JP2007002728A - Windmill - Google Patents

Windmill Download PDF

Info

Publication number
JP2007002728A
JP2007002728A JP2005183149A JP2005183149A JP2007002728A JP 2007002728 A JP2007002728 A JP 2007002728A JP 2005183149 A JP2005183149 A JP 2005183149A JP 2005183149 A JP2005183149 A JP 2005183149A JP 2007002728 A JP2007002728 A JP 2007002728A
Authority
JP
Japan
Prior art keywords
receiving portion
wind receiving
wind
diameter end
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005183149A
Other languages
Japanese (ja)
Other versions
JP4736563B2 (en
Inventor
Atsushi Osada
篤 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005183149A priority Critical patent/JP4736563B2/en
Publication of JP2007002728A publication Critical patent/JP2007002728A/en
Application granted granted Critical
Publication of JP4736563B2 publication Critical patent/JP4736563B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a windmill capable of optimizing a wind receiving part and efficiently converting wind power into rotating energy, mainly in a paddle type windmill. <P>SOLUTION: In the paddle type windmill, the outer diameter end 1 of the wind receiving part 101 is positioned in the rotating direction and the inner diameter end 2 of the wind receiving part 101 is positioned in the direction reverse to the rotating direction, by defining a straight line connecting a midpoint 3 of the outer diameter end 1 of the wind receiving part 101 and the inner diameter end 2 of the wind receiving part 101 with a rotating shaft 4 as a reference. Thus, torque generated at the same wind speed can be increased when effects of an adjacent wind receiving part 6 is considered, and efficiency can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、風力発電や風速計などに用いられるパドル型の風車に関する。   The present invention relates to a paddle type windmill used for wind power generation, anemometers, and the like.

従来、この種の風車は、回転軸が垂直であり、自然風の風向に影響を受けない、また抗力型の風車として高風速時においても回転数が比較的低く安全であり、さらには構造が簡単であるということから、小型の発電機や風速計などと接続され、小型の風車として利用されていた(例えば、特許文献1参照)。   Conventionally, this type of windmill has a vertical axis of rotation and is not affected by the wind direction of natural wind, and as a drag type windmill, it has a relatively low rotational speed even at high wind speeds, and is safe. Since it is simple, it was connected to a small generator, an anemometer, etc. and used as a small windmill (see, for example, Patent Document 1).

以下、その風車について図6の側面図と図7の水平断面図を参照しながら説明する。   Hereinafter, the wind turbine will be described with reference to the side view of FIG. 6 and the horizontal sectional view of FIG.

図6の側面図、図7の水平断面図のように、カップ状の受風部101を支持部102で支持し、位相をずらして複数等間隔に配置される。前記受風部101は風を受ける向きによって受風面103と背面104とで抗力が異なり、その力の差により回転力を発生する仕組みとなっている。
実開平7−30377号公報(第1図)
As shown in the side view of FIG. 6 and the horizontal cross-sectional view of FIG. The wind receiving portion 101 has a structure in which the drag force differs between the wind receiving surface 103 and the back surface 104 depending on the direction of receiving wind, and a rotational force is generated by the difference in force.
Japanese Utility Model Publication No. 7-30377 (FIG. 1)

このような従来の風車では、構造の単純さという特徴のために多く使われているが、受風部の最適化例は少なく、効率は重視されていなかった。   In such a conventional windmill, it is often used due to the feature of the simplicity of the structure, but there are few examples of optimization of the wind receiving portion, and efficiency is not emphasized.

本発明は、このような従来の課題を解決するものであり、構造の単純さという特徴は残したまま、受風部の最適化を行い、風力を効率的に回転エネルギに変えることのできる風車を提供することを目的としている。   The present invention solves such a conventional problem, and optimizes the wind receiving portion while maintaining the feature of simplicity of structure, and can efficiently convert wind power into rotational energy. The purpose is to provide.

本発明の風車は、パドル型風車の受風部水平断面において、受風部外径端と受風部内径端の中点と回転軸とを結ぶ直線を基準として、前記受風部外径端が回転方向に、前記受風部内径端が回転方向と逆方向に位置することを特徴としたものである。   The wind turbine according to the present invention has, in the horizontal section of the wind receiving portion of the paddle type wind turbine, the wind receiving portion outer diameter end with reference to a straight line connecting the wind receiving portion outer diameter end, the midpoint of the wind receiving portion inner diameter end, and the rotation axis. Is located in the rotational direction, and the inner diameter end of the wind receiving portion is located in the direction opposite to the rotational direction.

この手段により、隣接受風部を考慮した場合に、受風面において風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   With this means, when the adjacent wind receiving portion is taken into consideration, the efficiency of capturing the wind on the wind receiving surface is improved, the torque generated at the same wind speed can be increased, and the efficiency of the wind turbine can be improved.

また他の手段は、受風部外径端と受風部内径端とを結ぶ直線が、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線と15°から35°の取付け角度をなしていることを特徴としたものである。   Another means is that a straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is a straight line connecting the wind receiving portion outer diameter end, the midpoint of the wind receiving portion inner diameter end, and the rotation axis; The mounting angle is between 35 ° and 35 °.

この手段により、受風部外径端と受風部内径端とを結ぶ直線が、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線と25°としたときの、隣接受風部を考慮した場合に最もトルクを大きく取れる角度を中心とした付近の取付け角度にすることにより、最良の発生トルクを得ることができ、効率向上が可能となる。   By this means, a straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is 25 ° with a straight line connecting the wind receiving portion outer diameter end, the midpoint of the wind receiving portion inner diameter end, and the rotation axis. In this case, when the adjacent wind receiving portion is taken into consideration, the best generated torque can be obtained and the efficiency can be improved by setting the mounting angle near the angle at which the maximum torque can be obtained.

また他の手段は、パドル型風車の受風部水平断面において、受風部外径端と受風部内径端とを結ぶ直線からの最大距離位置の距離が、受風部外径端と受風部内径端との距離の55%以上65%以下であることを特徴としたものである。   Another means is that in the horizontal section of the wind receiving portion of the paddle type wind turbine, the distance of the maximum distance position from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is the same as the wind receiving portion outer diameter end. It is characterized by being 55% or more and 65% or less of the distance from the inner diameter end of the wind part.

この手段により、受風部外径端と受風部内径端とを結ぶ直線からの最大距離位置の距離が、受風部外径端と受風部内径端との距離の60%としたときの、最もトルクを大きく取れる比を中心とした付近の比にすることにより、受風面から風を受けた場合の抗力が大きく、背面から風を受けた場合の抗力が小さくなり、これら抗力の差を大きくすることができるので、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, when the distance of the maximum distance position from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is 60% of the distance between the wind receiving portion outer diameter end and the wind receiving portion inner diameter end. By setting the ratio in the vicinity of the ratio that can obtain the largest torque, the drag when receiving wind from the wind receiving surface is large, and the drag when receiving wind from the back surface is small. Since the difference can be increased, the torque generated at the same wind speed can be increased, and the efficiency of the wind turbine can be improved.

また他の手段は、パドル型風車の受風部水平断面が楕円弧であることを特徴としたものである。   The other means is characterized in that the horizontal section of the wind receiving portion of the paddle type wind turbine is an elliptical arc.

この手段により、大きい発生トルクを得ながら、構造の単純さという特徴を保つことができ、高効率かつ、製作しやすい風車の提供が可能となる。   By this means, it is possible to maintain the characteristics of the simplicity of the structure while obtaining a large generated torque, and it is possible to provide a wind turbine that is highly efficient and easy to manufacture.

また他の手段は、回転軸方向における全ての受風部水平断面形状が同一であることを特徴としたものである。   Further, the other means is characterized in that all wind receiving portion horizontal cross-sectional shapes in the rotation axis direction are the same.

この手段により、風車設置面積は変化させないまま、受風面積を大きくすることができ、風車の持つ出力を向上させることが可能となる。   By this means, the wind receiving area can be increased without changing the wind turbine installation area, and the output of the wind turbine can be improved.

また他の手段は、受風部上部が回転方向と逆方向にずれるように、回転軸を基準に受風部全体が捻られたことを特徴としたものである。   Another means is characterized in that the entire wind receiving portion is twisted with reference to the rotation axis so that the upper portion of the wind receiving portion is displaced in the direction opposite to the rotation direction.

この手段により、静止時に、風上に対して、受風面側が前傾となり上向きの力を発生し、背面側が後傾となり下向きの力を発生するが、上向きの力を発生する受風面の抗力が大きいことより、全体として風車に浮力がかかり、回転摩擦が小さくなり、風車が起動しやすくなり、低風速から起動させることが可能となる。   By this means, the wind receiving surface side tilts forward and generates an upward force with respect to the windward when stationary, and the rear side tilts backward and generates a downward force, but the wind receiving surface that generates an upward force is generated. Since the drag is large, buoyancy is applied to the windmill as a whole, rotational friction is reduced, the windmill is easily started, and it is possible to start from a low wind speed.

また他の手段は、受風部全体が、回転軸を基準に一定の割合で捻られたことを特徴としたものである。   Another means is characterized in that the entire wind receiving portion is twisted at a constant rate with respect to the rotation axis.

この手段により、受風部枚数が少ない場合には位相により発生トルクに差ができるが、捻り、受風部を周方向に広範囲にちらすことにより、位相によらずに安定したトルクを発生することが可能となる。   This means that when the number of wind receiving parts is small, the generated torque can vary depending on the phase, but by twisting and separating the wind receiving parts over a wide range in the circumferential direction, stable torque can be generated regardless of the phase. Is possible.

また他の手段は、受風部内に、受風部軸方向に仕切る回転軸垂直面とほぼ平行な仕切り板を設けたことを特徴としたものである。   Another means is characterized in that a partition plate is provided in the wind receiving portion so as to be substantially parallel to the rotation axis vertical plane that partitions in the wind receiving portion axial direction.

この手段により、特にねじった場合に上方もしくは下方に流れの偏りができ、発生トルクが回転軸方向にばらつく場合があるが、受風部内に仕切りを設けることにより、トルクのばらつきを抑えることが可能となる。   This means that the flow can be biased upward or downward particularly when twisted, and the generated torque may vary in the direction of the rotation axis. However, by providing a partition in the wind receiving part, it is possible to suppress torque variations. It becomes.

また他の手段は、仕切り板の接続箇所と同一箇所に接続部を持った受風部を支持する支持部を備えたことを特徴としたものである。   Another means is characterized in that a support portion for supporting a wind receiving portion having a connection portion at the same location as the connection location of the partition plate is provided.

この手段により、支持部は受風部表面の一部だけを支えるのではなく、受風部内の広い範囲で受風部に接する仕切りも支えることとなり、風車支持の剛性を大きくすることが可能となる。   By this means, the support part does not support only a part of the surface of the wind receiving part, but also supports a partition in contact with the wind receiving part in a wide range within the wind receiving part, and it is possible to increase the rigidity of the wind turbine support. Become.

本発明によれば、受風部の最適化を行い、風力を効率的に回転エネルギに変えることのできる風車を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a windmill which can optimize a wind receiving part and can change a wind force into rotational energy efficiently can be provided.

本発明の請求項1記載の発明は、パドル型風車の受風部水平断面において、受風部外径端と受風部内径端の中点と回転軸とを結ぶ直線を基準として、前記受風部外径端が回転方向に、前記受風部内径端が回転方向と逆方向に位置することを特徴としたものである。特に受風部枚数が多い場合に、風上側の投影で受風部内径側が上流側の隣接受風部により隠されるが、回転軸方向に対して、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線を外側に凹部が向くようにずらすことにより、受風面において風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   In the first aspect of the present invention, in the horizontal section of the wind receiving portion of the paddle type wind turbine, the receiving portion is defined with reference to a straight line connecting the outer diameter end of the wind receiving portion, the midpoint of the wind receiving portion inner diameter end, and the rotation axis. The wind portion outer diameter end is positioned in the rotation direction, and the wind receiving portion inner diameter end is positioned in the direction opposite to the rotation direction. In particular, when the number of wind receiving portions is large, the wind receiving portion inner diameter side is hidden by the upstream adjacent wind receiving portion in the windward projection, but the wind receiving portion outer diameter end and the wind receiving direction with respect to the rotation axis direction. By shifting the straight line connecting the midpoint of the inner diameter end of the section and the rotation axis so that the recess faces outward, the efficiency of capturing the wind at the wind receiving surface is improved, and the generated torque at the same wind speed can be increased, The efficiency of the windmill can be improved.

また、請求項2記載の発明は、受風部外径端と受風部内径端とを結ぶ直線が、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線と15°から35°の取付け角度をなしていることを特徴としたものであり、受風部外径端と受風部内径端とを結ぶ直線が、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線と25°としたときの、最もトルクを大きく取れる角度を中心とした付近の取付け角度にすることにより、最良の発生トルクを得ることができ、効率向上が可能となる。   According to a second aspect of the present invention, a straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is formed by connecting the wind receiving portion outer diameter end, the midpoint of the wind receiving portion inner diameter end, and the rotation shaft. And a straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end with the wind receiving portion outer diameter end. The best generated torque can be obtained by setting the mounting angle near the angle at which the maximum torque can be obtained when the straight line connecting the midpoint of the inner diameter end of the wind receiving portion and the rotation axis is 25 °. And the efficiency can be improved.

また、請求項3記載の発明は、パドル型風車の受風部水平断面において、受風部外径端と受風部内径端とを結ぶ直線からの最大距離位置の距離が、受風部外径端と受風部内径端との距離の55%倍よりも大きく65%よりも小さいことを特徴としたものである。受風部外径端と受風部内径端とを結ぶ直線からの最大距離位置の距離が、受風部外径端と受風部内径端との距離の60%としたときの、最もトルクを大きく取れる比を中心とした付近の比にすることにより、受風面から風を受けた場合の抗力が大きく、背面から風を受けた場合の抗力が小さくなり、これら抗力の差を大きくすることができるので、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   According to a third aspect of the present invention, in the horizontal section of the wind receiving portion of the paddle type wind turbine, the distance of the maximum distance position from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is outside the wind receiving portion. This is characterized in that it is larger than 55% and smaller than 65% of the distance between the radial end and the wind receiving portion inner diameter end. Maximum torque when the distance of the maximum distance from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is 60% of the distance between the wind receiving portion outer diameter end and the wind receiving portion inner diameter end. By making the ratio in the vicinity of the ratio that can take large, the drag when receiving wind from the wind receiving surface is large, the drag when receiving wind from the back surface is small, and the difference between these drags is increased. Therefore, the torque generated at the same wind speed can be increased, and the efficiency of the wind turbine can be improved.

また、請求項4記載の発明は、パドル型風車の受風部水平断面において、受風部外径端と受風部内径端とを結ぶ直線からの最大距離が、受風部外径端と受風部内径端との距離の55%よりも大きく65%よりも小さいかつ、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線を外側に凹部が向くようにずらすことを特徴としたものであり、受風部の取付けをずらし隣接する受風部の影響を吸収し、かつ受風部単枚でも効率的な断面形状にすることで、より多くの発生トルクを得ることができる。   In the invention of claim 4, in the horizontal section of the wind receiving portion of the paddle type wind turbine, the maximum distance from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is the wind receiving portion outer diameter end. A recess is formed on the outer side of a straight line connecting the outer diameter end of the wind receiving portion, the midpoint of the inner diameter end of the wind receiving portion, and the rotation axis, which is greater than 55% and less than 65% of the distance to the wind receiving portion inner diameter end. It is characterized by shifting it so that it is facing more and more, by shifting the installation of the wind receiving part to absorb the influence of the adjacent wind receiving part and making the cross section efficient even with a single wind receiving part The generated torque can be obtained.

また、請求項5記載の発明は、パドル型風車の受風部水平断面が楕円弧であることを特徴としたものであり、大きい発生トルクを得ながら、構造と設計の単純さという特徴を保つことができ、高効率かつ、製作しやすい風車を提供できる。   The invention described in claim 5 is characterized in that the horizontal section of the wind receiving portion of the paddle type wind turbine is an elliptical arc, and maintains the characteristics of simplicity of structure and design while obtaining a large generated torque. It is possible to provide a wind turbine that is highly efficient and easy to manufacture.

また、請求項6記載の発明は、回転軸方向における全ての受風部水平断面形状が同一であることを特徴としたものであり、水平断面形状を保ったまま回転軸方向に引き伸ばすことにより、風車設置面積は変化させないまま、受風面積がおおきくなり、風車の持つ出力を簡単に向上させることができる。   The invention according to claim 6 is characterized in that all the wind receiving portion horizontal cross-sectional shapes in the rotation axis direction are the same, and by extending in the rotation axis direction while maintaining the horizontal cross-sectional shape, The wind receiving area is increased without changing the wind turbine installation area, and the output of the wind turbine can be easily improved.

また、請求項7記載の発明は、受風部上部が回転方向と逆方向にずれるように、回転軸を基準に受風部全体が捻られたことを特徴としたものであり、静止時に、風上に対して、受風面側が前傾となり上向きの力を発生し、背面側が後傾となり下向きの力を発生するが、上向きの力を発生する受風面の抗力が大きいことより、全体として風車に浮力がかかり、回転摩擦が小さくなることから、風車を低風速から起動させることができる。   The invention according to claim 7 is characterized in that the entire wind receiving portion is twisted with reference to the rotation axis so that the upper portion of the wind receiving portion is shifted in the direction opposite to the rotation direction. The wind receiving surface side tilts forward and generates an upward force with respect to the windward side, and the rear side tilts backward and generates a downward force, but since the drag force of the wind receiving surface that generates the upward force is large, the overall As a result, buoyancy is applied to the windmill and rotational friction is reduced, so that the windmill can be started from a low wind speed.

また、請求項8記載の発明は、受風部全体が、回転軸を基準に一定の割合で捻られたことを特徴としたものであり、受風部枚数が少ない場合には位相により発生トルクに差ができるが、捻り、受風部を周方向に広範囲にちらすことにより、位相によらずに安定したトルクを発生することができる。   Further, the invention described in claim 8 is characterized in that the entire wind receiving portion is twisted at a constant rate with respect to the rotation axis. When the number of wind receiving portions is small, the torque generated by the phase However, it is possible to generate a stable torque regardless of the phase by twisting and separating the wind receiving portion in a wide range in the circumferential direction.

また、請求項9記載の発明は、受風部内に、回転軸方向に仕切る回転軸垂直面とほぼ平行な仕切り板を設けたことを特徴としたものであり、特にねじった場合に上方もしくは下方に流れの偏りができ、発生トルクが回転軸方向にばらつく場合があるが、受風部内に仕切りを設けることにより、トルクのばらつきを抑えることができる。   The invention described in claim 9 is characterized in that a partition plate is provided in the wind receiving portion that is substantially parallel to the vertical surface of the rotary shaft that is partitioned in the direction of the rotary shaft. In some cases, the flow may be biased and the generated torque may vary in the direction of the rotation axis. However, by providing a partition in the wind receiving portion, variations in torque can be suppressed.

また、請求項10記載の発明は、仕切り板の接続箇所と同一箇所に接続部を持った受風部を支持する支持部を備えたことを特徴としたものであり、支持部は受風部表面の一部だけを支えるのではなく、受風部内の広い範囲で受風部に接する仕切りも支えることとなり、風車支持の剛性を大きくすることができる。   The invention according to claim 10 is characterized by comprising a support portion for supporting the wind receiving portion having a connection portion at the same location as the connection portion of the partition plate, and the support portion is the wind receiving portion. Instead of supporting only a part of the surface, the partition that contacts the wind receiving portion is also supported in a wide range within the wind receiving portion, and the rigidity of the wind turbine support can be increased.

(実施の形態1)
従来例と同一部分は同一番号を付し、詳細な説明は省略する。
(Embodiment 1)
The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.

図1は実施の形態1の平面断面図であって、受風面103と背面104を備えた受風部101が支持部102に固定され、支持部102は回転軸4に取付けられたパドル型風車である。ここで、受風部101は、受風部外径端1と受風部内径端2の中点3と回転軸4とを結ぶ直線を基準として、受風部外径端1は回転方向に、受風部内径端2は回転方向と逆方向に位置している。なお、受風部外径端1と受風部内径端2とを結ぶ直線が、中点3と回転軸4とを結ぶ直線と25°の取付け角度5をなして、受風部101は固定されている。   FIG. 1 is a plan sectional view of the first embodiment. A wind receiving portion 101 having a wind receiving surface 103 and a back surface 104 is fixed to a support portion 102, and the support portion 102 is a paddle type attached to a rotating shaft 4. It is a windmill. Here, the wind receiving portion 101 has the wind receiving portion outer diameter end 1 in the rotational direction with reference to a straight line connecting the midpoint 3 of the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 and the rotation shaft 4. The wind receiving portion inner diameter end 2 is located in the direction opposite to the rotation direction. The straight line connecting the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 forms an attachment angle 5 of 25 ° with the straight line connecting the midpoint 3 and the rotating shaft 4, and the wind receiving portion 101 is fixed. Has been.

上記構成において、受風部101と支持部102の取付け方法として、受風部外径端1と受風部内径端2とを結ぶ直線が回転軸4を通るように位置する方法が考えられるが、特に風車が3枚以上の受風部を有する場合には、風上側からの投影において上流側の隣接受風部6の影に受風部101の一部が隠れるため、風を効率的に受けることができなくなる。しかし、受風部外径端1と受風部内径端2の中点3と回転軸4とを結ぶ直線を基準として、受風部外径端1は回転方向に、受風部内径端2は回転方向と逆方向に位置することによって、受風部外径端1と受風部内径端2を結ぶ直線が風方向と垂直となり風圧を最も受ける位相をずらし隣接受風部6の影を避けることにより、結果として風車全体で風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、効率向上が可能となる。   In the above configuration, as a method of attaching the wind receiving portion 101 and the support portion 102, a method in which a straight line connecting the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 passes through the rotary shaft 4 is conceivable. In particular, when the wind turbine has three or more wind receiving portions, part of the wind receiving portion 101 is hidden behind the upstream adjacent wind receiving portion 6 in the projection from the windward side, so that the wind can be efficiently It becomes impossible to receive. However, with reference to the straight line connecting the midpoint 3 of the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 and the rotating shaft 4, the wind receiving portion outer diameter end 1 is in the rotational direction, and the wind receiving portion inner diameter end 2 is in the rotational direction. Is positioned in the direction opposite to the rotation direction, the straight line connecting the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 is perpendicular to the wind direction and shifts the phase most receiving the wind pressure, thereby shadowing the adjacent wind receiving portion 6. By avoiding this, as a result, the efficiency of capturing the wind in the entire wind turbine is improved, the torque generated at the same wind speed can be increased, and the efficiency can be improved.

なお、実施の形態1では、風車平面断面図の一部として受風部101を2枚しか示していないが、風車全体では2枚以上の受風部が周方向に等間隔に配置される。また、受風部外径端1と受風部内径端2とを結ぶ直線が、中点3と回転軸4とを結ぶ直線と25°の取付け角度をなしているが、中点3と回転軸4とを結ぶ直線を基準として、受風部外径端1は回転方向に、受風部内径端2は回転方向と逆方向に位置するだけでも発生トルク増加の効果は得られる。このとき図2は取付け角度と発生トルクの関係図であり、取付け角度25°付近に極大値をもち、15°から35°付近の取付け角度において、特に大きな効果が得られる。   In the first embodiment, only two wind receiving portions 101 are shown as a part of the cross-sectional plan view of the windmill, but two or more wind receiving portions are arranged at equal intervals in the circumferential direction in the entire windmill. In addition, the straight line connecting the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 forms an attachment angle of 25 ° with the straight line connecting the midpoint 3 and the rotation shaft 4, but the midpoint 3 and the rotation The effect of increasing the generated torque can be obtained even if the wind receiving portion outer diameter end 1 is positioned in the rotational direction and the wind receiving portion inner diameter end 2 is positioned in the direction opposite to the rotation direction with reference to the straight line connecting the shaft 4. At this time, FIG. 2 is a diagram showing the relationship between the mounting angle and the generated torque, and has a maximum value near the mounting angle of 25 °, and a particularly great effect is obtained at the mounting angle of 15 ° to 35 °.

(実施の形態2)
従来例、または実施の形態1と同一部分は同一番号を付し、詳細な説明は省略する。
(Embodiment 2)
The same parts as those in the conventional example or the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3は実施の形態2の平面断面図であって、受風面103と背面104を備えた受風部101が支持部102に固定され、支持部102は回転軸4に取付けられたパドル型風車である。ここで、受風部101は、受風部外径端1と受風部内径端2とを結ぶ直線からの最大距離位置7の距離8が、受風部外径端1と受風部内径端2との距離9の60%である楕円弧で構成されたものである。   FIG. 3 is a plan sectional view of the second embodiment. A wind receiving portion 101 having a wind receiving surface 103 and a back surface 104 is fixed to a support portion 102, and the support portion 102 is a paddle type attached to the rotary shaft 4. It is a windmill. Here, the wind receiving portion 101 has a distance 8 of the maximum distance position 7 from the straight line connecting the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter end 2 so that the wind receiving portion outer diameter end 1 and the wind receiving portion inner diameter are the same. It is composed of an elliptical arc that is 60% of the distance 9 from the end 2.

上記構成において、受風面103側から風を受けた抗力と、180度位相のずれた場合の背面104から風を受けた抗力との差が大きくなり、特に距離8が、距離9の約60%としたときに極大となり、風車全体として同風速時の発生トルクを大きくすることができ、効率向上が可能となる。   In the above configuration, the difference between the drag received by the wind from the wind receiving surface 103 side and the drag received by the wind from the back surface 104 when the phase is shifted by 180 degrees is large. In particular, the distance 8 is about 60 of the distance 9. %, The generated torque at the same wind speed can be increased as a whole wind turbine, and the efficiency can be improved.

なお、実施の形態2では、風車平面断面図の一部として受風部を1枚しか示していないが、風車全体では2枚以上の受風部が周方向に等間隔に配置される。また、距離8は距離9の発生トルクが極大となる60%としているが、55%以上65%以下の範囲でも発生トルク増加の効果は得られ、受風部101を楕円弧としているが、受風部外径端1と最大距離位置7、受風部内径端2と最大距離位置7を結ぶ直線で構成された形状などの、受風面103が風に対して凹形状になっている形状で構成された受風部101でも、距離8と距離9の比を55%より大きく65%よりも小さい範囲にすることにより発生トルクの増大効果が得られる。さらに、実施の形態1の取付け角度と併用することにより、発生トルクをさらに大きくすることができ、効率向上が可能となる。   In the second embodiment, only one wind receiving portion is shown as a part of the cross-sectional plan view of the windmill, but two or more wind receiving portions are arranged at equal intervals in the circumferential direction in the entire windmill. The distance 8 is 60% at which the generated torque at the distance 9 is maximized. However, the effect of increasing the generated torque is obtained even in the range of 55% to 65%, and the wind receiving portion 101 is an elliptical arc. In a shape in which the wind receiving surface 103 is concave with respect to the wind, such as a shape constituted by a straight line connecting the outer diameter end 1 and the maximum distance position 7 and the wind receiving portion inner diameter end 2 and the maximum distance position 7. Even in the constructed wind receiving portion 101, the effect of increasing the generated torque can be obtained by setting the ratio of the distance 8 to the distance 9 in a range larger than 55% and smaller than 65%. Furthermore, by using together with the mounting angle of the first embodiment, the generated torque can be further increased and the efficiency can be improved.

(実施の形態3)
従来例、または実施の形態1、2と同一部分は同一番号を付し、詳細な説明は省略する。
(Embodiment 3)
The same parts as those in the conventional example or the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図4は実施の形態3の斜視図であって、受風面103と背面104を備え、水平断面形状が回転軸4に垂直な任意の断面で同一形状であり、下端位置を基準に同一形状を保ったまま受風部高さの中央あたりまで垂直にのび、上部では、位相をずらすように構成された受風部101が支持部102に固定され、支持部102は回転軸4に取付けられたパドル型風車である。   FIG. 4 is a perspective view of the third embodiment, which includes a wind receiving surface 103 and a back surface 104, and the horizontal cross-sectional shape is the same in any cross section perpendicular to the rotating shaft 4, and the same shape with respect to the lower end position. The wind receiving portion 101 is vertically fixed to the center of the height of the wind receiving portion while maintaining the above, and at the upper portion, the wind receiving portion 101 configured to shift the phase is fixed to the support portion 102, and the support portion 102 is attached to the rotating shaft 4. It is a paddle type windmill.

上記構成において、水平断面形状を同一とすることにより、風車設置面積は変化させないまま、最適な断面形状で受風面積を大きくし、風車の持つ出力を簡単に向上させることができる。また、受風部上部が回転方向と逆方向にずれるように受風部101を捻ることにより、静止時には、受風面103側が風上に対して前傾となり上向きの力を発生し、背面104側が後傾となり下向きの力を発生し、全体として抗力が大きい受風面103の上向きの力が浮力となり、回転摩擦が小さくなることから、風車を低風速から起動させることが可能となる。このとき、捻りの程度は、受風部の傾きにより風を受けて発生する効力が風車を上方に持ち上げ、かつ、回転力としても風を確実に受けられるような、受風部の一部が地面に対して45°以上90°未満の角度であることが望ましい。   In the above configuration, by making the horizontal cross-sectional shape the same, it is possible to increase the wind receiving area with the optimal cross-sectional shape without changing the wind turbine installation area, and to easily improve the output of the wind turbine. Further, by twisting the wind receiving portion 101 so that the upper portion of the wind receiving portion is deviated in the direction opposite to the rotation direction, when stationary, the wind receiving surface 103 side is inclined forward with respect to the windward and generates an upward force, and the rear surface 104 Since the side is inclined backward to generate a downward force, the upward force of the wind receiving surface 103 having a large drag as a whole becomes the buoyancy, and the rotational friction is reduced, so that the windmill can be started from a low wind speed. At this time, the degree of twisting is such that the effect of receiving wind due to the inclination of the wind receiving part lifts the wind turbine upwards, and the wind receiving part can receive the wind reliably as a rotational force. It is desirable that the angle is 45 ° or more and less than 90 ° with respect to the ground.

なお、実施の形態3では、上部のみを捻っているが、上部が回転方向と逆方向にずれていれば、下方のみ、もしくは、全体的に回転方向に捻られているが、途中で曲率が変わったりしてもよい。また、取付け、水平断面形状は任意であるが、実施の形態1の取付け角度、実施の形態2の断面形状で構成することにより、より高性能な風車の設計が可能となる。   In the third embodiment, only the upper part is twisted, but if the upper part is shifted in the direction opposite to the rotation direction, only the lower part or the whole is twisted in the rotation direction. It may change. Further, the mounting and the horizontal cross-sectional shape are arbitrary, but by configuring with the mounting angle of the first embodiment and the cross-sectional shape of the second embodiment, a higher-performance wind turbine can be designed.

(実施の形態4)
従来例、または実施の形態1〜3と同一部分は同一番号を付し、詳細な説明は省略する。
(Embodiment 4)
The same parts as those in the conventional example or the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図5は実施の形態4の斜視図であって、受風面103と背面104と、受風部101内を仕切る回転軸4垂直面とほぼ平行な仕切り板10を備え、水平断面形状が回転軸4に垂直な任意の断面で同一形状であり、下端位置を基準に同一形状を保ったまま、回転方向と逆方向に一定の角度で位相をずらすように捻られた受風部101が仕切り板10と同じ接続部11において支持部102に固定され、支持部102は回転軸4に取付けられたパドル型風車である。   FIG. 5 is a perspective view of the fourth embodiment, which includes a wind receiving surface 103, a back surface 104, and a partition plate 10 that is substantially parallel to the vertical surface of the rotating shaft 4 that partitions the inside of the wind receiving portion 101, and the horizontal sectional shape is rotated. The wind receiving part 101 is the same shape in an arbitrary cross section perpendicular to the shaft 4 and is twisted so as to shift the phase by a certain angle in the direction opposite to the rotation direction while maintaining the same shape with respect to the lower end position. The paddle type windmill is fixed to the support portion 102 at the same connection portion 11 as the plate 10, and the support portion 102 is attached to the rotating shaft 4.

上記構成において、回転軸4を基準に、軸方向位置と捻り角度の割合が一定であるような、一定の割合で捻り、受風部101を周方向の広範囲にちらすことにより、位相によらない安定したトルクを発生することができる。また、受風部101内に、回転軸方向に仕切る回転軸垂直面とほぼ平行な仕切り板10を設けることにより、ねじった場合の上方もしくは下方の流れの偏りを区分けすることで抑え、支持部102を仕切り板10と同一箇所で受風部101との接続部11を持せることにより、受風部101表面の一部だけを支えるのではなく、受風部101内の広い範囲で受風部に接する仕切りも支えることとなり、風車支持の剛性を大きくすることができる。このとき、一定の割合の捻りとは、受風部の傾きにより風を受けて発生する効力が風車を上方に持ち上げ、かつ、回転力としても風を確実に受けられるような、受風部の上端から下端までの全ての箇所が地面に対して45°以上90°未満の一定角度であることが望ましい。   In the above configuration, the rotation position is not dependent on the phase by twisting at a constant rate such that the ratio between the axial position and the twist angle is constant with respect to the rotating shaft 4 and separating the wind receiving portion 101 over a wide range in the circumferential direction. A stable torque can be generated. In addition, by providing a partition plate 10 in the wind receiving portion 101 that is substantially parallel to the rotation axis vertical plane that partitions in the direction of the rotation axis, it is possible to suppress the deviation of the upper or lower flow when twisted, and to support the support portion. By having the connection part 11 with the wind receiving part 101 at the same location as the partition plate 10, the wind receiving part 101 does not support only a part of the surface of the wind receiving part 101 but receives air in a wide range within the wind receiving part 101. The partition in contact with the part is also supported, and the rigidity of the windmill support can be increased. At this time, a certain percentage of twisting means that the effect of receiving wind due to the inclination of the wind receiving part lifts the windmill upward and allows the wind to be reliably received as a rotational force. It is desirable that all points from the upper end to the lower end are at a constant angle of 45 ° or more and less than 90 ° with respect to the ground.

なお、実施の形態4では仕切り板10と支持部102とを同一箇所で接続しているが、同一箇所で接続しなくても、仕切り板のみの構成でも流れの偏り抑制の効果を得ることができ、また、取付け、水平断面形状は任意としているが、実施の形態1の取付け角度、実施の形態2の断名形状で構成することにより、より高性能な風車の設計が可能となる。   In the fourth embodiment, the partition plate 10 and the support portion 102 are connected at the same location. However, even if the partition plate is not connected at the same location, an effect of suppressing the flow bias can be obtained even with the configuration of only the partition plate. In addition, the mounting and the horizontal cross-sectional shape are arbitrary, but by configuring with the mounting angle of the first embodiment and the notable shape of the second embodiment, a higher-performance wind turbine can be designed.

本発明にかかる風車は、受風部の最適化により風力を効率的に回転エネルギに変え、高風車効率、低風速機動性の特徴を有し、特にパドル型風車として有用である。   The windmill according to the present invention efficiently converts wind power into rotational energy by optimizing the wind receiving portion, has characteristics of high windmill efficiency and low wind speed mobility, and is particularly useful as a paddle type windmill.

本発明の実施の形態1の平面断面図Plan sectional drawing of Embodiment 1 of this invention 取付け角度と発生トルクの関係図Relationship diagram of mounting angle and generated torque 本発明の実施の形態2の平面断面図Plan sectional drawing of Embodiment 2 of this invention 本発明の実施の形態3の斜視図The perspective view of Embodiment 3 of this invention 本発明の実施の形態4の斜視図The perspective view of Embodiment 4 of this invention 従来の風車を示す側面図Side view showing a conventional windmill 同上平面断面図Same as above

符号の説明Explanation of symbols

1 受風部外径端
2 受風部内径端
3 受風部外径端と内径端の中点
4 回転軸
5 取付け角度
6 隣接受風部
7 最大距離位置
8 最大距離位置の距離
9 受風部外径端と内径端の距離
10 仕切り板
11 接続部
101 受風部
102 支持部
103 受風面
104 背面
DESCRIPTION OF SYMBOLS 1 Wind receiving part outer diameter end 2 Wind receiving part inner diameter end 3 Wind receiving part outer diameter end and the midpoint of an inner diameter end 4 Rotating shaft 5 Mounting angle 6 Adjacent wind receiving part 7 Maximum distance position 8 Maximum distance position distance 9 Wind receiving Distance between outer diameter end and inner diameter end 10 Partition plate 11 Connection portion 101 Wind receiving portion 102 Support portion 103 Wind receiving surface 104 Back surface

Claims (10)

パドル型風車の受風部水平断面において、受風部外径端と受風部内径端の中点と回転軸とを結ぶ直線を基準として、前記受風部外径端が回転方向に、前記受風部内径端が回転方向と逆方向に位置することを特徴とした風車。 In the horizontal section of the wind receiving portion of the paddle type wind turbine, the outer diameter end of the wind receiving portion is in the rotational direction with reference to a straight line connecting the outer diameter end of the wind receiving portion, the midpoint of the inner diameter end of the wind receiving portion, and the rotation axis. A wind turbine characterized in that an inner diameter end of a wind receiving portion is located in a direction opposite to a rotation direction. 受風部外径端と受風部内径端とを結ぶ直線が、前記受風部外径端と前記受風部内径端の中点と回転軸とを結ぶ直線と15°から35°の取付け角度であることを特徴とした請求項1に記載の風車。 The straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is 15 ° to 35 ° with the straight line connecting the wind receiving portion outer diameter end, the midpoint of the wind receiving portion inner diameter end, and the rotation axis. The windmill according to claim 1, wherein the windmill is an angle. パドル型風車の受風部水平断面において、受風部外径端と受風部内径端とを結ぶ直線からの最大距離位置の距離が、受風部外径端と受風部内径端との距離の55%以上65%以下であることを特徴とした風車。 In the horizontal section of the wind receiving portion of the paddle type windmill, the distance of the maximum distance position from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is the distance between the wind receiving portion outer diameter end and the wind receiving portion inner diameter end. A windmill characterized by being 55% to 65% of the distance. パドル型風車の受風部水平断面において、受風部外径端と受風部内径端とを結ぶ直線からの最大距離が、受風部外径端と受風部内径端との距離の55%以上65%以下であることことを特徴とした請求項1または2に記載の風車。 In the horizontal section of the wind receiving portion of the paddle type wind turbine, the maximum distance from the straight line connecting the wind receiving portion outer diameter end and the wind receiving portion inner diameter end is 55 of the distance between the wind receiving portion outer diameter end and the wind receiving portion inner diameter end. The wind turbine according to claim 1, wherein the wind turbine is equal to or greater than% and equal to or less than 65%. パドル型風車の受風部水平断面が楕円弧であることを特徴とした請求項3または4に記載の風車。 The windmill according to claim 3 or 4, wherein the horizontal section of the wind receiving portion of the paddle type windmill is an elliptical arc. 軸方向における全ての受風部水平断面形状が同一であることを特徴とした請求項1から5いずれかに記載の風車。 The wind turbine according to any one of claims 1 to 5, wherein all wind receiving portions in the axial direction have the same horizontal cross-sectional shape. 受風部上部が回転方向と逆方向にずれるように、回転軸を基準に受風部全体が捻られたことを特徴とした請求6に記載の風車。 The wind turbine according to claim 6, wherein the entire wind receiving portion is twisted with respect to the rotation axis so that the upper portion of the wind receiving portion is shifted in a direction opposite to the rotation direction. 受風部全体が、回転回転軸を基準に一定の割合で捻られたことを特徴とした請求項7に記載の風車。 The wind turbine according to claim 7, wherein the entire wind receiving portion is twisted at a constant rate with respect to the rotational axis of rotation. 受風部内に、回転軸方向に仕切る回転軸垂直面とほぼ平行な仕切り板を設けたことを特徴とした請求項1から8いずれかに記載の風車。 The wind turbine according to any one of claims 1 to 8, wherein a partition plate substantially parallel to a rotation axis vertical plane that partitions in the direction of the rotation axis is provided in the wind receiving portion. 仕切り板の接続箇所と同一箇所に接続部を持った受風部を支持する支持部を備えたことを特徴とした請求項9に記載の風車。 The wind turbine according to claim 9, further comprising a support portion that supports a wind receiving portion having a connection portion at the same location as the connection portion of the partition plate.
JP2005183149A 2005-06-23 2005-06-23 Windmill Expired - Fee Related JP4736563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183149A JP4736563B2 (en) 2005-06-23 2005-06-23 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183149A JP4736563B2 (en) 2005-06-23 2005-06-23 Windmill

Publications (2)

Publication Number Publication Date
JP2007002728A true JP2007002728A (en) 2007-01-11
JP4736563B2 JP4736563B2 (en) 2011-07-27

Family

ID=37688577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183149A Expired - Fee Related JP4736563B2 (en) 2005-06-23 2005-06-23 Windmill

Country Status (1)

Country Link
JP (1) JP4736563B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092600A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Windmill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127293A (en) * 2003-10-22 2005-05-19 Kazuo Suzuki Squirrel-cage wind mill with guide vane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127293A (en) * 2003-10-22 2005-05-19 Kazuo Suzuki Squirrel-cage wind mill with guide vane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092600A (en) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd Windmill
JP4736674B2 (en) * 2005-09-28 2011-07-27 パナソニック株式会社 Windmill

Also Published As

Publication number Publication date
JP4736563B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP6113180B2 (en) Multi-type wind power generator
US9284944B2 (en) Vertical shaft type darius windmill
JP2011169292A (en) Vertical axis wind turbine with long blade
JP2003206849A (en) Straight wing type wind and water turbine
CA2919986A1 (en) Wind power generation tower provided with gyromill type wind turbine
JP4254773B2 (en) Vertical windmill
JP2007332871A (en) Impeller for windmill
JP2005248935A (en) Windmill for wind power generation
KR101652093B1 (en) Vertical Axis Bi-directional Wind Turbine
JP4736563B2 (en) Windmill
KR101300197B1 (en) Vertical shaft wind wheel
JP2010281297A (en) Wind power generator
JP5543385B2 (en) Floating wind power generator
JP2007107483A (en) Straight wing vertical axis windmill
JP4892716B1 (en) Wind power generator
JP4736573B2 (en) Windmill
KR101566501B1 (en) Downwind Windpower Generating Apparatus having Swept Blade Tip
JP6130680B2 (en) Vertical axis fluid power generator
JP5146973B1 (en) Water turbine
JP4736674B2 (en) Windmill
JP5757617B2 (en) Darius vertical axis wind turbine, Darius vertical axis wind turbine blades, and Darius vertical axis wind turbine rotor
JP2007107448A (en) Vertical type windmill
JP2008255977A (en) Wind power generator
JP6126287B1 (en) Vertical axis spiral turbine
JP2005105911A (en) Vertical shaft type wind power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees