lower half vehicle compartment and the surface of the upper half vehicle compartment are covered with a heat insulating material.

このようにすると、運転中のタービンを停止させた後は、保温材により、タービン車室、すなわち下半車室及び上半車室から外部へ放射される熱は著しく抑えられ、上半車室の温度と下半車室の温度とがほぼ同等になる。もっとも、下半車室の各突出部、及び上半車室の各突出部を含めて外部への放熱が著しく抑えられ、各突出部を含めた全域に亘って上半車室の温度と下半車室の温度とがほぼ同等になる。従って、キャットバックの発生を抑えることが可能になる。   In this way, after the turbine in operation is stopped, the heat radiated to the outside from the turbine casing, that is, the lower half casing and the upper half casing is remarkably suppressed by the heat insulating material. The temperature of the vehicle and the temperature of the lower half of the cabin are almost equal. However, heat dissipation to the outside including each protrusion of the lower half compartment and each protrusion of the upper half compartment is remarkably suppressed, and the temperature and lower temperature of the upper half compartment are reduced over the entire area including each protrusion. The temperature in the half compartment is almost the same. Therefore, it is possible to suppress the occurrence of catback.

ここで、実用性を踏まえ、前記突出部における被支持面と前記支柱との間に敷板が挟み込まれている。   Here, in consideration of practicality, a floor plate is sandwiched between the supported surface of the protruding portion and the support column.

この場合、タービン車室の鉛直上方への変位を抑える観点から、前記敷板の熱伝導率が前記突出部の熱伝導率よりも小さいことが好ましい。同様の観点から、前記敷板の線膨張係数が前記突出部の線膨張係数よりも小さいことが好ましい。   In this case, it is preferable that the thermal conductivity of the floor plate is smaller than the thermal conductivity of the projecting portion from the viewpoint of suppressing vertical displacement of the turbine casing. From the same viewpoint, it is preferable that the linear expansion coefficient of the floorboard is smaller than the linear expansion coefficient of the protruding portion.

また、同じくタービン車室の鉛直上方への変位を抑える観点から、前記支柱の線膨張係数が前記突出部の線膨張係数よりも小さいことが好ましい。   Similarly, it is preferable that the linear expansion coefficient of the support column is smaller than the linear expansion coefficient of the projecting portion from the viewpoint of suppressing vertical displacement of the turbine casing.

また、同様の観点から、前記支柱の表面に、放熱フィンが取り付けられていることが好ましい。   Moreover, it is preferable from the same viewpoint that the radiation fin is attached to the surface of the said support | pillar.

また、同様の観点から、前記支柱の表面が、放熱膜で被覆されていることが好ましい。   From the same viewpoint, it is preferable that the surface of the column is covered with a heat dissipation film.

また、同様の観点から、前記支柱の内部に、冷却流体を流通する通路が形成されていることが好ましい。   From the same viewpoint, it is preferable that a passage for circulating a cooling fluid is formed inside the support column.

また、同様の観点から、前記支柱に対し、前記保温材を通じた前記突出部からの熱を遮る遮熱板が設けられていることが好ましい。   Further, from the same viewpoint, it is preferable that a heat shield plate that shields heat from the protruding portion through the heat insulating material is provided to the support column.

本発明のタービンによれば、運転中のタービンを停止させた後、上半車室の温度と下半車室の温度とが全域に亘ってほぼ同等になるため、キャットバックの発生を抑えることが可能になる。   According to the turbine of the present invention, after the turbine in operation is stopped, the temperature of the upper half passenger compartment and the temperature of the lower half passenger compartment are almost equal over the entire region, so that the occurrence of catback is suppressed. Is possible.

以下に、本発明のタービンの実施形態について、図面を参照しながら詳述する。先ず、本発明の第1実施形態について説明する。図1は第1実施形態のタービンにおける支持部付近を示す側面図である。なお、図中で図7〜図12と同じ名称で同じ機能を果たす部分には同一の符号を付し、重複する説明は適宜省略する。後述する第2〜第6実施形態においても同様とする。   Hereinafter, an embodiment of a turbine of the present invention will be described in detail with reference to the drawings. First, a first embodiment of the present invention will be described. FIG. 1 is a side view showing the vicinity of a support portion in the turbine of the first embodiment. In the figure, parts having the same names as in FIGS. 7 to 12 and performing the same functions are denoted by the same reference numerals, and redundant description will be omitted as appropriate. The same applies to the second to sixth embodiments described later.

