JP2007009301A - Method for producing copper-coated polyimide substrate - Google Patents

Method for producing copper-coated polyimide substrate Download PDF

Info

Publication number
JP2007009301A
JP2007009301A JP2005194630A JP2005194630A JP2007009301A JP 2007009301 A JP2007009301 A JP 2007009301A JP 2005194630 A JP2005194630 A JP 2005194630A JP 2005194630 A JP2005194630 A JP 2005194630A JP 2007009301 A JP2007009301 A JP 2007009301A
Authority
JP
Japan
Prior art keywords
copper
polyimide substrate
substrate
coated polyimide
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194630A
Other languages
Japanese (ja)
Inventor
Keisuke Wada
圭介 和田
Tatsuo Kibe
龍夫 木部
Tetsushi Kawakami
哲史 川上
Masaaki Sato
昌明 佐藤
Noriaki Sugamoto
憲明 菅本
Shigeki Ogawa
茂樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005194630A priority Critical patent/JP2007009301A/en
Publication of JP2007009301A publication Critical patent/JP2007009301A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method for making the height of projecting defective parts fixed even with the lapse of time. <P>SOLUTION: In the method for producing a copper-covered polyimide substrate by subjecting a polyimide substrate 1 whose surface has electric conductivity to copper plating by an electroplating process, each carrier roller 2 used in a copper plating liquid upon the electroplating has a shape where both the edge parts have the same large diameter parts 2-2, 2'-2, and the central part has a small diameter part 2-1, and also, only the insides of the large diameter parts 2-2, 2'-2 on both the edge parts in the carrier roller 2 are contacted with both the edge parts in the substrate 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、めっき法を用いた銅被覆ポリイミド基板の製造方法に関するものである。   The present invention relates to a method for producing a copper-coated polyimide substrate using a plating method.

従来、銅被覆ポリイミド基板は、導電性を有さないポリイミドフィルムの表面に、蒸着、スパッタ等の乾式めっきや無電解めっき等の湿式めっきによって導電性薄膜を形成して導電性を付与した後、電気めっき法によって該導電性薄膜の上に所望の厚さまで銅をめっきすることによって得られている。
例えば、特許文献1には無電解めっきを用いた銅被覆ポリイミド基板の製造方法が提案されている。
Conventionally, a copper-coated polyimide substrate is provided with conductivity by forming a conductive thin film on the surface of a polyimide film having no conductivity by wet plating such as dry plating or electroless plating such as vapor deposition or sputtering, It is obtained by plating copper to a desired thickness on the conductive thin film by electroplating.
For example, Patent Document 1 proposes a method for manufacturing a copper-coated polyimide substrate using electroless plating.

このようにして製造された銅被覆ポリイミド基板は、フォトリソグラフィー法により回路を形成することによりCOFプリント回路(Chip On Flexible Printed Circuit)やFPCプリント回路(Flexible Printed Circuit)等の電子部品を製造するための素材として広く用いられている。
例えば、特許文献2には、銅被覆ポリイミド基板を用いたフレキシブル基板の製造方法が示されている。
The copper-coated polyimide substrate manufactured in this way is used to manufacture electronic components such as COF printed circuits (Chip On Flexible Printed Circuit) and FPC printed circuits (Flexible Printed Circuit) by forming circuits by photolithography. Widely used as a material for
For example, Patent Document 2 discloses a method for manufacturing a flexible substrate using a copper-coated polyimide substrate.

ところで、フォトリソグラフィー法を用いて銅被覆ポリイミド基板に回路を形成する場合、ポリイミドフィルムに凸状の欠陥部が存在すると、この凸状欠陥部が露光ムラやエッチングムラの原因となる。そのため、ポリイミド基板表面の凸状欠陥部は極力低くすることが要求される。   By the way, when a circuit is formed on a copper-coated polyimide substrate using a photolithography method, if a convex defect exists in the polyimide film, the convex defect causes uneven exposure and etching. For this reason, it is required that the convex defects on the surface of the polyimide substrate be as low as possible.

近年の配線密度高密度化の要請は、銅被覆ポリイミド基板表面の導電層である銅層の厚さの減少を要求され、近年ではその厚さを10μm前後とするようになってきている。このレベルまで銅層の厚さが減少すると、電気めっきによるレベリング効果が不充分となり、ポリイミドフィルムに内包されたフィラーの露出に起因とする1〜2μm程度の凸状物や、ポリイミドフィルムに導電性を付与する際に生じる1〜2μm程度の凸状痕の影響を受け、平滑な表面を有する銅被覆ポリイミド基板が得難いという問題を生じるに至った。
こうした問題を解消すべく、例えば、特許文献3には、銅めっき液中に光沢剤を添加してレベリング性を向上させている。
特開平05−090737号公報 特開平05−021515号公報 特開平06−132634号公報
In recent years, the demand for higher wiring density has required a reduction in the thickness of the copper layer, which is the conductive layer on the surface of the copper-coated polyimide substrate, and in recent years, the thickness has become around 10 μm. If the thickness of the copper layer is reduced to this level, the leveling effect due to electroplating will be insufficient, and it will become conductive to convex objects of about 1 to 2 μm and the polyimide film due to the exposure of the filler contained in the polyimide film. Under the influence of convex traces of about 1 to 2 [mu] m generated when applying a copper, a problem arises that it is difficult to obtain a copper-coated polyimide substrate having a smooth surface.
In order to solve such a problem, for example, in Patent Document 3, a leveling property is improved by adding a brightener to a copper plating solution.
JP 05-090737 A JP 05-021515 A Japanese Patent Laid-Open No. 06-132634

ところが、こうした光沢剤を添加した銅めっき液を用いて銅被覆ポリイミド基板を製造すると、製造時間の経過と共に、ポリイミド基板表面の凸状欠陥部の高さが経時的に高くなるという問題が生じた。   However, when a copper-coated polyimide substrate was produced using a copper plating solution to which such a brightener was added, there was a problem that the height of the convex defect portion on the surface of the polyimide substrate increased with the passage of time. .

本発明は、かかる問題を是正すべくなされたものであり、経時しても凸状欠陥部の高さを一定にすることが可能な銅めっき方法を提供することを目的とするものである。   The present invention has been made to correct such a problem, and an object of the present invention is to provide a copper plating method capable of making the height of a convex defect portion constant over time.

本発明者らは、鋭意検討した結果、上記凸状欠陥部は、基板作製時にめっき液中でポリイミド基板の全表面と接触する搬送ローラーの表面に、添加剤成分が吸着し、それが前記基板表面へ転写されることで、該凸状欠陥部の成長が促進されてしまうことを見出し、本発明を採用するに至った。   As a result of intensive studies, the present inventors have found that the convex defect portion is adsorbed by the additive component on the surface of the transport roller that contacts the entire surface of the polyimide substrate in the plating solution during substrate production, which is the substrate. It has been found that the growth of the convex defect portion is promoted by being transferred to the surface, and the present invention has been adopted.

即ち、本発明に係る銅被覆ポリイミ基板の製造方法は、表面に導電性を付与したポリイミド基板の表面に対し、電気めっき法で銅めっきを施すことにより銅被覆ポリイミド基板を製造する方法において、前記電気めっきを施す際に銅めっき液中にて用いられる搬送ローラーが、両端部を同一径の大径部となし中央部を小径部となした形状のローラーであり、且つ、該搬送ローラーの両端部の大径部内側のみが、該基板の両端部と接触することを特徴とするものである。
また、本発明に係る他の銅被覆ポリイミ基板の製造方法は、前記搬送ローラーの大径部と前記基板の端部との接触幅Wが15mm以上、該搬送ローラーの大径部と小径部の径差hが2mm以上であることを特徴とするものである。
That is, in the method for producing a copper-coated polyimide substrate according to the present invention, a method for producing a copper-coated polyimide substrate by performing copper plating by electroplating on the surface of a polyimide substrate imparted with conductivity to the surface, The transport rollers used in the copper plating solution when performing electroplating are rollers having a shape in which both ends are the same diameter and a central portion is a small diameter, and both ends of the transport rollers. Only the inside of the large-diameter portion of the portion is in contact with both end portions of the substrate.
Further, in another method for producing a copper-coated polyimide substrate according to the present invention, the contact width W between the large-diameter portion of the transport roller and the end of the substrate is 15 mm or more, and the large-diameter portion and the small-diameter portion of the transport roller The diameter difference h is 2 mm or more.

本発明によれば、凸状欠陥部の高さ方向への経時的な成長は抑制され、凸状欠陥部の高さは常にほぼ一定にすることが可能となる。   According to the present invention, the time-dependent growth of the convex defect portion in the height direction is suppressed, and the height of the convex defect portion can always be made substantially constant.

本発明を添付図面に基づいて説明すれば、先ず、図1(a)に示すように、めっき液内に浸漬された銅被覆ポリイミド基板1は、搬送ローラー2により搬送される。そして、銅被覆ポリイミド基板1の上方に、整流器3を介してアノード4を設け、銅被覆ポリイミド基板1をカソードとして銅被覆めっきを施す。
本発明における搬送ローラー2は、図1(b)に示すように、ほぼH字状の断面を有するローラー、より具体的には、両端部に同一径の大径部2−2、2’−2を設け、中央部に小径部2−1を設けた形状のローラーであり、且つ、この大径部2−2、2’ −2が銅被覆ポリイミド基板1の両端と接触している。そして大径部2−2、2’ −2の基板1に対する軸芯方向或いは幅手方向の接触幅(W)は15mm以上で、環状の凹部の深さ(d)は2mm以上とすることが好ましい。接触幅(W)と環状の凹部の深さ(d)を上記の通りと限定した理由のついては後述する。
If this invention is demonstrated based on an accompanying drawing, first, as shown to Fig.1 (a), the copper covering polyimide substrate 1 immersed in the plating solution will be conveyed by the conveyance roller 2. FIG. Then, an anode 4 is provided above the copper-coated polyimide substrate 1 via a rectifier 3, and copper-coated plating is performed using the copper-coated polyimide substrate 1 as a cathode.
As shown in FIG. 1 (b), the transport roller 2 in the present invention is a roller having a substantially H-shaped cross section, more specifically, large diameter portions 2-2, 2′- having the same diameter at both ends. 2 and a roller having a shape in which a small-diameter portion 2-1 is provided at the center, and the large-diameter portions 2-2 and 2'-2 are in contact with both ends of the copper-coated polyimide substrate 1. The contact width (W) in the axial direction or the width direction of the large-diameter portions 2-2, 2′-2 with respect to the substrate 1 is 15 mm or more, and the depth (d) of the annular recess is 2 mm or more. preferable. The reason why the contact width (W) and the depth (d) of the annular recess are limited as described above will be described later.

本発明で行う電気銅めっき方法は、公知の方法を用いて構わない。めっき浴として、例えば、一般的である硫酸銅浴を使用し、アノード4としては銅系の消耗アノードを用いる。
また、本発明で用いる表面に導電性を付与したポリイミド基板1を製造する方法は、特に限定されず、ポリイミドフィルム表面に蒸着、スパッタリング、イオンプレーティング、無電解めっき等を施すことによって得ることができる。
本発明で用いられる搬送ローラー2は上記のような形状とする必要があるが、その材質は特に限定されず、めっき条件等に合わせて適宜決定することができる。
As the electrolytic copper plating method performed in the present invention, a known method may be used. For example, a common copper sulfate bath is used as the plating bath, and a copper-based consumable anode is used as the anode 4.
In addition, the method for producing the polyimide substrate 1 having conductivity imparted to the surface used in the present invention is not particularly limited, and can be obtained by performing vapor deposition, sputtering, ion plating, electroless plating, etc. on the polyimide film surface. it can.
Although the conveyance roller 2 used by this invention needs to be set as the above shapes, the material is not specifically limited, It can determine suitably according to plating conditions etc.

厚さ35μmのポリイミドフィルムの片面にスパッタリングによって厚さ0.1μmの銅被覆を形成した。その時の凸状欠陥部の高さを測定したところ、最大2μmであった。この導電性を付与したポリイミドフィルムに、搬送ローラーの形状を変えた状態で厚さ8μmの電気銅めっきを施し、その時の搬送ローラー形状と凸状欠陥部の高さ方向への成長との関係について検討を行った。
尚、表1に使用しためっき液組成、表2にめっき条件を示す。
A copper coating having a thickness of 0.1 μm was formed on one surface of a polyimide film having a thickness of 35 μm by sputtering. The height of the convex defect at that time was measured and found to be 2 μm at the maximum. With respect to the relationship between the shape of the transport roller and the growth in the height direction of the convex defect at that time, the polyimide film provided with conductivity is subjected to electrolytic copper plating with a thickness of 8 μm in a state where the shape of the transport roller is changed. Study was carried out.
In addition, the plating solution composition used in Table 1 and the plating conditions are shown in Table 2.

Figure 2007009301
Figure 2007009301

Figure 2007009301
Figure 2007009301

上述のように、搬送ローラー2の両端部分の大径部2−2、2’−2と銅被覆ポリイミド基板1の幅方向の両端部付近との接触幅(W)は、めっき工程での銅被覆ポリイミド基板の搬送性に影響を及ぼす。そこで、その影響について調査を行った結果を表3に示す。
搬送ローラー2の大径部2−2、2’−2と、銅被覆ポリイミド基板1の両端部付近との接触幅(W)が10mm未満では、銅被覆ポリイミド基板搬送時の蛇行によって図2(a)、(b)に示すような問題が発生し、ポリイミド基板1の表面への皺、瑕の原因となる。このことから、搬送ローラー/ポリイミド基板の接触幅(W)は15mm以上あれば良いことがわかる。
As described above, the contact width (W) between the large-diameter portions 2-2, 2′-2 at both end portions of the transport roller 2 and the vicinity of both end portions in the width direction of the copper-coated polyimide substrate 1 is copper in the plating step. This affects the transportability of the coated polyimide substrate. Therefore, Table 3 shows the results of investigation on the influence.
When the contact width (W) between the large-diameter portions 2-2, 2'-2 of the transport roller 2 and the vicinity of both ends of the copper-coated polyimide substrate 1 is less than 10 mm, the meandering at the time of transporting the copper-coated polyimide substrate results in FIG. The problems as shown in a) and (b) occur, causing wrinkles and wrinkles on the surface of the polyimide substrate 1. From this, it is understood that the contact width (W) of the transport roller / polyimide substrate may be 15 mm or more.

Figure 2007009301
Figure 2007009301

次に、搬送ローラーの中央部の小径部2−1の深さ(d)について検討を行った。ローラー/基板の接触幅(W)は15mmで一定とした。表4に結果を示す。120時間めっきを行った前後での凸状欠陥部の高さの変化を調査した。その結果、小径部2−1の深さ(d)を2mm以上とした場合に、凸状欠陥部の高さは抑制される。   Next, the depth (d) of the small diameter part 2-1 at the center part of the transport roller was examined. The contact width (W) of the roller / substrate was fixed at 15 mm. Table 4 shows the results. The change of the height of the convex defect part before and after plating for 120 hours was investigated. As a result, when the depth (d) of the small diameter part 2-1 is 2 mm or more, the height of the convex defect part is suppressed.

Figure 2007009301
Figure 2007009301

以上述べた通り、本発明によれば、凸状欠陥部の高さ方向への経時的な成長は抑制され、凸状欠陥部の高さは常にほぼ一定にすることが可能となる。   As described above, according to the present invention, the time-dependent growth of the convex defect portion in the height direction is suppressed, and the height of the convex defect portion can always be made substantially constant.

本発明の製造方法を示す模式図で、(a)は製造方法を概略的に示す図、(b)は本発明で用いた搬送ローラーを示す図である。It is a schematic diagram which shows the manufacturing method of this invention, (a) is a figure which shows a manufacturing method schematically, (b) is a figure which shows the conveyance roller used by this invention. 搬送ローラーと銅被覆ポリイミド基板との関係を示す図で、(a)と(b)は問題発生時における各状態を示す図である。It is a figure which shows the relationship between a conveyance roller and a copper covering polyimide board | substrate, (a) And (b) is a figure which shows each state at the time of problem occurrence.

符号の説明Explanation of symbols

1 銅被覆ポリイミド基板
2 搬送ローラー
2−1 小径部
2−2、2’−2 大径部
3 整流器
4 アノード
W 接触幅
d 深さ
DESCRIPTION OF SYMBOLS 1 Copper covering polyimide board 2 Conveyance roller 2-1 Small diameter part 2-2, 2'-2 Large diameter part 3 Rectifier 4 Anode W Contact width d Depth

Claims (2)

表面に導電性を付与したポリイミド基板の表面に対し、電気めっき法で銅めっきを施すことにより銅被覆ポリイミド基板を製造する方法において、
前記電気めっきを施す際に銅めっき液中にて用いられる搬送ローラーが、両端部を同一径の大径部となし中央部を小径部となした形状のローラーであり、且つ、該搬送ローラーの両端部の大径部内側のみが、該基板の両端部と接触することを特徴とする銅被覆ポリイミド基板の製造方法。
In the method of manufacturing a copper-coated polyimide substrate by performing copper plating by electroplating on the surface of the polyimide substrate imparted with conductivity on the surface,
The transport roller used in the copper plating solution when performing the electroplating is a roller having a shape in which both end portions have a large diameter portion having the same diameter and a central portion has a small diameter portion, and A method for producing a copper-coated polyimide substrate, wherein only the insides of the large-diameter portions at both ends are in contact with both ends of the substrate.
前記搬送ローラーの大径部と前記基板の端部との接触幅Wが15mm以上、該搬送ローラーの大径部と小径部の径差hが2mm以上であることを特徴とする請求項1記載の銅被覆ポリイミド基板の製造方法。   The contact width W between the large diameter portion of the transport roller and the end portion of the substrate is 15 mm or more, and the diameter difference h between the large diameter portion and the small diameter portion of the transport roller is 2 mm or more. Of manufacturing a copper-coated polyimide substrate.
JP2005194630A 2005-07-04 2005-07-04 Method for producing copper-coated polyimide substrate Pending JP2007009301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194630A JP2007009301A (en) 2005-07-04 2005-07-04 Method for producing copper-coated polyimide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194630A JP2007009301A (en) 2005-07-04 2005-07-04 Method for producing copper-coated polyimide substrate

Publications (1)

Publication Number Publication Date
JP2007009301A true JP2007009301A (en) 2007-01-18

Family

ID=37748178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194630A Pending JP2007009301A (en) 2005-07-04 2005-07-04 Method for producing copper-coated polyimide substrate

Country Status (1)

Country Link
JP (1) JP2007009301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800032B1 (en) * 2006-10-24 2008-01-31 마지현 Break and excelator unity device
JP2010138462A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Mining Co Ltd Jig for evaluating plating smoothness and manufacturing method thereof
WO2014084700A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Roll

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100800032B1 (en) * 2006-10-24 2008-01-31 마지현 Break and excelator unity device
JP2010138462A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Mining Co Ltd Jig for evaluating plating smoothness and manufacturing method thereof
WO2014084700A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Roll
KR101548820B1 (en) 2012-11-30 2015-08-31 주식회사 엘지화학 Device for forming a layer
TWI587931B (en) * 2012-11-30 2017-06-21 Lg化學股份有限公司 Roll, film forming apparatus, and method of forming a film on a substrate
US10364499B2 (en) 2012-11-30 2019-07-30 Lg Chem, Ltd. Roll

Similar Documents

Publication Publication Date Title
WO2019216012A1 (en) Printed wiring board and method for manufacturing printed wiring board
JP5351461B2 (en) Copper foil and copper foil manufacturing method
TW202106930A (en) Micro-roughened electrodeposited copper foil and copper clad laminate
JP4567360B2 (en) Copper foil manufacturing method and copper foil obtained by the manufacturing method
JP2000219994A (en) Copper plating method
JP2007009301A (en) Method for producing copper-coated polyimide substrate
TW201815234A (en) Flexible copper clad laminate and method of manufacturing the same
JP2007246962A (en) Method for producing two layer circuit board by plating process and plating device therefor
JP5795059B2 (en) Etching method of copper and copper alloy
JP2023103401A (en) Print circuit board and manufacturing method thereof
JP4150930B2 (en) Method for manufacturing double-sided wiring tape carrier for semiconductor device
TWI761298B (en) Electrodeposited copper foil for printed wiring board and copper clad laminate using the same
JP2011179053A (en) Roughened foil and method of producing the same
JP4872257B2 (en) Two-layer plated substrate and manufacturing method thereof
JP2009167506A (en) Acid copper electroplating solution and method for producing fine wiring circuit using the same
JP7215211B2 (en) Method for manufacturing copper-clad laminate
JP2016113644A (en) Copper electroplating solution for flexible wiring board and method for producing laminate using the copper electroplating solution
JP2010205799A (en) Two-layer plated substrate and method of manufacturing the same
JP7151758B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7311838B2 (en) Method for manufacturing copper-clad laminate
JP7322678B2 (en) Method for manufacturing copper-clad laminate
JPH09115961A (en) Method for manufacturing electronic circuit part material using copper-coated polyimide substrate
JP2008075113A (en) Plating apparatus
JP2015025177A (en) Copper sulfate plating solution and wet plating method as well as manufacturing methods of copper-coated film substrate and flexible printed wiring board using wet plating method
Sun et al. Effects of additives on via filling and pattern plating with simultaneous electroplating