JP2007092600A - Windmill - Google Patents

Windmill Download PDF

Info

Publication number
JP2007092600A
JP2007092600A JP2005281774A JP2005281774A JP2007092600A JP 2007092600 A JP2007092600 A JP 2007092600A JP 2005281774 A JP2005281774 A JP 2005281774A JP 2005281774 A JP2005281774 A JP 2005281774A JP 2007092600 A JP2007092600 A JP 2007092600A
Authority
JP
Japan
Prior art keywords
blade
wind
bach
type
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005281774A
Other languages
Japanese (ja)
Other versions
JP4736674B2 (en
Inventor
Kazuo Ogino
和郎 荻野
Atsushi Osada
篤 長田
Hironari Ogata
弘成 小方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005281774A priority Critical patent/JP4736674B2/en
Publication of JP2007092600A publication Critical patent/JP2007092600A/en
Application granted granted Critical
Publication of JP4736674B2 publication Critical patent/JP4736674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a windmill superior in efficiency and startability by optimizing a wind receiving part. <P>SOLUTION: In this windmill 1, a Bach type blade 4 having a wind receiving surface 2 and a back face 3 in a cross section of the windmill 1, is arranged in two sheets, and a wing type blade 5 is arranged by two sheets between these, and is arranged by four sheets in the same diameter. The Bach type blade 4 and the wing type blade 5 extend in the axial direction, and is formed as a structure installed on a central support plate 7 in the center and a central shaft 8. In starting when a wind speed is small, the startability is improved since the Bach type blade 4 operates, and the wing type blade 5 operates in high output when the wind speed is much. Force converted into torque from wind is increased, and generating torque in the wind speed can be increased, and the efficiency of the windmill can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、風力発電や風速計などに用いられる垂直型の風車に関する。   The present invention relates to a vertical windmill used for wind power generation, anemometers, and the like.

従来、この種の風車は、回転軸が垂直であり、自然風の風向に影響を受けない、また抗力型の風車として高風速時においても回転数が比較的低く安全であり、さらには構造が簡単であるということから、小型の発電機や風速計などと接続され、小型の風車として利用されていた(例えば、特許文献1参照)。   Conventionally, this type of windmill has a vertical axis of rotation and is not affected by the wind direction of natural wind, and as a drag type windmill, it has a relatively low rotational speed even at high wind speeds, and is safe. Since it is simple, it was connected to a small generator, an anemometer, etc. and used as a small windmill (see, for example, Patent Document 1).

以下、その風車について図6の側面図と図7の水平断面図を参照しながら説明する。   Hereinafter, the wind turbine will be described with reference to the side view of FIG. 6 and the horizontal sectional view of FIG.

図6の側面図、図7の水平断面図のように、カップ状の受風部101を支持部102で支持し、位相をずらして複数等間隔に配置される。前記受風部101は風を受ける向きによって受風面103と背面104とで抗力が異なり、その力の差により回転力を発生する仕組みとなっている。
実開平7−30377号公報(第1図)
As shown in the side view of FIG. 6 and the horizontal cross-sectional view of FIG. The wind receiving portion 101 has a structure in which the drag force differs between the wind receiving surface 103 and the back surface 104 depending on the direction of receiving wind, and a rotational force is generated by the difference in force.
Japanese Utility Model Publication No. 7-30377 (FIG. 1)

このような従来の風車では、構造の単純さという特徴のために多く使われているが、受風部の最適化例は少なく、効率は悪かった。また、低風速での起動性が課題となっている。   In such a conventional wind turbine, it is often used because of the feature of simplicity of structure, but there are few examples of optimization of the wind receiving portion, and the efficiency is bad. In addition, startability at low wind speed is a problem.

本発明は、このような従来の課題を解決するものであり、構造の単純さという特徴は残したまま、受風部の最適化を行い、風力を効率的に回転エネルギーに変えることのできる風車を提供し、また低風速から起動させることができることを目的としている。   The present invention solves such a conventional problem, and optimizes the wind receiving portion while maintaining the feature of simplicity of structure, and can efficiently convert wind power into rotational energy. It is intended to be able to start from low wind speed.

本発明の風車は、風車のブレードは、偶数枚で、受風部水平断面において、バッハ型と翼型とを同直径で軸に対し点対称に設置したことを特徴としたものである。   The windmill according to the present invention is characterized in that the number of blades of the windmill is an even number, and the Bach type and the blade type are installed with the same diameter and point-symmetric with respect to the axis in the horizontal section of the wind receiving part.

この手段により、風速の小さい起動時には、バッハ型が働き起動性が良くなり、風速の多い高出力時には翼型が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, the Bach type works at start-up with a low wind speed and the start-up performance is improved, and at high output with high wind speed, the airfoil works to improve the efficiency of capturing the wind, and the generated torque at the same wind speed can be increased. The efficiency of the windmill can be improved.

本発明の風車は、風車のブレードは、偶数枚で、受風部水平断面において、バッハ型と翼型を同直径で交互に設置したことを特徴としたものである。   The windmill according to the present invention is characterized in that the number of blades of the windmill is an even number, and the Bach type and the blade type are alternately installed with the same diameter in the horizontal section of the wind receiving part.

この手段により、風速の小さい起動時には、バッハ型が働き起動性が良くなり、風速の多い高出力時には翼型が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, the Bach type works at start-up with a low wind speed and the start-up performance is improved, and at high output with high wind speed, the airfoil works to improve the efficiency of capturing the wind, and the generated torque at the same wind speed can be increased. The efficiency of the windmill can be improved.

また他の手段は、風車のブレードは、偶数枚で、4枚以上とし、受風部水平断面において、同直径でバッハ型と翼型を設置したことを特徴としたものである。   Another means is that the number of wind turbine blades is an even number, four or more, and a Bach type and an airfoil type are installed with the same diameter in the horizontal section of the wind receiving portion.

この手段により、風速の小さい起動時には、バッハ型が働き起動性が良くなり、風速の多い高出力時には翼型が働き、風から回転力にする力が大きくなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, the Bach type works and improves the startability at low wind speed startup, and the wing type works at high output with high wind speed, increasing the force to convert the wind to the rotational force, and increasing the generated torque at the same wind speed. The efficiency of the windmill can be improved.

また他の手段は、受風部水平断面において、バッハ型と翼型の直径を変えて、側板に固定し配置したことを特徴としたものである。   Another means is characterized in that in the horizontal section of the wind receiving portion, the diameters of the Bach type and the wing type are changed and fixed to the side plate.

この手段により、風速の小さい起動時には、バッハ型が働き起動性が良くなり、風速の多い高出力時には翼型が働くが、翼型の方が、直径が大きいので、風から回転力に変える力がより大きくなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, the Bach type works and improves the startability at low wind speed startup, and the wing type works at high output with high wind speed, but the wing type has a larger diameter, so the force to change from wind to rotational force Thus, the generated torque at the same wind speed can be increased, and the efficiency of the wind turbine can be improved.

また他の手段は、受風部水平断面において、バッハ型より翼型の方が直径を大きくし、かつ側板に固定したことを特徴としたものである。   The other means is characterized in that, in the horizontal section of the wind receiving portion, the airfoil has a larger diameter than the Bach type and is fixed to the side plate.

この手段により、風速の小さい起動時には、バッハ型が働き起動性が良くなり、風速の多い高出力時にはプロペラ型が働くが、翼型の方が、直径が大きいので、風から回転力に変える力がより大きくなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, the Bach type works and improves the startability at low wind speed startup, and the propeller type works at high output with high wind speed, but the wing type has a larger diameter, so the force to change from wind to rotational force Thus, the generated torque at the same wind speed can be increased, and the efficiency of the wind turbine can be improved.

また他の手段は、ブレードの軸方向の両端面は、垂直ではなく、上部が、回転方向に前進したことを特徴としたものである。   Another means is characterized in that both end surfaces of the blade in the axial direction are not vertical but the upper portion has advanced in the rotational direction.

この手段により、ブレードが風をうけた時、ブレードには軸方向の上部に力が働き、自重の影響が小さく、回転力が増加し、風から回転力に変える力がより大きくなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   By this means, when the blade is subjected to wind, a force acts on the blade in the upper part in the axial direction, the influence of its own weight is small, the rotational force is increased, the force to change from wind to rotational force is increased, and the wind speed is the same. The torque generated at the time can be increased, and the efficiency of the windmill can be improved.

また他の手段は、ブレードの軸方向の両端面は、側板がなく、ブレードの軸方向の中央部に支え板を供えたことを特徴としたものである。   Another means is characterized in that both end faces in the axial direction of the blade have no side plate and a support plate is provided in the central portion in the axial direction of the blade.

この手段により、両端部に側板があるときよりも、構造が簡単で、安価に製造することができる。   By this means, the structure is simpler and less expensive than when there are side plates at both ends.

また他の手段は、ブレードの軸方向の側板は、ブレードの上端と、ブレードの軸方向の中央部に支え板を供えたことを特徴としたものである。   Another means is that the side plate in the axial direction of the blade is provided with a support plate at the upper end of the blade and the central portion in the axial direction of the blade.

この手段により、この手段により、両端部に側板があるときよりも、構造が簡単で、安価に製造することができる。   By this means, the structure is simpler and cheaper to manufacture than when there are side plates at both ends.

構造の単純さという特徴は残したまま、受風部の最適化を行い、風力を効率的に回転エネルギーに変えることのでき、また低風速に起動する風車を提供することができる。   The wind receiving portion can be optimized while maintaining the characteristics of the simplicity of the structure, and the wind power can be efficiently converted into rotational energy, and a wind turbine that starts at a low wind speed can be provided.

本発明は、垂直型風車のブレードは、偶数枚で、受風部水平断面において、バッハ型と翼型とを同直径で軸に対し点対称に設置した構成としたものであり、これにより、風速の小さい起動時には、サボニウス型が働き起動性が良くなり、風速の多い高出力時には翼型が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上を可能としたものである。   In the present invention, the blades of the vertical wind turbine are an even number, and in the horizontal section of the wind receiving portion, the Bach type and the wing type are configured to have the same diameter and point symmetry with respect to the axis. When starting at low wind speeds, the Savonius type works to improve startability, and at high output with high wind speeds, the airfoil functions to capture the wind, increasing the generated torque at the same wind speed and increasing the wind turbine efficiency. It is possible to improve.

(実施の形態1)
図1は本発明の実施の形態1の平面断面図である。
(Embodiment 1)
FIG. 1 is a plan sectional view of Embodiment 1 of the present invention.

図1において、風車1の断面が、受風面2と背面3を備えたバッハ型ブレード4が、2枚設置され、その間には、翼型ブレード5が、2枚づつ設置され、計6枚が同直径で点対称に設置されている。また、前記バッハ型ブレード4および翼型ブレード5は、軸方向に伸びており、上部の上側板6と中央部の中央支え板7に取り付けられており、中心の軸8に取り付けられている。   In FIG. 1, the cross section of the windmill 1 has two Bach blades 4 each having a wind receiving surface 2 and a back surface 3, and two blade blades 5 are installed between the blade blades 4 in total. Are installed with the same diameter and point symmetry. The Bach blade 4 and the wing blade 5 extend in the axial direction, are attached to the upper upper plate 6 and the central support plate 7 in the central portion, and are attached to the central shaft 8.

上記構成において前記風車1が風を受けると、前記風車1のバッハ型ブレード4と、翼型ブレード5とでトルクが発生するが、風速の小さい起動時には、起動トルクの大きいバッハ型ブレード4が働き、風速が大きく回転が増加してくると、前記バッハ型ブレード4で発生するトルクが大きくなる。   In the above configuration, when the wind turbine 1 receives wind, torque is generated by the Bach blade 4 and the wing blade 5 of the wind turbine 1, but at the time of startup with a low wind speed, the Bach blade 4 having a large startup torque works. As the wind speed increases and the rotation increases, the torque generated by the Bach blade 4 increases.

これにより、風速の小さい起動時には、バッハ型ブレード4が働き起動性が良くなり、風速の多い高出力時には翼型ブレード5が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   As a result, the Bach-type blade 4 works and the startability is improved at the time of starting at a low wind speed, and the efficiency at which the wing-type blade 5 works and catches the wind at a high output with a high wind speed is improved, and the generated torque at the same wind speed is increased. It is possible to improve the efficiency of the windmill.

(実施の形態2)
図2は本発明の実施の形態2の平面断面図である。なお、実施の形態1と同一部分については同一符号を付し、詳細な説明を省略する。
(Embodiment 2)
FIG. 2 is a plan sectional view of Embodiment 2 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2において、風車1の断面が、受風面2と背面3を備えたバッハ型ブレード4が、複数個設置され、その間には、翼型ブレード5が、複数個設置されている。また、前記バッハ型ブレード4および翼型ブレード5は、軸方向に伸びており、上部の上側板6と中央部の中央支え板7に取り付けられており、中心の軸8に取り付けられている。さらに、前記翼型ブレード5の直径D1は、前記バッハ型ブレード4の直径D2より大きい。   In FIG. 2, a cross section of the wind turbine 1 is provided with a plurality of Bach blades 4 each having a wind receiving surface 2 and a back surface 3, and a plurality of blade blades 5 are disposed therebetween. The Bach blade 4 and the wing blade 5 extend in the axial direction, are attached to the upper upper plate 6 and the central support plate 7 in the central portion, and are attached to the central shaft 8. Further, the diameter D1 of the airfoil blade 5 is larger than the diameter D2 of the Bach blade 4.

上記構成において、前記風車1が風を受けると、前記風車1のバッハ型ブレード4と、翼型ブレード5とでトルクが発生するが、風速の小さい起動時には、起動トルクの大きいバッハ型ブレード4が働き、風速が大きく回転が増加してくると、前記翼型ブレード5で発生するトルクが大きくなる。この時、翼型ブレード5の直径が大きいので、風車の出力がより大きくなる。   In the above configuration, when the wind turbine 1 receives wind, torque is generated by the Bach blade 4 and the wing blade 5 of the wind turbine 1, but at the time of startup with a low wind speed, the Bach blade 4 having a large startup torque is generated. When the wind speed increases and the rotation increases, the torque generated by the airfoil blade 5 increases. At this time, since the diameter of the airfoil blade 5 is large, the output of the windmill becomes larger.

これにより、風速の小さい起動時には、バッハ型ブレード4が働き起動性が良くなり、風速の多い高出力時には翼型ブレード5が働き風を捉える効率がより良くなり、同風速時の発生トルクを大きくすることができ、風車の効率向上が可能となる。   As a result, the Bach-type blade 4 works at the time of start-up with a low wind speed, and the start-up performance is improved. At the time of high output with a high wind speed, the blade-type blade 5 works to improve the efficiency of capturing the wind, and the generated torque at the same wind speed is increased. The efficiency of the windmill can be improved.

(実施の形態3)
図3は本発明の実施の形態3の平面断面図である。なお、実施の形態1または2と同一部分については同一番号を付し、詳細な説明を省略する。
(Embodiment 3)
FIG. 3 is a plan sectional view of Embodiment 3 of the present invention. The same parts as those in the first or second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3において、風車1の断面が、受風面2と背面3を備えたバッハ型ブレード4が、複数個設置され、その間には、翼型のレード5が、複数個設置されている。また、前記バッハ型ブレード4および翼型ブレード5は、軸方向に伸びており、上部の上側板6と中央部の中央支え板7に取り付けられており、中心の軸8に取り付けられている。さらに、バッハ型ブレード4および翼型ブレード5の軸方向の両端面は、垂直ではなく、上部が、回転方向に前進している。   In FIG. 3, a cross section of the wind turbine 1 is provided with a plurality of Bach blades 4 each having a wind receiving surface 2 and a back surface 3, and a plurality of blade-type raids 5 are disposed therebetween. The Bach blade 4 and the wing blade 5 extend in the axial direction, are attached to the upper upper plate 6 and the central support plate 7 in the central portion, and are attached to the central shaft 8. Furthermore, the axial end surfaces of the Bach blade 4 and the airfoil blade 5 are not vertical, and the upper part advances in the rotational direction.

上記構成において、前記風車1が風を受けると、前記風車1のバッハ型ブレード4と、翼型ブレード5とでトルクが発生するが、風速の小さい起動時には、起動トルクの大きいバッハ型ブレード4が働き、風速が大きく回転が増加してくると、前記翼型ブレード5で発生するトルクが大きくなる。   In the above configuration, when the wind turbine 1 receives wind, torque is generated by the Bach blade 4 and the wing blade 5 of the wind turbine 1, but at the time of startup with a low wind speed, the Bach blade 4 having a large startup torque is generated. When the wind speed increases and the rotation increases, the torque generated by the airfoil blade 5 increases.

この時、前記翼型ブレード5の直径D1が、前記バッハ型ブレード4の直径D2より大きいので、風車の出力がより大きくなる。さらに、バッハ型ブレード4および翼型ブレード5は、軸方向に垂直ではなく、回転方向に前進しているので、風を受けたとき、軸方向の上側に力が働き、自重による軸受け部の摩擦抵抗を低減する。   At this time, since the diameter D1 of the airfoil blade 5 is larger than the diameter D2 of the Bach blade 4, the output of the windmill becomes larger. Furthermore, the Bach blade 4 and the blade blade 5 are not perpendicular to the axial direction but are moving forward in the rotational direction. Therefore, when receiving wind, a force acts on the upper side in the axial direction, and the friction of the bearing portion due to its own weight. Reduce resistance.

これにより、風速の小さい起動時には、バッハ型ブレード4が働き起動性が良くなり、風速の多い高出力時には翼型ブレード5が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、さらに軸受け部の摩擦トルクを低減し、より大きな風車の効率向上が可能となる。   As a result, the Bach-type blade 4 works and the startability is improved at the time of starting at a low wind speed, and the efficiency at which the wing-type blade 5 works and catches the wind at a high output with a high wind speed is improved, and the generated torque at the same wind speed is increased. Further, the friction torque of the bearing portion can be reduced, and the efficiency of the larger windmill can be improved.

(実施の形態4)
図4は本発明の実施の形態4の平面断面図である。なお、実施の形態1乃至3と同一部分については同一番号を付し、詳細な説明を省略する。
(Embodiment 4)
FIG. 4 is a plan sectional view of Embodiment 4 of the present invention. The same parts as those in Embodiments 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4において、風車1の断面が、受風面2と背面3を備えたバッハ型ブレード4が、複数個設置され、その間には、翼型ブレード5が、複数個設置されている。また、バッハ型ブレード4および翼型ブレード5の軸方向の両端面は、側板がなく、ブレードの軸方向の中央部に中央支え板7を供えている。   In FIG. 4, a cross section of the windmill 1 is provided with a plurality of Bach blades 4 each having a wind receiving surface 2 and a back surface 3, and a plurality of blade blades 5 are disposed therebetween. Further, both end faces in the axial direction of the Bach blade 4 and the wing blade 5 have no side plate and are provided with a central support plate 7 at the central portion in the axial direction of the blade.

上記構成において、前記風車1が風を受けると、前記風車1のバッハ型ブレード4と、翼型ブレード5とでトルクが発生するが、風速の小さい起動時には、起動トルクの大きいバッハ型ブレード4が働き、風速が大きく回転が増加してくると、前記翼型ブレード5で発生するトルクが大きくなる。   In the above configuration, when the wind turbine 1 receives wind, torque is generated by the Bach blade 4 and the wing blade 5 of the wind turbine 1, but at the time of startup with a low wind speed, the Bach blade 4 having a large startup torque is generated. When the wind speed increases and the rotation increases, the torque generated by the airfoil blade 5 increases.

この時、前記翼型ブレード5の直径が大きいので、風車1の出力がより大きくなる。また、バッハ型ブレード4および翼型ブレード5の軸方向の両端面は、上下に側板がなく、ブレードの軸方向の中央部に中央支え板7を有している。   At this time, since the diameter of the airfoil blade 5 is large, the output of the windmill 1 is further increased. Further, both end surfaces of the Bach blade 4 and the blade blade 5 in the axial direction have no side plates at the top and bottom, and have a central support plate 7 at the central portion in the axial direction of the blade.

これにより、風速の小さい起動時には、バッハ型ブレードが働き起動性が良くなり、風速の多い高出力時には翼型ブレードが働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、さらに軸受け部の摩擦トルクを低減し、より大きな風車の効率向上が可能となる。また、上下に側板がなく、ブレードの軸方向の中央部に中央支え板7を有しているので、重量が軽くなり、軸受けなどでの摩擦が小さくなり、より起動性と出力が向上する。   As a result, the Bach blade works and improves the startability when the wind speed is low, and the wing blade works and captures the wind more efficiently at high output when the wind speed is high, increasing the generated torque at the same wind speed. Further, the friction torque of the bearing portion can be reduced, and the efficiency of a larger windmill can be improved. Further, since there is no side plate at the top and bottom and the central support plate 7 is provided at the central portion in the axial direction of the blade, the weight is reduced, the friction at the bearing or the like is reduced, and the startability and output are further improved.

(実施の形態5)
図5は本発明の実施の形態5の平面断面図である。なお、実施の形態1乃至4と同一部分については同一番号を付し、詳細な説明を省略する。
(Embodiment 5)
FIG. 5 is a plan sectional view of Embodiment 5 of the present invention. The same parts as those in Embodiments 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5において、風車1の断面が、受風面2と背面3を備えたバッハ型ブレード4が、複数個設置され、その間には、翼型ブレード5が、複数個設置されている。また、ブレードの軸方向の側板は、ブレードの上端にあり、ブレードの軸方向の中央部には中央支え板7を供えている。   In FIG. 5, a cross section of the wind turbine 1 is provided with a plurality of Bach blades 4 each having a wind receiving surface 2 and a back surface 3, and a plurality of blade blades 5 are disposed therebetween. Further, the side plate in the axial direction of the blade is at the upper end of the blade, and a central support plate 7 is provided at the central portion in the axial direction of the blade.

上記構成において、前記風車1が風を受けると、前記風車1のバッハ型ブレード4と、翼型ブレード5とでトルクが発生するが、風速の小さい起動時には、起動トルクの大きいバッハ型ブレード4が働き、風速が大きく回転が増加してくると、前記翼型ブレード5で発生するトルクが大きくなる。   In the above configuration, when the wind turbine 1 receives wind, torque is generated by the Bach blade 4 and the wing blade 5 of the wind turbine 1, but at the time of startup with a low wind speed, the Bach blade 4 having a large startup torque is generated. When the wind speed increases and the rotation increases, the torque generated by the airfoil blade 5 increases.

この時、前記翼型ブレード5の直径が大きいので、風車1の出力がより大きくなる。また、前記バッハ型ブレード4および前記翼型ブレード5のブレードの軸方向の側板は、ブレードの上端にあり、ブレードの軸方向の中央部には中央支え板7を有している。   At this time, since the diameter of the airfoil blade 5 is large, the output of the windmill 1 is further increased. Further, the side plates in the axial direction of the blades of the Bach blade 4 and the airfoil blade 5 are at the upper end of the blade, and the central support plate 7 is provided in the central portion of the blade in the axial direction.

これにより、風速の小さい起動時には、バッハ型ブレード4が働き起動性が良くなり、風速の多い高出力時には翼型ブレード5が働き風を捉える効率が良くなり、同風速時の発生トルクを大きくすることができ、さらに軸受け部の摩擦トルクを低減し、より大きな風車の効率向上が可能となる。また、上部側板と、ブレードの軸方向の中央部に中央支え板7を有しているので、上部と下部の側板と支え板を備えた場合より、重量が軽くなり、軸受けなどでの摩擦が小さくなり、より起動性と出力が向上する。   As a result, the Bach-type blade 4 works and the startability is improved at the time of starting at a low wind speed, and the efficiency at which the wing-type blade 5 works and catches the wind at a high output with a high wind speed is improved, and the generated torque at the same wind speed is increased. Further, the friction torque of the bearing portion can be reduced, and the efficiency of the larger windmill can be improved. Further, since the upper side plate and the central support plate 7 are provided at the central portion in the axial direction of the blade, the weight is lighter than the case where the upper and lower side plates and the support plate are provided, and friction at the bearings and the like is reduced. It becomes smaller and the startability and output are improved.

本発明にかかる風車は、ブレードの最適化により風力を効率的に回転エネルギーに変える風車を提供し、また低風速から起動させることができることを目的としている。   The windmill according to the present invention is intended to provide a windmill that efficiently converts wind power into rotational energy by optimizing blades, and can be started from a low wind speed.

本発明の実施の形態1および2の平面断面図Plan sectional drawing of Embodiment 1 and 2 of this invention 本発明の実施の形態3および4の平面断面図Plan sectional drawing of Embodiment 3 and 4 of this invention 本発明の実施の形態5の斜視図A perspective view of Embodiment 5 of the present invention 本発明の実施の形態6の斜視図A perspective view of Embodiment 6 of the present invention 本発明の実施の形態7の斜視図The perspective view of Embodiment 7 of this invention 従来の風車を示す側面図Side view showing a conventional windmill 同上平面断面図Same as above

符号の説明Explanation of symbols

1 風車
2 受風面
3 背面
4 バッハ型ブレード
5 翼型ブレード
6 上側板
7 中央支え板
8 軸
DESCRIPTION OF SYMBOLS 1 Windmill 2 Wind-receiving surface 3 Back surface 4 Bach-type blade 5 Wing-type blade 6 Upper plate 7 Center support plate 8 Axis

Claims (8)

風車のブレードは、偶数枚で、受風部水平断面において、バッハ型と翼型とを同直径で軸に対して点対称に設置したことを特徴とした垂直型風車。 A vertical wind turbine characterized in that the blades of the wind turbine are an even number, and the Bach type and the blade type are installed with the same diameter and point-symmetric with respect to the axis in the horizontal section of the wind receiving part. 風車のブレードは、偶数枚で、受風部水平断面において、バッハ型と翼型を同直径で交互に設置したことを特徴とした垂直型風車。 A vertical wind turbine characterized by an even number of wind turbine blades, and a Bach type and a wing type alternately arranged with the same diameter in the horizontal section of the wind receiving portion. 風車のブレードは、偶数枚で、4枚以上とし、受風部水平断面において、同直径でバッハ型と翼型を設置したことを特徴とした垂直型風車。 The vertical wind turbine is characterized in that the number of blades of the wind turbine is an even number, four or more, and a Bach type and a blade type are installed with the same diameter in the horizontal section of the wind receiving portion. 受風部水平断面において、バッハ型と翼型の直径を変えて、測板に固定し配置したことを特徴とする請求項1〜3のいずれか記載の垂直型風車。 The vertical windmill according to any one of claims 1 to 3, wherein in the horizontal section of the wind receiving portion, the diameters of the Bach type and the wing type are changed and fixed to the measuring plate. 受風部水平断面において、バッハ型より翼型の方が直径を大きくし、かつ側板に固定したことを特徴とする請求項1〜4のいずれか記載の垂直型風車。 The vertical wind turbine according to any one of claims 1 to 4, wherein in the horizontal section of the wind receiving portion, the airfoil has a larger diameter than the Bach type and is fixed to the side plate. ブレードの軸方向の両端面は、垂直ではなく、いずれか一方が、回転方向に前進したことを特徴とした請求項1〜5のいずれか記載の垂直型風車。 The vertical wind turbine according to any one of claims 1 to 5, wherein both end faces of the blade in the axial direction are not vertical but one of them is advanced in the rotational direction. ブレードの軸方向の両端面は、側板がなく、ブレードの軸方向の中央部に支え板を備えたことを特徴とする請求項1〜6のいずれか記載の垂直型風車。 The vertical wind turbine according to any one of claims 1 to 6, wherein both end faces in the axial direction of the blade have no side plate and a support plate is provided at a central portion in the axial direction of the blade. ブレードの軸方向の側板は、ブレードの上端と、ブレードの軸方向の中央部に支え板を備えたことを特徴とする請求項1〜6のいずれか記載の垂直型風車。 The vertical wind turbine according to claim 1, wherein the side plate in the axial direction of the blade includes a support plate at an upper end of the blade and a central portion in the axial direction of the blade.
JP2005281774A 2005-09-28 2005-09-28 Windmill Expired - Fee Related JP4736674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281774A JP4736674B2 (en) 2005-09-28 2005-09-28 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281774A JP4736674B2 (en) 2005-09-28 2005-09-28 Windmill

Publications (2)

Publication Number Publication Date
JP2007092600A true JP2007092600A (en) 2007-04-12
JP4736674B2 JP4736674B2 (en) 2011-07-27

Family

ID=37978610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281774A Expired - Fee Related JP4736674B2 (en) 2005-09-28 2005-09-28 Windmill

Country Status (1)

Country Link
JP (1) JP4736674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257018B2 (en) 2010-01-14 2012-09-04 Coffey Daniel P Wind energy conversion devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417440A (en) * 1977-07-07 1979-02-08 Univ Tokai Starting device of vertical shaft type wind power turbine
JP2007002728A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Windmill
JP2007016642A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Windmill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417440A (en) * 1977-07-07 1979-02-08 Univ Tokai Starting device of vertical shaft type wind power turbine
JP2007002728A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Windmill
JP2007016642A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Windmill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257018B2 (en) 2010-01-14 2012-09-04 Coffey Daniel P Wind energy conversion devices
US10253755B2 (en) 2010-01-14 2019-04-09 Daniel P. Coffey Wind energy conversion devices

Also Published As

Publication number Publication date
JP4736674B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US9284944B2 (en) Vertical shaft type darius windmill
JP2007092599A (en) Vertical windmill
Kumar et al. A review on the evolution of darrieus vertical axis wind turbine: Small wind turbines
WO2009072116A2 (en) Turbine blade constructions particular useful in vertical-axis wind turbines
JP2011169292A (en) Vertical axis wind turbine with long blade
JP2007046559A (en) Blade for wind power generator
Alam et al. A low cut-in speed marine current turbine
KR100942831B1 (en) Wind power generating apparatus
JP5228347B2 (en) Wind power generator
US8403622B2 (en) Radial-flow, horizontal-axis fluid turbine
JP4736674B2 (en) Windmill
JP4175360B2 (en) Vertical windmill
JP4736573B2 (en) Windmill
JPWO2018235220A1 (en) Sail device
JP5245271B2 (en) Wind power generator
JP2007113512A (en) Vertical type windmill
JP5066988B2 (en) Wind power generator
JP2007113511A (en) Vertical type windmill
JP5757617B2 (en) Darius vertical axis wind turbine, Darius vertical axis wind turbine blades, and Darius vertical axis wind turbine rotor
JP4736563B2 (en) Windmill
KR101165418B1 (en) Wind power generator
JP2006152995A (en) Vertical shaft windmill deforming blade shape by centrifugal force
Khan et al. Review Paper on Wind Turbine
WO2021145842A1 (en) High-efficiency vertical axis wind turbine blade
KR20240029383A (en) Rotor blade with increased rotational force combining a rotor blade with an inertia wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees