JP2007002603A - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP2007002603A
JP2007002603A JP2005186605A JP2005186605A JP2007002603A JP 2007002603 A JP2007002603 A JP 2007002603A JP 2005186605 A JP2005186605 A JP 2005186605A JP 2005186605 A JP2005186605 A JP 2005186605A JP 2007002603 A JP2007002603 A JP 2007002603A
Authority
JP
Japan
Prior art keywords
lining
section
tunnel
removal
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186605A
Other languages
Japanese (ja)
Other versions
JP4500221B2 (en
Inventor
Yasuo Nishida
泰夫 西田
Kenichi Kaneko
研一 金子
Shigeru Hirohashi
茂 広橋
Kazuo Takamizawa
計夫 高見沢
Yoshinori Nishida
義則 西田
Shunei Shiraishi
俊英 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2005186605A priority Critical patent/JP4500221B2/en
Publication of JP2007002603A publication Critical patent/JP2007002603A/en
Application granted granted Critical
Publication of JP4500221B2 publication Critical patent/JP4500221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of an underground structure for easily integrating tunnels, while securing yield strength (resistance force) to earth pressure, in the underground structure constructed by using a plurality of juxtaposed tunnels. <P>SOLUTION: This construction method of the underground structure forms an inner peripheral part 3 along the inner periphery of an outer peripheral part 2 by forming the outer peripheral part 2 by leaving a lining 11 facing the peripheral ground G of these tunnels 1, 1 and 1 by juxtaposing the tunnels 1 in a plurality of rows and a plurality of stages. A removal section and a timbering section are alternately set in the tunnel axis direction, and the lining 11 becoming a hindrance when constructing the inner peripheral part 3 in the removal section is removed while using at least a part of the lining 11 except for the lining 11 being the outer peripheral part 2 in the timbering section as timbering, and after closing the inner peripheral part 3 in the removal section, the inner peripheral part 3 is closed in the timbering section after removing the lining 11 used as the timbering in the timbering section. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地下構造物の構築方法に関する。   The present invention relates to a method for constructing an underground structure.

並設された複数本のトンネルを利用して築造した地下構造物が特許文献1に記載されている。この地下構造物は、その横断面の全てを実質的に包含するように複数本のトンネルを縦横に並べて構築し、その後、各トンネルの不要な覆工を撤去して大きな空間を形成することにより築造される。なお、複数のトンネルは、時間差をもって順次に構築され、後行のトンネルは、先行のトンネルの隣りに構築される。また、各トンネルは、推進工法またはシールド工法により構築される。   Patent Document 1 discloses an underground structure built using a plurality of tunnels arranged side by side. This underground structure is constructed by arranging multiple tunnels vertically and horizontally so as to substantially encompass all of the cross section, and then removing unnecessary lining of each tunnel to form a large space Built. The plurality of tunnels are constructed sequentially with a time difference, and the succeeding tunnel is constructed next to the preceding tunnel. Each tunnel is constructed by a propulsion method or a shield method.

ここで、推進工法とは、トンネルの覆工となる筒状の函体を坑口から順次地中に圧入してトンネルを構築する工法である。なお、函体の先端には、刃口や掘進機などが取り付けられている。推進工法の掘進機は、函体を介して伝達された元押しジャッキの推力により掘進する。一方、シールド工法とは、トンネル切羽に設置された掘進機で地山を掘削するとともに、掘進機の内部でトンネルの覆工となるセグメントを組み立ててトンネルを構築する工法である。なお、シールド掘進機は、その内部で組み立てられたセグメントに反力をとって自ら掘進する。   Here, the propulsion method is a method of constructing a tunnel by sequentially injecting a cylindrical box as a tunnel lining from the wellhead into the ground. In addition, a blade edge, an excavation machine, etc. are attached to the front-end | tip of a box. The propulsion method excavating machine excavates by the thrust of the main jack transmitted through the box. On the other hand, the shield method is a method of excavating a natural ground with an excavator installed at a tunnel face and assembling a segment to be a tunnel lining inside the excavator to construct a tunnel. In addition, a shield machine makes itself a reaction force against the segment assembled inside.

ところで、特許文献1に記載された構成では、各トンネルの残置された覆工がそのまま地下構造物の本設の底版や側壁になっていることから、各トンネルの覆工を予め重厚なものにしておく必要がある。つまり、各トンネルの残置された覆工をそのまま本設の構造体として利用する場合には、各トンネルの覆工の厚さや強度を、閉断面のトンネルに使用する場合に必要な厚さや強度(すなわち、施工時に必要な厚さや強度)よりも大きくしておく必要がある。   By the way, in the structure described in Patent Document 1, since the remaining lining of each tunnel is directly used as the bottom plate and the side wall of the underground structure, the lining of each tunnel is previously made heavy. There is a need. In other words, when the remaining lining of each tunnel is used as a main structure as it is, the thickness and strength of the lining of each tunnel is the same as the thickness and strength required for use in a closed-section tunnel ( That is, it is necessary to make it larger than the thickness and strength required at the time of construction.

特開2001−214699号公報(段落0022、図1)JP 2001-214699 A (paragraph 0022, FIG. 1)

ところが、本設の構造体としてそのまま利用できる程度に各トンネルの覆工を重厚なものにすると、覆工を構成する函体やセグメントの重量が嵩むことになるので、その搬入作業や組立作業に支障をきたす虞がある。   However, if the lining of each tunnel is made so heavy that it can be used as it is as a main structure, the weight of the box and segments that make up the lining increases, so it is difficult to carry in and assemble it. There is a risk of hindrance.

そのため、各トンネルの函体やセグメントを一次覆工として、内部の不要な部分を撤去した後、二次覆工としてコンクリートを打設することで、本設の構造体を構築する場合がある。しかし、このような施工を実施するためには、各トンネルの函体やセグメントの解体は、土圧下での実施のため、土圧を一旦、他の構造物に受け替える必要があり、そのための作業に手間がかかるという問題点を有していた。   For this reason, a box structure or a segment of each tunnel is used as a primary lining, and after removing unnecessary portions inside, a concrete structure may be constructed by placing concrete as a secondary lining. However, in order to carry out such construction, it is necessary to replace the earth pressure with other structures once because the tunnel box and segment of each tunnel are dismantled under earth pressure. There was a problem that work was troublesome.

このような観点から、本発明は、並設された複数本のトンネルを利用して築造する地下構造物の構築方法であって、土圧に対する耐力(抵抗力)を確保しつつ、トンネルの一体化を簡易に行うことを可能とした、地下構造物の構築方法を提供することを課題とする。   From such a point of view, the present invention is a method for constructing an underground structure that is constructed by using a plurality of tunnels arranged side by side, and it is possible to integrate the tunnel while ensuring a resistance to earth pressure (resistance). It is an object to provide a construction method for an underground structure that can be simplified.

このような課題を解決するために創案された本発明に係る地下構造物の構築方法は、トンネルを複数段複数列並設し、前記各トンネルの周辺地盤に面する覆工を残置させて外周部を形成し、前記外周部の内周に沿って内周部を形成する、地下構造物の構築方法であって、前記並設された複数段複数列のトンネルに、トンネル軸方向において撤去区間と支保区間とを交互に設定し、前記支保区間において前記外周部となる前記覆工以外の覆工の少なくとも一部を支保として利用しつつ前記撤去区間において前記内周部を構築する際に邪魔になる覆工を撤去し、前記撤去区間において内周部を閉合した後に、前記支保区間において支保として利用された前記覆工を撤去したうえで、前記支保区間において内周部を閉合することを特徴としている。   The construction method of the underground structure according to the present invention, which was created to solve such a problem, includes a plurality of rows of tunnels arranged side by side, and a lining facing the surrounding ground of each tunnel is left behind. Forming an inner peripheral portion along an inner periphery of the outer peripheral portion, and a method for constructing an underground structure, wherein the plurality of multi-stage tunnels arranged side by side are removed in the tunnel axial direction. And the support section are alternately set, and at least a part of the lining other than the lining that becomes the outer periphery in the support section is used as a support, and it is an obstacle to construct the inner periphery in the removal section After removing the lining and closing the inner periphery in the removal section, after removing the lining used as support in the support section, closing the inner periphery in the support section It is a feature.

かかる地下構造物の構築方法は、支保区間において、前後の撤去区間を含めて土圧等の外力に対する耐力(抵抗力)を確保しているため、撤去区間において各トンネルの不要な覆工(周辺地盤に面する覆工以外の覆工)を撤去しても、安定した状態で、施工を行うことが可能となる。また、土圧等の外力の受け替えについて、新たな部材の配置や、トンネルの覆工を予め重厚なものにすることを要しないため施工性に優れ、かつ、経済的にも優れている。また、支保区間における内周部の構築は、前後の撤去区間における内周部の施工の進行に応じて行うため、安全性は確保されている。   This construction method of the underground structure secures the resistance (resistance) against external force such as earth pressure in the support section including the front and rear removal sections. Even if the lining other than the lining facing the ground is removed, the construction can be performed in a stable state. In addition, it is excellent in workability and economically because it is not necessary to replace the external force such as earth pressure by arranging new members or making the tunnel lining heavy beforehand. Moreover, since the construction of the inner periphery in the support section is performed according to the progress of the construction of the inner periphery in the front and rear removal sections, safety is ensured.

また、請求項2に記載の発明は、トンネルを複数段複数列並設し、前記各トンネルの周辺地盤に面する覆工を残置させて外周部を形成し、前記外周部の内周に沿って内周部を形成する、地下構造物の構築方法であって、前記並設された複数段複数列のトンネルに、トンネル軸方向において撤去区間と支保区間とを交互に設定し、前記支保区間において前記外周部となる前記覆工以外の覆工の少なくとも一部を縦支柱または横支柱として利用しつつ前記撤去区間において前記内周部を構築する際に邪魔になる覆工の撤去を行う工程と、前記撤去区間において前記内周部の底版の構築を行う工程と、前記支保区間において横支柱として利用された前記覆工のうち、前記内周部の側壁を構築する際に邪魔になる覆工の撤去を行う工程と、前記撤去区間および前記支保区間において内周部の側壁の構築を行う工程と、前記撤去区間において前記内周部の頂版の構築を行い、該内周部を閉合する工程と、前記支保区間において縦支柱として利用された前記覆工を撤去する工程と、前記支保区間において内周部を閉合する工程とを備えることを特徴としている。   In the invention according to claim 2, the tunnels are arranged in a plurality of stages in a plurality of rows, an outer peripheral portion is formed by leaving a lining facing the surrounding ground of each tunnel, and along the inner periphery of the outer peripheral portion. Forming an inner peripheral part, wherein the plurality of multi-stage tunnels arranged side by side alternately set removal sections and support sections in the tunnel axis direction, and the support sections Removing the lining that obstructs the construction of the inner peripheral portion in the removal section while using at least a part of the lining other than the lining serving as the outer peripheral portion in the removal section And the step of constructing the bottom plate of the inner peripheral portion in the removal section, and the covering that obstructs the construction of the side wall of the inner peripheral portion of the lining used as a lateral support in the support section. The process of removing the work and the removal zone And a step of constructing a side wall of an inner peripheral portion in the support section, a step of constructing a top plate of the inner peripheral portion in the removal section, and closing the inner peripheral portion, and as a vertical support in the support section The method includes a step of removing the used lining and a step of closing an inner periphery in the support section.

かかる地下構造物の構築方法は、撤去区間の構築を支保区間により耐力(抵抗力)を確保した状態で行い、撤去区間における内周部の構築の進行に伴い、支保区間の不要な覆工の撤去および内周部の構築を行うため、適切に土圧の受け替えを行うため、好適である。   The construction method of the underground structure is to construct the removal section in a state where the proof strength (resistance) is secured by the support section, and as the construction of the inner periphery in the removal section progresses, unnecessary lining of the support section is performed. In order to perform removal and construction of the inner periphery, it is preferable to appropriately replace earth pressure.

この地下構造物は、各トンネルの覆工であって周辺地盤に面している覆工を利用して形成した外周部と、その内周に沿って形成した内周部との二層構造になっているので、内周部の厚さや強度を適宜調節することで、完成後に外周部が負担すべき荷重を小さくすることができる。つまり、各トンネルは、その施工時に必要な覆工の厚さ(すなわち、閉断面のトンネルである場合に必要な厚さ)を備えていればよく、したがって、各トンネルの覆工が必要以上に重厚になることがない。   This underground structure is a two-layer structure consisting of an outer periphery formed using the lining of each tunnel and facing the surrounding ground, and an inner periphery formed along the inner periphery. Therefore, by appropriately adjusting the thickness and strength of the inner peripheral portion, the load that the outer peripheral portion should bear after completion can be reduced. In other words, each tunnel only needs to have the thickness of the lining required at the time of construction (that is, the thickness required for a tunnel having a closed section), and therefore the lining of each tunnel is more than necessary. It will not be profound.

また、本発明に係る地下構造物の構築方法において、トンネル軸方向に隣り合う前記覆工同士を連結してもよい。このようにすると、支保区間と撤去区間との間で隣り合う覆工同士が一体化されるため、支保区間と撤去区間に加わる外力を、適宜、互いに受け替えることを可能とし、地下構造物の施工を安全に行うことを可能としている。また、隣り合う覆工同士が一体化されることになるので、外周部の剛性を向上させることができる。なお、隣り合う覆工同士は、例えば、ボルト・ナットからなる継手やくさびを利用した継手を介して連結してもよいし、溶接により連結してもよい。   Moreover, in the construction method of the underground structure according to the present invention, the linings adjacent in the tunnel axis direction may be connected to each other. In this way, since the adjacent linings are integrated between the support section and the removal section, external forces applied to the support section and the removal section can be appropriately exchanged with each other. It is possible to perform construction safely. Moreover, since adjacent linings will be integrated, the rigidity of an outer peripheral part can be improved. Adjacent linings may be connected to each other through, for example, a joint made of bolts and nuts or a joint using a wedge, or may be connected by welding.

また、前記内周部が、トンネル横断方向に隣り合う前記覆工同士の境界部分を跨ぐように打設されたコンクリートを含んで構成されていれば、複数のトンネルを並設したときにその境界部分に生じる覆工間の隙間(継ぎ目)がコンクリートで塞がれて、この隙間からの地下水等の浸入を防止することができる。なお、コンクリートを打設する際には、外周部がそのまま周辺地盤側の型枠になることから、施工性がよい。   In addition, if the inner peripheral portion is configured to include concrete that is placed so as to straddle the boundary portion between the linings adjacent to each other in the tunnel crossing direction, when the plurality of tunnels are juxtaposed, the boundary A gap (seam) between the linings generated in the portion is blocked with concrete, and intrusion of groundwater or the like from this gap can be prevented. In addition, when placing concrete, the workability is good because the outer peripheral portion is directly used as a formwork on the peripheral ground side.

さらに、前記コンクリートには、前記境界部分を跨ぐように配置された鉄筋を埋設してもよい。このようにすると、鉄筋の補強効果によって内周部の剛性が向上し、さらには、各トンネルの残置された覆工同士が鉄筋を介して互いに連結されることになるので、外周部の剛性も向上することとなる。なお、各トンネルの覆工が鋼製の部材で構成されている場合には、コンクリートとともに所謂オープンサンドイッチ構造を形成することになるので、内周部のコンクリート厚さを小さくすることができ、また、外周部のない単純な鉄筋コンクリート構造に比べ鉄筋量を低減することができる。   Furthermore, you may embed the reinforcing bar arrange | positioned so that the said boundary part may be straddled in the said concrete. In this way, the rigidity of the inner peripheral portion is improved by the reinforcing effect of the reinforcing bars, and further, the remaining lining of each tunnel is connected to each other via the reinforcing bars, so the rigidity of the outer peripheral portion is also improved. Will be improved. In addition, when the lining of each tunnel is made of a steel member, a so-called open sandwich structure is formed together with the concrete, so that the concrete thickness of the inner periphery can be reduced, and The amount of reinforcing bars can be reduced compared to a simple reinforced concrete structure without an outer periphery.

本発明に係る地下構造物の構築方法によると、並設された複数本のトンネルの各覆工が必要以上に重厚になることがなく、土圧に対する耐力(抵抗力)を確保しつつ、トンネルの一体化を簡易かつ迅速に行うことが可能となる。   According to the construction method of an underground structure according to the present invention, each lining of a plurality of tunnels arranged side by side does not become unnecessarily heavy, and the tunnel is secured with resistance to earth pressure (resistance). Can be easily and quickly integrated.

以下、本発明を実施するための最良の形態を、添付した図面を参照しつつ詳細に説明する。ここで、図1は、本実施形態にかかる地下構造物を示す断面図である。また、図2は、本実施形態の地下構造物の全体を示す斜視図である。また、図3は、本実施形態の地下構造物の構築方法に係る支保区間と撤去区間とを示す平面図である。さらに、図4(a)〜(f)、図5(a)〜(f)、図6(a)〜(c)は、本実施形態の地下構造物の構築方法に係る各施工段階を示す断面図であって、図7は、箱抜き状況を示す平面図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. Here, FIG. 1 is a cross-sectional view showing the underground structure according to the present embodiment. FIG. 2 is a perspective view showing the entire underground structure of the present embodiment. Moreover, FIG. 3 is a top view which shows the support area and removal section which concern on the construction method of the underground structure of this embodiment. Furthermore, FIG. 4 (a)-(f), FIG. 5 (a)-(f), FIG. 6 (a)-(c) shows each construction step which concerns on the construction method of the underground structure of this embodiment. FIG. 7 is a cross-sectional view, and FIG. 7 is a plan view showing the unboxing situation.

本実施形態に係る地下構造物の構築方法は、図1に示すように、トンネル1を複数段複数列(本実施形態では2段3列)並設し、各トンネル1,1,…の周辺地盤Gに面する覆工を残置させて外周部2を形成し、外周部2の内周に沿って内周部3を形成することにより、大断面トンネル(地下構造物)Tを構築するものである。この場合において、図3に示すように、並設された複数段複数列のトンネル1,1,…に、トンネル軸方向において函体10毎に撤去区間Aと支保区間Bとを交互に設定し、支保区間Bにおいて外周部2となる覆工11以外の覆工11の少なくとも一部を支保として利用しつつ撤去区間Aにおいて内周部3を構築する際に邪魔になる覆工11を撤去し、撤去区間Aにおいて内周部3を閉合した後に、支保区間Bにおいて支保として利用された覆工11を撤去したうえで、支保区間Bにおいて内周部3を閉合するものである。   As shown in FIG. 1, the construction method of the underground structure according to the present embodiment includes a plurality of tunnels 1 arranged in a plurality of rows (in this embodiment, two rows and three rows), and around each tunnel 1, 1,. A large-section tunnel (underground structure) T is constructed by leaving the lining facing the ground G, forming the outer peripheral portion 2, and forming the inner peripheral portion 3 along the inner periphery of the outer peripheral portion 2. It is. In this case, as shown in FIG. 3, the removal sections A and the support sections B are alternately set for each box 10 in the tunnel axis direction in the tunnels 1, 1,. In the support section B, the cover 11 that becomes an obstacle when the inner periphery 3 is constructed in the removal section A is removed while using at least a part of the cover 11 other than the cover 11 serving as the outer periphery 2 in the support section B. After the inner periphery 3 is closed in the removal section A, the lining 11 used as the support in the support section B is removed, and then the inner periphery 3 is closed in the support section B.

本実施形態に係る大断面トンネルTは、図1に示すように、その横断面の全てを包含するように並設された複数本(本実施形態では六本)のトンネル1,1,…を利用して築造したものであり、周辺地盤Gに面する外周部2と、この外周部2の内周に沿って形成された内周部3とを備えている。   As shown in FIG. 1, the large-section tunnel T according to this embodiment includes a plurality of (six in this embodiment) tunnels 1, 1,. The outer peripheral portion 2 that is constructed by using the outer peripheral portion 2 facing the surrounding ground G and the inner peripheral portion 3 formed along the inner periphery of the outer peripheral portion 2 is provided.

そして、本実施形態では、図2に示すように、盛土E上に形成された既設道路Rにランプ部を新設する際に、既設道路Rへの取付道路Raとして既設道路Rの下を通過する曲線線形を有した大断面トンネル(地下構造物)Tを構築する。   In the present embodiment, as shown in FIG. 2, when a ramp portion is newly installed on the existing road R formed on the embankment E, it passes under the existing road R as an attachment road Ra to the existing road R. A large section tunnel (underground structure) T having a curved line shape is constructed.

ここで、大断面トンネルTの横断面は、図1に示すように、矩形を呈しており、各トンネル1の横断面は略正方形を呈している。また、複数のトンネル1,1,…は、同一の横断面形状を有しており、かつ、複数のトンネル1,1,…の横断面の面積の合計と大断面トンネルTの横断面の面積とがおおよそ等しくなっている。なお、本実施形態では、各トンネル1の横断面を略正方形に形成するものとしたが、各トンネル1の横断面形状は限定されるものではないことはいうまでもない。また、前記各トンネル同士は、互いに設けられた継手手段Jを介して、一体に接合されている。   Here, as shown in FIG. 1, the cross section of the large-section tunnel T has a rectangular shape, and the cross section of each tunnel 1 has a substantially square shape. The plurality of tunnels 1, 1,... Have the same cross-sectional shape, and the total cross-sectional area of the plurality of tunnels 1, 1,. Are roughly equal. In the present embodiment, the cross section of each tunnel 1 is formed in a substantially square shape, but it goes without saying that the cross section of each tunnel 1 is not limited. The tunnels are joined together through joint means J provided to each other.

次に、各トンネル1の施工時の覆工11(覆工構造)について詳細に説明する。ここで、各トンネル1は、推進工法またはシールド工法により構築することができるが、本実施形態では、推進工法により構築する場合を例示する。なお、トンネルTの施工時の覆工11には、周辺地盤Gに面していて、かつ、大断面トンネルTの完成後も残置される覆工11aと、内周部3の内空側に露出し、かつ、完成前に撤去される覆工11bとがある。なお、以下の説明では、残置される覆工11aを「残置覆工11a」と称し、撤去される覆工11bを「撤去覆工11b」と称することがある。   Next, the lining 11 (lining structure) at the time of construction of each tunnel 1 will be described in detail. Here, each tunnel 1 can be constructed by a propulsion method or a shield method, but in this embodiment, a case of constructing by a propulsion method is illustrated. In addition, the lining 11 at the time of construction of the tunnel T faces the surrounding ground G and is left behind after completion of the large section tunnel T, and on the inner side of the inner peripheral portion 3. There is a lining 11b that is exposed and removed before completion. In the following description, the remaining lining 11a may be referred to as “remaining lining 11a”, and the removed lining 11b may be referred to as “removed lining 11b”.

函体10(覆工11)は、角筒状に形成されたスキンプレート(図示省略)と、トンネル軸方向に間隔をあけて配置された複数の枠状の主桁(図示省略)と、隣り合う主桁間においてトンネル軸方向に沿って配置された複数の縦リブ(図示省略)とを含んで構成されている。   The box 10 (the lining 11) is adjacent to a skin plate (not shown) formed in a rectangular tube shape, a plurality of frame-shaped main girders (not shown) arranged at intervals in the tunnel axis direction. It includes a plurality of vertical ribs (not shown) arranged along the tunnel axis direction between the matching main girders.

なお、本実施形態においては、函体10を鋼製の部材で構成したが、この他、球状黒鉛鋳鉄製の部材で構成してもよく、さらには、鉄筋コンクリート製の部材で構成してもよい。また、図示は省略するが、複数のセグメントを組み合わせて函体10を構成してもよい。なお、この場合には、残置覆工11aと撤去覆工11bとの境界部分にセグメントの継手(継ぎ目)を位置させると、撤去覆工11bの撤去を簡易迅速に行うことが可能となる。   In the present embodiment, the box 10 is made of a steel member, but may be made of a spheroidal graphite cast iron member, or may be made of a reinforced concrete member. . Moreover, although illustration is abbreviate | omitted, you may comprise the box 10 combining several segments. In this case, if the joint (joint) of the segment is positioned at the boundary portion between the remaining lining 11a and the removal lining 11b, the removal lining 11b can be easily and quickly removed.

次に、図1を参照して、大断面トンネルTを構成する外周部2および内周部3について詳細に説明する。なお、以下の説明において、トンネル横断方向とは、図1において左右方向または上下方向を意味する。   Next, with reference to FIG. 1, the outer peripheral part 2 and the inner peripheral part 3 which comprise the large cross-sectional tunnel T are demonstrated in detail. In the following description, the tunnel crossing direction means the horizontal direction or the vertical direction in FIG.

外周部2は、角筒状の外殻を形成するように配置された複数の残置覆工11a,11a,…を含んで構成されていて、内周部3とともに本設構造体を形成している。つまり、各トンネル1の断面矩形枠状の覆工11のうち、周辺地盤Gに面する断面略L字状または断面略一文字状の残置覆工11aによって本設構造体の一部として機能する外周部2が構成されている。また、トンネル横断方向に隣り合う残置覆工11a,11aは、継手手段Jを介して互いに連結されている。このようにすると、トンネル横断方向に隣り合う残置覆工11a,11aが強固に一体化されることになるので、外周部2の剛性を向上させることができる。なお、本実施形態では、継手手段Jとして、一方の覆工11に形成された溝部に他方の覆工11に形成された突条を挿入するものを採用したが、継手手段Jの構成は限定されるものではなく、適宜公知の手段から選定して採用すればよい。   The outer peripheral part 2 is configured to include a plurality of remaining linings 11a, 11a,... Arranged so as to form a rectangular tube-shaped outer shell, and forms a permanent structure together with the inner peripheral part 3. Yes. That is, the outer periphery which functions as a part of this installation structure by the residual covering 11a of the cross-sectional substantially L shape facing the surrounding ground G among the coverings 11 of the cross-sectional rectangular frame shape of each tunnel 1 or a substantially single character cross-section. Part 2 is configured. The remaining linings 11a, 11a adjacent to each other in the tunnel crossing direction are connected to each other through joint means J. If it does in this way, since the remaining linings 11a and 11a adjacent in the tunnel crossing direction will be firmly integrated, the rigidity of the outer peripheral part 2 can be improved. In the present embodiment, as the joint means J, one in which the ridge formed on the other lining 11 is inserted into the groove portion formed on the one lining 11 is adopted, but the configuration of the joint means J is limited. However, it may be selected from known means as appropriate.

内周部3は、必要に応じてトンネル軸方向(図1において紙面垂直方向)に間隔をあけて配筋された複数の鉄筋(図示省略)と、外周部1の内周に沿って打設されたコンクリートとを含んで構成されていて、本実施形態では、頂版TA、底版TBおよび側壁TCを備えている。   The inner peripheral portion 3 is placed along the inner periphery of the outer peripheral portion 1 with a plurality of reinforcing bars (not shown) arranged at intervals in the tunnel axis direction (perpendicular to the paper surface in FIG. 1) as necessary. In this embodiment, a top plate TA, a bottom plate TB, and a side wall TC are provided.

以下、本実施形態に係る大断面トンネルTの構築方法について詳細に説明する。
大断面トンネルTの構築は、図1に示すように、大断面トンネルTの横断面の全てを実質的に包含するように複数本のトンネル1,1,…を並設し、各トンネル1の周辺地盤Gに面する覆工(外周部2)に沿って内周部3を構築するものである。
Hereinafter, the construction method of the large-section tunnel T according to the present embodiment will be described in detail.
As shown in FIG. 1, the large-section tunnel T is constructed by arranging a plurality of tunnels 1, 1,... In parallel so as to substantially include all the cross-sections of the large-section tunnel T. The inner peripheral part 3 is constructed along the lining (outer peripheral part 2) facing the peripheral ground G.

より詳細には、この大断面トンネル1の構築方法は、以下に説明するトンネル構築工程と内周部構築工程により行われる。   More specifically, the construction method of the large-section tunnel 1 is performed by a tunnel construction process and an inner circumference construction process described below.

トンネル構築工程は、図1に示すように、築造すべき大断面トンネルTの横断面の全てを実質的に包含するように複数本のトンネル1,1,…を並設する工程である。つまり、トンネル構築工程は、大断面トンネルTが構築される領域を均等に分割してなる複数の小領域のそれぞれにトンネル1を構築する工程であり、総てのトンネル1の構築が完了した時点で、大断面トンネルTが構築される領域の掘削と支保とが完了する。   As shown in FIG. 1, the tunnel construction step is a step of arranging a plurality of tunnels 1, 1,... In parallel so as to substantially include all of the transverse cross section of the large-section tunnel T to be constructed. That is, the tunnel construction process is a process of constructing the tunnel 1 in each of a plurality of small areas obtained by equally dividing the area where the large-section tunnel T is constructed, and when the construction of all the tunnels 1 is completed. Thus, excavation and support of the area where the large section tunnel T is constructed is completed.

複数のトンネル1,1,…を施工順にトンネル1a〜1fと称してトンネル構築工程をより具体的に説明する。まず、図1に示すように、築造すべき大断面トンネルTの下部外側の小領域に基準となる一本目のトンネル1aを構築したうえで、この一本目のトンネル1aの横隣りの小領域に、一本目のトンネル1aをガイドにして二本目のトンネル1bおよび三本目のトンネル1cを構築する。続いて、一本目のトンネル1aの縦(上)隣りの小領域にこれをガイドにして四本目のトンネル1dを構築し、さらに、トンネル1dおよびトンネル1bに隣接する小領域にこれらをガイドにして五本目のトンネル1eを構築し、トンネル1cおよびトンネル1eに隣接する小領域にこれらをガイドにして六本目のトンネル1fを構築する。なお、トンネル1a〜1fの構築順序は、前記のものに限らず、適宜変更しても差し支えない。   The tunnel construction process will be described more specifically by referring to the plurality of tunnels 1, 1,. First, as shown in FIG. 1, a first tunnel 1a serving as a reference is constructed in a small area outside the lower portion of the large-section tunnel T to be built, and then a small area adjacent to the first tunnel 1a is constructed. The second tunnel 1b and the third tunnel 1c are constructed using the first tunnel 1a as a guide. Subsequently, a fourth tunnel 1d is constructed by using this as a guide in a small area adjacent to the first tunnel 1a (upper), and further, this is used as a guide in small areas adjacent to the tunnel 1d and the tunnel 1b. A fifth tunnel 1e is constructed, and a sixth tunnel 1f is constructed using these as a guide in a small area adjacent to the tunnel 1c and the tunnel 1e. The construction order of the tunnels 1a to 1f is not limited to the above, and may be changed as appropriate.

各トンネル1は、複数の函体10,10,…を図示せぬ坑口から順次押し出す(押し込む)ことにより構築される。なお、トンネル1の施工中は、函体10の周囲に滑材を注入・充填しておき、トンネル1の構築が完了した後に、硬化性の裏込材に置き換える。また、図示は省略するが、各トンネル1において、トンネル軸方向に隣り合う函体10,10は、図示せぬボルト・ナット等を用いて互いに連結するとよい。ここで、本実施形態では、函体10の配置時に滑材を注入充填し、トンネル1の構築完了時に裏込材と置き換える構成としたが、滑材と裏込材とを兼用した材料であれば、置き換える必要はないことはいうまでもない。   Each tunnel 1 is constructed by sequentially pushing out (pushing) a plurality of boxes 10, 10,... During construction of the tunnel 1, a lubricant is poured and filled around the box 10 and replaced with a curable backing material after the construction of the tunnel 1 is completed. Although not shown in the drawings, the boxes 10 and 10 adjacent to each other in the tunnel axis direction in each tunnel 1 may be connected to each other using bolts, nuts, or the like (not shown). Here, in the present embodiment, the lubricant is injected and filled when the box 10 is arranged, and replaced with the backing material when the construction of the tunnel 1 is completed. However, any material that combines the lubricant and the backing material may be used. Needless to say, there is no need to replace it.

なお、トンネル1の施工に使用する掘進機は、その後方にある函体10に反力をとって自ら掘進するもの(つまり、推進ジャッキを装備しているもの)でもよいし、函体10を介して伝達された元押しジャッキの推力により掘進するものであってもよい。   The excavator used for the construction of the tunnel 1 may be one that excavates itself by taking a reaction force on the box 10 behind it (that is, one that is equipped with a propulsion jack). It may dig up by the thrust of the main push jack transmitted through it.

内周部構築工程は、各トンネル1の周辺地盤Gに面しており、残置された覆工である外周部2に沿って内周部3(頂版TA、底版TBおよび側壁TC)を構築する工程であり、次に示す第一工程〜第七工程により行われる。   The inner periphery construction process faces the surrounding ground G of each tunnel 1 and constructs the inner periphery 3 (the top plate TA, the bottom plate TB, and the side wall TC) along the outer periphery 2 that is the remaining lining. And is performed by the following first to seventh steps.

地下構造物の構築は、図3に示すように、トンネル軸方向において撤去区間Aと支保区間Bとを交互に設定された、複数のトンネル1,1,…の集合体について、(1)支保区間Bにおいて各トンネル1,1,…の覆工11を縦支柱12および横支柱13(支保)として利用しつつ、撤去区間Aにおいて外周部2として残置される覆工11以外の覆工11bの撤去を行う第一工程と(図4(a)および図4(b)参照)、(2)撤去区間Aにおいて内周部3の底版TBの構築を行う第二工程と(図4(c)参照)、(3)支保区間Bにおいて前記内周部3の側壁TCに対応する箇所の覆工11bの撤去を行う第三工程と(図4(f)参照)、(4)撤去区間Aおよび支保区間Bにおいて内周部3の側壁TCの構築を行う第四工程と(図5(a)および(b)参照)、(5)撤去区間Aにおいて内周部3の頂版TAの構築を行い、該内周部3を閉合する第五工程と(図5(c)参照)、(6)支保区間Bにおいて縦支柱12として利用された覆工11bを撤去する第六工程と(図5(f)参照)、(7)支保区間Bにおいて内周部3を閉合する第七工程と(図6(b)参照)、により行う。   As shown in FIG. 3, the construction of the underground structure is as follows: (1) Supporting a set of tunnels 1, 1,... In which removal sections A and support sections B are alternately set in the tunnel axis direction. While using the lining 11 of each tunnel 1, 1,... In the section B as the vertical struts 12 and the horizontal struts 13 (supports), the lining 11b other than the lining 11 left as the outer peripheral portion 2 in the removal section A A first step of removing (see FIGS. 4 (a) and 4 (b)), (2) a second step of constructing the bottom slab TB of the inner periphery 3 in the removed section A (FIG. 4 (c)) (3) A third step of removing the lining 11b at a portion corresponding to the side wall TC of the inner peripheral portion 3 in the support section B (see FIG. 4 (f)), (4) the removal section A and A fourth step of constructing the side wall TC of the inner periphery 3 in the support section B (see FIG. 5A And (b)), (5) the top plate TA of the inner peripheral portion 3 is constructed in the removal section A, and the inner peripheral portion 3 is closed (see FIG. 5C), (6) ) A sixth step of removing the lining 11b used as the vertical strut 12 in the support section B (see FIG. 5 (f)), and (7) a seventh process of closing the inner periphery 3 in the support section B ( (See FIG. 6B).

(1)第一工程
第一工程では、図4(b)に示すように、支保区間Bにおいて、各トンネル1の覆工を縦支柱12および横支柱13として残置して、撤去区間Aも含めて当該大断面トンネルT(トンネルの集合体)に作用する外力(土圧等)Pに対する耐力(抵抗力)を保持するものとする。この時、各トンネル1のトンネル軸方向に隣り合う覆工同士が連結されているため、撤去区間Aと支保区間Bとの外周部2が一体として、外力を受け持つ構成となっている。一方、撤去区間Aでは、図4(a)に示すように、内周部3の施工が可能となるように、外周部2に対応する覆工(残置覆工11a)以外の覆工11(撤去覆工11b)を撤去する。なお、本実施形態では、撤去区間Aにおいて最終的に撤去される撤去覆工11bのすべてを第一工程で撤去するものとしたが、撤去覆工11bの撤去のタイミングはこれに限定されるものではなく、例えば、第一工程では内周部3を構築する際に邪魔になる撤去覆工11bのみを撤去してもよい。
(1) First Step In the first step, as shown in FIG. 4B, in the support section B, the lining of each tunnel 1 is left as the vertical struts 12 and the horizontal struts 13 and includes the removal section A. Thus, the proof stress (resistance force) against the external force (earth pressure, etc.) P acting on the large-section tunnel T (tunnel aggregate) is held. At this time, since the linings adjacent to each other in the tunnel axis direction of each tunnel 1 are connected to each other, the outer peripheral portion 2 of the removal section A and the support section B is integrally configured to receive external force. On the other hand, in the removal section A, as shown in FIG. 4 (a), the linings 11 (other than the lining (remaining lining 11a) corresponding to the outer peripheral portion 2 are provided so that the inner peripheral portion 3 can be constructed. The removal lining 11b) is removed. In the present embodiment, all the removal lining 11b finally removed in the removal section A is removed in the first step, but the removal timing of the removal lining 11b is limited to this. Instead, for example, in the first step, only the removal lining 11b that gets in the way when the inner periphery 3 is constructed may be removed.

(2)第二工程
第二工程では、図4(c)に示すように、撤去区間Aにおいて、内周部3の底版TBを構築する。また、支保区間Bでは、図4(d)に示すように、右下および左下にあるトンネル1,1内において、内周部3の側壁TCの脚部に対応する箇所の底版(以下、単に「脚部」という場合がある)TB’の施工を行う。この時、外周部2に加わる外力Pは、支保区間Bの縦支柱12および横支柱13により受け持っている。
(2) Second Step In the second step, the bottom plate TB of the inner peripheral portion 3 is constructed in the removal section A as shown in FIG. Further, in the support section B, as shown in FIG. 4 (d), in the tunnels 1 and 1 at the lower right and the lower left, a bottom plate (hereinafter simply referred to as a base plate) corresponding to the leg portion of the side wall TC of the inner peripheral portion 3 is used. TB) (sometimes called “legs”). At this time, the external force P applied to the outer peripheral portion 2 is received by the vertical struts 12 and the horizontal struts 13 in the support section B.

なお、覆工同士の境界部分(撤去区間Aと支保区間Bとの境界部分)を跨ぐようにコンクリートを打設し、撤去区間Aの底版TBと支保区間Bの脚部TB’とは、連続して一体に構築するのが望ましい。また、撤去区間Aの底版TBおよび支保区間Bの脚部TB’は、支保区間Bの縦支柱12から所定の間隔を有した状態で構築されるものとし、図7に示すように、内周部3の底版TBに箱抜き3aがされた状態で構築される。つまり、撤去区間Aの底版TBは、支保区間Bの縦支柱12に対応する箇所について、縦支柱12との間に形成された間隔の分、細く形成されている。
ここで、底版TBと脚部TB’の施工時に、必要に応じて鉄筋を配筋するものとし、この鉄筋の配筋についても、覆工同士の境界部分(撤去区間Aと支保区間Bの境界部分)を跨ぐように配筋するものとする。また、底版TBおよび脚部TB’は、後記する側壁TCとの接合部に、予め図示しない鉄筋(主筋またはさし筋)を所定長突出させた状態で施工を行う。
In addition, the concrete is placed so as to straddle the boundary portion between the linings (the boundary portion between the removal section A and the support section B), and the bottom plate TB of the removal section A and the leg portion TB ′ of the support section B are continuous. It is desirable to build it as one. Further, the bottom plate TB of the removal section A and the leg portion TB ′ of the support section B are constructed with a predetermined distance from the vertical struts 12 of the support section B. As shown in FIG. It is constructed in a state where the box 3a is formed on the bottom plate TB of the part 3. That is, the bottom slab TB of the removal section A is formed to be narrower by an interval formed between the support strut B and the vertical struts 12 in the support section B.
Here, when constructing the bottom slab TB and the leg portion TB ′, reinforcing bars are arranged as necessary, and the reinforcing bars are also arranged at the boundary between the linings (the boundary between the removal section A and the supporting section B). It is assumed that the bars are arranged so as to straddle the part. Further, the bottom plate TB and the leg portion TB ′ are constructed in a state where a reinforcing bar (not shown) protrudes a predetermined length in advance at a joint portion with a side wall TC described later.

(3)第三工程
第三工程では、図4(f)に示すように、支保区間Bにおいて、内周部3の側壁TCを構築する際に邪魔になる撤去覆工11b(本実施形態では右上のトンネル1と右下のトンネル1の境界にある覆工11bおよび左上のトンネル1と左下のトンネル1の境界にある覆工11b)の撤去を行う。つまり、図4(e)に示すように、撤去区間Aの底版TBの施工が完了し、外周部2に加わる外力Pのうち、側圧Pbについて撤去区間Aの底版TBにより受け持つことが可能となった段階で、図4(f)に示すように、支保区間Bの横支柱13を切断することで、側圧Pbを横支柱13から撤去区間Aの底版TBへと受け替える。したがって、図4(e)および図4(f)に示すように、大断面トンネルTに加わる外力Pは、鉛直力Paについては支保区間Bの縦支柱12、水平力Pbについては撤去区間Aの底版TAにより受け持つ。
(3) Third Step In the third step, as shown in FIG. 4 (f), in the support section B, a removal lining 11b (in this embodiment) that becomes an obstacle when the side wall TC of the inner peripheral portion 3 is constructed. The lining 11b at the boundary between the upper right tunnel 1 and the lower right tunnel 1 and the lining 11b) at the boundary between the upper left tunnel 1 and the lower left tunnel 1 are removed. That is, as shown in FIG. 4 (e), the construction of the bottom plate TB in the removal section A is completed, and it is possible to handle the side pressure Pb by the bottom plate TB in the removal section A among the external force P applied to the outer peripheral portion 2. At this stage, as shown in FIG. 4 (f), the lateral pressure 13 in the support section B is cut to transfer the lateral pressure Pb from the lateral support 13 to the bottom plate TB in the removal section A. Therefore, as shown in FIGS. 4 (e) and 4 (f), the external force P applied to the large section tunnel T is the vertical strut 12 in the support section B for the vertical force Pa, and the removal section A for the horizontal force Pb. Take charge of the bottom plate TA.

(4)第四工程
第四工程では、図5(a)および図5(b)に示すように、撤去区間Aおよび支保区間Bにおいて、内周部3の側壁TCの構築を行う。この時、側壁TCは、覆工同士の境界部分(撤去区間Aと支保区間Bの境界部分)を跨ぐようにコンクリートを打設し、一体に連続して構築するのが望ましい。また、側壁TCには、必要に応じて鉄筋を配筋するものとし、この鉄筋の配筋についても、覆工同士の境界部分を跨ぐように配筋するものとする。また、側壁TCの施工は、後記する頂版TAとの接合部(上端部)から図示しない鉄筋(主筋またはさし筋)を所定長突出させた状態でおこなう。
(4) Fourth Step In the fourth step, the side wall TC of the inner peripheral portion 3 is constructed in the removal section A and the support section B as shown in FIGS. At this time, it is desirable that the side wall TC is constructed by continuously placing concrete so as to straddle the boundary portion between the linings (the boundary portion between the removal section A and the support section B). Further, reinforcing bars are arranged on the side wall TC as necessary, and the reinforcing bars are arranged so as to straddle the boundary portion between the linings. Further, the side wall TC is constructed in a state where a reinforcing bar (not shown) protrudes a predetermined length from a joint portion (upper end portion) with the top plate TA described later.

(5)第五工程
第五工程では、図5(c)に示すように、撤去区間Aにおいて、内周部3の頂版TAの施工を行い、内周部3を閉合する。一方、支保区間Bでは、図5(d)に示すように、右上のトンネル1および左上のトンネル1内において、内周部3の側壁TCの上端部に対応する箇所の頂版(以下、単に「上端部」という場合がある)TA’の施工を行う。この時、外周部2に加わる外力Pは、図5(c)および図5(d)に示すように、鉛直力Paは支保区間Bの縦支柱12、水平力Pbは撤去区間Aの底版TBにより受け持っている。また、撤去区間Aの頂版TAおよび支保区間Bの上端部TA’は、支保区間Bの縦支柱12から所定の間隔を有した状態で構築されるものとし、図7に示すように、内周部3の頂版TAに箱抜き3aが形成された状態で構築される。つまり、撤去区間Aの頂版TAは、支保区間Bの縦支柱12に対応する箇所について、縦支柱12との間に形成された間隔の分、細く形成されている。
(5) Fifth Step In the fifth step, as shown in FIG. 5 (c), in the removal section A, the top plate TA of the inner peripheral portion 3 is applied and the inner peripheral portion 3 is closed. On the other hand, in the support section B, as shown in FIG. 5 (d), in the upper right tunnel 1 and the upper left tunnel 1, the top plate of the portion corresponding to the upper end portion of the side wall TC of the inner peripheral portion 3 (hereinafter simply referred to as “top plate”). TA ') (sometimes called "upper end"). At this time, as shown in FIGS. 5C and 5D, the external force P applied to the outer peripheral portion 2 is vertical force Pa is the vertical column 12 of the support section B, and horizontal force Pb is the bottom plate TB of the removal section A. I am in charge. Further, the top plate TA of the removal section A and the upper end portion TA ′ of the support section B are constructed with a predetermined distance from the vertical struts 12 of the support section B. As shown in FIG. It is constructed in a state where the box opening 3a is formed on the top plate TA of the peripheral portion 3. That is, the top plate TA of the removal section A is formed to be thin at the portion corresponding to the vertical support 12 of the support section B by the interval formed between the support section B and the vertical support 12.

(6)第六工程
第六工程では、撤去区間Aの内周部3が所定の強度に達した段階で、支保区間Bにおいて、図5(f)に示すように、縦支柱12として利用した覆工11(撤去覆工11b)の撤去を行う。つまり、図5(e)に示すように、撤去区間Aの頂版TAの施工が完了することで、撤去区間Aの内周部3が閉合されるため、外周部2に採用する外力Pを、撤去区間Aにより受け持つことが可能となる。そのため、支保区間Bの縦支柱12を撤去することで、鉛直力Paを支保区間Bの縦支柱12から撤去区間Aへと受け替える。
(6) Sixth Step In the sixth step, the support section B is used as the vertical support 12 as shown in FIG. 5 (f) when the inner peripheral portion 3 of the removal section A reaches a predetermined strength. The lining 11 (removal lining 11b) is removed. That is, as shown in FIG.5 (e), since the inner peripheral part 3 of the removal area A is closed by completing construction of the top plate TA of the removal area A, the external force P adopted for the outer peripheral part 2 is applied. It becomes possible to take charge by the removal section A. Therefore, by removing the vertical struts 12 in the support section B, the vertical force Pa is transferred from the vertical struts 12 in the support section B to the removal section A.

(7)第七工程
第七工程では、図6(b)に示すように、支保区間Bの縦支柱12の存在により内周部3の底版TBおよび頂版TAに形成された箱抜き3a(図7参照)について、コンクリートの打設を行い、支保区間Bの内周部3の閉合を行う。これにより、図6(a)および図6(b)に示すように、撤去区間Aおよび支保区間Bにおいて、内周部3が閉合されて、大断面トンネルTの外殻が完成する。
(7) Seventh Step In the seventh step, as shown in FIG. 6 (b), the box opening 3a (formed on the bottom plate TB and the top plate TA of the inner peripheral portion 3 due to the presence of the vertical struts 12 in the support section B ( As for FIG. 7, the concrete is placed and the inner peripheral portion 3 of the support section B is closed. As a result, as shown in FIGS. 6A and 6B, the inner peripheral portion 3 is closed in the removal section A and the support section B, and the outer shell of the large-section tunnel T is completed.

そして、第七工程により、大断面トンネルTの内周部3の構築が完了したら、図6(c)に示すように、大断面トンネルTの内部の各種構造物4を構築し、道路トンネルを完成させる。   When the construction of the inner peripheral portion 3 of the large section tunnel T is completed by the seventh step, various structures 4 inside the large section tunnel T are constructed as shown in FIG. Finalize.

以上説明したように、この大断面トンネルTは、各トンネル1の覆工11を利用して形成した外周部2と、その内周に沿って形成した内周部3との二層構造になっているので、内周部3の厚さや強度を適宜調節することで、完成後に外周部2が負担すべき荷重を小さくすることができる。つまり、各トンネル1は、その施工時に必要な覆工11の厚さ、または、縦支柱12および横支柱13として外力Pに対応する耐力(抵抗力)を備えていればよく、したがって、各トンネルTの覆工11が必要以上に重厚になることがない。   As described above, the large-section tunnel T has a two-layer structure of the outer peripheral portion 2 formed using the lining 11 of each tunnel 1 and the inner peripheral portion 3 formed along the inner periphery. Therefore, the load which the outer peripheral part 2 should bear after completion can be made small by adjusting the thickness and intensity | strength of the inner peripheral part 3 suitably. That is, each tunnel 1 only needs to have a proof strength (resistance force) corresponding to the external force P as the thickness of the lining 11 required at the time of construction or the vertical support 12 and the horizontal support 13. The T lining 11 does not become thicker than necessary.

また、以上のような施工手順で大断面トンネルTを築造すると、外周部2に加わる外力Pを適宜、残置覆工11aまたは内周部3に受け替えるため、各トンネル1の覆工11を必要以上に重厚にしておく必要がない。
また、内周部3に対応する箇所の覆工11を撤去してから、内周部3の施工を行うため、施工の妨げとなることがなく、また、内周部3完成後に撤去する場合に比べて、撤去作業が容易である。
Further, when the large-section tunnel T is constructed by the construction procedure as described above, the lining 11 of each tunnel 1 is necessary in order to appropriately transfer the external force P applied to the outer peripheral portion 2 to the remaining lining 11a or the inner peripheral portion 3. It is not necessary to make it heavy.
Moreover, since the construction of the inner peripheral portion 3 is performed after the lining 11 corresponding to the inner peripheral portion 3 is removed, the construction is not hindered, and the inner peripheral portion 3 is removed after completion. Compared with, removal work is easy.

本実施形態の地下構造物の構築方法によれば、土圧に対する耐力(抵抗力)を確保しつつ、複数並設されたトンネルの一体化を簡易に行うことが可能となるため、好適である。   According to the construction method of the underground structure of the present embodiment, it is possible to easily integrate a plurality of tunnels arranged side by side while ensuring the proof stress (resistance force) against earth pressure. .

以上、本発明について、好適な実施形態について説明したが、本発明は前記の実施形態に限られず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
例えば、前記した実施形態では、大断面トンネルの横断面が矩形である場合を例示したが(図1参照)、これに限定されることはなく、例えば、L字形状、T字形状、コ字形状、凹形状などであってもよい。また、各トンネルの横断面も矩形に限定されることはなく、例えば、角丸四角形や小判形を呈していても差し支えない。
As mentioned above, although preferred embodiment was described about this invention, this invention is not limited to the said embodiment, A design change is possible suitably in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, the case where the cross section of the large-section tunnel is rectangular is illustrated (see FIG. 1), but the present invention is not limited to this. For example, an L-shape, a T-shape, a U-shape It may be a shape, a concave shape, or the like. Also, the cross section of each tunnel is not limited to a rectangle, and for example, it may have a rounded quadrangular shape or an oval shape.

また、前記実施形態では、大断面トンネルが構築される領域を均等に分割してなる複数の小領域のそれぞれに同一の寸法・形状を有するトンネルを構築したが(図1参照)、必ずしも均等に分割する必要はない。すなわち、複数のトンネルの横断面の面積の合計と大断面トンネルの横断面の面積とがおおよそ等しくなっていれば、各トンネルの横断面の寸法や形状等は、二種類以上であってもよい。   In the above embodiment, the tunnel having the same size and shape is constructed in each of a plurality of small regions obtained by equally dividing the region in which the large-section tunnel is constructed (see FIG. 1). There is no need to split. That is, as long as the sum of the cross-sectional areas of a plurality of tunnels is approximately equal to the cross-sectional area of the large cross-section tunnel, the cross-sectional dimensions and shapes of each tunnel may be two or more types. .

また、前記した実施形態では、大断面トンネルが構築される領域を二段三列に分割した場合を例示したが、領域の分割方式がこれに限定されることがないのは言うまでもない。   In the embodiment described above, the case where the region where the large-section tunnel is constructed is divided into two rows and three rows is exemplified. However, it goes without saying that the region dividing method is not limited to this.

また、前記実施形態では、既設の道路の下方を横断させて構築する、ランプ部の取り付け道路について、本発明の地下構造物の構築方法を採用するものとしたが、本発明の地下構造物の構築方法の適用箇所は限定されるものではない。
同様に、前記実施形態では、曲線線形を有した大断面トンネルについて説明したが、直線線形からなる場合にも適用可能であることはいうまでものない。
Moreover, in the said embodiment, although the construction method of the underground structure of this invention shall be employ | adopted about the attachment road of a ramp part constructed | assembled by traversing the downward direction of the existing road, The application location of the construction method is not limited.
Similarly, in the above-described embodiment, a large-section tunnel having a curved line shape has been described, but it goes without saying that the present invention can also be applied to a case of a linear line shape.

本実施形態にかかる地下構造物を示す断面図である。It is sectional drawing which shows the underground structure concerning this embodiment. 本実施形態の地下構造物の全体を示す斜視図である。It is a perspective view which shows the whole underground structure of this embodiment. 本実施形態の地下構造物の構築方法に係る支保区間と撤去区間とを示す平面図である。It is a top view which shows the support area and removal section which concern on the construction method of the underground structure of this embodiment. (a)〜(f)は、本実施形態の地下構造物の構築方法に係る各施工段階を示す断面図である。(A)-(f) is sectional drawing which shows each construction step which concerns on the construction method of the underground structure of this embodiment. (a)〜(f)は、本実施形態の地下構造物の構築方法に係る各施工段階を示す断面図である。(A)-(f) is sectional drawing which shows each construction step which concerns on the construction method of the underground structure of this embodiment. (a)〜(c)は、本実施形態の地下構造物の構築方法に係る各施工段階を示す断面図である。(A)-(c) is sectional drawing which shows each construction step which concerns on the construction method of the underground structure of this embodiment. 本実施形態に係る大断面トンネルの箱抜き状況を示す平面図である。It is a top view which shows the boxing situation of the large section tunnel which concerns on this embodiment.

符号の説明Explanation of symbols

1 トンネル
2 外周部
3 内周部
10 函体
11 覆工
11a 残置覆工
11b 撤去覆工
12 縦支柱
13 横支柱
A 撤去区間
B 支保区間
T 大断面トンネル(地下構造物)
DESCRIPTION OF SYMBOLS 1 Tunnel 2 Outer peripheral part 3 Inner peripheral part 10 Box 11 Covering 11a Remnant covering 11b Removal covering 12 Vertical support 13 Horizontal support A Removal area B Supporting section T Large section tunnel (underground structure)

Claims (3)

トンネルを複数段複数列並設し、前記各トンネルの周辺地盤に面する覆工を残置させて外周部を形成し、前記外周部の内周に沿って内周部を形成する、地下構造物の構築方法であって、
前記並設された複数段複数列のトンネルに、トンネル軸方向において撤去区間と支保区間とを交互に設定し、
前記支保区間において前記外周部となる前記覆工以外の覆工の少なくとも一部を支保として利用しつつ前記撤去区間において前記内周部を構築する際に邪魔になる覆工を撤去し、
前記撤去区間において内周部を閉合した後に、前記支保区間において支保として利用された前記覆工を撤去したうえで、前記支保区間において内周部を閉合することを特徴とする、地下構造物の構築方法。
An underground structure in which a plurality of rows of tunnels are arranged side by side, an outer peripheral portion is formed by leaving a lining facing the surrounding ground of each tunnel, and an inner peripheral portion is formed along the inner periphery of the outer peripheral portion. The construction method of
In the multiple-stage multiple-row tunnels arranged side by side, the removal section and the support section are alternately set in the tunnel axis direction,
Removing the lining that obstructs the construction of the inner periphery in the removal section while using at least a part of the lining other than the lining as the outer periphery in the support section,
After closing the inner periphery in the removal section, after removing the lining used as support in the support section, and closing the inner periphery in the support section, Construction method.
トンネルを複数段複数列並設し、前記各トンネルの周辺地盤に面する覆工を残置させて外周部を形成し、前記外周部の内周に沿って内周部を形成する、地下構造物の構築方法であって、
前記並設された複数段複数列のトンネルに、トンネル軸方向において撤去区間と支保区間とを交互に設定し、
前記支保区間において前記外周部となる前記覆工以外の覆工の少なくとも一部を縦支柱または横支柱として利用しつつ前記撤去区間において前記内周部を構築する際に邪魔になる覆工の撤去を行う工程と、
前記撤去区間において前記内周部の底版の構築を行う工程と、
前記支保区間において前記横支柱として利用された覆工のうち、前記内周部の側壁を構築する際に邪魔になる覆工の撤去を行う工程と、
前記撤去区間および前記支保区間において前記内周部の側壁の構築を行う工程と、
前記撤去区間において前記内周部の頂版の構築を行い、該内周部を閉合する工程と、
前記支保区間において前記縦支柱として利用された覆工を撤去する工程と、
前記支保区間において内周部を閉合する工程と、
を備えることを特徴とする、地下構造物の構築方法。
An underground structure in which a plurality of rows of tunnels are arranged side by side, an outer peripheral portion is formed by leaving a lining facing the surrounding ground of each tunnel, and an inner peripheral portion is formed along the inner periphery of the outer peripheral portion. The construction method of
In the multiple-stage multiple-row tunnels arranged side by side, the removal section and the support section are alternately set in the tunnel axis direction,
Removal of the lining that obstructs the construction of the inner periphery in the removal section while using at least a part of the lining other than the lining as the outer periphery in the support section as a vertical support or a horizontal support. A process of performing
Constructing the bottom plate of the inner periphery in the removal section; and
Of the lining used as the horizontal strut in the support section, removing the lining that obstructs the construction of the side wall of the inner periphery, and
A step of constructing a side wall of the inner periphery in the removal section and the support section;
Constructing the top plate of the inner periphery in the removal section, and closing the inner periphery;
Removing the lining used as the vertical support in the support section;
Closing the inner periphery in the support section;
A method of constructing an underground structure, comprising:
トンネル軸方向に隣り合う前記覆工同士を連結することを特徴とする請求項1または請求項2に記載の地下構造物。   The underground structure according to claim 1, wherein the linings adjacent to each other in the tunnel axis direction are connected to each other.
JP2005186605A 2005-06-27 2005-06-27 Construction method of underground structure Expired - Fee Related JP4500221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186605A JP4500221B2 (en) 2005-06-27 2005-06-27 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186605A JP4500221B2 (en) 2005-06-27 2005-06-27 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JP2007002603A true JP2007002603A (en) 2007-01-11
JP4500221B2 JP4500221B2 (en) 2010-07-14

Family

ID=37688461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186605A Expired - Fee Related JP4500221B2 (en) 2005-06-27 2005-06-27 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP4500221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997662A (en) * 2020-09-07 2020-11-27 中铁工程装备集团有限公司 Rectangular or quasi-rectangular oversized-section underground space construction method and construction system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220400A (en) * 1999-01-29 2000-08-08 Kajima Corp Construction method for underground structure
JP2001214699A (en) * 2000-02-04 2001-08-10 Taisei Corp Construction method of large cross sectional tunnel
JP2004250957A (en) * 2003-02-19 2004-09-09 Taisei Corp Construction method of large sectional tunnel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220400A (en) * 1999-01-29 2000-08-08 Kajima Corp Construction method for underground structure
JP2001214699A (en) * 2000-02-04 2001-08-10 Taisei Corp Construction method of large cross sectional tunnel
JP2004250957A (en) * 2003-02-19 2004-09-09 Taisei Corp Construction method of large sectional tunnel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997662A (en) * 2020-09-07 2020-11-27 中铁工程装备集团有限公司 Rectangular or quasi-rectangular oversized-section underground space construction method and construction system
CN111997662B (en) * 2020-09-07 2022-02-15 中铁工程装备集团有限公司 Rectangular or quasi-rectangular oversized-section underground space construction method and construction system

Also Published As

Publication number Publication date
JP4500221B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP6636773B2 (en) Construction structure and construction method of tunnel lining body
JP2006322222A (en) Construction method of large-sectional tunnel
JP2007077677A (en) Construction method for underground structure
JP2007077587A (en) Method of constructing underground structure
JP4500221B2 (en) Construction method of underground structure
JP4888725B2 (en) Tunnel construction method
JP4782704B2 (en) Widening structure of shield tunnel, shield tunnel segment and shield tunnel widening method
JP2008014076A (en) Extension section construction method and confluence section construction method for tunnel, and segment
JP5806576B2 (en) Pipe roof and pipe roof construction method
JP6636774B2 (en) Integrated structure of pipe roof material
JP3937588B2 (en) Construction method for underground structures
JP4960986B2 (en) Tunnel lining structure
JP2005002671A (en) Underpinning method and viaduct
JP6019690B2 (en) Tunnel widening method
JP4343078B2 (en) Underground structure and method for constructing underground structure
JP4050882B2 (en) Segment ring structure
JP2008255614A (en) Support structure of natural ground and support method of natural ground
JP4288316B2 (en) Tunnel widening method
JP3900684B2 (en) Construction method for underground structures
JP3900683B2 (en) Construction method of branch / merge part of main line tunnel and rampway
JP6019689B2 (en) Tunnel widening method
JP6756892B1 (en) Underground skeleton and how to build an underground skeleton
JP5548146B2 (en) Segmented joint structure and underground structure
JP2011080310A (en) Construction method of tunnel
KR20120032368A (en) Concrete structure and construction method for the same, constructing method of underground wall as a retaining structural wall used in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160423

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees