JP2007000847A - Apparatus for generating fine bubble - Google Patents

Apparatus for generating fine bubble Download PDF

Info

Publication number
JP2007000847A
JP2007000847A JP2005187272A JP2005187272A JP2007000847A JP 2007000847 A JP2007000847 A JP 2007000847A JP 2005187272 A JP2005187272 A JP 2005187272A JP 2005187272 A JP2005187272 A JP 2005187272A JP 2007000847 A JP2007000847 A JP 2007000847A
Authority
JP
Japan
Prior art keywords
gas
liquid
layer
bubbles
dissolution tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005187272A
Other languages
Japanese (ja)
Inventor
Yasunari Maeda
康成 前田
Kazumasa Rokushima
一雅 六嶋
Shigeyuki Yamaguchi
重行 山口
Noriyuki Kitachi
範行 北地
Hisanori Shibata
尚紀 柴田
Hitoshi Kitamura
仁史 北村
Yoshiyasu Ito
良泰 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005187272A priority Critical patent/JP2007000847A/en
Publication of JP2007000847A publication Critical patent/JP2007000847A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating fine bubbles, in which the efficiency when a gas is dissolved in a liquid in a gas dissolving tank can be improved while miniaturizing the apparatus for generating fine bubbles. <P>SOLUTION: The apparatus 1 for generating fine bubbles is provided on a flow passage 2, in which the liquid flows, with: a gas mixing part 3 for mixing the gas in the liquid flowing in the flow passage 2 to obtain a gas-mixed liquid; a pump 4 for pressurizing the gas-mixed liquid and sending the pressurized gas-mixed liquid to the flow passage 2; the gas dissolving tank 5 which has a liquid phase part 10 and a gas phase part 11 of an indissoluble gas therein, to which the gas-mixed liquid is supplied and which is used for dissolving the gas in the liquid to obtain the gas-dissolved liquid; and a fine bubble generating part 6 for releasing the gas from the gas-dissolved liquid and generating fine bubbles. A bubble generating means is arranged in the gas dissolving tank 5 for generating bubbles from the gas and the liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微細気泡発生装置に関するものである。   The present invention relates to a microbubble generator.

従来から、液体に気体を一旦溶解させてその後液中から気体を析出させて微細気泡を発生させる微細気泡発生装置には、たとえば特許文献1にあるように、液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、内部に液層と気層とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けたものがある。   2. Description of the Related Art Conventionally, as disclosed in Patent Document 1, for example, as disclosed in Japanese Patent Application Laid-Open No. H10-133707, a microbubble generating device that generates a fine bubble by once dissolving a gas in a liquid and then precipitating the gas from the liquid is generated. A gas mixing part for obtaining a gas mixed liquid by mixing the gas flowing into the liquid, a pump for pressurizing the gas mixed liquid and flowing it to the flow path, and having a liquid layer and a gas layer inside and supplying the gas mixed liquid to the gas There are provided a gas-liquid dissolution tank for dissolving a gas in a liquid to obtain a gas-dissolved liquid, and a fine bubble generating part for generating a fine bubble by depositing a gas in the gas-dissolved liquid.

ここで、微細気泡の効果を得るためには多量の微細気泡を発生させる必要があり、これは気体溶解液体における液体への気体の溶解量に負うところが大きく、つまり気液溶解タンクでの気体の液体への溶解効率が、微細気泡発生装置において重要な要素となっている。なお、気体の液体への溶解はたとえば高い圧力下で行われるほどより多量の気体を液体に溶解できることが知られており、しかして、気体混合液体を気液溶解タンクに送るポンプに高い出力のものを用いることで気液溶解タンクでの気体の液体への溶解効率を向上できるのではあるが、この場合、高い出力のポンプにて微細気泡発生装置が大型化してしまうという弊害を伴うものであった。
特開平6−205812号公報
Here, in order to obtain the effect of the fine bubbles, it is necessary to generate a large amount of fine bubbles, which is largely dependent on the amount of gas dissolved in the liquid in the gas-dissolved liquid, that is, the gas in the gas-liquid dissolution tank. The dissolution efficiency in the liquid is an important factor in the microbubble generator. In addition, it is known that the dissolution of a gas into a liquid, for example, can dissolve a larger amount of gas into a liquid as it is performed at a higher pressure. However, a pump that sends a gas mixture to a gas-liquid dissolution tank has a higher output. Although it is possible to improve the dissolution efficiency of the gas in the gas-liquid dissolution tank by using the one, in this case, there is an adverse effect that the fine bubble generating device is enlarged by a high output pump. there were.
JP-A-6-205812

本発明は上記の従来の問題点に鑑みて為したものであって、装置の小型化を図りながらも気液溶解タンクでの気体の液体への溶解効率を向上できる微細気泡発生装置を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional problems, and provides a microbubble generator capable of improving the efficiency of gas dissolution in a gas-liquid dissolution tank while reducing the size of the apparatus. This is a problem.

上記課題を解決するために本発明の請求項1に係る微細気泡発生装置は、液体が流れる流路2に、流路2を流れる液体に気体を混入させて気体混合液体を得る気体混入部3、気体混合液体を加圧して流路2に流すポンプ4、内部に液層10と未溶解気体の気層11とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けてなる微細気泡発生装置1であって、気液溶解タンク5内に気体と液体とから泡を生成させる泡生成手段を設けたことを特徴とする。これによると、泡生成手段にて液膜で気体を包ませてなる泡が生成されることで、気液溶解タンク5内の気層11と液層10との気液界面17の面積以上に気液の接触面積を増大させることができて、溶解効率の向上を図ることができるのであり、しかして、気体の液体への溶解効率を向上させるために高出力のポンプ4を用いる必要が無くて低出力のポンプ4を用いることができ、微細気泡発生装置1の小型化を図ることができる。   In order to solve the above-mentioned problem, the fine bubble generating apparatus according to claim 1 of the present invention includes a gas mixing unit 3 for obtaining a gas mixed liquid by mixing a gas into the liquid flowing through the flow path 2 into the flow path 2 through which the liquid flows. , A pump 4 that pressurizes the gas mixture liquid and flows it to the flow path 2, and has a liquid layer 10 and an undissolved gas gas layer 11 inside, and a gas mixture liquid is supplied to dissolve the gas in the liquid, thereby dissolving the gas. A gas-liquid dissolution tank 5 is provided, and a micro-bubble generating device 1 provided with a micro-bubble generating unit 6 that deposits gas in a gas-dissolved liquid to generate micro-bubbles. A bubble generating means for generating bubbles from the liquid is provided. According to this, since the foam produced by enclosing the gas in the liquid film is generated by the foam generation means, the area of the gas-liquid interface 17 between the gas layer 11 and the liquid layer 10 in the gas-liquid dissolution tank 5 is more than the area. It is possible to increase the contact area of the gas and liquid, and to improve the dissolution efficiency. However, it is not necessary to use the high-output pump 4 to improve the dissolution efficiency of the gas into the liquid. In addition, the low-power pump 4 can be used, and the microbubble generator 1 can be downsized.

本発明は、気液溶解タンク内で液膜で気体を包ませてなる泡を生成することで、気液溶解タンク内の気層と液層との気液界面の面積以上に気液の接触面積を増大させて溶解効率の向上を図ることができたから、気体の液体への溶解効率を向上させるために高出力のポンプを用いる必要が無くて低出力のポンプを用いることができ、微細気泡発生装置の小型化を図り得る、といった利点を有する。   The present invention generates bubbles by enclosing gas with a liquid film in a gas-liquid dissolution tank, so that the gas-liquid contact exceeds the area of the gas-liquid interface between the gas layer and the liquid layer in the gas-liquid dissolution tank. Since it was possible to improve the dissolution efficiency by increasing the area, it is not necessary to use a high-power pump to improve the dissolution efficiency of gas into the liquid, and a low-power pump can be used. There is an advantage that the generator can be miniaturized.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

本例の微細気泡発生装置1は、図2のように浴槽7に微細気泡を供給するようにした装置であって、具体的には、浴槽7に吸入口8と吐出口9とを設け、吸入口8から吐出口9に至る流路2である循環流路2aを形成し、この循環流路2aに吸入口8側から順に、液体である浴水に気体を混入させて気体混合液体を得る気体混入部3、吸入口8から循環流路2aを介して吐出口9に浴水を搬送するポンプ4、ポンプ4にて気体混合液体が供給されて気体を浴水に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けたことで形成されている。ここで、気体混入部3は、本例では循環流路2aを流れる浴水によるエゼクター効果によって空気が吸引されて浴水内に混入される構造とされているが、これに限らず強制的に空気を浴水内に混入させる構造でもよい。また、浴水内に混入される気体としては空気以外のもの、たとえば酸素成分が高い空気等を用いることもできる。微細気泡発生部6は循環流路2aの径を絞った絞り部にて構成され、絞り部で気体溶解液体の圧力降下を行って気体を析出するようにしている。ところで、本発明は、高出力のポンプ4を用いて気液溶解タンク5の内圧を高めなくても気液溶解タンク5での気体の液体への溶解効率を向上できたことに特徴があり、以下に説明する。   The fine bubble generating device 1 of this example is a device that supplies fine bubbles to the bathtub 7 as shown in FIG. 2. Specifically, the bathtub 7 is provided with a suction port 8 and a discharge port 9. A circulation flow path 2a, which is a flow path 2 from the suction port 8 to the discharge port 9, is formed, and gas is mixed into the bath water, which is a liquid, in order from the suction port 8 side to the circulation flow path 2a. The gas mixture 3 is obtained, the pump 4 transports bath water from the suction port 8 to the discharge port 9 through the circulation flow path 2a, and the gas mixture is supplied by the pump 4 so that the gas is dissolved in the bath water to dissolve the gas. It is formed by providing a gas-liquid dissolution tank 5 for obtaining a liquid and a fine bubble generating section 6 for generating fine bubbles by precipitating a gas in the gas-dissolved liquid. Here, in this example, the gas mixing unit 3 has a structure in which air is sucked and mixed into the bath water by the ejector effect of the bath water flowing through the circulation flow path 2a. A structure in which air is mixed into the bath water may be used. Moreover, as gas mixed in bath water, things other than air, for example, air with a high oxygen component, etc. can also be used. The fine bubble generating unit 6 is configured by a constricted portion with a reduced diameter of the circulation flow path 2a, and gas is deposited by reducing the pressure of the gas-dissolved liquid at the constricted portion. By the way, the present invention is characterized in that the gas-liquid dissolution tank 5 can improve the dissolution efficiency of the gas into the liquid without increasing the internal pressure of the gas-liquid dissolution tank 5 using the high-power pump 4. This will be described below.

本例の気液溶解タンク5は図1のように中空内部の下部が液層10で上部が未溶解空気の気層11となっており、ポンプ4から至る循環流路2aが気液溶解タンク5の上面壁に接続されていて気液溶解タンク5内に気体混合液体が供給される入口12が設けられており、気液溶解タンク5の側壁の下端部には微細気泡発生部6に至る循環流路2aが接続されていて気体溶解液体が吐出される出口13が設けられている。そして、この気液溶解タンク5内には泡生成手段によって泡が生成されるようにされている。   As shown in FIG. 1, the gas-liquid dissolution tank 5 of this example is a gas layer 11 in which the lower part of the hollow interior is a liquid layer 10 and the upper part is undissolved air. 5 is provided with an inlet 12 through which gas mixture liquid is supplied into the gas-liquid dissolution tank 5. The gas bubble-dissolution tank 5 reaches the fine bubble generation unit 6 at the lower end of the side wall. An outlet 13 is provided to which the circulation channel 2a is connected and from which the gas-dissolved liquid is discharged. Then, bubbles are generated in the gas-liquid dissolution tank 5 by the bubble generating means.

すなわち、気液溶解タンク5の入口12に設けたノズル22を介して気体混合液体の噴射流14が末広がり状になるようにされ、この末広がり状の噴射流14は気層11を介してその広がった状態の末端部で気液界面17に至るようにされている。ここで、噴射流14が至る気液界面17の部位を噴射域15と称し、噴射流14が至らない気液界面17の部位を非噴射域16と称する(図1(b))。このように噴射流14を末広がり状にしてその末端部で気液界面17に至らしめたので、噴射流14の気液界面17に至る部分での外縁長さ20を長く確保できるのであり、すなわち噴射流14と気層11及び液層10との衝突長さを長くできて、噴射流14、気層11及び液層10との衝突の衝撃によって気層11の気体を液層10や噴射流14に巻き込み、泡を大量に生成させ得るようにされている。つまり、本例の泡生成手段は、末広がり状の噴射流14を形成させるための、気液溶解タンク5の入口12に設けたノズル22によって構成されている。   In other words, the jet stream 14 of the gas mixture liquid is diverged through the nozzle 22 provided at the inlet 12 of the gas-liquid dissolution tank 5, and the divergent jet stream 14 is spread through the gas layer 11. The gas-liquid interface 17 is reached at the end portion in the above state. Here, the part of the gas-liquid interface 17 where the jet flow 14 reaches is referred to as an injection area 15, and the part of the gas-liquid interface 17 where the injection flow 14 does not reach is referred to as a non-injection area 16 (FIG. 1B). Thus, since the jet flow 14 is diverged to reach the gas-liquid interface 17 at the end thereof, the outer edge length 20 in the portion of the jet flow 14 reaching the gas-liquid interface 17 can be secured long, that is, The collision length between the jet stream 14 and the gas layer 11 and the liquid layer 10 can be increased, and the gas in the gas layer 11 is made to flow into the liquid layer 10 and the jet stream by the impact of the collision with the jet stream 14, the gas layer 11 and the liquid layer 10. 14 to be able to generate a large amount of foam. That is, the foam generating means of this example is constituted by the nozzle 22 provided at the inlet 12 of the gas-liquid dissolution tank 5 for forming the divergent jet flow 14.

また、この末広がり状の噴射流14における外縁部分の噴射方向は、気液界面17に直交する方向(下方)のみならず気液界面17の面内方向(水平方向)にも向かっているため、この噴射流14によると気液界面17に衝突後すぐに隣接する非噴射域16に向うような旋回流18を生じさせることができる。特に本例の気液溶解タンク5の気液界面17では、噴射域15によって非噴射域16を分断させてあり、旋回流18を上記分断された非噴射域16に向けてのロス無く安定した流れに形成することが図られている。しかして、上記生成された泡が噴射流14の勢いで液層10内に引き込まれても、上記旋回流18によって非噴射域16に浮かび上がらせるようにでき、つまり、生成後に液層10内に引き込まれた泡もすぐに気液界面17に出現させることができるのである。   In addition, since the jet direction of the outer edge portion in the divergent jet flow 14 is directed not only in the direction perpendicular to the gas-liquid interface 17 (downward) but also in the in-plane direction (horizontal direction) of the gas-liquid interface 17, According to the jet flow 14, it is possible to generate a swirl flow 18 that goes to the adjacent non-jet region 16 immediately after the collision with the gas-liquid interface 17. In particular, at the gas-liquid interface 17 of the gas-liquid dissolution tank 5 of this example, the non-injection area 16 is divided by the injection area 15, and the swirl flow 18 is stabilized without loss toward the divided non-injection area 16. It is intended to form into a flow. Thus, even if the generated bubbles are drawn into the liquid layer 10 by the momentum of the jet flow 14, the swirl flow 18 can be lifted up in the non-injection region 16, that is, after the generation, The drawn bubble can also immediately appear at the gas-liquid interface 17.

このように、噴射流14の気液界面17への突入による泡の生成は、微細気泡発生装置1の作動中、継続して行われるのであり、しかも、噴射流14は末広がり状にされて泡の発生効率が高められると共に、液層10内に引き込まれた泡も旋回流18にてすぐに気液界面17に出現させられるから、気液溶解タンク5内では泡が効率良く多量に生成されるのである。ここで、この泡は液膜で気体が包まれたものであるから、泡を生成することで液体と気体との接触面積を増やすことができたものであり、したがって気体の液体への溶解効率を高めることができたものである。ここで、気液界面17は噴射流14が気液界面17に突入した衝撃で波立つ状態になるであって、この波立つ状態の気液界面17によると気液界面17に接する泡を液層10内に容易に取り込ませて溶解させることができるのであり、これによっても気体の液体への溶解効率の向上が図られているのである。また、上記生成された泡が液層10内に引き込まれると液層10の体積が増加するのであるが、この体積増加をした液層10は気液界面17の噴射流14が至らない非噴射域16から気層11に向けて盛り上がるようになって気液界面17自体の面積が増加するのであり(図中点線の気液界面17)、これによっても気体の液体への溶解効率の向上が図られているのである。なお、そもそも噴射流14は液体中に気体が気泡となって混合している気体混合液体が構成していることから、もともと噴射流14中に含まれている気泡も気液溶解タンク5内での泡発生の効率向上に寄与しているのは言うまでもない。   As described above, the generation of bubbles due to the rush of the jet flow 14 into the gas-liquid interface 17 is continuously performed during the operation of the fine bubble generating device 1, and the jet flow 14 is expanded into a bubble shape. Generation efficiency is increased, and the bubbles drawn into the liquid layer 10 are immediately made to appear at the gas-liquid interface 17 by the swirling flow 18, so that a large amount of bubbles are efficiently generated in the gas-liquid dissolution tank 5. It is. Here, since the bubbles are encased in a liquid film, the contact area between the liquid and the gas can be increased by generating the bubbles, and thus the dissolution efficiency of the gas in the liquid It was possible to improve. Here, the gas-liquid interface 17 is in a undulating state due to the impact of the jet stream 14 entering the gas-liquid interface 17. According to the undulating gas-liquid interface 17, the bubbles in contact with the gas-liquid interface 17 are liquidated. It can be easily taken into the layer 10 and dissolved, and this also improves the dissolution efficiency of the gas into the liquid. In addition, when the generated bubbles are drawn into the liquid layer 10, the volume of the liquid layer 10 increases. However, the liquid layer 10 that has increased in volume does not reach the jet stream 14 at the gas-liquid interface 17. The area of the gas-liquid interface 17 itself increases from the region 16 toward the gas layer 11 (the gas-liquid interface 17 indicated by the dotted line in the figure), and this also improves the dissolution efficiency of the gas into the liquid. It is shown. In the first place, since the jet flow 14 is composed of a gas mixed liquid in which gas is mixed in the liquid as bubbles, the bubbles originally contained in the jet flow 14 are also contained in the gas-liquid dissolution tank 5. Needless to say, this contributes to improving the efficiency of foam generation.

更に言うと、上述のように効率良く生成された大量の泡を気層11に充満させることも好ましい。つまり泡で形成された気泡層19は層が厚いほど気液界面17以外の気液の接触面積が大きくなるから溶解効率を向上できて好ましいのである。泡の生成効率を高めて気泡層19を厚くするには、気体混合液体のボイド率(液体中に混合する気泡の気体混合液体に対する体積割合)を50%以下にし、噴射流14の気液界面17への噴射圧、気液溶解タンク5内の気層11の領域はそれぞれ大きいほど良好な実験結果を得ることができた。なお、本例では、気層11に臨んで入口12が設けられているから、気層11に気泡層19を充満させたものでは、入口12からの末広がり状の噴射流14が気泡層19を貫いて気液界面17に至らしめことができ、末広がり状にされて広く形成された噴射流14の外縁面21と気泡層19の泡とが接触して噴射流14内に気泡層19の泡が取り込ませることができ、噴射流14内の気液の接触面積を増やして気体の液体への溶解効率の向上を図ることができるのである。   Furthermore, it is also preferable to fill the gas layer 11 with a large amount of bubbles generated efficiently as described above. That is, in the bubble layer 19 formed of bubbles, the thicker the layer, the larger the contact area of the gas / liquid other than the gas / liquid interface 17, which is preferable because the dissolution efficiency can be improved. In order to increase the bubble generation efficiency and increase the bubble layer 19, the void ratio of the gas mixture liquid (volume ratio of the bubbles mixed in the liquid to the gas mixture liquid) is set to 50% or less, and the gas-liquid interface of the jet 14 As the injection pressure to 17 and the area of the gas layer 11 in the gas-liquid dissolution tank 5 were larger, better experimental results could be obtained. In this example, since the inlet 12 is provided facing the gas layer 11, in the case where the gas layer 11 is filled with the bubble layer 19, the divergent jet flow 14 from the inlet 12 causes the bubble layer 19 to flow. The outer edge surface 21 of the jet flow 14 that is formed in a divergent shape and can be brought into contact with the bubble of the bubble layer 19 can be brought into contact with the bubble of the bubble layer 19. Therefore, it is possible to increase the gas-liquid contact area in the jet flow 14 and improve the dissolution efficiency of the gas into the liquid.

また、図3には本発明の他の実施形態を示す。この例は、ポンプ4から至る循環流路2aが気液溶解タンク5の底面壁に接続され、気体混合液体が気液溶解タンク5内に供給される入口12を液層10に臨むように設けると共に、泡生成手段を構成するノズル22を上記入口12に形成し、このノズル22にて気体混合液体を末広がり状の噴射流14に形成して液層10を介して気液界面17に向けて噴射させたものであり、その余の部分は先例と同様である。こ
の例においても、末広がり状の噴射流14はその広がった状態の末端部で気液界面17に至るようにされているから、噴射流14の気液界面17に至る部分での外縁長さ20を長く確保でき、気層11の気体を噴射流14や液層10に巻き込んで泡を大量に生成させ得るようにされ、気液の接触面積を増加させて気液溶解タンク5内での気体の液体への溶解効率の向上を図ることができたものである。
FIG. 3 shows another embodiment of the present invention. In this example, the circulation flow path 2 a extending from the pump 4 is connected to the bottom wall of the gas-liquid dissolution tank 5, and the inlet 12 through which the gas mixed liquid is supplied into the gas-liquid dissolution tank 5 is provided so as to face the liquid layer 10. At the same time, the nozzle 22 constituting the bubble generating means is formed at the inlet 12, and the gas mixture liquid is formed into a divergent jet flow 14 at the nozzle 22 and directed toward the gas-liquid interface 17 through the liquid layer 10. The remaining portion is the same as the previous example. Also in this example, since the divergent jet flow 14 reaches the gas-liquid interface 17 at the end portion in the spread state, the outer edge length 20 in the portion of the jet flow 14 reaching the gas-liquid interface 17 is increased. Can be secured for a long time, and the gas in the gas-liquid dissolution tank 5 can be generated by entraining the gas in the gas layer 11 in the jet flow 14 or the liquid layer 10 to generate a large amount of bubbles, increasing the contact area of the gas-liquid. It was possible to improve the dissolution efficiency in the liquid.

上記実施形態にある微細気泡発生装置1では、気液溶解タンク5において気体と液体との溶解効率が高められているために、従来一般に行われている気液溶解タンク5の溶解効率を高めるために高出力のポンプ4を用いるといったことを行わずに済むものとなっており、しかして、高出力のポンプ4を用いることに伴う微細気泡発生装置1の大型化を回避することができたものである。これは、浴槽7に微細気泡を供給する微細気泡発生装置1のように、浴室内といった限られた空間内に微細気泡発生装置1を設置せねばならない場合に特に有用である。無論、微細気泡発生装置1で発生される微細気泡は、浮上速度が低くて液体中に長く滞留でき、液体内に微細気泡が含有した状態ではあたかも温泉水のように白濁した外観を得られる効果に加えて、体積当たりの表面積が大きくて液体中の汚れを吸着して浮上させて水質浄化ができるなどの効果もあるから、浴槽7に限らず浄化槽やいけす等に微細気泡を供給するようにしてもよく、この場合も微細気泡発生装置1の小型化による設置スペースの省スペース化という恩恵を受け得るのは言うまでもない。   In the fine bubble generating apparatus 1 in the above embodiment, the gas-liquid dissolution tank 5 has an increased dissolution efficiency between gas and liquid, and thus increases the dissolution efficiency of the gas-liquid dissolution tank 5 that has been generally performed conventionally. In other words, it is not necessary to use the high-output pump 4, and the enlargement of the microbubble generator 1 associated with the use of the high-output pump 4 can be avoided. It is. This is particularly useful when the fine bubble generator 1 must be installed in a limited space such as in a bathroom, such as the fine bubble generator 1 that supplies fine bubbles to the bathtub 7. Of course, the fine bubbles generated by the fine bubble generator 1 have a low ascent rate and can stay in the liquid for a long time, and in the state where the fine bubbles are contained in the liquid, it is possible to obtain a white turbid appearance like hot spring water. In addition, since the surface area per volume is large and the dirt in the liquid is adsorbed and floated, the water quality can be purified, so that fine bubbles are supplied not only to the bathtub 7 but also to the septic tank and the skein. Of course, in this case, it is needless to say that the space can be saved by reducing the size of the microbubble generator 1.

また、上記実施形態にある微細気泡発生装置1では、末広がり状の噴射流14を形成するノズル22にて泡生成手段を構成した例を例示したが、泡生成手段としてはたとえば
気層の気体を液層に攪拌させる手段でも、気体混合液体に泡生成に資する薬剤を添加する手段でも良く、要は、気液溶解タンク5内で泡を生成、促進させる手段であれば適宜用いることができるのである。
Moreover, in the fine bubble generator 1 in the above embodiment, the example in which the bubble generating means is configured by the nozzle 22 that forms the divergent jet flow 14 is illustrated. However, as the bubble generating means, for example, gas in the gas layer is used. A means for stirring the liquid layer or a means for adding a chemical that contributes to foam generation to the gas mixed liquid may be used. In short, any means for generating and promoting foam in the gas-liquid dissolution tank 5 can be used as appropriate. is there.

本発明の実施の形態の例の微細気泡発生装置であり、(a)は要部の側断面図であり、(b)は噴射域と非噴射域とを説明する気液溶解タンクの平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a fine bubble generator of the example of embodiment of this invention, (a) is a sectional side view of the principal part, (b) is a top view of the gas-liquid melt | dissolution tank explaining an injection area | region and a non-injection area | region It is. 同上の微細気泡発生装置の全体概略構成図である。It is a whole schematic block diagram of the fine bubble generator same as the above. 本発明の実施の形態の他例の微細気泡発生装置の要部の側断面図である。It is a sectional side view of the principal part of the fine bubble generator of the other example of embodiment of this invention.

符号の説明Explanation of symbols

1 微細気泡発生装置
2 流路
2a 循環流路
3 気体混入部
4 ポンプ
5 気液溶解タンク
6 微細気泡発生部
10 液層
11 気層
14 噴射流
15 噴射域
16 非噴射域
17 気液界面
18 旋回流
19 気泡層
20 外縁長さ
22 ノズル
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 2 Flow path 2a Circulation flow path 3 Gas mixing part 4 Pump 5 Gas-liquid dissolution tank 6 Fine bubble generation part 10 Liquid layer 11 Gas layer 14 Injection flow 15 Injection area 16 Non-injection area 17 Gas-liquid interface 18 Turning Flow 19 Bubble layer 20 Outer edge length 22 Nozzle

Claims (1)

液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、内部に液層と未溶解気体の気層とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けてなる微細気泡発生装置であって、気液溶解タンク内に気体と液体とから泡を生成させる泡生成手段を設けたことを特徴とする微細気泡発生装置。   A gas mixing section that mixes gas into the liquid flowing through the flow path to obtain a gas mixed liquid, a pump that pressurizes the gas mixed liquid and flows it through the flow path, and a liquid layer and an undissolved gas inside A gas-liquid dissolution tank that has a layer and is supplied with a gas mixed liquid to dissolve the gas in the liquid to obtain the gas-dissolved liquid, and a fine bubble generation unit that precipitates the gas in the gas-dissolved liquid and generates fine bubbles A fine bubble generating device comprising a bubble generating means for generating bubbles from gas and liquid in a gas-liquid dissolution tank.
JP2005187272A 2005-06-27 2005-06-27 Apparatus for generating fine bubble Withdrawn JP2007000847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187272A JP2007000847A (en) 2005-06-27 2005-06-27 Apparatus for generating fine bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187272A JP2007000847A (en) 2005-06-27 2005-06-27 Apparatus for generating fine bubble

Publications (1)

Publication Number Publication Date
JP2007000847A true JP2007000847A (en) 2007-01-11

Family

ID=37686920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187272A Withdrawn JP2007000847A (en) 2005-06-27 2005-06-27 Apparatus for generating fine bubble

Country Status (1)

Country Link
JP (1) JP2007000847A (en)

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
JP4929874B2 (en) Microbubble generator
JP2007021343A (en) Microbubble generator
JP2010075919A (en) Gas-dissolving apparatus and bathtub with microbubble generation function
JP2007190466A (en) Microbubble generating apparatus and gas-liquid mixing tank
JP2008290050A (en) Fine bubble generator and fine bubble generating method
JP2005262200A (en) Water cleaning apparatus
JP6449531B2 (en) Microbubble generator
JP4631561B2 (en) Microbubble generator
JP4558868B2 (en) Gas-liquid mixing and dissolving device
JP2007000848A (en) Method for generating fine bubble
JP2011218343A (en) Nozzle for gas-liquid mixing, gas-liquid mixing mechanism and application of the same
JP2007313465A (en) Gas dissolving apparatus
JP4715335B2 (en) Microbubble generator
JP5024144B2 (en) Gas dissolver
JP5218948B1 (en) Gas dissolver
JP2006272091A (en) Fine bubble producing apparatus
JP4931008B2 (en) Microbubble production equipment
JP2008290051A (en) Fine bubble generator
JP2007000847A (en) Apparatus for generating fine bubble
JP5001327B2 (en) Gas dissolving device
JP2007313464A (en) Gas dissolving apparatus
JP2008178780A (en) Microbubble generating apparatus
JP2002331011A (en) Fine bubble generation device
JP5075230B2 (en) Microbubble generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902