本実施形態のタービンは、上記したセンターサポート式のタービン(図10〜図12参照)であって、図1に示すように、タービン車室1の支持される面、すなわち下半車室2の突出部4における被支持面4aが、下半車室2と上半車室3との接合面Cと同一平面上にある。従って、キャットバックの変位低減には、非センターサポート式のタービン(図7〜図9参照)よりも、基本的に優れたタービンである。なお、後述する第2〜第6実施形態のタービンも同様である。   The turbine of this embodiment is the above-described center support type turbine (see FIGS. 10 to 12), and as shown in FIG. 1, the surface to be supported of the turbine casing 1, that is, the lower half casing 2. The supported surface 4 a in the protrusion 4 is on the same plane as the joint surface C between the lower half casing 2 and the upper half casing 3. Therefore, the turbine is basically superior to the non-center support type turbine (see FIGS. 7 to 9) in reducing the displacement of the catback. The same applies to the turbines of the second to sixth embodiments described later.

特に本実施形態では、タービン車室1を形成する各突出部4を含む下半車室2、及び各突出部5を含む上半車室3について、外部に表出する素材の表面が全域に亘って保温材10(図1中の太い破線参照)で覆われている。ここでの保温材10としては、耐熱性にも優れた、グラスウール、ロックウール、ケイ酸カルシウム板、アルミナ・シリカを主成分とするセラミックファイバー等が例示される。   In particular, in the present embodiment, the surface of the material exposed to the outside is in the entire region of the lower half casing 2 including the protrusions 4 forming the turbine casing 1 and the upper half casing 3 including the protrusions 5. It is covered with the heat insulating material 10 (see the thick broken line in FIG. 1). Examples of the heat insulating material 10 include glass wool, rock wool, calcium silicate plate, ceramic fiber mainly composed of alumina / silica, and the like which are excellent in heat resistance.

このようにすると、運転中のタービンを停止させた後は、タービン車室1内の空気の対流によって上半車室3の温度が下半車室2の温度よりも高くなる様相となるが、タービン車室1が保温材10によって保温されるため、タービン車室1、すなわち下半車室2及び上半車室3から外部へ放射される熱は著しく抑えられる。これにより、上半車室3の保有する熱が下半車室2に伝わって、上半車室3の温度と下半車室2の温度とがほぼ同等になる。もっとも、上半車室3の各突出部5は勿論のこと、下半車室2の各突出部4を含めた保温材10による保温によって、各突出部4、5からの外部への放熱も著しく抑えられることから、各突出部4、5を含めた全域に亘って上半車室3の温度と下半車室2の温度とがほぼ同等になる。従って、キャットバックの発生を抑えることが可能になる。   In this way, after stopping the turbine in operation, the temperature of the upper half casing 3 becomes higher than the temperature of the lower half casing 2 due to the convection of the air in the turbine casing 1, Since the turbine casing 1 is kept warm by the heat insulating material 10, heat radiated to the outside from the turbine casing 1, that is, the lower half casing 2 and the upper half casing 3, is remarkably suppressed. Thereby, the heat which the upper half vehicle compartment 3 holds is transmitted to the lower half vehicle compartment 2, and the temperature of the upper half vehicle compartment 3 and the temperature of the lower half vehicle compartment 2 become substantially equal. However, not only the protrusions 5 of the upper half casing 3 but also the heat insulation by the heat insulating material 10 including the protrusions 4 of the lower half casing 2 allows heat radiation from the protrusions 4 and 5 to the outside. Since it is remarkably suppressed, the temperature of the upper half casing 3 and the temperature of the lower half casing 2 are substantially equal over the entire region including the protrusions 4 and 5. Therefore, it is possible to suppress the occurrence of catback.

また、本実施形態では、各支柱6の上面と、下半車室2の各突出部4の被支持面4aと、の間に挟み込まれた各敷板7が、それらの各突出部4すなわち下半車室2よりも熱伝導率の小さい材料から成る。ここでの敷板7の材料としては、アルミナや炭化ケイ素や窒化ケイ素等のセラミックが例示される。   Further, in the present embodiment, each floor plate 7 sandwiched between the upper surface of each support column 6 and the supported surface 4a of each projecting portion 4 of the lower half compartment 2 is connected to each projecting portion 4, that is, the lower portion. It is made of a material having a lower thermal conductivity than the half casing 2. Examples of the material of the floor plate 7 include ceramics such as alumina, silicon carbide, and silicon nitride.

このようにすると、下半車室2の突出部4の保有する熱の支柱6への熱伝導が敷板7によって著しく遮断される。そのため、タービン車室1の温度、特に下半車室2の突出部4の温度をより十分に確保できる。しかも、支柱6の不用意な昇温が防止され、その結果として、支柱6の熱膨張によるタービン車室1の鉛直上方への変位を抑えることができる。   If it does in this way, the heat conduction to the support | pillar 6 of the heat | fever which the protrusion part 4 of the lower half compartment 2 holds will be interrupted | blocked by the floor board 7 remarkably. Therefore, the temperature of the turbine casing 1, in particular, the temperature of the protruding portion 4 of the lower half casing 2 can be sufficiently secured. In addition, an inadvertent temperature rise of the support column 6 is prevented, and as a result, the vertical displacement of the turbine casing 1 due to the thermal expansion of the support column 6 can be suppressed.

また、各敷板7が、下半車室2の突出部4よりも熱膨張係数の小さい材料から成るものでもよい。ここでの敷板7の材料としては、アルミナや炭化ケイ素や窒化ケイ素等のセラミックの他に、線膨張係数が5×10-6[K-1]程度である金属クロム(Cr)等が例示される。 Further, each floor plate 7 may be made of a material having a smaller coefficient of thermal expansion than the protruding portion 4 of the lower half compartment 2. Examples of the material of the floor plate 7 include metal chromium (Cr) having a linear expansion coefficient of about 5 × 10 −6 [K −1 ] in addition to ceramics such as alumina, silicon carbide, and silicon nitride. The

このようにすると、敷板7に下半車室2の突出部4から熱が伝わったとしても、敷板7の熱膨張が抑えられるため、その結果として、敷板7の熱膨張に伴うタービン車室1の鉛直上方への変位を抑えることができる。   In this case, even if heat is transmitted to the floor plate 7 from the protruding portion 4 of the lower half casing 2, the thermal expansion of the floor plate 7 is suppressed, and as a result, the turbine casing 1 associated with the thermal expansion of the floor plate 7. Can be suppressed in the vertical upward direction.

また、各支柱6が、下半車室2の突出部4よりも熱膨張係数の小さい材料から成るものでもよい。ここでの支柱6の材料としては、線膨張係数が5×10-6[K-1]程度である金属クロム(Cr)等が例示される。 Moreover, each support | pillar 6 may consist of a material with a smaller thermal expansion coefficient than the protrusion part 4 of the lower half vehicle interior 2. As shown in FIG. Examples of the material of the column 6 include metal chromium (Cr) having a linear expansion coefficient of about 5 × 10 −6 [K −1 ].

このようにすると、支柱6に敷板7を経て下半車室2の突出部4から熱が伝わったとしても、支柱6の熱膨張が抑えられるため、その結果として、支柱6の熱膨張に伴うタービン車室1の鉛直上方への変位を抑えることができる。   In this case, even if heat is transmitted from the protrusion 4 of the lower half vehicle compartment 2 to the support column 6 via the floor plate 7, the thermal expansion of the support column 6 is suppressed. As a result, accompanying the thermal expansion of the support column 6 Displacement of the turbine casing 1 upward in the vertical direction can be suppressed.

また、下半車室2の各突出部4と各支柱6とを締結する各ボルト8が、それらの各突出部4すなわち下半車室2よりも熱伝導率の小さい材料から成る。ここでのボルト8の材料としては、下半車室2が例えば鋳鉄品(熱伝導率:43[W/mK]程度)である場合、熱伝導率が16[W/mK]程度であるステンレスが例示される。   Moreover, each bolt 8 which fastens each protrusion part 4 and each support | pillar 6 of the lower half compartment 2 consists of a material with smaller thermal conductivity than those protrusion parts 4, ie, the lower half compartment 2. As shown in FIG. The material of the bolt 8 here is stainless steel having a thermal conductivity of about 16 [W / mK] when the lower half compartment 2 is, for example, a cast iron product (thermal conductivity: about 43 [W / mK]). Is exemplified.

このようにすると、下半車室2の突出部4の保有する熱が、ボルト8に伝わり難くなるため、支柱6の不用意な昇温が防止され、その結果として、支柱6の熱膨張によるタービン車室1の鉛直上方への変位を抑えることができる。   If it does in this way, since the heat | fever which the protrusion part 4 of the lower half vehicle compartment 2 becomes difficult to be transmitted to the volt | bolt 8, careless temperature rise of the support | pillar 6 is prevented, As a result, it is by thermal expansion of the support | pillar 6 Displacement of the turbine casing 1 upward in the vertical direction can be suppressed.

次に、本発明の第2実施形態について、図2を参照しながら説明する。本第2実施形態の特徴は、上記した第1実施形態のタービンに対して、タービン車室1の鉛直上方への変位をより抑えるように図った点にある。   Next, a second embodiment of the present invention will be described with reference to FIG. The feature of the second embodiment is that the turbine casing 1 is further restrained from being displaced vertically upward relative to the turbine of the first embodiment.

本実施形態では、図2に示すように、各支柱6について、外部に表出する素材の表面に放熱フィン11が溶接等によって取り付けられている。この放熱フィン11は、熱伝導率の大きい複数枚の金属薄板が互いに間隔をあけて順に対向配置されたものである。   In this embodiment, as shown in FIG. 2, the radiating fins 11 are attached to the surface of the material exposed to the outside by welding or the like for each support column 6. The heat dissipating fins 11 are formed by arranging a plurality of thin metal plates having high thermal conductivity so as to face each other at intervals.

このようにすると、支柱6に伝わった熱は放熱フィン11より積極的に放射される。これにより、支柱6の不用意な昇温が防止されるため、支柱6の熱膨張を抑えることができ、その結果として、タービン車室1の鉛直上方への変位の抑制につながる。   If it does in this way, the heat transmitted to the support | pillar 6 will be actively radiated | emitted from the radiation fin 11. FIG. Thereby, since an inadvertent temperature rise of the support column 6 is prevented, the thermal expansion of the support column 6 can be suppressed, and as a result, the displacement of the turbine casing 1 in the vertical upward direction is suppressed.

次に、本発明の第3実施形態について、図3を参照しながら説明する。本第3実施形態の特徴は、上記の第2実施形態と同様の観点から、上記した第1実施形態のタービンに対して、タービン車室1の鉛直上方への変位をより抑えるように図った点にある。   Next, a third embodiment of the present invention will be described with reference to FIG. The feature of the third embodiment is that, from the same viewpoint as the second embodiment described above, the turbine casing 1 is further restrained from being displaced vertically upward with respect to the turbine of the first embodiment described above. In the point.

本実施形態では、図3に示すように、各支柱6について、外部に表出する素材の表面が全域に亘って放熱膜12(図3中の太い点線参照)で被覆されている。ここでの放熱膜12は、被覆対象物の保有する熱を吸収して外部へ放射する特質を有するものであって、放射率の高い黒体塗料や黒体スプレー、つや消し黒の塗料等が例示される。ちなみに、支柱6が鋳鉄品である場合、その表面が素材のままでは放射率が0.8程度であるが、黒体塗料や黒体スプレーを被覆することで放射率が約0.95、つや消し黒の塗料を被覆することで放射率が0.9以上に達する。   In the present embodiment, as shown in FIG. 3, the surface of the material exposed to the outside is covered with the heat radiation film 12 (see the thick dotted line in FIG. 3) for each column 6. The heat dissipation film 12 here has a characteristic of absorbing the heat held by the object to be coated and radiating it to the outside, and examples thereof include high-emissivity black body paint, black body spray, and matte black paint. Is done. By the way, if the column 6 is a cast iron product, the emissivity is about 0.8 if the surface is a raw material, but the emissivity is about 0.95 by covering with black body paint or black body spray. Emissivity reaches 0.9 or more by covering with black paint.

このようにすると、支柱6に伝わった熱は放熱膜12より積極的に放射される。これにより、支柱6の不用意な昇温が防止されるため、支柱6の熱膨張を抑えることができ、その結果として、タービン車室1の鉛直上方への変位の抑制につながる。なお、上記の第2実施形態に適用するとより効果的である。   If it does in this way, the heat transmitted to the support | pillar 6 will be actively radiated | emitted from the thermal radiation film | membrane 12. FIG. Thereby, since an inadvertent temperature rise of the support column 6 is prevented, the thermal expansion of the support column 6 can be suppressed, and as a result, the displacement of the turbine casing 1 in the vertical upward direction is suppressed. It is more effective when applied to the second embodiment.

次に、本発明の第4実施形態について、図4を参照しながら説明する。本第4実施形態の特徴は、上記の第2、第3実施形態と同様の観点から、上記した第1実施形態のタービンに対して、タービン車室1の鉛直上方への変位をより抑えるように図った点にある。   Next, a fourth embodiment of the present invention will be described with reference to FIG. The feature of the fourth embodiment is to suppress the upward displacement of the turbine casing 1 in the vertical direction with respect to the turbine of the first embodiment described above from the same viewpoint as the second and third embodiments. There is in point that we planned.

本実施形態では、図4に示すように、各支柱6について、その内部に通路13が形成されている。この通路13内には、空気や水等の冷却流体が一端から送り込まれ、他端から排出されるようになっている。   In the present embodiment, as shown in FIG. 4, a passage 13 is formed in each column 6. A cooling fluid such as air or water is fed into the passage 13 from one end and discharged from the other end.

このようにすると、支柱6に伝わった熱は通路13内を流通する冷却流体との間で熱交換される。これにより、支柱6が冷却されるため、支柱6の熱膨張を抑えることができ、その結果として、タービン車室1の鉛直上方への変位の抑制につながる。なお、上記の第2、第3実施形態に適用するとより効果的である。   If it does in this way, the heat transmitted to the support | pillar 6 will be heat-exchanged with the cooling fluid which distribute | circulates the inside of the channel | path 13. FIG. Thereby, since the support | pillar 6 is cooled, the thermal expansion of the support | pillar 6 can be suppressed, As a result, it leads to suppression of the displacement of the turbine casing 1 to the perpendicular upper direction. It is more effective when applied to the second and third embodiments.

次に、本発明の第5実施形態について、図5を参照しながら説明する。本第5実施形態の特徴は、上記の第2〜第4実施形態と同様の観点から、上記した第1実施形態のタービンに対して、タービン車室1の鉛直上方への変位をより抑えるように図った点にある。   Next, a fifth embodiment of the present invention will be described with reference to FIG. The feature of the fifth embodiment is to suppress the vertical displacement of the turbine casing 1 more than the turbine of the first embodiment described above from the same viewpoint as the second to fourth embodiments. There is in point that we planned.

本実施形態では、図5に示すように、各支柱6に対して、保温材10を通じた下半車室2の各突出部4からの熱を遮る遮熱板14が設けられている。ここでの遮熱板14としては、鉄板が用いられ、各支柱6の側面のうちの各突出部4と向き合う側面に溶接等によって取り付けられる。   In the present embodiment, as shown in FIG. 5, a heat shield plate 14 that shields heat from the protrusions 4 of the lower half vehicle compartment 2 through the heat insulating material 10 is provided for each column 6. Here, an iron plate is used as the heat shield plate 14 and is attached to a side surface facing each protrusion 4 among the side surfaces of each column 6 by welding or the like.

このようにすると、下半車室2の各突出部4から保温材10を通じて外部へ漏れた熱は、各支柱6に至る前に遮熱板14によって遮断される。これにより、支柱6の不用意な昇温が防止されるため、支柱6の熱膨張を抑えることができ、その結果として、タービン車室1の鉛直上方への変位の抑制につながる。なお、上記の第2〜第4実施形態に適用するとより効果的である。   If it does in this way, the heat which leaked outside from each protrusion part 4 of the lower half compartment 2 through the heat insulating material 10 will be interrupted | blocked by the heat shield board 14 before reaching each support | pillar 6. FIG. Thereby, since an inadvertent temperature rise of the support column 6 is prevented, the thermal expansion of the support column 6 can be suppressed, and as a result, the displacement of the turbine casing 1 in the vertical upward direction is suppressed. It is more effective when applied to the second to fourth embodiments.

次に、本発明の第6実施形態について、図6を参照しながら説明する。本第6実施形態の特徴は、上記した第1実施形態のタービンに対して、タービン車室1の温度の安定化、特に、温度が低下しやすい状況下にある下半車室2の各突出部4、及び上半車室3の各突出部5における温度の安定化を図った点にある。   Next, a sixth embodiment of the present invention will be described with reference to FIG. The feature of the sixth embodiment is that the temperature of the turbine casing 1 is stabilized with respect to the turbine of the first embodiment described above, and in particular, each protrusion of the lower half casing 2 that is in a state where the temperature tends to decrease. This is in that the temperature of the projecting portions 5 of the portion 4 and the upper half passenger compartment 3 is stabilized.

本実施形態では、図6に示すように、上半車室3の各突出部5について、下半車室2の各突出部4に接合される部分が増すように、体積V(図6中の網掛け部参照)を付加している。そして、この体積Vも含めて保温材10で覆う。   In the present embodiment, as shown in FIG. 6, the volume V (in FIG. 6) is increased so that the protrusions 5 of the upper half casing 3 are joined to the protrusions 4 of the lower half casing 2. The shaded part of And it covers with the heat insulating material 10 including this volume V.

このようにすると、増した体積Vの分だけ下半車室2の各突出部4、及び上半車室3の各突出部5に蓄え得る熱量が増える。これにより、下半車室2の各突出部4、及び上半車室3の各突出部5がより温度低下し難くなるため、各突出部4、5を含めたタービン車室1全域に亘って温度が安定し、その結果として、キャットバックの発生をより抑えることが可能になる。なお、上記の第2〜第5実施形態に適用しても構わない。また、本実施形態では、体積Vを上半車室3の各突出部5に付加したが、下半車室2の各突出部4に付加しても同様の効果を得ることができる。   In this way, the amount of heat that can be stored in each protrusion 4 of the lower half compartment 2 and each protrusion 5 of the upper half compartment 3 is increased by the increased volume V. Thereby, since each protrusion part 4 of the lower half vehicle compartment 2 and each protrusion part 5 of the upper half vehicle compartment 3 become more difficult to fall in temperature, it extends over the turbine casing 1 whole region including each protrusion part 4 and 5. As a result, the occurrence of catback can be further suppressed. In addition, you may apply to said 2nd-5th embodiment. Further, in the present embodiment, the volume V is added to each protrusion 5 of the upper half casing 3, but the same effect can be obtained even if it is added to each protrusion 4 of the lower half casing 2.

その他本発明は上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。   In addition, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

本発明は、作動流体により主軸を回転させて動力を得るタービンに有用である。   The present invention is useful for a turbine that obtains power by rotating a main shaft using a working fluid.

本発明の第1実施形態のタービンにおける支持部付近を示す側面図である。It is a side view which shows the support part vicinity in the turbine of 1st Embodiment of this invention. 本発明の第2実施形態のタービンにおける支持部付近を示す側面図である。It is a side view which shows the support part vicinity in the turbine of 2nd Embodiment of this invention. 本発明の第3実施形態のタービンにおける支持部付近を示す側面図である。It is a side view which shows the support part vicinity in the turbine of 3rd Embodiment of this invention. 本発明の第4実施形態のタービンにおける支持部付近を示す一部に断面を含む側面図である。It is a side view including a cross section in part showing the vicinity of the support portion in the turbine of the fourth embodiment of the present invention. 本発明の第5実施形態のタービンにおける支持部付近を示す側面図である。It is a side view which shows the support part vicinity in the turbine of 5th Embodiment of this invention. 本発明の第6実施形態のタービンにおける支持部付近を示す側面図である。It is a side view which shows the support part vicinity in the turbine of 6th Embodiment of this invention. 従来のタービンの一例である非センターサポート式のタービンの外観を示す側面図である。It is a side view which shows the external appearance of the non-center support type turbine which is an example of the conventional turbine. 図7のタービンの上面図である。FIG. 8 is a top view of the turbine of FIG. 7. 図7のタービンにおける支持部付近を示す側面視での断面図である。It is sectional drawing in the side view which shows the support part vicinity in the turbine of FIG. 本発明にも共通するセンターサポート式のタービンの外観を示す側面図である。It is a side view which shows the external appearance of the center support type turbine also common to this invention. 図10のタービンの上面図である。FIG. 11 is a top view of the turbine of FIG. 10. 図10のタービンにおける支持部付近を示す側面視での断面図である。It is sectional drawing in the side view which shows the support part vicinity in the turbine of FIG.

符号の説明Explanation of symbols

1 タービン車室
2 下半車室
3 上半車室
4 突出部
4a 被支持面
5 突出部
6 支柱
7 敷板
8 ボルト
10 保温材
11 放熱フィン
12 放熱膜
13 通路
14 遮熱板
C 接合面
DESCRIPTION OF SYMBOLS 1 Turbine compartment 2 Lower half compartment 3 Upper half compartment 4 Protruding part 4a Supported surface 5 Protruding part 6 Prop 7 Base plate 8 Bolt 10 Heat insulating material 11 Radiation fin 12 Radiation film 13 Passage 14 Heat shield plate C Joint surface

Claims (9)

下半車室と上半車室とが互いに上下に接合されて成るタービン車室の前記下半車室の両端それぞれから突出する突出部が支柱で支持されており、前記突出部における被支持面が前記下半車室と前記上半車室との接合面と同一平面上にあるタービンにおいて、
前記突出部を含む前記下半車室、及び前記上半車室の表面が、保温材で覆われていることを特徴とするタービン。
Protrusions projecting from both ends of the lower half casing of the turbine casing formed by joining the lower half casing and the upper half casing to each other are supported by pillars, and the supported surfaces of the projecting sections In a turbine that is coplanar with a joint surface between the lower half casing and the upper half casing,
A surface of the lower half casing and the upper half casing including the protruding portion is covered with a heat insulating material.
前記突出部における被支持面と前記支柱との間に敷板が挟み込まれていることを特徴とする請求項1に記載のタービン。   The turbine according to claim 1, wherein a floor plate is sandwiched between the supported surface of the projecting portion and the support column. 前記敷板の熱伝導率が前記突出部の熱伝導率よりも小さいことを特徴とする請求項2に記載のタービン。   The turbine according to claim 2, wherein a thermal conductivity of the floor plate is smaller than a thermal conductivity of the protruding portion. 前記敷板の線膨張係数が前記突出部の線膨張係数よりも小さいことを特徴とする請求項2又は3に記載のタービン。   The turbine according to claim 2 or 3, wherein a linear expansion coefficient of the floor plate is smaller than a linear expansion coefficient of the protruding portion. 前記支柱の線膨張係数が前記突出部の線膨張係数よりも小さいことを特徴とする請求項1〜4のいずれかに記載のタービン。   The turbine according to any one of claims 1 to 4, wherein a linear expansion coefficient of the support column is smaller than a linear expansion coefficient of the protruding portion. 前記支柱の表面に、放熱フィンが取り付けられていることを特徴とする請求項1〜5のいずれかに記載のタービン。   The turbine according to any one of claims 1 to 5, wherein a radiation fin is attached to a surface of the support column. 前記支柱の表面が、放熱膜で被覆されていることを特徴とする請求項1〜6のいずれかに記載のタービン。   The turbine according to claim 1, wherein a surface of the support column is covered with a heat dissipation film. 前記支柱の内部に、冷却流体を流通する通路が形成されていることを特徴とする請求項1〜7のいずれかに記載のタービン。   The turbine according to any one of claims 1 to 7, wherein a passage for circulating a cooling fluid is formed inside the support column. 前記支柱に対し、前記保温材を通じた前記突出部からの熱を遮る遮熱板が設けられていることを特徴とする請求項1〜8のいずれかに記載のタービン。   The turbine according to any one of claims 1 to 8, wherein a heat insulating plate that blocks heat from the protruding portion through the heat insulating material is provided to the support column.
JP2005188510A 2005-06-28 2005-06-28 Turbine Active JP4347269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188510A JP4347269B2 (en) 2005-06-28 2005-06-28 Turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188510A JP4347269B2 (en) 2005-06-28 2005-06-28 Turbine

Publications (2)

Publication Number Publication Date
JP2007009731A true JP2007009731A (en) 2007-01-18
JP4347269B2 JP4347269B2 (en) 2009-10-21

Family

ID=37748571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188510A Active JP4347269B2 (en) 2005-06-28 2005-06-28 Turbine

Country Status (1)

Country Link
JP (1) JP4347269B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832629B1 (en) * 2006-09-20 2008-05-27 삼성전기주식회사 Spindle motor
KR100869538B1 (en) * 2004-03-09 2008-11-19 미쓰비시 가가꾸 가부시키가이샤 Polybutylene terephthalate pellet, compound product and molded article thereof, and processes for producing these
JP2009174531A (en) * 2008-01-22 2009-08-06 General Electric Co <Ge> Turbine casing equipped with fake flange
CN105545384A (en) * 2016-02-05 2016-05-04 中国船舶重工集团公司第七�三研究所 Flexible support of high-back-pressure turbine
JP2016104975A (en) * 2014-12-01 2016-06-09 三菱日立パワーシステムズ株式会社 Steam turbine casing
WO2017163482A1 (en) * 2016-03-25 2017-09-28 三菱日立パワーシステムズ株式会社 Cooling device for casing support part of rotary machine, rotary machine, and cooling method for casing support part of rotary machine
KR20190077111A (en) 2017-02-27 2019-07-02 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine
KR20190108617A (en) 2017-03-30 2019-09-24 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Rolling machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721457B2 (en) * 2011-02-02 2015-05-20 三菱日立パワーシステムズ株式会社 Cabin support structure of turbo rotating machine
JP2015175246A (en) * 2014-03-13 2015-10-05 三菱日立パワーシステムズ株式会社 Casing support structure, casing and turbine
CN106321171A (en) * 2016-11-10 2017-01-11 中国船舶重工集团公司第七0三研究所 Novel flexible support of high-back-pressure steam turbine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869538B1 (en) * 2004-03-09 2008-11-19 미쓰비시 가가꾸 가부시키가이샤 Polybutylene terephthalate pellet, compound product and molded article thereof, and processes for producing these
KR100832629B1 (en) * 2006-09-20 2008-05-27 삼성전기주식회사 Spindle motor
JP2009174531A (en) * 2008-01-22 2009-08-06 General Electric Co <Ge> Turbine casing equipped with fake flange
US10690008B2 (en) 2014-12-01 2020-06-23 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine casing
JP2016104975A (en) * 2014-12-01 2016-06-09 三菱日立パワーシステムズ株式会社 Steam turbine casing
CN105545384A (en) * 2016-02-05 2016-05-04 中国船舶重工集团公司第七�三研究所 Flexible support of high-back-pressure turbine
KR102133733B1 (en) * 2016-03-25 2020-07-14 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cooling device for casing support of rotating machine and method for cooling rotating machine and casing support of rotating machine
CN109072718A (en) * 2016-03-25 2018-12-21 三菱日立电力系统株式会社 The cooling means of the shell supporting part of the cooling device and rotating machinery and rotating machinery of the shell supporting part of rotating machinery
US20190048741A1 (en) * 2016-03-25 2019-02-14 Mitsubishi Hitachi Power Systems, Ltd. Cooling device for casing support part of rotary machine, rotary machine, and cooling method for casing support part of rotary machine
KR20180112040A (en) * 2016-03-25 2018-10-11 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cooling apparatus and rotating machine of casing supporting part of rotating machine, and cooling method of casing supporting part of rotating machine
WO2017163482A1 (en) * 2016-03-25 2017-09-28 三菱日立パワーシステムズ株式会社 Cooling device for casing support part of rotary machine, rotary machine, and cooling method for casing support part of rotary machine
US11111817B2 (en) 2016-03-25 2021-09-07 Mitsubishi Power, Ltd. Cooling device for casing support part of rotary machine, rotary machine, and cooling method for casing support part of rotary machine
KR20190077111A (en) 2017-02-27 2019-07-02 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine
US11136903B2 (en) 2017-02-27 2021-10-05 Mitsubishi Power, Ltd. Steam turbine
KR20190108617A (en) 2017-03-30 2019-09-24 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Rolling machine
DE112018001740T5 (en) 2017-03-30 2019-12-19 Mitsubishi Hitachi Power Systems, Ltd. rotary engine
US11306606B2 (en) 2017-03-30 2022-04-19 Mitsubishi Power, Ltd. Rotary machine

Also Published As

Publication number Publication date
JP4347269B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4347269B2 (en) Turbine
US8857190B2 (en) Heat shield element, in particular for lining a combustion chamber wall
US20100209239A1 (en) Vane
JP4526976B2 (en) Apparatus for axially retaining a ring spacer sector of a turbomachine high pressure turbine
US9404391B2 (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
JP2006226283A (en) Exhaust liner assembly and narrow outlet member thereof
JP2003065539A (en) Heat insulation apparatus for high temperature gas guiding structure.
EP2402557B1 (en) Turbine rotor assembly
JP2004525600A (en) Generator cooling
JP2011089461A (en) Cooling structure, combustor, and turbine blade
JP2008051104A (en) Coated turbine blade
JPH1194241A (en) Ceramic lining
JP2007170807A (en) Combustor liner assembly and combustor assembly
JP2007170811A (en) Heat exchanger and heat exchanger manufacturing method
JP2002540337A (en) Coating part and arrangement structure provided with coating part and support structure
US5176495A (en) Thermal shielding apparatus or radiositor for a gas turbine engine
JP2005054789A (en) Thermal isolation device for liquid fuel components
US7845175B2 (en) Heat shield for mounting on a heat-radiating object, particularly on a rocket engine
JP2010121499A (en) Supporting structure of turbine casing
JP5546564B2 (en) Turbine casing fixing structure, casing structure, and gas turbine
JP2596921B2 (en) Combustor
JP6615985B2 (en) High temperature piping cooling system
JPH08226304A (en) Ceramic stator blade
JPH094830A (en) Furnace wall for incinerator
JP2006105050A (en) Turbine and method of manufacturing turbine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R151 Written notification of patent or utility model registration

Ref document number: 4347269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350