JP2007005370A - Circuit element for exciting light source - Google Patents

Circuit element for exciting light source Download PDF

Info

Publication number
JP2007005370A
JP2007005370A JP2005180688A JP2005180688A JP2007005370A JP 2007005370 A JP2007005370 A JP 2007005370A JP 2005180688 A JP2005180688 A JP 2005180688A JP 2005180688 A JP2005180688 A JP 2005180688A JP 2007005370 A JP2007005370 A JP 2007005370A
Authority
JP
Japan
Prior art keywords
winding
ceramic capacitor
capacitor
light source
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180688A
Other languages
Japanese (ja)
Other versions
JP4755856B2 (en
Inventor
Katsumi Ogisako
勝美 荻迫
Takashi Ogura
尚 小倉
Masaru Ishikawa
勝 石川
Yusuke Okubo
裕介 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Coil Engineering Co Ltd
Original Assignee
Tokyo Coil Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Coil Engineering Co Ltd filed Critical Tokyo Coil Engineering Co Ltd
Priority to JP2005180688A priority Critical patent/JP4755856B2/en
Publication of JP2007005370A publication Critical patent/JP2007005370A/en
Application granted granted Critical
Publication of JP4755856B2 publication Critical patent/JP4755856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of parts, the number of mounting processes and a part mounting area by integrating a plurality of parts. <P>SOLUTION: A circuit element for exciting a light source has an integrated structure consisting of a ceramic capacitor 11 having a plurality of ceramic chips of an unpredetermined dimension and charging a predetermined voltage to be input from the outside; a sheet-like Ni ferrite core 12a stacked on a single side portion or a double side portion of the ceramic capacitor 11; a primary side winding 12b wound around a winding core formed by stacking the ceramic capacitor 11 and the Ni ferrite core 12a, and applied with a voltage charged to the ceramic capacitor 11; and a secondary side winding 12c wound around the winding core, and generating a high trigger output voltage induced by a current flowing through the primary side winding 12b by the application of the charging voltage and used for exciting the light source. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、写真用ストロボのキセノン(Xe)管その他光学電子機器の発光源を励起するための光源励起用回路素子に関する。   The present invention relates to a light source excitation circuit element for exciting a light source of a photographic strobe xenon (Xe) tube or other optical electronic equipment.

一般に、写真用ストロボにキセノン管などの発光源が用いられているが、この発光源に所定のトリガ電圧を印加し発光させることにより、最適な光量環境下で写真撮影を行うことができる。   In general, a light source such as a xenon tube is used for a photographic strobe. By applying a predetermined trigger voltage to the light source to emit light, it is possible to take a photograph in an optimum light amount environment.

図8はストロボの回路構成を説明する図である。
このストロボは、図示されない電源トランスの出力側に限流抵抗1とオフサイリスタ2とからなる直列回路が接続される。この限流抵抗1は、電源トランスの二次側巻線の一端側とオフサイリスタ2のアノードとの間に接続され、電源トランスから所定の電圧が印加されたとき、規制された所定の電流値を流す機能を有する。オフサイリスタ2のカソードは、電源トランスの二次側巻線の他端側とともに接地電位ラインに接続される。オフサイリスタ2は、常時は非導通の状態にある。
FIG. 8 is a diagram illustrating the circuit configuration of the strobe.
This strobe is connected to a series circuit including a current limiting resistor 1 and an off thyristor 2 on the output side of a power transformer (not shown). This current limiting resistor 1 is connected between one end side of the secondary winding of the power transformer and the anode of the off thyristor 2, and when a predetermined voltage is applied from the power transformer, a predetermined current value regulated. Has the function of flowing. The cathode of the off thyristor 2 is connected to the ground potential line together with the other end of the secondary winding of the power transformer. The off thyristor 2 is normally non-conductive.

限流抵抗1とオフサイリスタ2との共通接続部にはトリガコンデンサ3を介して変圧用巻線コイル4の一次側巻線41が接続され、当該一次側巻線41の他端部は接地電位ラインに接続されている。トリガコンデンサ3は、ストロボの定常状態時、電源トランス側から限流抵抗1、トリガコンデンサ3、変圧用巻線コイル4の一次側巻線41及び接地ラインという経路を通って流れる電流によって充電動作を行う。   The primary side winding 41 of the transformer winding coil 4 is connected to the common connection portion of the current limiting resistor 1 and the off thyristor 2 via the trigger capacitor 3, and the other end portion of the primary side winding 41 is connected to the ground potential. Connected to the line. When the strobe is in a steady state, the trigger capacitor 3 is charged by a current flowing from the power transformer side through a path of the current limiting resistor 1, the trigger capacitor 3, the primary winding 41 of the transformer winding coil 4, and the ground line. Do.

変圧用巻線コイル4はストロボを構成する高電圧発生用の巻線である。変圧用巻線コイル4は、磁性材料であるフェライトコア42と、このフェライトコア42に巻装される前述した一次側巻線41と、同じくフェライトコア42に巻装される二次側巻線43とで構成される。変圧用巻線コイル4の二次側巻線43の一端部は一次側巻線41とともに接地され、当該二次側巻線43の他端部は高電圧の出力ラインとなる。   The transforming winding coil 4 is a winding for generating a high voltage constituting a strobe. The transformer winding coil 4 includes a ferrite core 42 that is a magnetic material, the primary winding 41 that is wound around the ferrite core 42, and a secondary winding 43 that is also wound around the ferrite core 42. It consists of. One end of the secondary winding 43 of the transformer winding coil 4 is grounded together with the primary winding 41, and the other end of the secondary winding 43 is a high voltage output line.

5はストロボ発光部を構成する発光源としての例えばキセノン管である。キセノン管5は、限流抵抗1とオフサイリスタ2との直列回路に並列に接続される。また、キセノン管5の近傍には高電圧極板6が配置され、前述した変圧用巻線コイル4の二次側巻線43の他端部と接続されている。7はキセノン管5に並列接続されるメインコンデンサである。   Reference numeral 5 denotes, for example, a xenon tube as a light source constituting the strobe light emitting unit. The xenon tube 5 is connected in parallel to a series circuit of the current limiting resistor 1 and the off thyristor 2. A high voltage electrode plate 6 is disposed in the vicinity of the xenon tube 5 and is connected to the other end of the secondary winding 43 of the above-described winding coil 4 for voltage transformation. Reference numeral 7 denotes a main capacitor connected in parallel to the xenon tube 5.

以上のようなストロボにおいては、定常状態時、電源トランスの二次側巻線の一端側から限流抵抗1、トリガコンデンサ3、変圧用巻線コイル4の一次側巻線41及び接地ラインよりなる通電回路が形成されているので、トリガコンデンサ3は、当該通電回路の通電電流のもとに電源トランスから供給される電圧を充電する。   In the strobe as described above, in a steady state, the current limiting resistor 1, the trigger capacitor 3, the primary winding 41 of the transformer winding coil 4, and the ground line are arranged from one end of the secondary winding of the power transformer. Since the energization circuit is formed, the trigger capacitor 3 charges the voltage supplied from the power transformer under the energization current of the energization circuit.

この状態において、オフサイリスタ2のゲート電極をオン制御すると、オフサイリスタ2のアノードとカソードとが導通し、トリガコンデンサ3に充電された電圧が急速に放電し、変圧用巻線コイル4の一次側巻線41を通って放電電流が流れる。これにより、変圧用巻線コイル4の二次側巻線43に高電圧が誘起され、高電圧極板6とキセノン管5のカソードとの間に印加される。その結果、キセノン管5は点弧する。この点弧により、キセノン管5にはメインコンデンサ7から急速に放電電流が流れ込み、発光状態を呈する。   In this state, when the gate electrode of the off thyristor 2 is turned on, the anode and the cathode of the off thyristor 2 become conductive, the voltage charged in the trigger capacitor 3 is rapidly discharged, and the primary side of the transformer winding coil 4 A discharge current flows through the winding 41. As a result, a high voltage is induced in the secondary winding 43 of the transformer winding coil 4 and is applied between the high voltage electrode plate 6 and the cathode of the xenon tube 5. As a result, the xenon tube 5 is ignited. Due to this ignition, a discharge current rapidly flows into the xenon tube 5 from the main capacitor 7 and exhibits a light emission state.

ところで、近年、デジタルカメラや携帯電話が益々軽薄短小化の傾向に進んでおり、これに伴ってこれら光学電子機器に用いるストロボの小型化も急務となってきている。   By the way, in recent years, digital cameras and mobile phones are becoming more and more light and thin, and accordingly, miniaturization of strobes used in these optical electronic devices has become an urgent task.

しかし、従来のストロボは、トリガコンデンサ3と変圧用巻線コイル4がそれぞれ単体部品となっているので、ストロボの部品取付け基板などに個別に組み込むのが一般的である(特許文献1)。
特開2003−131294号公報
However, in the conventional strobe, since the trigger capacitor 3 and the winding coil 4 for transformation are each a single component, it is generally incorporated individually in a strobe component mounting board (Patent Document 1).
JP 2003-131294 A

従って、以上のようなストロボでは、トリガコンデンサ3と変圧用巻線コイル4がそれぞれ単体部品であることから、ストロボの小型化、実装部品の削減化を図ることが難しい。   Therefore, in the strobe as described above, since the trigger capacitor 3 and the winding coil for transformation 4 are each a single component, it is difficult to reduce the size of the strobe and reduce the number of mounted components.

また、ストロボの小型化、部品の削減化は、以下の理由からも実現が難しい。
すなわち、トリガコイルである変圧用巻線コイル4は、小型化の主なる対象部品であるが、二次側巻線43の出力電極から数KVの高電圧を取り出さなければならない。そのため、二次側巻線43の出力電極は、耐電圧等の面から他の電極と十分な距離を離して取り付ける必要がある。このことは、変圧用巻線コイル4の小型化が困難となる。
Moreover, it is difficult to reduce the size of the strobe and reduce the number of parts for the following reasons.
That is, the transformer winding coil 4 that is a trigger coil is a main target component for miniaturization, but a high voltage of several KV must be extracted from the output electrode of the secondary winding 43. Therefore, it is necessary to attach the output electrode of the secondary winding 43 at a sufficient distance from other electrodes in terms of withstand voltage. This makes it difficult to reduce the size of the transformer winding coil 4.

また、ストロボにはトリガコンデンサ3が使用されるが、このトリガコンデンサ3は数100V耐電圧の条件を満たす必要がある。そのため、トリガコンデンサ3の全体外形寸法が大きくなり、ストロボの部品取付け基板に実装する場合でも比較的広い占有面積が必要となる。つまり、トリガコンデンサ3の実装面積が大きくなり、同様に小型化が難しい。   In addition, a trigger capacitor 3 is used for the strobe, but this trigger capacitor 3 needs to satisfy the condition of withstand voltage of several hundred volts. For this reason, the overall outer dimensions of the trigger capacitor 3 are increased, and a relatively large occupied area is required even when the trigger capacitor 3 is mounted on the component mounting board of the strobe. That is, the mounting area of the trigger capacitor 3 is increased, and it is similarly difficult to reduce the size.

また、ストロボの部品取付け基板にトリガコンデンサ3と変圧用巻線コイル4とを別々に組み込む作業となるので、実装工数が増えてしまう。また、トリガコンデンサ3と変圧用巻線コイル4とはある程度のスペースを確保した状態で取り付けるために実装面積が益々増大し、これに伴って部品取付け基板の部品実装面積が増大する。   Further, since the trigger capacitor 3 and the transformer winding coil 4 are separately assembled in the strobe component mounting board, the number of mounting steps increases. Further, since the trigger capacitor 3 and the transformer winding coil 4 are mounted in a state where a certain amount of space is secured, the mounting area is increased further, and accordingly, the component mounting area of the component mounting board is increased.

さらに、トリガコンデンサ3及び変圧用巻線コイル4の他に、限流抵抗1を追加することになれば、益々実装工数が増え、他部品との空きスペースを確保する必要から更に部品取付け基板の部品実装面積が増大する。   Furthermore, if the current limiting resistor 1 is added in addition to the trigger capacitor 3 and the transformer winding coil 4, the mounting man-hours will increase, and it will be necessary to secure an empty space with other components. The component mounting area increases.

さらに、アッセンブリメーカにおいては、部品取付け基板に余裕スペースが有るとき、トリガコンデンサ3の容量を選定することが多い。その結果、任意に選定されたトリガコンデンサ3の容量に応じて一定のトリガ出力電圧を得ることが難しくなり、過大なトリガ出力電圧が変圧用巻線コイル4に加わった場合には当該変圧用巻線コイル4の各巻線41,43間でリークが発生し、隣り合う他部品へトリガ出力電圧が混入し、電気的特性を乱すなどの問題が出てくる。   Furthermore, in the assembly maker, the capacity of the trigger capacitor 3 is often selected when there is a marginal space on the component mounting board. As a result, it becomes difficult to obtain a constant trigger output voltage according to the capacity of the arbitrarily selected trigger capacitor 3, and when an excessive trigger output voltage is applied to the transformer winding coil 4, the transformer winding Leakage occurs between the windings 41 and 43 of the wire coil 4, and the trigger output voltage is mixed into other adjacent parts, resulting in problems such as disturbing electrical characteristics.

本発明は上記事情に鑑みてなされたもので、複数部品の一体化を図り、部品点数の削減、実装工数の削減、部品実装面積の削減を実現する光源励起用回路素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a circuit element for light source excitation that achieves integration of a plurality of components, and reduces the number of components, the mounting man-hours, and the component mounting area. And

上記課題を解決するために、本発明に係る光源励起用回路素子は、所定外形寸法の複数枚のセラミックチップが積層され、外部から入力される所定電圧を充電するセラミックコンデンサと、このセラミックコンデンサの片面部又は両面部に積層されたシート状のフェライトコアと、前記セラミックコンデンサと前記フェライトコアとを積層化した巻芯に巻装され、前記セラミックコンデンサに充電された電圧が印加される一次側巻線と、前記巻芯に巻装され、前記充電電圧の印加により前記1次側巻線を流れる電流によって誘起され、発光源を励起するための高いトリガ出力電圧を発生する二次側巻線とを一体とした構成である。   In order to solve the above problems, a circuit element for light source excitation according to the present invention includes a ceramic capacitor in which a plurality of ceramic chips having a predetermined outer dimension are stacked and charged with a predetermined voltage input from the outside, and the ceramic capacitor A sheet-shaped ferrite core laminated on one side or both sides, and a primary winding wound around a winding core in which the ceramic capacitor and the ferrite core are laminated, and a voltage charged to the ceramic capacitor is applied. A secondary winding wound around the winding core and induced by a current flowing through the primary winding by application of the charging voltage to generate a high trigger output voltage for exciting the light source; Is an integrated configuration.

この発明は以上のような構成とすることにより、セラミックコンデンサとフェライトコアとを巻芯とし、この巻芯に一次側巻線及び二次側巻線を巻装し、いわゆるトリガコンデンサと変圧用巻線コイルとを一体化した1つの部品として取り扱うことが可能となり、各部品相互の間に空きスペースを設ける必要が無くなる。よって、部品点数の削減、実装工数の削減、部品実装面積の削減化を実現でき、デジタルカメラや携帯電話の小型化の要請に十分対応することが可能となる。   In the present invention, the ceramic capacitor and the ferrite core are wound as a core, and the primary side winding and the secondary side winding are wound around the winding core. It becomes possible to handle the wire coil as one integrated part, and it becomes unnecessary to provide an empty space between the parts. Therefore, it is possible to reduce the number of components, reduce the number of mounting steps, and reduce the component mounting area, and can sufficiently meet the demand for downsizing of digital cameras and mobile phones.

また、本発明に係る光源励起用回路素子は、前記セラミックコンデンサの何れか1つの面部部に積層される前記Niフェライトコアの一方面部に抵抗体を印刷し、この印刷された抵抗体を、前記セラミックコンデンサへの充電電流を規制する限流抵抗素子とする構成である。   Further, the light source excitation circuit element according to the present invention prints a resistor on one surface portion of the Ni ferrite core laminated on any one surface portion of the ceramic capacitor, and the printed resistor is The current limiting resistor element restricts the charging current to the ceramic capacitor.

これにより、セラミックコンデンサと変圧用巻線コイルと限流抵抗素子との一体化により、益々部品の削減化に貢献し、同時に実装工数の削減及び部品実装面積の削減化を図ることが可能となる。   As a result, the integration of the ceramic capacitor, transformer winding coil and current limiting resistor element contributes to the reduction of parts more and more, and at the same time, it is possible to reduce the number of mounting steps and the part mounting area. .

本発明によれば、複数部品の一体化により、部品点数の削減、実装工数の削減、部品実装面積の削減を実現できる光源励起用回路素子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the circuit element for light source excitation which can implement | achieve the reduction of a number of parts, the reduction of a mounting man-hour, and the reduction of a component mounting area by integrating several components can be provided.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明に係る光源励起用回路素子10の一実施の形態を適用したストロボの回路構成図である。同図において、図8と同一部分には同一符号を付し、その詳しい説明は図8に譲る。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a strobe to which an embodiment of a light source excitation circuit element 10 according to the present invention is applied. In FIG. 8, the same parts as those in FIG. 8 are denoted by the same reference numerals, and detailed description thereof will be given in FIG.

この光源励起用回路素子10としては、限流抵抗1とオフサイリスタ2との共通接続部に接続され、定常状態時に図示されない電源トランス側から供給される電圧を充電するトリガコンデンサに相当するセラミックコンデンサ11と、例えばストロボを構成する高電圧発生用の巻線である変圧用巻線コイル12とで構成される。   The light source excitation circuit element 10 is connected to a common connection between the current limiting resistor 1 and the off thyristor 2 and is a ceramic capacitor corresponding to a trigger capacitor that charges a voltage supplied from a power transformer (not shown) in a steady state. 11 and, for example, a transformer winding coil 12 which is a winding for generating a high voltage constituting a strobe.

変圧用巻線コイル12は、Niフェライトコア12a、このフェライトコア12aに巻装される所定ターン数の一次側巻線12bと、同じくフェライトコア12aに一次側巻線12bのターン数よりも多いターン数を巻装し、所定の高電圧となるトリガ出力電圧を取り出す二次側巻線12cとで構成される。二次側巻線12cは、キセノン管5の近傍に配置された高電圧極板6と接地ラインとの間に接続される。なお、図1において、13はコンデンサ端子、14は一次・二次巻線共通端子、15は高圧出力端子である。   The transformer winding coil 12 includes a Ni ferrite core 12a, a primary winding 12b having a predetermined number of turns wound around the ferrite core 12a, and a turn larger than the number of turns of the primary winding 12b in the ferrite core 12a. The secondary winding 12c is configured to take out a trigger output voltage that is a predetermined high voltage. The secondary winding 12c is connected between the high voltage electrode plate 6 disposed in the vicinity of the xenon tube 5 and the ground line. In FIG. 1, 13 is a capacitor terminal, 14 is a primary / secondary winding common terminal, and 15 is a high voltage output terminal.

図2は本発明に係る光源励起用回路素子10の分解斜視図である。   FIG. 2 is an exploded perspective view of the light source excitation circuit element 10 according to the present invention.

セラミックコンデンサ11は、所定外形寸法のセラミックチップを積層したセラミックコンデンサ本体11aの両極板11bに例えばスポット溶接等によって金属板のコンデンサ電極11cが取り付けられている。   In the ceramic capacitor 11, a capacitor electrode 11c of a metal plate is attached, for example, by spot welding or the like to a bipolar plate 11b of a ceramic capacitor body 11a in which ceramic chips having a predetermined outer dimension are laminated.

これら複数枚のセラミックチップの製造例としては、例えば炭酸バリウムと二酸化チタンとの混合粉末を加熱して固相反応によって得られる粉末を、成型、焼成することにより、所定外形寸法の磁器として生成するもので、高誘電率、耐熱性、高周波特性に優れている。なお、各セラミックチップはそれぞれ同一の所定外形寸法に形成される。   As an example of manufacturing these multiple ceramic chips, for example, a powder obtained by solid-phase reaction by heating a mixed powder of barium carbonate and titanium dioxide is molded and fired to produce a ceramic having a predetermined outer dimension. It has excellent high dielectric constant, heat resistance and high frequency characteristics. Each ceramic chip is formed to have the same predetermined outer dimensions.

従って、セラミックコンデンサ11は、セラミックチップの積層枚数を調整することにより、所要容量の積層セラミックコンデンサとして使用することが可能である。   Therefore, the ceramic capacitor 11 can be used as a multilayer ceramic capacitor having a required capacity by adjusting the number of laminated ceramic chips.

そして、セラミックコンデンサ11の片面部又は両面部には磁性材料であるNiフェライトコア12aが積層される。Niフェライトコア12aは、高電気抵抗値を持った性質を有し、セラミックチップと同一外形寸法に形成される。   And the Ni ferrite core 12a which is a magnetic material is laminated | stacked on the single side | surface part or both surface part of the ceramic capacitor 11. FIG. The Ni ferrite core 12a has a property having a high electric resistance value and is formed to have the same outer dimensions as the ceramic chip.

Niフェライトコア12aの製造例としては、Niフェライトコア材料の粉末を焼成し、シート状,かつ方形状に焼結させることにより生成する。   As an example of manufacturing the Ni ferrite core 12a, the Ni ferrite core material 12a is produced by firing a powder of Ni ferrite core material and sintering it into a sheet shape and a square shape.

16a,16bはプラスチック材料等で形成された断面凹状の回路素子取付け部材である。   Reference numerals 16a and 16b denote circuit element mounting members having a concave cross section formed of a plastic material or the like.

一方の回路素子取付け部材16aは、セラミックコンデンサ11とNiフェライトコア12aとの積層体の一端部を抱え込むような口径の開口部が形成され、当該開口部とは反対側は閉塞面部となっている。この回路素子取付け部材16aの閉塞面部外側には所定距離隔てて図1に示すコンデンサ端子13及び一次二次巻線共通端子14が取り付けられている。17はコンデンサ端子13から当該回路素子取付け部材16a内にインサートされて取付け部材16a一側部から突出する金属板13aと同じく取付け部材16a一側部から突出するセラミックコンデンサ11のコンデンサ電極11cとを例えば半田付けする半田付け部である。18は後記する変圧用巻線コイル12の一次側巻線12bと二次側巻線12csとを共通接続する巻線中継端子である。この巻線中継端子18と一次・二次巻線共通端子14とは当該回路素子取付け部材16a内にインサートしている金属板で接続されている。   One circuit element mounting member 16a is formed with an opening having a diameter so as to hold one end of the laminated body of the ceramic capacitor 11 and the Ni ferrite core 12a, and the opposite side to the opening is a closed surface portion. . A capacitor terminal 13 and a primary / secondary winding common terminal 14 shown in FIG. 1 are attached to the outside of the closed surface portion of the circuit element attaching member 16a at a predetermined distance. 17 is a metal plate 13a inserted from the capacitor terminal 13 into the circuit element mounting member 16a and protruding from one side of the mounting member 16a, and a capacitor electrode 11c of the ceramic capacitor 11 protruding from one side of the mounting member 16a. It is a soldering part to solder. Reference numeral 18 denotes a winding relay terminal for commonly connecting a primary side winding 12b and a secondary side winding 12cs, which will be described later. The winding relay terminal 18 and the primary / secondary winding common terminal 14 are connected by a metal plate inserted in the circuit element mounting member 16a.

なお、セラミックコンデンサ11とコンデンサ端子13との接続は、前述した接続構成に限定されるものでなく、種々の接続手段によって接続可能である。   The connection between the ceramic capacitor 11 and the capacitor terminal 13 is not limited to the connection configuration described above, and can be connected by various connection means.

他方の回路素子取付け部材16bは、セラミックコンデンサ11とNiフェライトコア12aとの積層体の他端部を抱え込むような口径の開口部が形成され、当該開口部とは反対側は閉塞面部となっている。この回路素子取付け部材16bの一側面部にはセラミックコンデンサ11の他方のコンデンサ電極11cを突出する孔部19が設けられている。この孔部19から突出されるコンデンサ電極11cには変圧用巻線コイル12の一次側巻線12bが接続される。また、回路素子取付け部材16bの図示上側端部には変圧用巻線コイル12の一次側巻線12bを接続する高圧出力端子15が取り付けられている。   The other circuit element mounting member 16b is formed with an opening having a diameter so as to hold the other end of the laminated body of the ceramic capacitor 11 and the Ni ferrite core 12a, and the opposite side to the opening is a closed surface portion. Yes. A hole 19 for projecting the other capacitor electrode 11c of the ceramic capacitor 11 is provided on one side surface of the circuit element mounting member 16b. A primary side winding 12b of the transformer winding coil 12 is connected to the capacitor electrode 11c protruding from the hole portion 19. Further, a high voltage output terminal 15 for connecting the primary winding 12b of the transformer winding coil 12 is attached to the upper end of the circuit element mounting member 16b in the figure.

なお、セラミックコンデンサ11と変圧用巻線コイル12の一次側巻線12bとの接続手段や高圧出力端子15の取付け態様等については、上述した内容に限定されず、種々の接続手法や取付け態様が考えられる。   Note that the connection means between the ceramic capacitor 11 and the primary winding 12b of the transformer winding coil 12 and the attachment mode of the high-voltage output terminal 15 are not limited to the above-described contents, and various connection methods and attachment modes are available. Conceivable.

図3(a)はセラミックコンデンサ11とNiフェライトコア12aとの積層体を回路素子取付け部材13a,13bとを一体的に組み込んだときの斜視図である。   FIG. 3A is a perspective view when a laminated body of the ceramic capacitor 11 and the Ni ferrite core 12a is integrally incorporated with the circuit element mounting members 13a and 13b.

同図から明らかなように、セラミックコンデンサ11とNiフェライトコア12aとの積層体を巻芯とし、この巻芯に変圧用巻線コイル12の一次側巻線12b及び二次側巻線12cが巻装される。なお、一次側巻線12b及び二次側巻線12cの巻き順としては、例えば数KVの高電圧を出力する二次側巻線12cを最下層に巻き、その巻き始めの二次側巻線12cの端部を高圧出力端子15に接続する。引き続き、一次側巻線12bを巻装する。なお、二次側巻線12cと一次側巻線12bとの層間には例えばマイラーテープやカプトンテープなどの絶縁紙を巻く。   As is apparent from the figure, the laminated body of the ceramic capacitor 11 and the Ni ferrite core 12a is used as a winding core, and the primary winding 12b and the secondary winding 12c of the transformer winding coil 12 are wound around this winding core. Be dressed. As the winding order of the primary side winding 12b and the secondary side winding 12c, for example, the secondary side winding 12c that outputs a high voltage of several KV is wound on the lowermost layer, and the secondary side winding at the beginning of the winding is wound. The end of 12 c is connected to the high voltage output terminal 15. Subsequently, the primary winding 12b is wound. Note that insulating paper such as Mylar tape or Kapton tape is wound between the secondary winding 12c and the primary winding 12b.

図3(b)はセラミックコンデンサ11とNiフェライトコア12aとの積層体に一次側巻線12bと二次側巻線12cとを巻装した完成品を示す図である。   FIG. 3B is a diagram showing a finished product in which a primary winding 12b and a secondary winding 12c are wound around a laminate of a ceramic capacitor 11 and a Ni ferrite core 12a.

さらに、回路素子取付け部材16a,16bの何れか一方又は両方の適宜な個所に部品取付け基板に取付けための支持部材(図示せず)が取り付けられる。   Further, a support member (not shown) for attaching to the component attachment board is attached to one or both of the circuit element attachment members 16a and 16b.

次に、以上のような光源励起用回路素子10の作用について説明する。   Next, the operation of the light source excitation circuit element 10 as described above will be described.

任意枚数のセラミックチップを積み重ねた所定容量のセラミックコンデンサ11を作成した後、この積層セラミックコンデンサ11の片面部又は両面部にチップ状のNiフェライトコア12aを積層した後、この積層体を巻芯として、変圧用巻線コイル12の一次側巻線12b及び二次側巻線12cを巻装したことにより、トリガコンデンサに相当するセラミックコンデンサ11と変圧用巻線コイル12とを一体化した一個の単体部品とすることができる。これにより、例えばストロボの部品取付け基板に実装する実装部品や実装工数を削減できる。   After preparing a ceramic capacitor 11 having a predetermined capacity in which an arbitrary number of ceramic chips are stacked, chip-shaped Ni ferrite cores 12a are stacked on one or both sides of the multilayer ceramic capacitor 11, and this stacked body is used as a winding core. The single winding uniting the ceramic capacitor 11 corresponding to the trigger capacitor and the transforming winding coil 12 by winding the primary winding 12b and the secondary winding 12c of the transforming winding coil 12. Can be a part. Thereby, for example, mounting components and mounting man-hours to be mounted on a strobe component mounting board can be reduced.

また、実装部品の数が少なくなれば、部品の実装面積が小さくなり、例えばストロボの部品取付け基板の面積も減少し、ストロボの小型化にも大きく貢献する。よって、近年の傾向であるデジタルカメラや携帯電話の軽薄短小化にも十分に対応させることができる。   Further, if the number of mounted components is reduced, the mounting area of the components is reduced, and for example, the area of the component mounting board of the strobe is reduced, which greatly contributes to the miniaturization of the strobe. Therefore, it is possible to sufficiently cope with the recent trend of reducing the size and size of digital cameras and mobile phones.

また、従来のようにトリガコンデンサと変圧用巻線コイルはある程度の間隔を置いて取り付ける必要があるが、その空きスペースを設ける必要がなくなれば、部品の実装面積,ひいては部品取付け基板の部品実装面積が益々削減できる。   In addition, it is necessary to install the trigger capacitor and the transformer winding coil at a certain interval as in the conventional case. However, if it is not necessary to provide an empty space, the mounting area of the component, and consequently the mounting area of the component mounting board Can be reduced more and more.

さらに、積層セラミックコンデンサ11とNiフェライトコア12aとの積層体の両端部を抱え込むように回路素子取付け部材16a,16bを嵌合し、これら2つの回路素子取付け部材16a,16bに分けて、低圧系のコンデンサ端子13、一次・二次巻線共通端子14と高圧系の高圧出力端子15とを取り付ければ、低圧系と高圧系との距離を十分に確保できる。   Further, the circuit element mounting members 16a and 16b are fitted so as to hold both end portions of the multilayer body of the multilayer ceramic capacitor 11 and the Ni ferrite core 12a, and divided into these two circuit element mounting members 16a and 16b. If the capacitor terminal 13, the primary / secondary winding common terminal 14 and the high-voltage high-voltage output terminal 15 are attached, a sufficient distance between the low-voltage system and the high-voltage system can be secured.

また、本発明に係る光源励起用回路素子10では、セラミックコンデンサ11と変圧用巻線コイル12とを一体化することにより、均質な品質特性の部品を実現でき、従来のようにアッセンブリメーカによるトリガコンデンサの容量選択による問題も解決できる。   Further, in the light source excitation circuit element 10 according to the present invention, the ceramic capacitor 11 and the transformer winding coil 12 are integrated, so that parts having uniform quality characteristics can be realized. It also solves the problem of capacitor selection.

さらに、本発明に係る光源励起用回路素子10として、セラミックコンデンサ11を用いることにより、トリガ出力電圧が一定となる理由について、図4ないし図6を参照して説明する。
今、直流バイアス特性のない容量0.033μFを有する一般のフィルムコンデンサにおいては、図4に示すように0Vから350Vの範囲で可変しながら電圧を印加した場合、図示点線で示すようにその可変電圧に対して容量変化が生じない。可変電圧に対して容量が変化しないということは、トリガ用印加電圧を徐々に増加させた場合、図5に示すようにトリガ出力電圧が徐々に大きくなっていく。なお、トリガ出力電圧はトリガコンデンサの容量値によって変化することは既に周知である。なお、図6は測定データである。
Further, the reason why the trigger output voltage becomes constant by using the ceramic capacitor 11 as the light source excitation circuit element 10 according to the present invention will be described with reference to FIGS.
Now, in a general film capacitor having a capacity of 0.033 μF having no DC bias characteristic, when a voltage is applied while being varied in the range of 0 V to 350 V as shown in FIG. 4, the variable voltage is shown as indicated by a dotted line in the figure. No change in capacity occurs. The fact that the capacitance does not change with respect to the variable voltage means that when the trigger application voltage is gradually increased, the trigger output voltage gradually increases as shown in FIG. It is already well known that the trigger output voltage varies depending on the capacitance value of the trigger capacitor. FIG. 6 shows measurement data.

一方、容量0.033μFを有するセラミックコンデンサ11においては、図4に示すように印加電圧を増加させていったとき、図示実線で示すように静電容量が一定の曲線をもって落ちていく。ここで、印加電圧の増加に従ってセラミックコンデンサ11の静電容量が低下していく特性を有する場合、トリガ印加電圧の増加に対して、図5に実線で示すように一定のトリガ出力電圧を取り出すことができる。すなわち、トリガ用印加電圧が大きくなったとき、それに見合って容量が落ちていくので、トリガ出力電圧を一定に抑えることができる。   On the other hand, in the ceramic capacitor 11 having a capacitance of 0.033 μF, when the applied voltage is increased as shown in FIG. 4, the capacitance decreases with a constant curve as shown by the solid line in the figure. Here, when the capacitance of the ceramic capacitor 11 decreases as the applied voltage increases, a constant trigger output voltage is extracted as shown by the solid line in FIG. Can do. That is, when the trigger application voltage increases, the capacitance decreases correspondingly, so that the trigger output voltage can be kept constant.

(その他の実施の形態)
(1) 前述した実施の形態では、セラミックコンデンサ11と変圧用巻線コイル12とを一体化したが、従来の限流抵抗に相当する限流抵抗素子を含めて一体化することができる。
(Other embodiments)
(1) In the above-described embodiment, the ceramic capacitor 11 and the transformer winding coil 12 are integrated, but can be integrated including a current limiting resistor corresponding to a conventional current limiting resistor.

具体的には、図7に示すようにNiフェライトコア12aの片面部に所定の抵抗値となるように限流抵抗素子21を印刷し形成し、その限流抵抗素子21の一端部をセラミックコンデンサ11のセラミックコンデンサ本体11aに例えば接触接続し、当該限流抵抗素子21の他端部から外部接続端子22を取り出す。そして、限流抵抗素子21を印刷形成した面部に絶縁シート23を貼着し、セラミックコンデンサ11の面部に積層する。   Specifically, as shown in FIG. 7, a current limiting resistor 21 is printed and formed on one side of the Ni ferrite core 12a so as to have a predetermined resistance value, and one end of the current limiting resistor 21 is connected to a ceramic capacitor. 11 is connected to the ceramic capacitor body 11a, for example, and the external connection terminal 22 is taken out from the other end of the current limiting resistor 21. Then, the insulating sheet 23 is attached to the surface portion on which the current limiting resistance element 21 is printed and laminated on the surface portion of the ceramic capacitor 11.

これにより、セラミックコンデンサ11と変圧用巻線コイル12と限流抵抗素子21とを含めて一体的な構成とすることができる。よって、益々部品を削減でき、同時に実装工数の削減及び部品実装面積の削減を図ることができる。   Thereby, it can be set as an integral structure including the ceramic capacitor 11, the coil | winding coil 12 for a transformation, and the current limiting resistive element 21. FIG. Therefore, it is possible to further reduce the number of components, and at the same time, it is possible to reduce the number of mounting steps and the component mounting area.

なお、図7においては、セラミックコンデンサ本体11aと対峙するNiフェライトコア12aの面部側に限流抵抗素子21を形成したが、反対側の面部側に限流抵抗素子21を形成してもよい。   In FIG. 7, the current limiting resistor 21 is formed on the surface portion side of the Ni ferrite core 12a facing the ceramic capacitor body 11a. However, the current limiting resistor 21 may be formed on the opposite surface portion side.

(2) また、セラミックコンデンサ11は、印加電圧を上げていくと、容量値が低下する直流バイアス特性を有するが、例えば変圧用巻線コイル12とを組合せて最適な状態で容量値が変化する直流バイアス特性となるように調整すれば、印加電圧の上昇に対して常に一定のトリガ出力電圧を取り出すことが可能である。 (2) The ceramic capacitor 11 has a DC bias characteristic in which the capacitance value decreases as the applied voltage increases. For example, the capacitance value changes in an optimal state in combination with the winding coil 12 for transformation. If the adjustment is made so that the DC bias characteristic is obtained, a constant trigger output voltage can always be taken out with respect to the increase of the applied voltage.

その理由について説明する。変圧用巻線コイル12で構成されるトリガコイルは高い周波数で動作するトランスであり、トリガ出力電圧は印加電圧とトリガコンデンサの容量とによって変化する。印加電圧の変化に対して容量値が全く変化しないフィルムコンデンサをトリガコンデンサとして使用した場合、印加電圧に比例してトリガ出力電圧が上昇する。また、フィルムコンデンサは、印加電圧が一定であっても、使用する容量値が大きくなると、この容量値にほぼ比例してトリガ出力電圧が上昇する。   The reason will be described. The trigger coil constituted by the transformer winding coil 12 is a transformer that operates at a high frequency, and the trigger output voltage varies depending on the applied voltage and the capacitance of the trigger capacitor. When a film capacitor whose capacitance value does not change at all with respect to the change of the applied voltage is used as the trigger capacitor, the trigger output voltage increases in proportion to the applied voltage. Further, even if the applied voltage is constant, the trigger output voltage rises in proportion to the capacitance value when the capacitance value to be used increases.

一方、セラミックコンデンサ11は、印加電圧を上げていくと、容量値が低下する性質を有する。これを直流バイアス特性といい、これは欠点でもあるが、直流バイアス特性を改善し、フィルムコンデンサに近づけることが望まれる。現在のトリガ用セラミックコンデンサは、印加電圧の上昇に従って容量値が低下するが、フィルムコンデンサよりも印加電圧の上昇によるトリガ出力電圧の傾斜は緩やかである。通常、キセノン管は、発光に必要な最低のトリガ出力電圧があれば、それ以上の高い電圧は不要である。むしろ、トリガ出力電圧が必要以上に高くなると、周辺金属への電圧放電が発生し、発光不良やカメラの誤動作などの弊害が発生する。そこで、本発明においては、セラミックコンデンサ11及びトリガコイルとなる変圧用巻線コイル12の構成素材から直流バイアス特性を調整し、印加電圧の上昇に対して適正な容量値の下げとすれば、常に一定のトリガ出力電圧を得ることが可能である。   On the other hand, the ceramic capacitor 11 has a property that the capacitance value decreases as the applied voltage is increased. This is called a DC bias characteristic. Although this is a drawback, it is desired to improve the DC bias characteristic and bring it closer to a film capacitor. The current trigger ceramic capacitor decreases in capacitance value as the applied voltage increases, but the slope of the trigger output voltage due to the increase in applied voltage is more gradual than the film capacitor. Normally, a xenon tube does not require a higher voltage if the minimum trigger output voltage required for light emission is present. Rather, when the trigger output voltage becomes higher than necessary, voltage discharge to the surrounding metal occurs, causing problems such as light emission failure and camera malfunction. Therefore, in the present invention, if the DC bias characteristics are adjusted from the constituent materials of the ceramic capacitor 11 and the transformer winding coil 12 serving as the trigger coil, and the capacitance value is appropriately reduced with respect to the increase of the applied voltage, it is always possible. It is possible to obtain a constant trigger output voltage.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明に係る光源励起用回路素子の一実施の形態を適用したストロボの回路構成図。1 is a circuit configuration diagram of a strobe to which an embodiment of a light source excitation circuit element according to the present invention is applied. 本発明に係る光源励起用回路素子の一実施の形態を示す分解斜視図。The disassembled perspective view which shows one Embodiment of the circuit element for light source excitation which concerns on this invention. 光源励起用回路素子の組立て状態を説明する図。The figure explaining the assembly state of the circuit element for light source excitation. 従来の一般的にフィルムコンデンサと本発明のセラミックコンデンサとの直流バイアス特性を比較する図。The figure which compares the DC bias characteristic of the conventional general film capacitor and the ceramic capacitor of this invention. 従来の一般的にフィルムコンデンサと本発明のセラミックコンデンサとのトリガ出力電圧特性を比較する図。The figure which compares the trigger output voltage characteristic of the conventional general film capacitor and the ceramic capacitor of this invention. 図4及び図5における特性データの測定結果を示す図。The figure which shows the measurement result of the characteristic data in FIG.4 and FIG.5. 本発明に係る光源励起用回路素子の他の実施形態を説明する分解斜視図。The disassembled perspective view explaining other embodiment of the circuit element for light source excitation which concerns on this invention. 従来のストロボの一般的な回路構成図。FIG. 2 is a general circuit configuration diagram of a conventional strobe.

符号の説明Explanation of symbols

1…限流抵抗、2…オフサイリス他、5…キセノン管(光源)、6…高電圧極板、7…メインコンデンサ、10…光源励起用回路素子、11…セラミックコンデンサ、12…変圧用巻線コイル、12a…Niフェライトコア、12b…一次側巻線、12c…二次側巻線、13…コンデンサ端子、14…一次・二次巻線共通端子、15…高圧出力端子、16a,16b…回路素子取付け部材、21…限流抵抗素子、23…絶縁シート。   DESCRIPTION OF SYMBOLS 1 ... Current limiting resistance, 2 ... Off silis etc. 5 ... Xenon tube (light source), 6 ... High voltage electrode plate, 7 ... Main capacitor, 10 ... Circuit element for light source excitation, 11 ... Ceramic capacitor, 12 ... Winding for transformer Coil, 12a ... Ni ferrite core, 12b ... Primary side winding, 12c ... Secondary side winding, 13 ... Capacitor terminal, 14 ... Primary / secondary winding common terminal, 15 ... High voltage output terminal, 16a, 16b ... Circuit Element mounting member, 21... Current limiting resistance element, 23.

Claims (2)

発光源を励起するための光源励起用回路素子において、
所定外形寸法の複数枚のセラミックチップが積層され、外部から入力される所定電圧を充電するセラミックコンデンサと、このセラミックコンデンサの片面部又は両面部に積層されるシート状のNiフェライトコアと、前記セラミックコンデンサと前記Niフェライトコアとを積層した巻芯に巻装され、前記セラミックコンデンサに充電された電圧が印加される1次側巻線と、前記巻芯に巻装され、前記充電電圧の印加により前記1次側巻線に流れる電流によって誘起され、前記発光源を励起するための高いトリガ出力電圧を発生する2次側巻線とを一体構成としたことを特徴とした光源励起用回路素子。
In the circuit element for light source excitation for exciting the light source,
A ceramic capacitor in which a plurality of ceramic chips having a predetermined external dimension are stacked and charged with a predetermined voltage input from the outside, a sheet-like Ni ferrite core stacked on one or both sides of the ceramic capacitor, and the ceramic A primary winding wound around a winding core in which a capacitor and the Ni ferrite core are laminated, and a voltage charged to the ceramic capacitor is applied; and wound around the winding core, by applying the charging voltage A circuit element for exciting a light source, comprising a secondary winding that is induced by a current flowing through the primary winding and generates a high trigger output voltage for exciting the light emitting source.
請求項1に記載の光源励起用回路素子において、
前記セラミックコンデンサの何れか1つの面部に積層される前記Niフェライトコアの一方面部に抵抗体を印刷し、この印刷された抵抗体を、前記セラミックコンデンサへの充電電流を規制する限流抵抗素子とすることを特徴とする光源励起用回路素子。
The circuit element for light source excitation according to claim 1,
A current limiting resistor element that prints a resistor on one surface portion of the Ni ferrite core laminated on any one surface portion of the ceramic capacitor, and that regulates a charging current to the ceramic capacitor. A circuit element for exciting a light source.
JP2005180688A 2005-06-21 2005-06-21 Circuit element for light source excitation Expired - Fee Related JP4755856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180688A JP4755856B2 (en) 2005-06-21 2005-06-21 Circuit element for light source excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180688A JP4755856B2 (en) 2005-06-21 2005-06-21 Circuit element for light source excitation

Publications (2)

Publication Number Publication Date
JP2007005370A true JP2007005370A (en) 2007-01-11
JP4755856B2 JP4755856B2 (en) 2011-08-24

Family

ID=37690728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180688A Expired - Fee Related JP4755856B2 (en) 2005-06-21 2005-06-21 Circuit element for light source excitation

Country Status (1)

Country Link
JP (1) JP4755856B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256669A (en) * 2011-06-08 2012-12-27 Tdk Corp Coil component
CN109066040A (en) * 2018-07-11 2018-12-21 深圳振华富电子有限公司 Low insertion loss formula power splitter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236356A (en) * 1995-02-28 1996-09-13 Mitsumi Electric Co Ltd Composite element
JPH10241967A (en) * 1997-02-27 1998-09-11 Fuji Photo Film Co Ltd Composite transformer, stroboscopic circuit and lens-bearing film unit
JPH11329852A (en) * 1998-03-13 1999-11-30 Matsushita Electric Ind Co Ltd Composite component and manufacture thereof
JP2005129550A (en) * 2003-10-21 2005-05-19 Nec Tokin Corp Composite lc component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236356A (en) * 1995-02-28 1996-09-13 Mitsumi Electric Co Ltd Composite element
JPH10241967A (en) * 1997-02-27 1998-09-11 Fuji Photo Film Co Ltd Composite transformer, stroboscopic circuit and lens-bearing film unit
JPH11329852A (en) * 1998-03-13 1999-11-30 Matsushita Electric Ind Co Ltd Composite component and manufacture thereof
JP2005129550A (en) * 2003-10-21 2005-05-19 Nec Tokin Corp Composite lc component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256669A (en) * 2011-06-08 2012-12-27 Tdk Corp Coil component
CN109066040A (en) * 2018-07-11 2018-12-21 深圳振华富电子有限公司 Low insertion loss formula power splitter

Also Published As

Publication number Publication date
JP4755856B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7646610B2 (en) DC-DC converter
JP4883392B2 (en) DC-DC converter
JP2001044037A (en) Laminated inductor
JP2009088470A (en) Inductor structure and method of manufacturing the same
JP2009044030A (en) Stacked electronic component
JP2005347314A (en) Laminated capacitor
JP2015070144A (en) Multilayer capacitor and flash light emitting device
JP4755856B2 (en) Circuit element for light source excitation
JP3127405B2 (en) Converter
JP2007324554A (en) Laminated inductor
US9532443B2 (en) Composite electronic component and board having the same
US9922762B2 (en) Composite electronic component and board having the same
JP6365805B2 (en) DCDC converter module and DCDC converter circuit
US20020030567A1 (en) Trigger coil
JP2005322799A (en) Trigger coil, flash generating circuit, and imaging device
JP2004207405A (en) Electromagnetic apparatus and high-voltage generator
JP6101373B2 (en) Light emitting unit and flash light emitting device
US8908350B2 (en) Capacitor
JP3569249B2 (en) Pot rivet shield type trigger coil
JP2007109892A (en) Bobbin, trigger coil, manufacturing method thereof, flash unit and manufacturing method thereof
JPS5918635Y2 (en) electronic flash device
JP2015114389A (en) Flash light emitting device
JP2003142324A (en) Discharge lamp lighting start device
JP4087775B2 (en) Flash light emitting device
JP2015094790A (en) Flash light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees