JP2007107483A - Straight wing vertical axis windmill - Google Patents

Straight wing vertical axis windmill Download PDF

Info

Publication number
JP2007107483A
JP2007107483A JP2005300540A JP2005300540A JP2007107483A JP 2007107483 A JP2007107483 A JP 2007107483A JP 2005300540 A JP2005300540 A JP 2005300540A JP 2005300540 A JP2005300540 A JP 2005300540A JP 2007107483 A JP2007107483 A JP 2007107483A
Authority
JP
Japan
Prior art keywords
rotor
blade
straight
vertical axis
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005300540A
Other languages
Japanese (ja)
Other versions
JP4754316B2 (en
Inventor
Yutaka Hara
豊 原
Chokichi Yanagi
長吉 柳
Kazuo Sakamoto
一夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tottori University NUC
Showa Denki Co Ltd
Original Assignee
Tottori University NUC
Showa Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori University NUC, Showa Denki Co Ltd filed Critical Tottori University NUC
Priority to JP2005300540A priority Critical patent/JP4754316B2/en
Publication of JP2007107483A publication Critical patent/JP2007107483A/en
Application granted granted Critical
Publication of JP4754316B2 publication Critical patent/JP4754316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a straight wing vertical axis windmill of good windmill efficiency and startability and a simple structure. <P>SOLUTION: Three upper level straight wings 1a are attached on a rotation axis 3 via each upper arm 2a, and three lower level straight wing 1b are attached on the rotation axis 3 via each lower arm 2b. The rotation axis 3 is rotatably supported by a rotation axis column 4. The upper level straight wing 1a and the upper arm 2a form an upper level rotor 10a, and the lower level straight wing 1b and the lower arm 2b form a lower level rotor 10b. A ring shape end plate 5c is provided between the upper level rotor 10a and the lower level rotor 10b. The ring shape end plate 5c is connected or joined to a lower side wing tip of the upper level straight wing 1a by using a fastener such as a screw, and is connected or joined to an upper side wing tip of the lower level straight wing 1b. Consequently, the upper level rotor 10a and the lower level rotor 10b are integrated by the ring shape end plate 5c. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直線翼垂直軸風車に関するものである。   The present invention relates to a straight blade vertical axis wind turbine.

直線翼垂直軸風車(すなわち、直線翼が垂直軸に取り付けられている形態の風車)は、風向変化が激しい場合でもその影響を受けにくいといった特性があり、また、水平軸風車に比べて構造が簡素であるといった利点がある。しかし、直線翼垂直軸風車は、一般に起動性(自己起動性)に問題がある。すなわち、低風速の場合、風向によっては自己起動が困難なことがある。以下、この問題を、端板を有しない3枚翼1段型の直線翼垂直軸風車を例にとって説明する。   Straight-blade vertical axis wind turbines (that is, wind turbines with straight blades attached to the vertical shaft) have the characteristic that they are less susceptible to the effects of severe wind direction changes, and they are more structured than horizontal-axis wind turbines. There is an advantage such as simplicity. However, a straight blade vertical axis wind turbine generally has a problem in startability (self-startability). That is, when the wind speed is low, it may be difficult to start itself depending on the wind direction. Hereinafter, this problem will be described by taking a three-blade one-stage straight blade vertical axis wind turbine having no end plate as an example.

図6は、端板を有しない3枚翼1段型の直線翼垂直軸風車の斜視図である。図6に示すように、この従来の直線翼垂直軸風車W1(以下、略して「風車W1」という。)においては、3枚の直線翼101が、上アーム102a及び下アーム102bを介して、回転軸103に取り付けられている。ここで、回転軸103は回転軸支柱104によって回転自在に支持されている。   FIG. 6 is a perspective view of a three-blade one-stage linear blade vertical axis wind turbine having no end plate. As shown in FIG. 6, in this conventional linear blade vertical axis windmill W1 (hereinafter referred to as “windmill W1” for short), three straight blades 101 are connected via an upper arm 102a and a lower arm 102b. Attached to the rotating shaft 103. Here, the rotating shaft 103 is rotatably supported by the rotating shaft column 104.

図7は、図6に示す従来の風車W1の静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。なお、「平均静止トルク」とは、一定のロータ方位角範囲(−180度から180度までの間)において、風速3m/sの風が静止している翼にあたったときに発生する静止トルクの平均値である。図7から明らかなとおり、図6に示す従来の風車W1では、平均静止トルクは大きいものの、静止トルクがロータ方位角すなわち風向に依存しやすいといった欠点がある。これに対して、2つの改善策があげられる。すなわち、第1の改善策は翼の枚数を増やすことであり、第2の改善策は翼の位相に差異を持たせて段積みすること(例えば、特許文献1参照)である。
特開2002−235656号公報(段落[0022]、図1)
FIG. 7 is a graph showing the static torque of the conventional windmill W1 shown in FIG. 6 with respect to the rotor azimuth, and also shows the average static torque. The “average static torque” is a static torque generated when a wind with a wind speed of 3 m / s hits a stationary blade in a fixed rotor azimuth range (between −180 degrees and 180 degrees). Is the average value. As is apparent from FIG. 7, the conventional wind turbine W1 shown in FIG. 6 has a drawback that the static torque tends to depend on the rotor azimuth angle, that is, the wind direction, although the average static torque is large. On the other hand, there are two improvement measures. That is, the first improvement measure is to increase the number of wings, and the second improvement measure is to stack the wings with different phases (see, for example, Patent Document 1).
JP 2002-235656 A (paragraph [0022], FIG. 1)

図8は、第1の改善策に係る6枚翼1段型の直線翼垂直軸風車の斜視図である。また、図9は、図8に示す直線翼垂直軸風車の静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。図8に示すように、この従来の直線翼垂直軸風車W2(以下、略して「風車W2」という。)においては、6枚の直線翼101が、上アーム102a及び下アーム102bを介して、回転軸103に取り付けられている。そして、図9から明らかなとおり、図8に示す従来の風車W2では、ロータ方位角すなわち風向による静止トルクの変動は改善されているものの、平均静止トルクが低下するといった欠点がある。また、風車効率が低下するといった欠点もある。   FIG. 8 is a perspective view of a six-blade one-stage linear blade vertical axis wind turbine according to the first improvement measure. FIG. 9 is a graph showing the static torque of the straight blade vertical axis wind turbine shown in FIG. 8 with respect to the rotor azimuth, and also shows the average static torque. As shown in FIG. 8, in this conventional linear blade vertical axis windmill W2 (hereinafter referred to as “windmill W2” for short), six straight blades 101 are connected via an upper arm 102a and a lower arm 102b. Attached to the rotating shaft 103. As is apparent from FIG. 9, the conventional wind turbine W2 shown in FIG. 8 has a drawback that the average static torque is reduced although the fluctuation of the static torque due to the rotor azimuth angle, that is, the wind direction is improved. In addition, there is a disadvantage that the windmill efficiency is lowered.

また、例えば特許文献1に開示されている第2の改善策に係る直線翼垂直軸風車では、風向による静止トルクの変動及び平均静止トルクは改善されるものの、上側のロータと下側のロータとの間に架台を設置したり、支柱を設けて構造的強度を強化したりする必要があるので、構造が複雑化するといった欠点がある。したがって、起動性及び風車効率を考慮しつつ、簡素な構造の直線翼垂直軸風車を開発することが必要である。   Further, for example, in the straight blade vertical axis wind turbine according to the second improvement measure disclosed in Patent Document 1, although the fluctuation of the static torque due to the wind direction and the average static torque are improved, the upper rotor and the lower rotor There is a drawback that the structure becomes complicated because it is necessary to install a gantry between them and to strengthen the structural strength by providing a column. Therefore, it is necessary to develop a straight blade vertical axis wind turbine having a simple structure while taking into consideration startability and wind turbine efficiency.

本発明は、上記従来の問題を解決するためになされたものであって、風車効率及び起動性が良好であり、かつ構造が簡素な直線翼垂直軸風車を提供することを目的ないしは解決すべき課題とする。   The present invention has been made to solve the above-described conventional problems, and it is an object or object of the present invention to provide a straight-blade vertical axis wind turbine having good wind turbine efficiency and good startability and a simple structure. Let it be an issue.

上記課題を解決するためになされた本発明に係る直線翼垂直軸風車は、回転軸に取り付けられた直線翼を有するロータが回転軸の伸びる方向に複数段配置され、直線翼の回転軸円周方向の取り付け位置がロータ毎に互いに異なっている直線翼垂直軸風車において、各ロータの直線翼が1つの共通な回転軸に取り付けられ、回転軸の伸びる方向に隣り合うロータ同士が、両ロータ間に位置し一方のロータの直線翼と他方のロータの直線翼とを連結するリング状端板によって一体化されていることを特徴とするものである。   A straight blade vertical axis wind turbine according to the present invention made to solve the above-described problem is a rotor having a straight blade attached to a rotating shaft, arranged in multiple stages in the direction in which the rotating shaft extends, and the rotating shaft circumference of the straight blade In a linear blade vertical axis wind turbine in which the mounting position in each direction is different for each rotor, the linear blades of each rotor are attached to one common rotating shaft, and the rotors adjacent to each other in the direction in which the rotating shaft extends are And is integrated by a ring-shaped end plate that connects the straight blades of one rotor and the straight blades of the other rotor.

本発明に係る直線翼垂直軸風車においては、回転軸の伸びる方向にみて、両端に位置する各ロータの直線翼の終端側の翼端に、それぞれ、リング状端板が取り付けられているのが好ましい。   In the straight blade vertical axis wind turbine according to the present invention, the ring-shaped end plates are respectively attached to the blade ends on the terminal end side of the straight blades of the rotors located at both ends in the extending direction of the rotating shaft. preferable.

本発明に係る直線翼垂直軸風車では、複数のロータが1つの共通な回転軸によって支持され、かつ隣り合うロータ同士がリング状端板によって一体化され、実質的にはすべてのロータが1つのロータを形成していることになるので、複数のロータを連結ないしは支持するための複雑な機構、例えばロータ間の架台、構造的強度を強化するための支柱等を必要としない。このため、直線翼垂直軸風車の構造が簡素なものとなる。また、直線翼の回転軸円周方向の取り付け位置がロータ毎に互いに異なっているので、風車効率及び起動性(自己起動性)が良好なものとなる。   In the straight blade vertical axis wind turbine according to the present invention, a plurality of rotors are supported by one common rotating shaft, and adjacent rotors are integrated by a ring-shaped end plate, and substantially all the rotors are one. Since the rotor is formed, a complicated mechanism for connecting or supporting a plurality of rotors, for example, a frame between the rotors, a support column for enhancing structural strength, or the like is not required. For this reason, the structure of the straight blade vertical axis wind turbine is simplified. Further, since the attachment positions of the straight blades in the circumferential direction of the rotation axis are different for each rotor, the wind turbine efficiency and startability (self-startability) are good.

以下、添付の図面を参照しつつ、本発明の実施の形態(発明を実施するための最良の形態)を具体的に説明する。図1は、本発明の実施の形態に係る、2つのロータをリング状端板で結合した直線翼垂直軸風車の構成を示す斜視図である。また、図2(a)及び図(b)は、それぞれ、図1に示す直線翼垂直軸風車を用いた風力発電装置の平面図及び正面図である。   Hereinafter, embodiments of the present invention (best mode for carrying out the invention) will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a configuration of a straight blade vertical axis wind turbine in which two rotors are coupled by a ring-shaped end plate according to an embodiment of the present invention. 2 (a) and 2 (b) are a plan view and a front view of a wind turbine generator using the straight blade vertical axis wind turbine shown in FIG. 1, respectively.

図1及び図2(a)、(b)に示すように、この直線翼垂直軸風車W(以下、略して「風車W」という。)ないしは風力発電装置においては、3枚の上段直線翼1aがそれぞれ上アーム2aを介して回転軸3に取り付けられている。さらに、3枚の下段直線翼1bがそれぞれ下アーム2bを介して回転軸3に取り付けられている。ここで、回転軸3は回転軸支柱4によって回転自在に支持されている。回転軸3は、回転軸支柱4を通り抜けて発電部6に連結され、発電部6内の回転子(図示せず)を回転させて電力を生成する。なお、発電部6は、装置支柱7によって支持されている。 As shown in FIGS. 1 and 2 (a) and 2 (b), in this straight blade vertical axis windmill W (hereinafter referred to as "windmill W") or a wind power generator, three upper straight blades 1a are used. Are respectively attached to the rotary shaft 3 via the upper arm 2a. Further, three lower straight blades 1b are attached to the rotary shaft 3 via lower arms 2b. Here, the rotating shaft 3 is rotatably supported by the rotating shaft support 4. The rotating shaft 3 passes through the rotating shaft column 4 and is connected to the power generation unit 6, and rotates a rotor (not shown) in the power generation unit 6 to generate electric power. The power generation unit 6 is supported by the device support 7.

風車Wにおいては、上段直線翼1a及び上アーム2aは上段ロータ10aを形成し、下段直線翼1b及び下アーム2bは下段ロータ10bを形成している。すなわち、風車Wは、基本的には、回転軸3の伸びる方向に互いに隣り合う上段ロータ10aと下段ロータ10bとが、2段積みで配置された3枚翼2段型の直線翼垂直軸風車である。   In the wind turbine W, the upper straight blade 1a and the upper arm 2a form an upper rotor 10a, and the lower straight blade 1b and the lower arm 2b form a lower rotor 10b. That is, the wind turbine W is basically a three-blade two-stage linear blade vertical axis wind turbine in which an upper rotor 10a and a lower rotor 10b that are adjacent to each other in the direction in which the rotating shaft 3 extends are arranged in two stages. It is.

上段直線翼1aの上側(終端側)の翼端には、ネジ等の留め具を用いてリング状端板5aが取り付けられている。同様に、下段直線翼1bの下側(終端側)の翼端にも、留め具を用いてリング状端板5bが取り付けられている。さらに、上段ロータ10aと下段ロータ10bとの間にリング状端板5cが配設されている。ここで、リング状端板5cは、ネジ等の留め具を用いて、上段直線翼1aの下側の翼端に連結ないしは結合されるとともに、下段直線翼1bの上側の翼端に連結ないしは結合されている。換言すれば、上段ロータ10aと下段ロータ10bとがリング状端板5cによって一体化されている。なお、各直線翼1a、1bと各リング状端板5a、5b、5cとを接着剤等で接着してもよい。   A ring-shaped end plate 5a is attached to the upper wing tip (end side) of the upper straight wing 1a using a fastener such as a screw. Similarly, a ring-shaped end plate 5b is also attached to the lower (terminal side) blade tip of the lower straight blade 1b using a fastener. Further, a ring-shaped end plate 5c is disposed between the upper rotor 10a and the lower rotor 10b. Here, the ring-shaped end plate 5c is connected to or coupled to the lower blade tip of the upper straight blade 1a and is connected to or coupled to the upper blade tip of the lower straight blade 1b by using a fastener such as a screw. Has been. In other words, the upper rotor 10a and the lower rotor 10b are integrated by the ring-shaped end plate 5c. In addition, you may adhere | attach each linear blade 1a, 1b and each ring-shaped end plate 5a, 5b, 5c with an adhesive agent.

このように、風車Wにおいて、上段ロータ10a及び下段ロータ10bは、1つの共通な回転軸3に取り付けられ、かつリング状端板5cによって一体化されているので一体的に回転(同期回転)する。したがって、上段ロータ10a及び下段ロータ10bは、実質的には1つのロータを形成ないしは構成しているといえる。   Thus, in the windmill W, since the upper rotor 10a and the lower rotor 10b are attached to one common rotating shaft 3 and integrated by the ring-shaped end plate 5c, they rotate together (synchronously rotate). . Therefore, it can be said that the upper rotor 10a and the lower rotor 10b substantially form or constitute one rotor.

上段ロータ10aでは、3つの上段直線翼1a及び3つの上アーム2aは、回転軸円周方向の位置関係において、回転軸中心に対する中心角を120度ずつ隔てた位置に等角度間隔で配置されている。なお、各上アーム2aは、それぞれ、回転軸3に対して放射状に水平方向に伸びて、それぞれ上下方向に伸びる上段直線翼1aと回転軸3とを連結し、上段ロータ10aを支持している。下段ロータ10bでも、基本的には上段ロータ10aの場合と同様に、3つの下段直線翼1b及び3つの下アーム2bは中心角を120度ずつ隔てた位置に等角度間隔で配置され、下アーム2bは上下方向に伸びる下段直線翼1bと回転軸3とを連結して下段ロータ10bを支持している。   In the upper rotor 10a, the three upper straight blades 1a and the three upper arms 2a are arranged at equal angular intervals at positions that are 120 degrees apart from the center angle with respect to the rotation axis center in the positional relationship in the circumferential direction of the rotation axis. Yes. Each upper arm 2a extends radially in the horizontal direction with respect to the rotary shaft 3, and connects the upper linear blade 1a and the rotary shaft 3 extending in the vertical direction to support the upper rotor 10a. . In the lower rotor 10b as well, basically, as in the case of the upper rotor 10a, the three lower straight blades 1b and the three lower arms 2b are arranged at equiangular intervals at positions that are 120 degrees apart from each other. 2b supports the lower rotor 10b by connecting the lower linear blade 1b extending in the vertical direction and the rotary shaft 3 to each other.

しかしながら、上段ロータ10aと下段ロータ10bとでは、直線翼1a、1b及びアーム2a、2bの回転軸円周方向の取り付け位置(回転軸中心に対する中心角)の位相が互いに60度ずつずれている。つまり、上段ロータ10aで3つの上段直線翼1aが中心角0度、120度、240度の位置にある場合、下段ロータ10bでは、3つの下段直線翼1bは中心角60度、180度、300度の位置にあることになる。したがって、上段ロータ10aと下段ロータ10bとをリング状端板5cにより一体化する際には、各上段直線翼1aと各下段直線翼1bとを、交互に、回転軸中心に対する中心角を60度ずつずらせて、かつ上下の位置関係を反転させて、リング状端板5cに取り付けてゆけばよい。   However, in the upper rotor 10a and the lower rotor 10b, the phases of the attachment positions in the circumferential direction of the rotation axis of the linear blades 1a, 1b and the arms 2a, 2b (center angle with respect to the rotation axis center) are shifted from each other by 60 degrees. That is, when the three upper straight blades 1a are located at the center angles of 0 degrees, 120 degrees, and 240 degrees in the upper rotor 10a, the three lower straight blades 1b are disposed at the center angles of 60 degrees, 180 degrees, and 300 in the lower rotor 10b. Will be in the position of degrees. Therefore, when the upper rotor 10a and the lower rotor 10b are integrated with the ring-shaped end plate 5c, the upper straight blades 1a and the lower straight blades 1b are alternately turned at a central angle of 60 degrees with respect to the rotation axis center. What is necessary is just to attach to the ring-shaped end plate 5c by shifting each other and reversing the positional relationship between the top and bottom.

このように、本発明の実施の形態に係る風車Wないしは風力発電装置では、上段ロータ10aと下段ロータ10bとが1つの共通な回転軸3によって支持され、かつリング状端板5cによって一体化されているので、両ロータ10a、10bを連結ないしは支持するための複雑な機構、例えば特許文献1に係る垂直軸風力発電装置で必要とされるロータ間の架台、構造的強度を強化するための支柱等を必要としない。このため、風車Wないし風力発電装置の構造が簡素なものとなる。また、上段ロータ10aと下段ロータ10bとでは直線翼1a、1bの回転軸円周方向の取り付け位置が異なっているので、風車効率及び起動性(自己起動性)が良好なものとなる。   Thus, in the windmill W or the wind power generator according to the embodiment of the present invention, the upper rotor 10a and the lower rotor 10b are supported by one common rotating shaft 3 and integrated by the ring-shaped end plate 5c. Therefore, a complicated mechanism for connecting or supporting the rotors 10a and 10b, for example, a frame between the rotors required in the vertical axis wind power generator according to Patent Document 1, and a column for strengthening structural strength Etc. are not required. For this reason, the structure of the windmill W or the wind power generator is simplified. Further, since the upper rotor 10a and the lower rotor 10b have different attachment positions in the circumferential direction of the rotation axis of the straight blades 1a and 1b, the wind turbine efficiency and the startability (self-startability) are good.

以下、本発明の実施の形態に係る風車Wの機能ないしは性能を説明する。
図3は、図1に示す3枚翼2段型の風車Wの静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。図3に示すように、図1に示す風車Wの静止トルクは、図8に示す従来の6枚翼1段型の風車W2の静止トルクと同様に平滑化されている。したがって、実施の形態に係る風車Wは、風向の変動の影響を受けにくい。また、実施の形態に係る風車Wの平均静止トルクは0.090Nmであり、図6に示す従来の3枚翼1段型の風車W1の平均静止トルク(0.084Nm)より大きい。したがって、実施の形態に係る風車Wの起動性は良好であるといえる。
Hereinafter, the function or performance of the wind turbine W according to the embodiment of the present invention will be described.
FIG. 3 is a graph showing the static torque of the three-blade two-stage wind turbine W shown in FIG. 1 with respect to the rotor azimuth, and also shows the average static torque. As shown in FIG. 3, the static torque of the windmill W shown in FIG. 1 is smoothed similarly to the static torque of the conventional six-blade one-stage windmill W2 shown in FIG. Therefore, the windmill W according to the embodiment is not easily affected by fluctuations in the wind direction. The average static torque of the wind turbine W according to the embodiment is 0.090 Nm, which is larger than the average static torque (0.084 Nm) of the conventional three-blade one-stage wind turbine W 1 shown in FIG. Therefore, it can be said that the startability of the windmill W according to the embodiment is good.

図4は、風速6m/sの条件で、図1に示す3枚翼2段型の風車Wと、図7に示す従来の3枚翼1段型の風車W1と、図9に示す従来の6枚翼1段型の風車W2とについて、出力特性を比較した結果を示すグラフである。本発明の実施の形態に係る3枚翼2段型の風車Wは、従来の3枚翼1段型の風車W1に比べて風車効率は多少劣るものの、従来の6枚翼1段型の風車W2に比較して、非常に高い風車効率を示すことがわかる。   4 shows a three-blade two-stage wind turbine W shown in FIG. 1, a conventional three-blade one-stage wind turbine W1 shown in FIG. 7, and a conventional one shown in FIG. 9 under a wind speed of 6 m / s. It is a graph which shows the result of having compared the output characteristic about the 6-blade 1-stage type windmill W2. The three-blade two-stage wind turbine W according to the embodiment of the present invention has a slightly lower wind turbine efficiency than the conventional three-blade one-stage wind turbine W1, but the conventional six-blade one-stage wind turbine W1. It can be seen that the wind turbine efficiency is very high compared to W2.

前記のとおり、本発明の実施の形態に係る風車Wでは、上段直線翼1aの上側の翼端にリング状端板5aが取り付けられる一方、下段直線翼1bの下側の翼端にリング状端板5bが取り付けられているが、これらのリング状端板5a、5bは、両直線翼1a、1bの翼端損失を低減するとともに、両ロータ10a、10bの構造的強度を高める。以下、これらのリング状端板5a、5bの機能ないしは作用・効果を説明する。   As described above, in the wind turbine W according to the embodiment of the present invention, the ring-shaped end plate 5a is attached to the upper blade tip of the upper straight blade 1a, while the ring-shaped end is mounted on the lower blade tip of the lower straight blade 1b. Although the plate 5b is attached, these ring-shaped end plates 5a and 5b reduce the tip loss of both the straight blades 1a and 1b and increase the structural strength of the rotors 10a and 10b. In the following, the functions, functions, and effects of these ring-shaped end plates 5a and 5b will be described.

図6に示す従来の3枚翼1段型の風車W1は、抗力型のサボニウス風車などとは異なり、主として揚力が回転力を発生させる。しかし、一般に直線翼101の翼端から渦が放出され、これが揚力を減少させて翼端損失を生じさせる。   Unlike the drag type Savonius wind turbine or the like, the conventional three-blade one-stage wind turbine W1 shown in FIG. 6 mainly generates a rotational force. However, in general, vortices are released from the tip of the straight blade 101, which reduces lift and causes tip loss.

図5は、翼素運動量理論に基づいて、図6に示す従来の3枚翼1段型の風車W1の出力特性を、翼端損失がある場合と無い場合とについて計算した結果を示すグラフである。なお、計算条件は、次のとおりである。
(計算条件)
翼枚数:3枚
ロータ半径:0.4m
高さ:1.25m
受風面積:1m
翼弦長:0.24m
ソリディティ:1.8(翼枚数×翼弦長/ロータ半径)
FIG. 5 is a graph showing the calculation results of the output characteristics of the conventional three-blade one-stage wind turbine W1 shown in FIG. 6 with and without the blade tip loss based on the blade element momentum theory. is there. The calculation conditions are as follows.
(Calculation condition)
Number of blades: 3 Rotor radius: 0.4m
Height: 1.25m
Wind receiving area: 1m 2
Chord length: 0.24m
Solidity: 1.8 (number of blades x chord length / rotor radius)

図5に示すように、出力係数がほぼ最大となる周速比が1.25の状態においては、約5%の翼端損失が生じている。しかしながら、図6に示す従来の3枚翼1段型の風車W1に、図1に示す風車Wの場合と同様のリング状端板5a、5bを取り付ければ、このような翼端損失を抑制することができ、風車効率を高めることができる。   As shown in FIG. 5, when the peripheral speed ratio at which the output coefficient is substantially maximum is 1.25, a tip loss of about 5% occurs. However, if the same ring-shaped end plates 5a and 5b as in the case of the windmill W shown in FIG. 1 are attached to the conventional three-blade one-stage windmill W1 shown in FIG. Wind turbine efficiency can be increased.

本発明の実施の形態に係る、2つのロータをリング状端板で結合した直線翼垂直軸風車の構成を示す斜視図である。It is a perspective view which shows the structure of the linear blade | wing vertical axis windmill which couple | bonded two rotors based on embodiment of this invention with the ring-shaped end plate. (a)及び(b)は、それぞれ、図1に示す直線翼垂直軸風車を用いた風力発電装置の平面図及び正面図である。(A) And (b) is the top view and front view of a wind power generator which respectively used the linear blade | wing vertical axis windmill shown in FIG. 図1に示す3枚翼2段型の直線翼垂直軸風車の静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。2 is a graph showing the static torque of the three-blade two-stage linear blade vertical axis wind turbine shown in FIG. 1 with respect to the rotor azimuth, and also shows the average static torque. 本発明の実施の形態に係る3枚翼2段型の直線翼垂直軸風車と、従来の3枚翼1段型及び6枚翼1段型の直線翼垂直軸風車とについて、出力特性を比較した結果を示すグラフである。Comparison of output characteristics between a three-blade two-stage straight-blade vertical-axis wind turbine according to an embodiment of the present invention and a conventional three-blade one-stage and six-blade one-stage straight-blade vertical-axis wind turbine It is a graph which shows the result. 図6に示す従来の3枚翼1段型の直線翼垂直軸風車の出力特性を、翼端損失がある場合と無い場合とについて計算した結果を示すグラフである。It is a graph which shows the result of having calculated the output characteristic of the conventional three-blade one-stage type linear blade vertical axis wind turbine shown in FIG. 6 with and without a blade tip loss. 従来の3枚翼1段型の直線翼垂直軸風車の斜視図である。It is a perspective view of the conventional three-blade one-stage linear blade vertical axis wind turbine. 図6に示す直線翼垂直軸風車の静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。FIG. 7 is a graph showing the static torque of the straight blade vertical axis wind turbine shown in FIG. 6 with respect to the rotor azimuth angle, and also shows the average static torque. 従来の6枚翼1段型の直線翼垂直軸風車の斜視図である。It is a perspective view of the conventional 6 blade 1 step type straight blade vertical axis wind turbine. 図8に示す直線翼垂直軸風車の静止トルクをロータ方位角に対してあらわしたグラフであり、併せて平均静止トルクも示している。FIG. 9 is a graph showing the static torque of the straight blade vertical axis wind turbine shown in FIG. 8 with respect to the rotor azimuth, and also shows the average static torque.

符号の説明Explanation of symbols

W 直線翼垂直軸風車、1a 上段直線翼(ブレード)、1b 下段直線翼(ブレード)、2a 上アーム、2b 下アーム、3 回転軸、4 回転軸支柱(ポール)、5a リング状端板、5b リング状端板、5c リング状端板、6 発電部、7 装置支柱(ポール)、10a 上段ロータ、10b 下段ロータ。   W Straight blade vertical axis wind turbine, 1a Upper straight blade (blade), 1b Lower straight blade (blade), 2a Upper arm, 2b Lower arm, 3 Rotating shaft, 4 Rotating shaft post (pole), 5a Ring-shaped end plate, 5b Ring-shaped end plate, 5c Ring-shaped end plate, 6 Power generation unit, 7 Device support (pole), 10a Upper rotor, 10b Lower rotor.

Claims (2)

回転軸に取り付けられた直線翼を有するロータが、回転軸の伸びる方向に複数段配置され、直線翼の回転軸円周方向の取り付け位置がロータ毎に互いに異なっている直線翼垂直軸風車において、
各ロータの直線翼が1つの共通な回転軸に取り付けられ、
回転軸の伸びる方向に隣り合うロータ同士が、両ロータ間に位置し一方のロータの直線翼と他方のロータの直線翼とを連結するリング状端板によって一体化されていることを特徴とする直線翼垂直軸風車。
In a linear blade vertical axis wind turbine in which a rotor having straight blades attached to a rotating shaft is arranged in a plurality of stages in the direction in which the rotating shaft extends, and the mounting positions of the straight blades in the circumferential direction of the rotating shaft are different for each rotor,
The straight blades of each rotor are attached to one common rotating shaft,
Rotors adjacent to each other in the direction in which the rotation axis extends are integrated by a ring-shaped end plate that is located between the two rotors and connects the straight blades of one rotor and the straight blades of the other rotor. Straight wing vertical axis windmill.
回転軸の伸びる方向にみて、両端に位置する各ロータの直線翼の終端側の翼端に、それぞれリング状端板が取り付けられていることを特徴とする、請求項1に記載の直線翼垂直軸風車。   2. The straight blade vertical axis according to claim 1, wherein ring-shaped end plates are respectively attached to the blade ends on the terminal side of the straight blades of the rotors located at both ends in the direction in which the rotating shaft extends. Axial windmill.
JP2005300540A 2005-10-14 2005-10-14 Straight blade vertical axis windmill Active JP4754316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300540A JP4754316B2 (en) 2005-10-14 2005-10-14 Straight blade vertical axis windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300540A JP4754316B2 (en) 2005-10-14 2005-10-14 Straight blade vertical axis windmill

Publications (2)

Publication Number Publication Date
JP2007107483A true JP2007107483A (en) 2007-04-26
JP4754316B2 JP4754316B2 (en) 2011-08-24

Family

ID=38033535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300540A Active JP4754316B2 (en) 2005-10-14 2005-10-14 Straight blade vertical axis windmill

Country Status (1)

Country Link
JP (1) JP4754316B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920718B1 (en) 2007-12-14 2009-10-07 한일시멘트 (주) Cement Mixer
CN102312783A (en) * 2010-06-29 2012-01-11 伍康旺 Wind power generation system of vertical tower shaft with helical-structure fan blades
KR101329245B1 (en) * 2011-11-29 2013-11-14 (주)에코션 Turbine for tidal current power with advanced blade structure
KR101329246B1 (en) * 2011-11-29 2013-11-14 (주)에코션 Turbine for tidal current power with advanced shaft and spoke structure
WO2015004474A1 (en) * 2013-07-12 2015-01-15 Eh New Forest Limited Wind turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174768U (en) * 1981-04-27 1982-11-04
JP2002235656A (en) * 2001-02-08 2002-08-23 Maeda Corp Linear vane installation method for vertical shaft wind power generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174768U (en) * 1981-04-27 1982-11-04
JP2002235656A (en) * 2001-02-08 2002-08-23 Maeda Corp Linear vane installation method for vertical shaft wind power generating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920718B1 (en) 2007-12-14 2009-10-07 한일시멘트 (주) Cement Mixer
CN102312783A (en) * 2010-06-29 2012-01-11 伍康旺 Wind power generation system of vertical tower shaft with helical-structure fan blades
KR101329245B1 (en) * 2011-11-29 2013-11-14 (주)에코션 Turbine for tidal current power with advanced blade structure
KR101329246B1 (en) * 2011-11-29 2013-11-14 (주)에코션 Turbine for tidal current power with advanced shaft and spoke structure
WO2015004474A1 (en) * 2013-07-12 2015-01-15 Eh New Forest Limited Wind turbine
US20160169197A1 (en) * 2013-07-12 2016-06-16 Eh New Forest Limited Wind turbine

Also Published As

Publication number Publication date
JP4754316B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7258527B2 (en) Vertical axis wind engine
US9284944B2 (en) Vertical shaft type darius windmill
WO2007141834A1 (en) Blades for wind wheel, wind wheel, and wind-driven electric power generator
US8461708B2 (en) Wind driven power generator
CN102022259B (en) Lift-to-drag blending wing plate type vertical axis wind wheel
JP2006283713A (en) Lift/drag combined type vertical shaft windmill
JP4754316B2 (en) Straight blade vertical axis windmill
TW201716687A (en) Multi-layered blade type wind power generation device capable of enhancing operation smoothness and being not easily damaged and deformed
JP2005090332A (en) Darrieus wind turbine
JP2001065446A (en) Cascade structure for vertical shaft type windmill and vertical shaft type windmill
US8556572B2 (en) Wind power turbine
US8322035B2 (en) Vertical axis wind turbine and method of installing blades therein
JP4387726B2 (en) Wind generator for all wind direction
JP2005188468A (en) Multi-stage blade type vertical shaft wind mill
JP2013519022A (en) High efficiency, high power vertical axis wind power generator
CN201865841U (en) Lift-drag fused wing plate type vertical axis wind wheel
WO2015165141A1 (en) Low-center-of-gravity high-efficiency vertical-axis wind turbine
EP2260205A2 (en) Wind driven power generator
KR101503358B1 (en) Horizontal wind power generator
KR20110007685A (en) Sweep of wind mill for power generation
KR20020005556A (en) Savonius Windmill Blade with Air-Vent Groove
CN202040012U (en) Combined vertical axis wind turbine
CN220909892U (en) Vertical wind motor system and vertical wind power generation system
JP4175360B2 (en) Vertical windmill
JP2002081364A (en) Wind force device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350