JP2007005003A - Led illumination device - Google Patents

Led illumination device Download PDF

Info

Publication number
JP2007005003A
JP2007005003A JP2005180433A JP2005180433A JP2007005003A JP 2007005003 A JP2007005003 A JP 2007005003A JP 2005180433 A JP2005180433 A JP 2005180433A JP 2005180433 A JP2005180433 A JP 2005180433A JP 2007005003 A JP2007005003 A JP 2007005003A
Authority
JP
Japan
Prior art keywords
led
substrate body
light
lighting device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180433A
Other languages
Japanese (ja)
Other versions
JP4469308B2 (en
Inventor
Hideaki Machida
英明 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2005180433A priority Critical patent/JP4469308B2/en
Publication of JP2007005003A publication Critical patent/JP2007005003A/en
Application granted granted Critical
Publication of JP4469308B2 publication Critical patent/JP4469308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-weighted LED illumination device with high precision, high illuminance efficiency, excellent in heat radiating property, having high freedom of light distribution design, capable of simply forming a circuit. <P>SOLUTION: A base plate main body 14 is obtained by forming a thermoplastic heat resistant film into prescribed three-dimensional shape reflecting aimed irradiation range as a whole, and a reflection face 16 reflecting light is formed on the surface of the thermoplastic film, therefore it is possible to change the shape of the base plate main body 14 by utilizing signal or stress from outside, and easily change the light distribution of the light emitted from an IED 12. Furthermore, since an open hole 26 having a size nearly same as the size of light emission area of the surface mounting type LED 12 is formed on the base plate main body 14, and surface side of the LED 12 is fixed to the backside of the base plate main body 14 so that the open hole 26 and a light emission area L of the surface mounting type LED 12 coincide with each other, the circuit can be formed easily, and the heat generated at the LED 12 can be released immediately to open air without any resistance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED光源、実装基板および反射面を一体化した可変配光制御が可能なLED照明装置に関するものであり、特に回路作製を簡単に行なうことができると共に、LEDの発する熱を効果的に放熱することができるものに関する。   The present invention relates to an LED lighting device capable of variable light distribution control in which an LED light source, a mounting substrate, and a reflecting surface are integrated. In particular, the circuit can be easily manufactured, and the heat generated by the LED is effective. It relates to what can dissipate heat.

低消費電力、長寿命などの特性を有するLED(発光ダイオード)は、近年、その高輝度化によって照明器具の光源としての期待が高まってきており、この期待に応えるべく様々な技術が開発されている。   In recent years, LEDs (light-emitting diodes) with characteristics such as low power consumption and long life have been expected to be used as light sources for lighting fixtures due to their higher brightness, and various technologies have been developed to meet these expectations. Yes.

このような技術の一例として、複数のLEDが一方の面に配列された基板と、その基板を取り付ける底部を有する樹脂ケースとを有し、前記基板が底部に放熱固定板を介して取り付けられてなるLED照明装置であって、放熱固定板の前記基板が取り付けられた面と対向する面に樹脂ケースの底部との接触面積を増大させるように凹部を形成したLED照明装置が挙げられる(例えば、特許文献1参照。)。   As an example of such a technique, a substrate having a plurality of LEDs arranged on one surface and a resin case having a bottom to which the substrate is attached, the substrate is attached to the bottom via a heat dissipation fixing plate. LED lighting device comprising: a LED lighting device in which a concave portion is formed on the surface of the heat radiation fixing plate facing the surface on which the substrate is mounted so as to increase the contact area with the bottom of the resin case (for example, (See Patent Document 1).

かかる技術によれば、LEDで発生した熱は、放熱固定板を介して樹脂ケースに効果的に伝達され、当該樹脂ケースの外表面から外気中へと放熱される。このため、発熱によるLED素子の劣化を防止することができる。   According to this technique, the heat generated in the LED is effectively transmitted to the resin case via the heat radiation fixing plate, and is radiated from the outer surface of the resin case to the outside air. For this reason, deterioration of the LED element due to heat generation can be prevented.

しかしながら、このLED照明装置では、発熱源であるLED素子から放熱先である外気までの間にLEDのパッケージ部材,放熱固定板および樹脂ケースが介装されている。つまり、LED素子から外気までの距離が長くなっている。このため、LEDとして100mmA以上の電流を投入でき、高輝度の光を照射することができるものの点灯時に最大で約150〜200℃程度の高い熱を発する所謂パワーLEDを用い、これを長時間点灯させた場合、時間の経過に伴ってLED素子の発する熱が樹脂ケースの底部にこもって上手く放熱できなくなり、LED素子を劣化させるおそれがあるという問題があった。   However, in this LED lighting device, an LED package member, a heat radiation fixing plate, and a resin case are interposed between an LED element that is a heat generation source and outside air that is a heat radiation destination. That is, the distance from the LED element to the outside air is long. For this reason, a so-called power LED that emits a high heat of about 150 to 200 ° C. at the maximum when it is turned on can be turned on for a long time. In such a case, the heat generated by the LED element with the passage of time is confined to the bottom of the resin case and cannot be radiated well, which may cause the LED element to deteriorate.

また、上述のLED照明装置では、基板の上面(表面側)に複数のLEDを配設して照明ユニットを形成しているが、かかる照明ユニットでは、実装するLEDの形状に応じて基板に対しスルーホール加工や導電回路の両面化などといった煩雑な加工が必要となってくる。このため、このような照明ユニットでは、導電回路の作製が煩雑となり、効率的にLED照明装置を製造するのが難しくなるという問題もあった。   In the LED lighting device described above, a plurality of LEDs are arranged on the upper surface (front side) of the substrate to form an illumination unit. In such an illumination unit, the substrate is mounted on the substrate according to the shape of the LED to be mounted. Complicated processing such as through-hole processing and double-sided conductive circuits is required. For this reason, in such an illumination unit, the production of the conductive circuit becomes complicated, and there is a problem that it is difficult to efficiently manufacture the LED illumination device.

一方、自動車照明,店舗照明および防犯照明などの各照明分野においては、小電力、長寿命化の要求に加え、外部の状況や環境に応じて照射位置を変化できる可変配光照明が求められている。そこで、上述のLED照明装置を可変配光に対応させるべく、樹脂ケース内面に反射面を設け、且つ当該樹脂ケースを変形させて照射範囲を変化させるようにした場合、LEDが放熱固定板を介して樹脂ケースの底部に固定されているので、前記LED照明装置では、ハロゲン電球などの単一光源の場合と同様に焦点の移動に伴う配光制御が困難であり、可変配光照明に適さないという問題があった。
特開2002−299700号公報
On the other hand, in each lighting field such as automobile lighting, store lighting, and crime prevention lighting, in addition to the demand for low power and long life, variable light distribution lighting that can change the irradiation position according to the external situation and environment is required. Yes. Therefore, when the LED lighting device described above is provided with a reflection surface on the inner surface of the resin case and the irradiation range is changed by deforming the resin case in order to correspond to the variable light distribution, the LED passes through the heat radiation fixing plate. Since the LED lighting device is fixed to the bottom of the resin case, it is difficult to control the light distribution accompanying the movement of the focal point as in the case of a single light source such as a halogen bulb, and is not suitable for variable light distribution lighting. There was a problem.
JP 2002-299700 A

それゆえに、本発明の主たる課題は、軽量・高精度にして、照度効率が高く、外部からの応力で容易に配光を可変制御できると共に、放熱性に優れ、配光設計の自由度が高く且つ簡単に回路作製を行なうことが可能なLED照明装置を提供することである。   Therefore, the main problems of the present invention are light weight and high accuracy, high illuminance efficiency, easy variable control of light distribution by external stress, excellent heat dissipation, and high degree of freedom in light distribution design. It is another object of the present invention to provide an LED lighting device that can easily produce a circuit.

請求項1に記載した発明は、「熱可塑性の耐熱フィルムを所定の三次元的形状に成形した基板本体14と、基板本体14の所定位置に取り付けられた複数個の表面実装型のLED12と、基板本体14の表面に設けられ、LED12の発する光を反射する反射面16と、基板本体14の裏面に設けられ、LED12を外部回路に接続して点灯させる導電回路18とを備えたLED照明装置10であって、基板本体14には、LED12表面の発光領域Lと略同等の大きさの開孔26が設けられており、開孔26とLED12表面の発光領域Lとが一致するようにして基板本体14裏面にLED12の表面側が固定されている」ことを特徴とするLED照明装置10である。   The invention described in claim 1 is “a substrate body 14 formed of a thermoplastic heat-resistant film in a predetermined three-dimensional shape, and a plurality of surface-mounted LEDs 12 attached at predetermined positions of the substrate body 14; An LED lighting device including a reflective surface 16 that is provided on the surface of the substrate body 14 and reflects light emitted from the LED 12, and a conductive circuit 18 that is provided on the back surface of the substrate body 14 and connects the LED 12 to an external circuit to light the LED 12. 10 and the substrate body 14 is provided with an opening 26 having a size substantially the same as the light emitting area L on the surface of the LED 12 so that the opening 26 and the light emitting area L on the surface of the LED 12 coincide with each other. The LED illumination device 10 is characterized in that the front surface side of the LED 12 is fixed to the back surface of the substrate body 14.

この発明では、熱可塑性を有する耐熱フィルムを、全体として目的とする照射範囲を反映した所定の三次元的形状に成形して基板本体14を形成すると共に、その表面に光を反射する反射面16を設けているので、外部からの信号または応力を利用して基板本体14の形状を変えることで、LED12の発する光の配光を容易に変化させて目的とする照射範囲に集光することができる。つまり、LED12の発する光の配光を可変制御できると共に、その照度効率を向上させることができる。   In the present invention, a heat-resistant film having thermoplasticity is formed into a predetermined three-dimensional shape reflecting the target irradiation range as a whole to form the substrate body 14 and the reflecting surface 16 that reflects light on the surface thereof. Therefore, by changing the shape of the substrate body 14 using an external signal or stress, it is possible to easily change the light distribution of the light emitted from the LED 12 and to focus on the target irradiation range. it can. That is, the light distribution of the light emitted from the LED 12 can be variably controlled and the illuminance efficiency can be improved.

また、当該基板本体14には、複数個のLED12が配設されているので、基板本体14を当初の形状から変化させてLED12が発する光の配光を変えた際に、それぞれのLED12が各々対応する範囲を照射でき、単一光源の場合のように光の焦点がボケることがなく、配光変化時の照度低下を防止することができる。   In addition, since the plurality of LEDs 12 are arranged on the board body 14, when the light distribution of the light emitted from the LEDs 12 is changed by changing the board body 14 from the original shape, The corresponding range can be irradiated, and the focal point of the light is not blurred as in the case of a single light source, and it is possible to prevent a decrease in illuminance when the light distribution changes.

そして、特筆すべきは、基板本体14に表面実装型のLED12の発光領域Lと略同等の大きさの開孔26を設けると共に、この開孔26とLED12表面の発光領域Lとが一致するようにして基板本体14裏面側(すなわち外表面側)にLED12の表面(すなわち出光面)側を固定した点である。このようにLED12および導電回路18を共に基板本体14の裏面側に配設することによって、導電回路18作製の際にスルーホール加工や導電回路18の両面化などといった煩雑な加工が不要となり、当該回路作製を簡単にすることができる。   It should be noted that the substrate body 14 is provided with an opening 26 having a size substantially equal to the light emitting region L of the surface-mounted LED 12, and the opening 26 and the light emitting region L on the surface of the LED 12 coincide with each other. In this way, the front surface (that is, the light exit surface) side of the LED 12 is fixed to the back surface side (that is, the outer surface side) of the substrate body 14. By arranging the LED 12 and the conductive circuit 18 on the back side of the substrate body 14 in this way, complicated processing such as through-hole processing and double-sided conductive circuit 18 is not necessary when the conductive circuit 18 is manufactured. Circuit fabrication can be simplified.

また、かかる構成により、LED12で発生した熱を何らの抵抗もなく直ちに外気中へと放熱することができ、LED12の温度上昇を極めて効率よく抑制することができる。   Further, with this configuration, the heat generated in the LED 12 can be immediately radiated into the outside air without any resistance, and the temperature rise of the LED 12 can be suppressed extremely efficiently.

請求項2に記載した発明は、請求項1に記載のLED照明装置10において、「耐熱フィルムが芳香族ポリイミドフィルムである」ことを特徴とするもので、これにより、ハンダ耐熱性に優れLED12の実装が容易で、且つ形状精度の高い基板本体14を得ることができる。   The invention described in claim 2 is characterized in that, in the LED lighting device 10 according to claim 1, "the heat-resistant film is an aromatic polyimide film". It is possible to obtain the substrate body 14 that is easy to mount and has high shape accuracy.

請求項3に記載した発明は、請求項1又は2に記載のLED照明装置10において、「基板本体14のLED12実装部分に、反射効率を高めるためLED12の発光領域Lを囲繞する部分的な凹部28が設けられている」ことを特徴とするもので、これにより、LED12から発せられる光をより効果的に反射させて目的とする照射範囲に集光することができる。   The invention described in claim 3 is the LED lighting device 10 according to claim 1 or 2, wherein “the LED 12 mounting portion of the substrate body 14 includes a partial recess surrounding the light emitting region L of the LED 12 in order to increase reflection efficiency. 28 ”is provided, which makes it possible to more effectively reflect the light emitted from the LED 12 and condense it in the target irradiation range.

請求項4に記載した発明は、請求項1〜3に記載のLED照明装置10において、「基板本体14の少なくとも一部にスリット32a,32dや溝32b,32cなどの折り曲げ構造で構成された応力吸収部32を設けた」ことを特徴とするものである。   According to a fourth aspect of the present invention, in the LED lighting device 10 according to the first to third aspects of the present invention, “a stress formed in a bent structure such as slits 32 a and 32 d and grooves 32 b and 32 c on at least a part of the substrate body 14. The absorption part 32 is provided ".

この発明では、基板本体14の少なくとも一部にスリット32a,32dや溝32b,32cなどの折り曲げ構造からなる応力吸収部32が設けられているので、LED照明装置10に外部応力を与えて一次形状から所定の二次以降の形状へと変形制御する際に、当該LED照明装置10を歪みなく所定の形状へと変形させることができる。このため、二次以降の形状におけるLED照明装置10の配光精度をより向上させることができる。   In this invention, since the stress absorption part 32 which consists of bending structures, such as slit 32a, 32d and groove | channel 32b, 32c, is provided in at least one part of the board | substrate body 14, external stress is given to the LED lighting apparatus 10, and primary shape is given. When controlling deformation from a predetermined shape to a secondary or subsequent shape, the LED lighting device 10 can be deformed into a predetermined shape without distortion. For this reason, the light distribution accuracy of the LED lighting apparatus 10 in the secondary and subsequent shapes can be further improved.

本発明によれば、熱可塑性の耐熱フィルムを、全体として目的とする照射範囲を反映した所定の三次元的形状に成形して基板本体を形成し、その表面に反射面を設けると共に、その裏面に導電回路を設けてLED照明装置を構成しているので、一次形状での反射効率(即ち照度効率)をあげる効果に加え、外部応力などを利用して基板本体の形状を変えることによりLEDの発する光の配光を可変制御できると共に、三次元的形状に成形された反射面によって、その二次以降の形状での照度効率を向上させることができる。   According to the present invention, a thermoplastic heat-resistant film is formed into a predetermined three-dimensional shape reflecting the target irradiation range as a whole to form a substrate body, and a reflective surface is provided on the surface thereof, and the back surface thereof is provided. In addition to the effect of increasing the reflection efficiency (that is, the illuminance efficiency) in the primary shape, the LED lighting device is configured by changing the shape of the substrate body using external stress or the like. The light distribution of the emitted light can be variably controlled, and the illuminance efficiency in the secondary and subsequent shapes can be improved by the reflecting surface formed in a three-dimensional shape.

また、当該基板本体には、複数個のLEDが配設されているので、基板本体の形状を変化させてLEDが発する光の配光を変えたとしても、それぞれのLEDが各々対応する範囲を照射するので、配光変化時の照度低下がなく、効果的な配光を実現できる。   In addition, since the substrate body is provided with a plurality of LEDs, even if the light distribution of the light emitted from the LEDs is changed by changing the shape of the substrate body, each LED has a corresponding range. Since irradiation is performed, there is no decrease in illuminance when the light distribution changes, and effective light distribution can be realized.

そして、特に、基板本体のLED実装部分に表面実装型のLEDの発光領域と略同等の大きさの開孔を設け、この開孔の裏面側にLEDを取り付けるようにしているので、導電回路作製の際、スルーホール加工や導電回路の両面化などといった煩雑な加工が不要となり、回路作製を簡単にすることができると共に、LEDで発生した熱を直ちに外気中へと放熱することができ、熱による発光効率或いは輝度の低下やLEDの劣化を防止することができる。   In particular, an opening having a size substantially equal to the light emitting area of the surface-mounted LED is provided in the LED mounting portion of the substrate body, and the LED is attached to the back side of the opening. In this case, complicated processing such as through-hole processing and double-sided conductive circuit is not required, and circuit fabrication can be simplified, and heat generated by the LED can be immediately radiated to the outside air. Therefore, it is possible to prevent the light emission efficiency or luminance from being lowered and the deterioration of the LED.

したがって、軽量・高精度にして、照度効率が高く、外部からの応力で容易に配光を可変制御できると共に、放熱性に優れ配光設計の自由度が高く且つ簡単に回路作製を行なうことが可能なLED照明装置を提供することができる。   Therefore, it is lightweight and highly accurate, has high illuminance efficiency, can easily variably control the light distribution with external stress, has excellent heat dissipation, and has a high degree of freedom in light distribution design and can easily produce a circuit. A possible LED lighting device can be provided.

以下、本発明を図面に従って説明する。図1および図2に示す本発明の一実施例のLED照明装置10は、光源として実装した複数個の表面実装型のLED12を発光させると共に、その光を所定の照射範囲に向けて照射するものであり、このLED12の他に、基板本体14,反射面16および導電回路18などで構成されている。   The present invention will be described below with reference to the drawings. 1 and 2, an LED illumination device 10 according to an embodiment of the present invention emits a plurality of surface-mounted LEDs 12 mounted as a light source and emits the light toward a predetermined irradiation range. In addition to the LED 12, the substrate body 14, the reflection surface 16, and the conductive circuit 18 are included.

表面実装型のLED12は、白色発光する光源であり、図3に示すように、セラミックなどによって構成され表面中央に凹部が設けられた矩形のパッケージ部材12aと、当該パッケージ部材12aの凹部に収容されたLED素子12bと、LED素子12bに電気的に接続された一対のリードフレーム12cとを有する。このLED12は、LED素子12b実装部分(すなわちパッケージ部材12a表面中央の凹部)がエポキシ樹脂等からなる透明樹脂20で覆われたフラットトップタイプのものであり、透明樹脂20で覆われた部分が発光領域Lとなっている。また、LED12の裏面には、これを点灯した際にLED素子12bが発する熱を外気中へと迅速に放熱できるように、熱伝導性のよい材料(例えば、金属やセラミックなど)からなる放熱板22が取り付けられている。   The surface-mounted LED 12 is a light source that emits white light. As shown in FIG. 3, the surface-mounted LED 12 is housed in a rectangular package member 12a made of ceramic or the like and having a recess at the center of the surface, and a recess in the package member 12a. LED element 12b and a pair of lead frames 12c electrically connected to LED element 12b. This LED 12 is a flat top type in which the LED element 12b mounting portion (that is, the concave portion at the center of the surface of the package member 12a) is covered with a transparent resin 20 made of epoxy resin or the like, and the portion covered with the transparent resin 20 emits light. This is a region L. Further, on the back surface of the LED 12, a heat radiating plate made of a material having good thermal conductivity (for example, metal or ceramic) so that the heat generated by the LED element 12b when it is lit can be quickly dissipated into the outside air. 22 is attached.

ここで、LED12を白色に発光させる方法としては、LED素子12bとして青色LEDを用いると共にパッケージ部材12aの凹部内面や透明樹脂20にYAG(イットリウム・アルミニウム・ガーネット)系の蛍光物質を配設してLED素子12bの発する青色の光を白色光に変換する方法や、ブルーとアンバーの2つの発光素子を並列に配設した2in1タイプのLED素子12bを用いる方法、或いはレッド,グリーンおよびブルーの3つの発光素子を並列に配設した3in1タイプのLED素子12bを用いる方法などが挙げられる。   Here, as a method for causing the LED 12 to emit white light, a blue LED is used as the LED element 12b, and a YAG (yttrium, aluminum, garnet) fluorescent material is disposed on the inner surface of the recess of the package member 12a or the transparent resin 20. A method of converting blue light emitted from the LED element 12b into white light, a method of using a 2in1 type LED element 12b in which two light emitting elements of blue and amber are arranged in parallel, or three of red, green and blue For example, a method using a 3 in 1 type LED element 12b in which light emitting elements are arranged in parallel may be used.

また、このLED12は、シリコン系樹脂などの耐熱性樹脂からなる接着剤24を介して、その表面側が後述する基板本体14のLED12実装部分の裏面側(外表面側)に固定されている。この際、接着剤24によって形成される層の厚みは極力薄くするのが好ましいが、接着強度などの問題から当該層を薄くできない場合には接着剤24に白色の顔料や填料などを添加するのが好ましい。こうすることによって、LED12の発する光が接着剤24層を介して基板本体14の裏面側へと漏れ出るのを防止することができる。   Further, the LED 12 is fixed to the back surface side (outer surface side) of the LED 12 mounting portion of the substrate body 14 to be described later via an adhesive 24 made of a heat-resistant resin such as a silicon resin. At this time, it is preferable to reduce the thickness of the layer formed by the adhesive 24 as much as possible. However, when the layer cannot be thin due to problems such as adhesive strength, a white pigment or filler is added to the adhesive 24. Is preferred. By doing so, it is possible to prevent light emitted from the LED 12 from leaking out to the back side of the substrate body 14 via the adhesive 24 layer.

なお、本発明のLED照明装置10を室内の主照明や自動車のヘッドライトなど高輝度の光を必要とする照明に用いる場合には、LED12として所謂パワーLEDを用いるのが好適である。   In addition, when using the LED lighting apparatus 10 of this invention for the illumination which requires high-intensity light, such as indoor main lighting and a headlight of a motor vehicle, it is suitable to use what is called power LED as LED12.

基板本体14は、熱可塑性を有する耐熱フィルムからなり、LED照明装置10の形態を保持すると共に、実装したLED12の発する光が所定の照射範囲に向けて照射されるよう所定の三次元的形状に成形された成形体である。   The substrate body 14 is made of a heat-resistant film having thermoplasticity, maintains the form of the LED lighting device 10, and has a predetermined three-dimensional shape so that light emitted from the mounted LED 12 is irradiated toward a predetermined irradiation range. It is a molded product.

この基板本体14を構成する耐熱フィルムの材料としては、ポリイミド,ポリアミド,ポリフェニレンサルファイドおよび液晶ポリマなどを挙げることができるが、特に、ポリイミドのフィルムを用いることが好ましい。このように基板本体14として耐熱性に優れたポリイミドフィルムを用いることで、ハンダ耐熱性に優れLED12の実装が容易となり、形状精度の高い基板本体14を得ることができる。また、実装するLED12として、点灯時に最大で約150〜200℃程度の熱を発するパワーLEDを用いた場合であっても、LED12の発する熱で基板本体14が変形する心配はない。   Examples of the material of the heat-resistant film constituting the substrate body 14 include polyimide, polyamide, polyphenylene sulfide, and liquid crystal polymer, and it is particularly preferable to use a polyimide film. Thus, by using the polyimide film excellent in heat resistance as the substrate body 14, it is easy to mount the LED 12 with excellent solder heat resistance, and the substrate body 14 with high shape accuracy can be obtained. Moreover, even if it is a case where power LED which emits about 150-200 degreeC heat at the maximum is used as LED12 mounted, there is no fear that the board | substrate body 14 deform | transforms with the heat | fever which LED12 emits.

さらに、照度効率を高めるための成形形状すなわち所定の三次元的形状を精度良く得るためには、熱可塑性の芳香族ポリイミドフィルムが好ましい。   Furthermore, a thermoplastic aromatic polyimide film is preferable in order to obtain a molded shape for improving the illuminance efficiency, that is, a predetermined three-dimensional shape with high accuracy.

芳香族ポリイミドは、芳香族テトラカルボン酸と脂肪族または芳香族ジアミンとの縮合物であり、代表的にはピロメリット酸二無水物、ビフェニルテトラカルボン酸二無水物などのテトラカルボン酸二無水物と、パラフェニレンジアミン、ジアミノジフェニルエーテルなどのジアミンを縮重合してアミド酸を生成させ、これを熱または触媒で閉環硬化させて得られるものである。熱可塑性ポリイミドは、例えば次のような化合物を共重合させることによって得ることができる。   Aromatic polyimide is a condensate of aromatic tetracarboxylic acid and aliphatic or aromatic diamine, typically tetracarboxylic dianhydrides such as pyromellitic dianhydride and biphenyltetracarboxylic dianhydride. And a diamine such as paraphenylenediamine and diaminodiphenyl ether to produce an amic acid, which is obtained by ring-closing curing with heat or a catalyst. The thermoplastic polyimide can be obtained, for example, by copolymerizing the following compounds.

ジカルボン酸無水物としては、ピロメリット酸二無水物、4,4’−オキシジフタール酸二無水物、3,3’、4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物、2,2’、3,3’ビフェニルテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、1,1−ビス(2,3ージカルボキシフェニル)メタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)プロパンニ無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、m−フェニレンビス(トリメリット酸)二無水物等を挙げることができる。   Examples of dicarboxylic acid anhydrides include pyromellitic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′biphenyltetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride Bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3 , 4-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) propan Anhydride, 2,2-bis (3,4-carboxyphenyl) propane dianhydride, m- phenylene bis (trimellitic acid) may be mentioned dianhydrides like.

ジアミンとしては、ヘキサメチレンジアミン、ヘプタメチレンジアミン、3,3’−ジメチルペンタメチレンジアミン、3−メチルヘキサメチレンジアミン、3−メチルヘプタメチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、1,1,6,6−テトラメチルヘキサメチレンジアミン、2,2,5,5−テトラメチルヘキサメチレンジアミン、4,4−ジメチルヘプタメチレンジアミン、デカメチレンジアミン、m−フェニレンジアミン、4,4’−ジアミノベンゾフェノン、4−アミノフェニル−3−アミノベンゾエート、m−アミノベンゾイル−p−アミノアニリド、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、ビス(4−アミノフェニル)メタン、1,1−ビス(4−アミノフェニル)エタン、2,2−ビス(4−アミノフェニル)プロパン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル)]プロパン,4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノベンゾフェノン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2’ージアミノゼンゾフェノン、1,2−ビス(4−アミノフェノキシ)ベンゼン、1,3ービス(4−アミノベンゾイルオキシ)ベンゼン、4,4’−ジベンズアニリド、4,4’−ビス(4−アミノフェノキシ)フェニルエーテル、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)−1,3−ジクロロ−1、1,3,3−ヘキサフルオロプロパン、4,4’−ジアミノジフェニルスルホン、1,12−ジアミノドデカン、1,13− ジアミノドデカン、ポリシロキサンジアミンなどが挙げられる。   Examples of diamines include hexamethylenediamine, heptamethylenediamine, 3,3′-dimethylpentamethylenediamine, 3-methylhexamethylenediamine, 3-methylheptamethylenediamine, 2,5-dimethylhexamethylenediamine, octamethylenediamine, and nona. Methylenediamine, 1,1,6,6-tetramethylhexamethylenediamine, 2,2,5,5-tetramethylhexamethylenediamine, 4,4-dimethylheptamethylenediamine, decamethylenediamine, m-phenylenediamine, 4 , 4′-diaminobenzophenone, 4-aminophenyl-3-aminobenzoate, m-aminobenzoyl-p-aminoanilide, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, bis (4-aminophenyl) Nyl) methane, 1,1-bis (4-aminophenyl) ethane, 2,2-bis (4-aminophenyl) propane, 2,2′-bis [4- (4-aminophenoxy) phenyl)] propane, 4,4′-diaminodiphenyl sulfoxide, 3,3′-diaminobenzophenone, 1,3-bis (4-aminophenoxy) benzene, 2,2′-diaminozenzophenone, 1,2-bis (4-aminophenoxy) ) Benzene, 1,3-bis (4-aminobenzoyloxy) benzene, 4,4′-dibenzanilide, 4,4′-bis (4-aminophenoxy) phenyl ether, 2,2′-bis (4-aminophenyl) Hexafluoropropane, 2,2′-bis (4-aminophenyl) -1,3-dichloro-1, 1,3,3-hexafluoropropane, 4,4′- Diaminodiphenyl sulfone, 1,12-diamino-dodecane, 1,13-diamino dodecane, etc. polysiloxane diamine.

上記化合物の中で、本発明において使用される熱可塑性ポリイミドとしては、1,3−ビス(4−アミノフェノキシ)ベンゼン(RODAと略称)、ピロメリット酸二無水物(PMDAと略称)及び4,4’−オキシジフタル酸二無水物(ODPA)の共重合物、4,4’−ジアミノジフェニルエーテル(ODAと略称)と3,3’4,4’−ビフェニルテトラカルボン酸二無水物(BPDAと略称)との共重合物、およびODA,PMDAおよびBPDAとの共重合物、3,3’、4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)及びPMDAと2,2'−ビス[4−(4−アミノフェノキシ)フェニル)]プロパン(BAPPと略称)との共重合物が特に好ましい。   Among the above compounds, the thermoplastic polyimide used in the present invention includes 1,3-bis (4-aminophenoxy) benzene (abbreviated as RODA), pyromellitic dianhydride (abbreviated as PMDA) and 4, Copolymer of 4′-oxydiphthalic dianhydride (ODPA), 4,4′-diaminodiphenyl ether (abbreviated as ODA) and 3,3′4,4′-biphenyltetracarboxylic dianhydride (abbreviated as BPDA) Copolymer with ODA, PMDA and BPDA, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and PMDA with 2,2′-bis [4- A copolymer with (4-aminophenoxy) phenyl)] propane (abbreviated as BAPP) is particularly preferable.

熱可塑性ポリイミドは加熱することにより軟化するが、本発明においてはLED実装時のハンダ耐熱性の観点からガラス転移温度が200〜350℃のものが好ましく、より好ましくは210〜320℃のものであり、更に好ましくは250℃〜310℃のものである。また、熱可塑性ポリイミドは、ガラス転移温度における破断伸度が100〜700%のものが好ましく、さらに好ましくは、150〜400%のものである。   The thermoplastic polyimide is softened by heating. In the present invention, the glass transition temperature is preferably 200 to 350 ° C., more preferably 210 to 320 ° C. from the viewpoint of solder heat resistance during LED mounting. More preferably, it is a thing of 250 to 310 degreeC. The thermoplastic polyimide preferably has a breaking elongation at the glass transition temperature of 100 to 700%, and more preferably 150 to 400%.

以上のような材料で構成され、基板本体14に成形されるフィルムの厚みとしては、柔軟性、熱放散性の観点から好ましくは12.5〜175μm、より好ましくは25〜130μmである。また、フィルムの熱膨張係数は、成形後の配線が存在する箇所において5〜60ppm/℃であることが好ましい。   The thickness of the film formed of the material as described above and formed on the substrate body 14 is preferably 12.5 to 175 μm, more preferably 25 to 130 μm from the viewpoints of flexibility and heat dissipation. Moreover, it is preferable that the thermal expansion coefficient of a film is 5-60 ppm / degrees C in the location where the wiring after shaping | molding exists.

このような熱可塑性の耐熱フィルムを用いて基板本体14を成形する方法としては、真空成形法やプレス成形法が挙げられるが、亀裂やしわを生じない方法であれば特にこれらに限定されるものではない。   Examples of a method for forming the substrate body 14 using such a thermoplastic heat-resistant film include a vacuum forming method and a press forming method. However, the method is not particularly limited as long as the method does not cause cracks or wrinkles. is not.

また、この基板本体14の成形形状(三次元的形状)としては、図1及び2に示す椀状或いは鉢状のもののほか、全体的には照明目的のために一次的な配光設計を反映した形状であり且つ配光変化時の二次以降の配光をも考慮したものであって、上記の熱可塑性・耐熱性フィルムが成形加工時に破れなく追従する形状であれば、如何なる形状であってもよい。   In addition, the shape (three-dimensional shape) of the substrate main body 14 reflects the primary light distribution design for the purpose of illumination in addition to the bowl shape or bowl shape shown in FIGS. In consideration of the secondary and subsequent light distribution at the time of light distribution change, any shape can be used as long as the above-mentioned thermoplastic / heat-resistant film follows without tearing during molding. May be.

以上のような形状にて成形された基板本体14の所定の位置には、上述したLED12の発光領域Lと略同等の大きさの開孔26が複数設けられており、この部分がLED12実装部分となっている。ここで、基板本体14に設けられた開孔26の形状は、図3に示すように、導電回路18が設けられている裏面側から反射面16が設けられている表面側に向けて、その内径が拡径するようテーパー状に形成するのが好ましい。こうすることによって、開孔26の周壁面においてもLED12の発する光を反射でき、より効果的に目的とする照射範囲へと集光することができるからである。   A plurality of apertures 26 having substantially the same size as the light emitting region L of the LED 12 described above are provided in a predetermined position of the substrate body 14 formed in the shape as described above, and this portion is an LED 12 mounting portion. It has become. Here, as shown in FIG. 3, the shape of the opening 26 provided in the substrate main body 14 is changed from the back side where the conductive circuit 18 is provided toward the front side where the reflective surface 16 is provided. It is preferable to form in a taper shape so that an internal diameter may expand. By doing so, the light emitted from the LED 12 can be reflected even on the peripheral wall surface of the opening 26 and can be more effectively condensed to the target irradiation range.

また、LED12実装部分は、例えば図1に示すように、LED12実装部分どうしが互いに略等間隔にて離間するようにして基板本体14全面に配設するのが好ましい。こうすることによって、基板本体14を当初の形状から変化させてLED12が発する光の配光を変えた際に、それぞれのLED12が各々対応する範囲を照射でき、単一光源の場合のように光の焦点がボケることがなく、配光変化時の照度低下を防止することができるからである。   Further, for example, as shown in FIG. 1, the LED 12 mounting portions are preferably disposed on the entire surface of the substrate body 14 such that the LED 12 mounting portions are separated from each other at substantially equal intervals. In this way, when the light distribution of the light emitted by the LEDs 12 is changed by changing the substrate body 14 from the original shape, each LED 12 can irradiate the corresponding range, and light can be emitted as in the case of a single light source. This is because the focal point of the light is not blurred, and a decrease in illuminance when the light distribution changes can be prevented.

さらに、このLED12実装部分の局部的な成形形状については、LED12が発する光の反射効率を高めるため、図4に示すように、壁面が曲面で形成された充分な深さをもつ凹部28を形成するようにしてもよい。   Further, with respect to the locally molded shape of the LED 12 mounting portion, as shown in FIG. 4, a concave portion 28 having a sufficiently deep wall surface is formed to increase the reflection efficiency of light emitted from the LED 12. You may make it do.

そして、図1および図2に示すように、基板本体14の中心部からその外縁部30に向けて、LED12実装部分の配線を切らないように設計された一対のスリット32aと、該スリット32aの先端同士を連結する溝32bとを有する折り曲げ構造で構成された1乃至複数(図1及び2においては2カ所)の応力吸収部32を設け、基板本体14に対して外部から応力が与えられた際に一のLED12実装部分が他のLED12実装部分とは独立して歪みなく変位するようにしてもよい。ここで、スリット32aを設ける際、スリット32a形成部分に凹溝を形成し、然る後、凹溝の底部をスリット加工すれば、切り離された凹溝がフランジ34となり、スリット32a形成部分の形状保持に役立つこととなる。   As shown in FIGS. 1 and 2, a pair of slits 32a designed so as not to cut the wiring of the LED 12 mounting portion from the central portion of the substrate body 14 toward the outer edge portion 30, and the slits 32a One or a plurality of (two in FIG. 1 and FIG. 2) stress absorbing portions 32 having a bent structure having a groove 32b connecting the tips are provided, and stress is applied to the substrate body 14 from the outside. In this case, one LED 12 mounting portion may be displaced without distortion independently of other LED 12 mounting portions. Here, when the slit 32a is provided, a concave groove is formed in the slit 32a forming portion, and then, if the bottom of the concave groove is slit, the separated concave groove becomes the flange 34, and the shape of the slit 32a forming portion is formed. It will be useful for retention.

この応力吸収部32は、上述したスリット32aおよび溝32bからなるもののみならず、例えば、図5に示すように、基板本体14の一次形状を湾曲板状に形成する場合には、基板本体14幅方向にて互いに平行するように設けられた2本の溝32cのみを応力吸収部32とすることができる。更に、これに加え、図6に示すように、前記溝32cと略直交する方向にLED12実装部分の配線を切らないような一本のスリット32dを設け、これを含めて応力吸収部32とすることもできる。つまり、応力吸収部32は、基板本体14における一部のLED12実装部分が、外部から応力が与えられた際に他のLED12実装部分とは独立して歪みなく変位でき、基板本体14全体が歪みなく所定の形状へと変形できるものであれば、その形状や配設位置は如何なるものであってもよい。   The stress absorbing portion 32 is not limited to the slit 32a and the groove 32b described above. For example, when the primary shape of the substrate body 14 is formed in a curved plate shape as shown in FIG. Only the two grooves 32 c provided so as to be parallel to each other in the width direction can be used as the stress absorbing portion 32. In addition to this, as shown in FIG. 6, a single slit 32 d is provided in a direction substantially orthogonal to the groove 32 c so as not to cut the wiring of the LED 12 mounting portion. You can also. That is, the stress absorption part 32 can displace some LED12 mounting parts in the board main body 14 without distortion independently of other LED12 mounting parts when stress is applied from the outside, and the entire board main body 14 is distorted. As long as it can be deformed into a predetermined shape without any limitation, its shape and arrangement position may be arbitrary.

なお、このような応力吸収部32のほかに、基板本体14のLED12実装部分や辺縁部、及び外部との接続部などに、基板本体14を部分的に強度補強し、変位制御し易くするために別途用意した樹脂成形品や金属板などを取り付けるようにしてもよい。   In addition to such a stress absorbing portion 32, the substrate body 14 is partially reinforced at the LED 12 mounting portion and the edge portion of the substrate body 14 and the connection portion with the outside to facilitate displacement control. Therefore, a separately prepared resin molded product or a metal plate may be attached.

また、上述した溝32bおよび32cに替えて、応力吸収部26の折曲部分に対応する基板本体14外周面の位置に、当該折曲部分に沿って隣接する一対の補助板(図示せず)を取着するか、或いは折曲部分周囲の基板本体14を肉厚に形成するようにしてもよい。こうすることで基板本体14における折曲部分周囲の剛性を向上させることができ、当該折曲部分のみをスムーズに揺動させることができる。   Further, in place of the grooves 32b and 32c described above, a pair of auxiliary plates (not shown) adjacent to the bent portion of the substrate main body 14 corresponding to the bent portion of the stress absorbing portion 26 along the bent portion. Alternatively, the substrate body 14 around the bent portion may be formed thick. By doing so, the rigidity around the bent portion in the substrate body 14 can be improved, and only the bent portion can be smoothly swung.

また、基板本体14の外縁部30には、LED照明装置10を照明器具に取り付ける際に便利なように予めフランジや折り返しなどの形状を形成しておくことが好ましい。   Moreover, it is preferable that the outer edge portion 30 of the substrate body 14 is previously formed with a shape such as a flange or a folded portion so as to be convenient when the LED lighting device 10 is attached to a lighting fixture.

反射面16は、LED12が発する光の反射効率を高めるため、基板本体14の照射側表面に反射材をコーティングすることによって形成された面である。   The reflection surface 16 is a surface formed by coating a reflection material on the irradiation side surface of the substrate body 14 in order to increase the reflection efficiency of light emitted from the LED 12.

この反射面16を構成する反射材の組成およびその形成方法としては、アルミニウムや銀などの金属を蒸着やメッキによってコーティングするものや、誘電体を多層に蒸着するもの、或いは、反射、演色性に優れた樹脂や塗料をコーティングするものなどが挙げられる。つまり、照明目的にあわせて未加工のポリイミドフィルムよりも反射率が向上するものであれば反射面16を構成する反射材の組成やその形成方法は特に限定されるものではない。   As a composition of the reflecting material constituting the reflecting surface 16 and a method of forming the reflecting material, a metal such as aluminum or silver is coated by vapor deposition or plating, a dielectric is vapor-deposited in multiple layers, or a reflection or color rendering property is achieved. Examples include excellent resin and paint coatings. That is, the composition of the reflecting material constituting the reflecting surface 16 and the method for forming the reflecting surface 16 are not particularly limited as long as the reflectance is improved as compared with the raw polyimide film in accordance with the purpose of illumination.

また、反射材をコーティングして反射面16を設ける範囲は、照明目的に応じて基板本体14上を分割して2種類以上の異種コーティングを施すこともできる。また、照明効果に寄与しない部分で、商品デザイン上の目的によって生じる成形部位、取り付けや、外部との電気接続上の形状要求によって生じる成形部位に対しては、反射を目的としないコーティングがされること、または逆にコーティングを施さないこともある。さらに、コーティング材の酸化劣化、傷付きなどを防止することを目的として保護膜をコーティングすることができることは言うまでもない。   In addition, the range in which the reflective surface 16 is provided by coating the reflective material can be divided on the substrate body 14 according to the purpose of illumination, and two or more kinds of different types of coatings can be applied. In addition, a coating that does not contribute to the reflection is applied to a molding part that does not contribute to the lighting effect, a molding part that is generated depending on a product design purpose, a mounting part, or a molding part that is generated due to a shape requirement on an external electrical connection Or conversely, no coating may be applied. Furthermore, it goes without saying that a protective film can be coated for the purpose of preventing oxidative deterioration and scratching of the coating material.

導電回路18は、基板本体14の裏面に設けられ、LED12と図示しない外部回路とを接続してLED12を点灯させる回路である。   The conductive circuit 18 is a circuit that is provided on the back surface of the substrate body 14 and lights the LED 12 by connecting the LED 12 and an external circuit (not shown).

この導電回路18は、基板本体14成形時の導体の酸化劣化、応力による亀裂の発生を防ぐために基板本体14を所定の三次元的形状に成形した後に形成されることが望ましいが、形状によっては、熱可塑性を有する耐熱性フィルムに予め配線加工を施した後、これを成形して導電回路18が設けられた基板本体14を得るようにしてもよい。   The conductive circuit 18 is preferably formed after the substrate body 14 is formed into a predetermined three-dimensional shape in order to prevent oxidative deterioration of the conductor during the formation of the substrate body 14 and the generation of cracks due to stress. Alternatively, after a wiring process is performed in advance on a heat-resistant film having thermoplasticity, the substrate body 14 provided with the conductive circuit 18 may be obtained by forming the wiring.

この導電回路18の作製方法は、基板本体14成形後に金属蒸着を施し、後に電解メッキを施す方法や、成形後に無電解メッキを施す方法を利用し、サブトラクティブ法、セミアディティブ法、フルアディティブ法のいずれを利用するものでも良く、またレーザー加工を利用し、不要導体部分を除去し回路パターンを得る方法であっても良い。さらには接着剤を介して金属箔で作製した回路を転写する方法でも良く、また導電ペーストを利用し、回路を描画する方法でも良い。   The conductive circuit 18 is manufactured using a subtractive method, a semi-additive method, a full-additive method, using a method in which metal deposition is performed after the substrate body 14 is formed, followed by electrolytic plating, or a method in which electroless plating is performed after forming. Either of these methods may be used, or a method of obtaining a circuit pattern by removing unnecessary conductor portions using laser processing may be used. Furthermore, a method of transferring a circuit made of a metal foil through an adhesive may be used, or a method of drawing a circuit using a conductive paste may be used.

これらの方法で導電回路18を形成する場合、導体金属としては銅からなるものが好ましいが、導電ペーストを利用する場合は銀ペーストを利用しても良く、実装工程の要求に応じて例えばハンダ,錫,金およびニッケルなどの異種金属や合金のメッキを施すことができることは言うまでもない。また、蒸着を利用する際に、基板本体14と金属の密着力を高めるため、あるいは酸化を防止するために、クロムや、ニッケルなどの金属を下地蒸着することができることは言うまでもない。   When the conductive circuit 18 is formed by these methods, the conductor metal is preferably made of copper. However, when the conductive paste is used, a silver paste may be used. For example, solder, It goes without saying that different metals and alloys such as tin, gold and nickel can be plated. In addition, when vapor deposition is used, it goes without saying that a metal such as chromium or nickel can be vapor-deposited in order to increase the adhesion between the substrate body 14 and the metal or prevent oxidation.

また、導電回路18の保護のため、当該回路18表面にレジストインクを塗布することや、基板本体14と同形状に成形されたカバーフィルムを接着することは信頼性向上のため好ましい。カバーフィルムの材質は、製造工程の順序により耐熱性を要する場合には基板本体14と同種の熱可塑性を有する耐熱フィルム、例えばポリイミドフィルムなどであることが好ましいが、これに限定されるものではない。なお、図示しない外部回路と接続される導電回路18の端末の位置については限定されるものではない。   In order to protect the conductive circuit 18, it is preferable to apply a resist ink on the surface of the circuit 18 or adhere a cover film formed in the same shape as the substrate body 14 in order to improve reliability. The material of the cover film is preferably a heat-resistant film having the same kind of thermoplasticity as that of the substrate body 14, for example, a polyimide film, when heat resistance is required depending on the order of the manufacturing process, but is not limited thereto. . Note that the position of the terminal of the conductive circuit 18 connected to an external circuit (not shown) is not limited.

次に、本発明のLED照明装置10を製造する際には、まず、基板本体14に反射面16および導電回路18を形成する。続いて、LED12表面側の周縁部に接着剤24を塗布する。この際、発光領域Lに接着剤24が付着しないように注意する。続いて、開孔26とLED12の発光領域Lが一致するように位置決めし、基板本体14の裏面に接着剤24を塗布したLED12の表面を押し付けて両者を固定する。そして、LED12の表面側(つまり導電回路18側)を向くように曲成したリードフレーム12cと導電回路18とをハンダ36などで電気的に接続することによって、本発明のLED照明装置10が完成する。   Next, when manufacturing the LED lighting device 10 of the present invention, first, the reflecting surface 16 and the conductive circuit 18 are formed on the substrate body 14. Subsequently, the adhesive 24 is applied to the peripheral portion on the surface side of the LED 12. At this time, care is taken so that the adhesive 24 does not adhere to the light emitting region L. Then, it positions so that the opening 26 and the light emission area | region L of LED12 may correspond, and the surface of LED12 which apply | coated the adhesive agent 24 to the back surface of the board | substrate body 14 is pressed, and both are fixed. Then, the lead frame 12c bent so as to face the surface side of the LED 12 (that is, the conductive circuit 18 side) and the conductive circuit 18 are electrically connected by solder 36 or the like, thereby completing the LED lighting device 10 of the present invention. To do.

また、完成したLED照明装置10を使用する際には、電源を備えた外部回路(図示せず)と導電回路18とを接続すると共に、これらの回路を介してLED12に電力を供給し、LED12を点灯させる。   When the completed LED lighting device 10 is used, an external circuit (not shown) having a power source is connected to the conductive circuit 18, and power is supplied to the LED 12 through these circuits. Lights up.

以上のように構成された本発明のLED照明装置10によれば、熱可塑性の耐熱フィルムを、全体として目的とする照射範囲を反映した所定の三次元的形状に成形して基板本体14を形成すると共に、光源であるLED12を実装するその表面に光を反射する反射面16を設けているので、外部からの信号または応力を利用して基板本体14の形状を変えることで、その配光を容易に変化させることができ、LED12が発する光を十分に漏れなく反射して目的とする照射範囲に光を集光することができる。つまり、LED12の発する光の配光を可変制御できると共に、その照度効率を向上させることができる。   According to the LED lighting device 10 of the present invention configured as described above, the substrate main body 14 is formed by molding a thermoplastic heat-resistant film into a predetermined three-dimensional shape reflecting the target irradiation range as a whole. In addition, since the reflective surface 16 that reflects light is provided on the surface on which the LED 12 that is a light source is mounted, the light distribution is changed by changing the shape of the substrate body 14 using an external signal or stress. The light can be easily changed, and the light emitted from the LED 12 can be sufficiently reflected without being leaked, so that the light can be collected in a target irradiation range. That is, the light distribution of the light emitted from the LED 12 can be variably controlled and the illuminance efficiency can be improved.

また、基板本体14の表面には、複数個のLED12が配設されているので、基板本体14を当初の形状から変化させてLED12が発する光の配光を変えた際に、それぞれのLED12が各々対応する範囲を照射でき、単一光源の場合のように光の焦点がボケることがなく、配光変化時の照度低下なく、所望の配光が得られる。   In addition, since the plurality of LEDs 12 are arranged on the surface of the substrate body 14, when the light distribution of the light emitted from the LEDs 12 is changed by changing the substrate body 14 from the original shape, each LED 12 Each of the corresponding ranges can be irradiated, and the focal point of the light is not blurred as in the case of a single light source, and a desired light distribution can be obtained without a decrease in illuminance when the light distribution changes.

また、特に、基板本体14に表面実装型のLED12の発光領域Lと略同等の大きさの開孔26を設けると共に、この開孔26とLED12表面の発光領域Lとが一致するようにして基板本体14裏面側(すなわち外表面側)にLED12の表面側を固定しているので、LED12で発生した熱を何らの抵抗もなく直ちに外気中へと放熱することができ、LED12の温度上昇を極めて効率よく抑制することができる。また、このようにLED12および導電回路18を共に基板本体14の裏面側に配設することによって、導電回路18作製の際にスルーホール加工や導電回路18の両面化などといった煩雑な加工が不要となり、回路作製を簡単にすることができる。   In particular, the substrate body 14 is provided with an opening 26 having a size substantially equal to that of the light emitting region L of the surface-mounted LED 12, and the substrate 26 is configured such that the opening 26 and the light emitting region L on the surface of the LED 12 coincide. Since the front surface side of the LED 12 is fixed to the back surface side (that is, the outer surface side) of the main body 14, the heat generated by the LED 12 can be immediately radiated to the outside air without any resistance, and the temperature rise of the LED 12 is extremely high. It can be suppressed efficiently. In addition, by arranging the LED 12 and the conductive circuit 18 on the back side of the substrate body 14 in this way, complicated processing such as through-hole processing or double-sided conductive circuit 18 is not required when the conductive circuit 18 is manufactured. Circuit fabrication can be simplified.

さらに、基板本体14の裏面には、外部回路に接続され、LED12を点灯させる導電回路18が設けられているので、LED照明装置10を薄型化でき、熱放散性に優れたものとすることができる。   Furthermore, since the back surface of the substrate body 14 is provided with a conductive circuit 18 that is connected to an external circuit and turns on the LED 12, the LED lighting device 10 can be made thin and excellent in heat dissipation. it can.

そして、基板本体14における一部のLED12実装部分近傍に応力吸収部32を設けた場合には、LED照明装置10に外部応力を与えて一次形状から所定の二次以降の形状へと変形制御する際に、当該LED照明装置10を歪みなく所定の形状へと変形させることができる。このため、二次以降の形状におけるLED照明装置10の配光精度をより向上させることができる。   When the stress absorbing portion 32 is provided in the vicinity of a part of the LED 12 mounted on the substrate body 14, external deformation is applied to the LED lighting device 10 to control deformation from a primary shape to a predetermined secondary shape or later. In this case, the LED lighting device 10 can be deformed into a predetermined shape without distortion. For this reason, the light distribution accuracy of the LED lighting apparatus 10 in the secondary and subsequent shapes can be further improved.

なお、上述の例(実施形態)では、反射面16を保護すべく当該反射面16を保護膜でコーティングすること、また、導電回路18を保護すべく当該導電回路18にレジストインクを塗布或いはカバーフィルムを接着することについて述べたが、これらの方法に替えて以下のような方法でLED照明装置10の表面全体を保護するようにしてもよい。すなわち、完成させたLED照明装置10の表面全体にディッピングなど公知の方法でフッ素系樹脂やエポキシ樹脂などからなる透明樹脂溶液を塗設し、これを乾燥させてLED照明装置10の表面全体に透明な樹脂薄膜を形成するようにしてもよい。かかる方法によれば、1つの工程で基板本体14の両表面に同時に保護膜を形成することができる。つまり、効率よく経済的にLED照明装置10全体に保護膜を形成することができる。また、透明樹脂溶液として特にフッ素系樹脂からなるものを用いることによって、反射面16においては反射材の酸化劣化や傷付きを防止することができ、導電回路18形成部分においては樹脂薄膜がカバーレイフィルムとして機能することにより導電回路18の絶縁性および信頼性を向上できるのと同時に、LED照明装置10の表面全体に防汚性を付与することができる。   In the above-described example (embodiment), the reflective surface 16 is coated with a protective film to protect the reflective surface 16, and resist ink is applied to or covered with the conductive circuit 18 to protect the conductive circuit 18. Although the bonding of the film has been described, the entire surface of the LED lighting device 10 may be protected by the following method instead of these methods. That is, a transparent resin solution made of a fluorine resin or an epoxy resin is applied to the entire surface of the completed LED lighting device 10 by a known method such as dipping, and this is dried to be transparent on the entire surface of the LED lighting device 10. A thin resin thin film may be formed. According to such a method, the protective film can be simultaneously formed on both surfaces of the substrate body 14 in one step. That is, a protective film can be formed on the entire LED lighting device 10 efficiently and economically. Further, by using a transparent resin solution made of a fluororesin in particular, it is possible to prevent the reflective material from being oxidized and scratched on the reflective surface 16, and the resin thin film is covered in the conductive circuit 18 formation portion. By functioning as a film, the insulation and reliability of the conductive circuit 18 can be improved, and at the same time, antifouling can be imparted to the entire surface of the LED lighting device 10.

また、上述の例では、表面実装型のLED12としてフラットトップタイプのものを用いる場合を示したが、図7に示すように、発光領域Lの表面にレンズ部38が形成された所謂レンズトップタイプのLED12を用いるようにしてもよい。なお、このようなレンズトップタイプのLED12は一般的に光の指向性が強くなるため、基板本体14に設ける開孔26をその表裏の内径が均一なストレートなものにしてもよい。   In the above example, the case where a flat top type LED 12 is used as the surface mount type LED 12 is shown. However, as shown in FIG. 7, a so-called lens top type in which a lens portion 38 is formed on the surface of the light emitting region L. The LED 12 may be used. In addition, since such a lens top type LED 12 generally has high light directivity, the opening 26 provided in the substrate body 14 may be straight with uniform inner diameters on the front and back sides.

以下、実施例に基づいて本発明を具体的に説明するが、本発明の技術的範囲はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, the technical scope of this invention is not limited to this Example.

熱可塑性を有する耐熱フィルムとして、東レ・デュポン(株)製“カプトン(登録商標)”500SKJ(厚み125μm)を用い、図1及び図2に示すように、全体として集光設計された三次元的な形状(本実施例の場合は椀状)の成形体をしわや歪みの無いように真空成形法で成形すると共に、得られた成形体のLED12実装部分に、外表面側(裏側)の面積が実装するLED12の発光領域Lと同じ面積を有し且つ内表面側(表側)に向けてその内径がテーパー状に拡径する開孔26を穿設して基板本体14を得た。なお、当該基板本体14の互いに対面する位置には、あとでスリット32aを施す一対の凹溝とこの凹溝の先端同士を連結する溝32bとが予め成形されている。   As a heat-resistant film having thermoplasticity, “Kapton (registered trademark)” 500SKJ (thickness 125 μm) manufactured by Toray DuPont Co., Ltd. is used. As shown in FIG. 1 and FIG. A molded product having a simple shape (in the case of this example) is molded by a vacuum molding method so as not to be wrinkled or distorted, and the area of the outer surface side (back side) is formed on the LED12 mounting portion of the obtained molded product. An opening 26 having the same area as the light emitting region L of the LED 12 to be mounted and having an inner diameter tapered toward the inner surface (front side) was obtained. It should be noted that a pair of concave grooves to be slit later and grooves 32b for connecting the tips of the concave grooves are formed in advance at positions facing each other on the substrate body 14.

続いて、当該基板本体14に対して、プラズマ加工を施し表面を活性化させた後、照射面側(表側)をマスクすると共に、裏側に対してニッケル、クロム、銅蒸着を施し300Åの金属蒸着膜を得、然る後、電解銅メッキにより18μmの導体膜を得た。その後、当該基板本体14の裏側に対して、フォトリソグラフィー法を用いてLED用導電回路18を形成した後、外部との接続端子部をマスクしてハンダレジストを塗布した。なお、外部との接続回路(図示せず)は基板本体14裏面中央の平面部分に形成した。   Subsequently, after plasma processing is performed on the substrate body 14 to activate the surface, the irradiation surface side (front side) is masked, and nickel, chromium, and copper are deposited on the back side to deposit 300 mm of metal. A film was obtained, and then a 18 μm conductor film was obtained by electrolytic copper plating. Thereafter, an LED conductive circuit 18 was formed on the back side of the substrate body 14 by using a photolithography method, and then a solder resist was applied while masking the connection terminal portion with the outside. Note that an external connection circuit (not shown) was formed in the plane portion at the center of the back surface of the substrate body 14.

続いて、基板本体14の裏面全体をマスキングした後、基板本体14の表面にアルミニウムを1200Åの厚さで蒸着して反射面16を形成した。   Subsequently, after masking the entire back surface of the substrate body 14, aluminum was vapor-deposited on the surface of the substrate body 14 to a thickness of 1200 mm to form the reflecting surface 16.

続いて、用意した表面実装型LED12(フラットトップタイプ)の表面側周縁部に接着剤24を塗布し、開孔26とLED12の発光領域Lが一致するようにして基板本体14の裏面にLED12の表面を押し付けて両者を固定し、然る後、LED12の表面側(つまりLED12を基板本体14に固定した際の導電回路18側)を向くように曲成したリードフレーム12cと導電回路18とのハンダ付けを行なった。   Subsequently, an adhesive 24 is applied to the front surface side peripheral portion of the prepared surface mount type LED 12 (flat top type), and the LED 12 is disposed on the back surface of the substrate body 14 so that the opening 26 and the light emitting region L of the LED 12 coincide. The surface is pressed to fix both, and then the lead frame 12c and the conductive circuit 18 bent so as to face the front side of the LED 12 (that is, the conductive circuit 18 side when the LED 12 is fixed to the substrate body 14). Soldering was performed.

最後に、基板本体14の凹溝の底部をスリット加工して、スリット32aおよび溝32bからなる応力吸収部32を形成し、また裏面中央の外部接続回路端子部周辺の三方に切り込みを入れ、外側に折り曲げて外部接続端子(図示せず)を作製し、本発明のLED照明装置10を得た。   Finally, the bottom of the concave groove of the substrate body 14 is slit to form the stress absorbing portion 32 composed of the slit 32a and the groove 32b, and the outer periphery of the external connection circuit terminal portion around the center of the back surface is cut into three sides. The external connection terminal (not shown) was produced by bending the LED lighting device 10 of the present invention.

得られたLED照明装置10について、外縁部30の成形形状を利用して別に用意した金属製の枠に仮固定し、当該照明装置10を外部のLED点灯用回路と接続したところ、LED12は点灯し、第一次的に設計された範囲を高照度で照射した。また、スリット32aによって分割された部分を、外部のモーター駆動による機械的応力により稼働させたところ、二次的に設計された照射パターンを得ることができた。   When the obtained LED lighting device 10 is temporarily fixed to a separately prepared metal frame using the molded shape of the outer edge portion 30 and the lighting device 10 is connected to an external LED lighting circuit, the LED 12 is turned on. The primary designed range was irradiated with high illuminance. Moreover, when the part divided | segmented by the slit 32a was operated by the mechanical stress by an external motor drive, the irradiation pattern designed secondary was able to be obtained.

本発明のLED照明装置は、可変配光照明装置に利用可能である。   The LED illumination device of the present invention can be used for a variable light distribution illumination device.

本発明の一実施例のLED照明装置を示す斜視図である。It is a perspective view which shows the LED lighting apparatus of one Example of this invention. 図1におけるI−I線断面図である。It is the II sectional view taken on the line in FIG. 本発明の一実施例のLED照明装置における要部拡大断面図である。It is a principal part expanded sectional view in the LED lighting apparatus of one Example of this invention. 本発明の他の実施例のLED照明装置における要部拡大断面図である。It is a principal part expanded sectional view in the LED lighting apparatus of the other Example of this invention. 本発明の他の実施例のLED照明装置(湾曲平板状)を示す斜視図である。It is a perspective view which shows the LED lighting apparatus (curved plate shape) of the other Example of this invention. 本発明の他の実施例のLED照明装置(図5にスリット追加)を示す斜視図である。It is a perspective view which shows the LED illuminating device (slit addition to FIG. 5) of the other Example of this invention. 本発明の他の実施例のLED照明装置における要部拡大断面図である。It is a principal part expanded sectional view in the LED lighting apparatus of the other Example of this invention.

符号の説明Explanation of symbols

10…LED照明装置
12…LED
14…基板本体
16…反射面
18…導電回路
20…透明樹脂
22…放熱板
24…接着剤
26…開孔
28…凹部
30…外縁部
32…応力吸収部
32a,32d…スリット
32b,32c…溝
34…フランジ
36…ハンダ
38…レンズ部
L…発光領域
10 ... LED lighting device 12 ... LED
DESCRIPTION OF SYMBOLS 14 ... Board | substrate body 16 ... Reflective surface 18 ... Conductive circuit 20 ... Transparent resin 22 ... Heat sink 24 ... Adhesive 26 ... Opening 28 ... Concave 30 ... Outer edge part 32 ... Stress absorption part 32a, 32d ... Slit 32b, 32c ... Groove 34 ... Flange 36 ... Solder 38 ... Lens part L ... Light emitting area

Claims (4)

熱可塑性の耐熱フィルムを所定の三次元的形状に成形した基板本体と、前記基板本体の所定位置に取り付けられた複数個の表面実装型のLEDと、前記基板本体の表面に設けられ、前記LEDの発する光を反射する反射面と、前記基板本体の裏面に設けられ、前記LEDを外部回路に接続して点灯させる導電回路とを備えたLED照明装置であって、
前記基板本体には、前記LED表面の発光領域と略同等の大きさの開孔が設けられており、
前記開孔と前記LED表面の発光領域とが一致するようにして前記基板本体裏面に前記LEDの表面側が固定されていることを特徴とするLED照明装置。
A substrate body formed by molding a thermoplastic heat-resistant film into a predetermined three-dimensional shape, a plurality of surface-mounted LEDs mounted at predetermined positions on the substrate body, and the LED provided on the surface of the substrate body; An LED illumination device comprising a reflective surface for reflecting the light emitted from and a conductive circuit that is provided on the back surface of the substrate body and connects the LED to an external circuit for lighting.
The substrate body is provided with an opening having a size substantially equal to the light emitting area of the LED surface,
The LED lighting device, wherein the front surface side of the LED is fixed to the back surface of the substrate body so that the opening and the light emitting region of the LED surface coincide with each other.
前記耐熱フィルムが芳香族ポリイミドフィルムであることを特徴とする請求項1に記載のLED照明装置。   The LED lighting device according to claim 1, wherein the heat-resistant film is an aromatic polyimide film. 前記基板本体のLED実装部分に、反射効率を高めるため前記LEDの発光領域を囲繞する部分的な凹部が設けられていることを特徴とする請求項1または2に記載のLED照明装置。   3. The LED lighting device according to claim 1, wherein the LED mounting portion of the substrate body is provided with a partial recess surrounding the light emitting region of the LED in order to increase reflection efficiency. 前記基板本体の少なくとも一部にスリットや溝などの折り曲げ構造で構成された応力吸収部を設けたことを特徴とする請求項1乃至3のいずれかに記載のLED照明装置。
The LED lighting device according to claim 1, wherein a stress absorbing portion configured by a bent structure such as a slit or a groove is provided on at least a part of the substrate body.
JP2005180433A 2005-06-21 2005-06-21 LED lighting device Expired - Fee Related JP4469308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180433A JP4469308B2 (en) 2005-06-21 2005-06-21 LED lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180433A JP4469308B2 (en) 2005-06-21 2005-06-21 LED lighting device

Publications (2)

Publication Number Publication Date
JP2007005003A true JP2007005003A (en) 2007-01-11
JP4469308B2 JP4469308B2 (en) 2010-05-26

Family

ID=37690431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180433A Expired - Fee Related JP4469308B2 (en) 2005-06-21 2005-06-21 LED lighting device

Country Status (1)

Country Link
JP (1) JP4469308B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060113A (en) * 2007-08-30 2009-03-19 Osram Opto Semiconductors Gmbh Housing comprising housing underpart
EP2107858A2 (en) 2008-03-31 2009-10-07 Yamagata Promotional Organization for Industrial Technology Power supply apparatus for lighting device
JP2011222942A (en) * 2010-04-12 2011-11-04 Tyntek Corp Reflective light-emitting diode lamp
AT509676B1 (en) * 2010-04-08 2012-08-15 Ernst Mag Helldorff LIGHTING BODY WITH AT LEAST ONE LED CHIP
WO2013108431A1 (en) * 2012-01-17 2013-07-25 Jx日鉱日石金属株式会社 Copper-polyimide laminate, three-dimensional molding body, and method for producing three-dimensional molding body
JP2014232586A (en) * 2013-05-28 2014-12-11 株式会社アイテックシステム Light-emitting element substrate and lighting device using the same
US9373425B2 (en) 2011-03-30 2016-06-21 Jx Nippon Mining & Metals Corporation Copper alloy sheet with excellent heat dissipation and workability in repetitive bending

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417524U (en) * 1987-07-21 1989-01-27
JPH0511718A (en) * 1991-07-02 1993-01-22 Mitsubishi Cable Ind Ltd Light emitting device
JP2003151328A (en) * 2001-11-15 2003-05-23 Du Pont Toray Co Ltd Illumination reflecting device
JP2005136224A (en) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd Light-emitting diode illumination module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417524U (en) * 1987-07-21 1989-01-27
JPH0511718A (en) * 1991-07-02 1993-01-22 Mitsubishi Cable Ind Ltd Light emitting device
JP2003151328A (en) * 2001-11-15 2003-05-23 Du Pont Toray Co Ltd Illumination reflecting device
JP2005136224A (en) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd Light-emitting diode illumination module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060113A (en) * 2007-08-30 2009-03-19 Osram Opto Semiconductors Gmbh Housing comprising housing underpart
EP2107858A2 (en) 2008-03-31 2009-10-07 Yamagata Promotional Organization for Industrial Technology Power supply apparatus for lighting device
AT509676B1 (en) * 2010-04-08 2012-08-15 Ernst Mag Helldorff LIGHTING BODY WITH AT LEAST ONE LED CHIP
JP2011222942A (en) * 2010-04-12 2011-11-04 Tyntek Corp Reflective light-emitting diode lamp
US9373425B2 (en) 2011-03-30 2016-06-21 Jx Nippon Mining & Metals Corporation Copper alloy sheet with excellent heat dissipation and workability in repetitive bending
WO2013108431A1 (en) * 2012-01-17 2013-07-25 Jx日鉱日石金属株式会社 Copper-polyimide laminate, three-dimensional molding body, and method for producing three-dimensional molding body
JP2013146870A (en) * 2012-01-17 2013-08-01 Jx Nippon Mining & Metals Corp Copper-polyimide laminate, three-dimensional molding, and method of manufacturing three-dimensional molding
KR20140099533A (en) * 2012-01-17 2014-08-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper-polyimide laminate, three-dimensional molding body, and method for producing three-dimensional molding body
CN104010811A (en) * 2012-01-17 2014-08-27 Jx日矿日石金属株式会社 Copper-polyimide laminate, three-dimensional molding body, and method for producing three-dimensional molding body
KR101586599B1 (en) 2012-01-17 2016-01-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper-polyimide laminate, three-dimensional molding body, and method for producing three-dimensional molding body
JP2014232586A (en) * 2013-05-28 2014-12-11 株式会社アイテックシステム Light-emitting element substrate and lighting device using the same

Also Published As

Publication number Publication date
JP4469308B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP2005340184A (en) Led lighting apparatus
JP4943943B2 (en) Vehicle lamp using LED lighting device
JP4469308B2 (en) LED lighting device
TWI294672B (en) Flexible interconnect structures for electrical devices and light sources incorporating the same
KR101086548B1 (en) Led lamp module and fabrication method thereof
JP4880358B2 (en) Light source substrate and illumination device using the same
US20070291503A1 (en) Light-Emitting Diode Arrangement for a High-Power Ligth-Emitting Diode and Method for Producing a Light-Emitting Diode Arrangement
US20100149823A1 (en) Lamp unit, circuit board, and method of manufaturing circuit board
JP2010010659A (en) Substrate and lighting apparatus
JP2010153044A (en) Light source unit and luminaire
JP4127220B2 (en) Printed circuit board for LED mounting and manufacturing method thereof
WO2007126074A1 (en) Semiconductor light emitting module, device, and its manufacturing method
JP2009004129A (en) Substrate, and illumination device
JP2009054895A (en) Light-emitting element
TW201209340A (en) Illustrator with light emitting diode
JP2012256572A (en) Lighting system
JP2018508115A (en) Flexible circuit board assembly for LED lamp
JP2011129440A (en) Light source module and lighting device
JP2012146834A (en) Light emitting device and lighting device
JP4533058B2 (en) Reflector for lighting device
JP2015156324A (en) Vehicle lighting appliance
JP2016525792A (en) Method of manufacturing a printed circuit board assembly based on printed electronic device fabrication technology and printed circuit board assembly
JP2023525000A (en) Lighting device including support structure with improved thermal and optical properties
JP7297431B2 (en) Circuit board and vehicle lamp
JP2009194112A (en) Led module substrate and its manufacturing method, and led module using led module substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees