JP5075230B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP5075230B2
JP5075230B2 JP2010140679A JP2010140679A JP5075230B2 JP 5075230 B2 JP5075230 B2 JP 5075230B2 JP 2010140679 A JP2010140679 A JP 2010140679A JP 2010140679 A JP2010140679 A JP 2010140679A JP 5075230 B2 JP5075230 B2 JP 5075230B2
Authority
JP
Japan
Prior art keywords
gas
liquid
layer
injection
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010140679A
Other languages
Japanese (ja)
Other versions
JP2010234372A (en
Inventor
康成 前田
重行 山口
一雅 六嶋
範行 北地
尚紀 柴田
良泰 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010140679A priority Critical patent/JP5075230B2/en
Publication of JP2010234372A publication Critical patent/JP2010234372A/en
Application granted granted Critical
Publication of JP5075230B2 publication Critical patent/JP5075230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微細気泡発生装置に関するものである。   The present invention relates to a microbubble generator.

従来から、液体に気体を一旦溶解させてその後液中から気体を析出させて微細気泡を発生させる微細気泡発生装置には、たとえば特許文献1にあるように、液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、内部に液層と気層とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けたものがある。   2. Description of the Related Art Conventionally, as disclosed in Patent Document 1, for example, as disclosed in Japanese Patent Application Laid-Open No. H10-133707, a microbubble generating device that generates a fine bubble by once dissolving a gas in a liquid and then precipitating the gas from the liquid is generated. A gas mixing part for obtaining a gas mixed liquid by mixing the gas flowing into the liquid, a pump for pressurizing the gas mixed liquid and flowing it to the flow path, and having a liquid layer and a gas layer inside and supplying the gas mixed liquid to the gas There are provided a gas-liquid dissolution tank for dissolving a gas in a liquid to obtain a gas-dissolved liquid, and a fine bubble generating part for generating a fine bubble by depositing a gas in the gas-dissolved liquid.

ここで、微細気泡の効果を得るためには多量の微細気泡を発生させる必要があり、これは気体溶解液体における液体への気体の溶解量に負うところが大きく、つまり気液溶解タンクでの気体の液体への溶解効率が、微細気泡発生装置において重要な要素となっている。なお、気体の液体への溶解はたとえば高い圧力下で行われるほどより多量の気体を液体に溶解できることが知られており、しかして、気体混合液体を気液溶解タンクに送るポンプに高い出力のものを用いることで気液溶解タンクでの気体の液体への溶解効率を向上できるのではあるが、この場合、高い出力のポンプにて微細気泡発生装置が大型化してしまうという弊害を伴うものであった。   Here, in order to obtain the effect of fine bubbles, it is necessary to generate a large amount of fine bubbles, which is largely dependent on the amount of gas dissolved in the liquid in the gas-dissolved liquid, that is, the gas in the gas-liquid dissolution tank. The dissolution efficiency in the liquid is an important factor in the microbubble generator. In addition, it is known that dissolution of a gas into a liquid, for example, can dissolve a larger amount of gas into a liquid as it is performed at a higher pressure. However, a pump that sends a gas mixture to a gas-liquid dissolution tank has a higher output. Although it is possible to improve the efficiency of gas-liquid dissolution in the gas-liquid dissolution tank, in this case, there is an adverse effect that the fine bubble generating device is enlarged by a high output pump. there were.

特開平6−205812号公報JP-A-6-205812

本発明は上記の従来の問題点に鑑みて為したものであって、装置の小型化を図りながらも気液溶解タンクでの気体の液体への溶解効率を向上できる微細気泡発生装置を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional problems, and provides a microbubble generator capable of improving the efficiency of gas dissolution in a gas-liquid dissolution tank while reducing the size of the apparatus. This is a problem.

上記課題を解決するために本発明の請求項1にかかる微細気泡発生装置は、液体が流れる流路2に、流路2を流れる液体に気体を混入させて気体混合液体を得る気体混入部3、気体混合液体を加圧して流路2に流すポンプ4、内部に液層10と未溶解気体の気層11とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けてなる微細気泡発生装置1であって、気体混合液体が供給される気液溶解タンク5の入口12を液層10に臨ませて設け、この入口12から気体混合液体を液層10を介して気液界面17に向けて末広がり状に噴射して噴射流14を形成し、気液界面17に至る末広がり状の噴射流14の末端部における対向する両端部を気液溶解タンク5の壁内面の近傍位置に位置させて気液界面17の噴射域15を形成し、この噴射域15にて非噴射域16をほぼ分断させ、この末広がり状の噴射流14の末端部で気液界面17の一部に設けた噴射域15に至らせ、気液界面17に上記噴射域15に隣接して噴射流14が至らない上記噴射域15よりも面積の大きい非噴射域16を噴射域15の全周に亙って設けたことを特徴とする。 In order to solve the above-mentioned problem, a fine bubble generating apparatus according to claim 1 of the present invention includes a gas mixing unit 3 that obtains a gas mixed liquid by mixing a gas into the liquid flowing through the flow path 2 into the flow path 2 through which the liquid flows. , A pump 4 that pressurizes the gas mixture liquid and flows it to the flow path 2, and has a liquid layer 10 and an undissolved gas gas layer 11 inside, and a gas mixture liquid is supplied to dissolve the gas in the liquid, thereby dissolving the gas. A gas / liquid dissolving tank 5 is provided, and a micro-bubble generating device 1 provided with a micro-bubble generating unit 6 that deposits gas in a gas-dissolving liquid to generate micro-bubbles, and is supplied with a gas mixed liquid. An inlet 12 of the dissolution tank 5 is provided facing the liquid layer 10, and a gas mixed liquid is sprayed from the inlet 12 toward the gas-liquid interface 17 through the liquid layer 10 to form a jet stream 14, A divergent jet 14 leading to the gas-liquid interface 17 The opposite ends of the distal portion is positioned in the vicinity of the interior wall surface of the gas-liquid dissolving tank 5 to form an injection zone 15 of the gas-liquid interface 17, substantially to separate the non-injection region 16 in the injection zone 15, The end of the divergent jet flow 14 reaches an injection region 15 provided in a part of the gas-liquid interface 17, and the injection region 14 does not reach the gas-liquid interface 17 adjacent to the injection region 15. The non-injection area 16 having a larger area than 15 is provided over the entire circumference of the injection area 15.

これによると、噴射流14を末広がり状にしてその末端部で気液界面17に至らしめたので、噴射流14の気液界面17に至る部分での外縁長さ20を長く確保することができて、すなわち噴射流14と気層11及び液層10との衝突長さを長くでき、噴射流14、気層11及び液層10との衝突の衝撃によって気層11の気体を液層10や噴射流14内に多く取り込むことができるのであり、また、この取り込まれた気体により体積増加した液層10は噴射流14が至らない非噴射域16から気層11に向けて盛り上げることができて気液界面17の面積を増加できるのであり、また、末広がり状の噴射流14は気液界面17に至る前で液層10に触れる液層接触面22を大きくとることができ、この液層接触面22は液体同士が擦れ合うような高圧部分であって噴射流14または液層10に混在する気体は噴射流14または液層10に溶解され易い部位である。上述のように気体と液体との接触面積を増加させたり溶解され易い高圧部分を形成したことで気液溶解タンク5内での気体の液体への溶解効率を向上できることから、気体の液体への溶解効率を向上させるために高出力のポンプ4を用いる必要が無くて低出力のポンプ4を用いることができ、微細気泡発生装置1の小型化を図ることができる。   According to this, since the jet flow 14 is diverged and reaches the gas-liquid interface 17 at the end thereof, a long outer edge length 20 in the portion of the jet flow 14 reaching the gas-liquid interface 17 can be secured. That is, the collision length between the jet stream 14 and the gas layer 11 and the liquid layer 10 can be increased, and the gas in the gas layer 11 is changed to the liquid layer 10 by the impact of the collision with the jet stream 14, the gas layer 11, and the liquid layer 10. A large amount can be taken into the jet flow 14 and the liquid layer 10 whose volume is increased by the taken-in gas can be raised from the non-injection region 16 where the jet flow 14 does not reach the gas layer 11. The area of the gas-liquid interface 17 can be increased, and the divergent jet flow 14 can take a large liquid-layer contact surface 22 that contacts the liquid layer 10 before reaching the gas-liquid interface 17. The surface 22 rubs liquids Gas mixed in a by jet 14 or the liquid layer 10 at high pressure section Una is prone sites is dissolved in the jet 14 or the liquid layer 10. Since the contact area between the gas and the liquid is increased as described above or the high-pressure portion that is easily dissolved is formed, the gas-liquid dissolution efficiency in the gas-liquid dissolution tank 5 can be improved. It is not necessary to use the high-output pump 4 to improve the dissolution efficiency, and the low-output pump 4 can be used, and the microbubble generator 1 can be miniaturized.

また、気液界面17に至る末広がり状の噴射流14の末端部における対向する両端部を気液溶解タンク5の壁内面の近傍位置に位置させて気液界面17の噴射域15を形成し、この噴射域15にて非噴射域16を分断させたことにより、噴射流14の気液界面17への衝突によってできる気液溶解タンク5内の旋回流18を、分断された非噴射域16に向けてのロス無く安定した流れに形成することができ、その結果、非噴射域16で気層11に向けて液層10を盛り上げ易くできて気液界面17の面積増加を促進できて、気体の液体への溶解効率を更に向上することができる。 Further , the opposite end portions of the end portion of the divergent jet flow 14 reaching the gas- liquid interface 17 are positioned in the vicinity of the wall inner surface of the gas-liquid dissolution tank 5 to form an injection region 15 of the gas-liquid interface 17; By dividing the non-injection area 16 in the injection area 15, the swirl flow 18 in the gas-liquid dissolution tank 5 caused by the collision of the injection flow 14 with the gas-liquid interface 17 is changed to the divided non-injection area 16. As a result, the liquid layer 10 can be easily raised toward the gas layer 11 in the non-injection region 16, and the increase in the area of the gas-liquid interface 17 can be promoted. The dissolution efficiency in the liquid can be further improved.

また、請求項にかかる微細気泡発生装置は、請求項1において、気液溶解タンク5内に入口12からの噴射流14を衝突させる衝突材23を配設したことを特徴とする。これによると、噴射流14に衝突材23への衝突圧を付与でき、すなわち噴射流14に高圧力部分を形成することができ、気体の液体への溶解効率を向上できる。 Further, the fine bubble generating device according to claim 2, characterized in that the jet 14 impinging member 23 impinging from the inlet 12 is disposed in Claim 1 Oite, the gas-liquid dissolving tank 5. According to this, the collision pressure to the collision material 23 can be given to the jet flow 14, that is, a high pressure part can be formed in the jet flow 14, and the dissolution efficiency of the gas in the liquid can be improved.

また、請求項にかかる微細気泡発生装置は、請求項1または2において、気体混合液体が流れる流路2にメッシュ体24を配設したことを特徴とする。これによると、メッシュ体24に通すことで気体混合液体に混合している気体を細分化でき、すなわち気体と液体との接触面積を増加させることができ、気体の液体への溶解効率を向上できる。 According to a third aspect of the present invention , the fine bubble generating device according to the first or second aspect is characterized in that the mesh body 24 is disposed in the flow path 2 through which the gas mixed liquid flows. According to this, the gas mixed in the gas mixture liquid can be subdivided by passing through the mesh body 24, that is, the contact area between the gas and the liquid can be increased, and the dissolution efficiency of the gas in the liquid can be improved. .

本発明は、気液溶解タンク内の気体と液体との溶解効率を向上できたことから、従来一般に行われている気液溶解タンクの溶解効率を高めるために高出力のポンプを用いるといったことを行わずに済むものとなっており、しかして、高出力のポンプを用いることに伴う微細気泡発生装置の大型化を回避することができて、微細気泡発生装置の小型化を図ることができるといった利点を有する。   Since the present invention has improved the dissolution efficiency of the gas and liquid in the gas-liquid dissolution tank, a high-power pump is used to increase the dissolution efficiency of the gas-liquid dissolution tank that has been generally performed conventionally. However, it is possible to avoid an increase in the size of the fine bubble generation device associated with the use of a high-power pump and to reduce the size of the fine bubble generation device. Have advantages.

本発明の実施の形態を説明するための参考例の微細気泡発生装置であり、(a)は要部の側断面図であり、(b)は噴射域と非噴射域とを説明する気液溶解タンクの平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a microbubble generator of the reference example for demonstrating embodiment of this invention, (a) is a sectional side view of the principal part, (b) is the gas-liquid explaining an injection area | region and a non-injection area | region It is a top view of a dissolution tank. 同上の微細気泡発生装置の全体概略構成図である。It is a whole schematic block diagram of the fine bubble generator same as the above. 同上の他例の気液溶解タンクの平面図である。It is a top view of the gas-liquid dissolution tank of the other example same as the above. (a)(b)(c)は同上の他例の噴射域と非噴射域とを説明する気液溶解タンクの平面図である。(A) (b) (c) is a top view of the gas-liquid melt | dissolution tank explaining the injection area | region and non-injection area | region of the other examples same as the above. 同上の他例の微細気泡発生装置の要部の側断面図である。It is side sectional drawing of the principal part of the microbubble generator of the other example same as the above. 同上の他例の微細気泡発生装置の要部の側断面図である。It is side sectional drawing of the principal part of the microbubble generator of the other example same as the above. 本発明の実施の形態の微細気泡発生装置の要部の側断面図である。It is a sectional side view of the principal part of the fine bubble generator of embodiment of this invention.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

まず、参考例について説明する。本参考例の微細気泡発生装置1は、図2のように浴槽7に微細気泡を供給するようにした装置であって、具体的には、浴槽7に吸入口8と吐出口9とを設け、吸入口8から吐出口9に至る流路2である循環流路2aを形成し、この循環流路2aに吸入口8側から順に、液体である浴水に気体を混入させて気体混合液体を得る気体混入部3、吸入口8から循環流路2aを介して吐出口9に浴水を搬送するポンプ4、ポンプ4にて気体混合液体が供給されて気体を浴水に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けたことで形成されている。ここで、気体混入部3は、本参考例では循環流路2aを流れる浴水によるエゼクター効果によって空気が吸引されて浴水内に混入される構造とされているが、これに限らず強制的に空気を浴水内に混入させる構造でもよい。また、浴水内に混入される気体としては空気以外のもの、たとえば酸素成分が高い空気等を用いることもできる。微細気泡発生部6は循環流路2aの径を絞った絞り部にて構成され、絞り部で気体溶解液体の圧力降下を行って気体を析出するようにしている。ところで、本発明は、高出力のポンプ4を用いて気液溶解タンク5の内圧を高めなくても気液溶解タンク5での気体の液体への溶解効率を向上できたことに特徴があり、以下に説明する。   First, a reference example will be described. The fine bubble generating device 1 of the present reference example is a device that supplies fine bubbles to the bathtub 7 as shown in FIG. 2. Specifically, the bathtub 7 is provided with a suction port 8 and a discharge port 9. Then, a circulation channel 2a that is a channel 2 from the suction port 8 to the discharge port 9 is formed, and gas is mixed in the circulation channel 2a in order from the suction port 8 side into the bath water that is a liquid. Gas mixture part 3, a pump 4 for transporting bath water from suction port 8 to discharge port 9 through circulation channel 2a, and a gas mixture liquid is supplied by pump 4 to dissolve the gas in bath water and gas It is formed by providing a gas-liquid dissolution tank 5 for obtaining a dissolved liquid and a fine bubble generating section 6 for depositing a gas in the gas dissolved liquid to generate fine bubbles. Here, in this reference example, the gas mixing unit 3 has a structure in which air is sucked and mixed into the bath water by the ejector effect of the bath water flowing through the circulation flow path 2a. Alternatively, air may be mixed in the bath water. Moreover, as gas mixed in bath water, things other than air, for example, air with a high oxygen component, etc. can also be used. The fine bubble generating unit 6 is configured by a constricted portion with a reduced diameter of the circulation flow path 2a, and gas is deposited by reducing the pressure of the gas-dissolved liquid at the constricted portion. By the way, the present invention is characterized in that the gas-liquid dissolution tank 5 can improve the dissolution efficiency of the gas into the liquid without increasing the internal pressure of the gas-liquid dissolution tank 5 using the high-power pump 4. This will be described below.

本参考例の気液溶解タンク5は図1のように中空内部の下部が液層10で上部が未溶解空気の気層11となっており、ポンプ4から至る循環流路2aが気液溶解タンク5の上面壁に接続されていて気液溶解タンク5内に気体混合液体が供給される入口12が設けられており、気液溶解タンク5の側壁の下端部には微細気泡発生部6に至る循環流路2aが接続されていて気体溶解液体が吐出される出口13が設けられている。なお、本参考例の気液溶解タンク5の外形は図1(b)のように中空円柱状に形成されているが、これに限らず、図3のように中空矩形柱状に形成されたものを用いてもよい。   As shown in FIG. 1, the gas-liquid dissolution tank 5 of this reference example has a liquid layer 10 at the lower part of the hollow interior and an air layer 11 with the undissolved air at the upper part. An inlet 12 connected to the upper surface wall of the tank 5 and supplied with the gas-mixed liquid is provided in the gas-liquid dissolution tank 5, and a fine bubble generator 6 is provided at the lower end of the side wall of the gas-liquid dissolution tank 5. An outlet 13 is provided through which the circulating flow path 2a is connected and from which the gas-dissolved liquid is discharged. In addition, although the external shape of the gas-liquid dissolution tank 5 of this reference example is formed in the hollow cylinder shape as FIG.1 (b), it is not restricted to this, What was formed in the hollow rectangular column shape as FIG. May be used.

そして、気体混合液体は気層11に臨む入口12から気層11を介して気液界面17に向けて噴射されるのであり、詳しくは、気液溶解タンク5の入口12に設けたノズル等を介して気体混合液体の噴射流14が末広がり状になるようにされ、末広がり状の噴射流14はその広がった状態の末端部で気液界面17に至るようにされている。ここで、噴射流14が至る気液界面17の部位を噴射域15と称し、噴射流14が至らない気液界面17の部位を非噴射域16と称する。このように噴射流14を末広がり状にしてその末端部で気液界面17に至らしめたので、噴射流14の気液界面17に至る部分での外縁長さ20を長く確保できるのであり、すなわち噴射流14と気層11及び液層10との衝突長さを長く確保できて、噴射流14、気層11及び液層10との衝突の衝撃によって気層11の気体を噴射流14や液層10に多く取り込むことができ、この取り込まれた気体によって気液の接触面積の増加が図られている。無論、この衝突によると高圧部分を局所的に形成することができるから、高圧下での気体の液体への溶解効率の向上が図られるのは言うまでもない。   The gas mixture liquid is ejected from the inlet 12 facing the gas layer 11 toward the gas-liquid interface 17 through the gas layer 11. Specifically, a nozzle or the like provided at the inlet 12 of the gas-liquid dissolution tank 5 is provided. Thus, the jet stream 14 of the gas mixture liquid has a divergent shape, and the divergent jet flow 14 reaches the gas-liquid interface 17 at the end of the spread state. Here, a portion of the gas-liquid interface 17 where the jet flow 14 reaches is referred to as an injection region 15, and a portion of the gas-liquid interface 17 where the injection flow 14 does not reach is referred to as a non-injection region 16. Thus, since the jet flow 14 is diverged to reach the gas-liquid interface 17 at the end thereof, the outer edge length 20 in the portion of the jet flow 14 reaching the gas-liquid interface 17 can be secured long, that is, A long collision length between the jet stream 14 and the gas layer 11 and the liquid layer 10 can be ensured, and the gas in the gas layer 11 is discharged by the impact of the collision with the jet stream 14, the gas layer 11, and the liquid layer 10. A large amount can be taken into the layer 10, and the gas / liquid contact area is increased by the taken-in gas. Of course, according to this collision, the high-pressure portion can be locally formed, so it goes without saying that the dissolution efficiency of the gas into the liquid under high pressure is improved.

また、末広がり状の噴射流14の外縁部分の噴射方向は、気液界面17に直交する方向(下方)のみならず気液界面17の面内方向(水平方向)にも向かっているため、この噴射流14によると気液界面17の衝突後すぐに隣接する非噴射域16に向うような旋回流18を生じさせることができるのであり、しかして、取り込まれた気体によって体積増加した液層10を噴射流14が至らない非噴射域16から気層11に向けて盛り上げるようにでき(点線の気液界面17)、気液界面17の面積の増加、すなわち気液の接触面積の増加が図られている。このように気液の接触面積の増加が図られたことで、気体の液体への溶解効率が向上されているのである。また、この末広がり状の噴射流14にあっては気液界面17に至る前で気層11に触れる気層接触面21を大きくとることができるのであって、この噴射流14の気層接触面21からは気層11の気体を噴射流14内に多く取り込むことができ、この点でも気液の接触面積の増加が図られ、気体の液体への溶解効率の向上が図られているのである。   Further, the injection direction of the outer edge portion of the divergent jet flow 14 is directed not only in the direction (downward) perpendicular to the gas-liquid interface 17 but also in the in-plane direction (horizontal direction) of the gas-liquid interface 17. According to the jet flow 14, it is possible to generate a swirl flow 18 that goes to the adjacent non-jet region 16 immediately after the collision of the gas-liquid interface 17. However, the liquid layer 10 whose volume is increased by the taken-in gas. Can be raised from the non-injection region 16 where the jet flow 14 does not reach toward the gas layer 11 (dotted gas-liquid interface 17), and the area of the gas-liquid interface 17 increases, that is, the contact area of the gas-liquid increases. It has been. Thus, by increasing the contact area of the gas and liquid, the dissolution efficiency of the gas in the liquid is improved. In addition, in the divergent jet flow 14, the gas layer contact surface 21 that comes into contact with the gas layer 11 before reaching the gas-liquid interface 17 can be made large. From 21, a large amount of gas in the gas layer 11 can be taken into the jet flow 14, and also in this respect, the contact area of the gas and liquid is increased, and the dissolution efficiency of the gas into the liquid is improved. .

また、詳しくは、噴射流14が気液界面17に衝突することで泡が生成されるのであり、気液界面17はこの泡にて覆われるようになる。この泡は液膜で気体を包んで形成されているから、気液界面17の面積以上に気液の接触面積が増加されるものであり、この点でも気体の液体への溶解効率の向上が図られている。なお、噴射流14は気体混合液体が構成するものであって、この気体混合液体中には既に液体中に気泡が混在しているから、噴射流14が気液界面17に衝突する際の泡立ちが促進されているのは言うまでもない。更に言うと、この泡を気層11の略全てに充満させるようにすると、泡を噴射流14の気層接触面21にも接触させることができて、泡を噴射流14内に取込ませて気液の接触面積の増加を図ることができ、気体の液体への溶解効率の向上を図ることができる。   More specifically, bubbles are generated by the jet stream 14 colliding with the gas-liquid interface 17, and the gas-liquid interface 17 is covered with the bubbles. Since the bubbles are formed by wrapping the gas with a liquid film, the contact area of the gas and liquid is increased more than the area of the gas-liquid interface 17, and in this respect also, the efficiency of dissolving the gas in the liquid is improved. It is illustrated. The jet flow 14 is composed of a gas mixture liquid, and bubbles are already mixed in the gas mixture liquid. Therefore, bubbles are generated when the jet flow 14 collides with the gas-liquid interface 17. Needless to say, is promoted. Furthermore, if the bubbles are filled in almost all of the gas layer 11, the bubbles can be brought into contact with the gas layer contact surface 21 of the jet stream 14, and the bubbles are taken into the jet stream 14. Thus, the contact area of the gas and liquid can be increased, and the dissolution efficiency of the gas in the liquid can be improved.

更に詳しくは、図1(b)には気液溶解タンク5の水平断面を示すが、このように気液界面17では噴射域15によって非噴射域16が2つ以上に分断された状態にされている。すなわち本参考例では、気液界面17に至る末広がり状の噴射流14の末端部における対向する両端部を気液溶解タンク5の側壁内面の近傍位置に位置させるようにして、噴射域15が形成されているのである。このように、本参考例の気液界面17では噴射域15にて分断された非噴射域16が形成されているから、噴射流14の噴射域15への衝突によってできる旋回流18を、分断された非噴射域16に向けてロス無く安定した流れに形成することができるのであって、非噴射域16で液層10が盛り上げ易くなって気液界面17の面積の増加が促進され、この点でも気液の接触面積の増加が図られ、気体の液体への溶解効率の向上が図られている。   More specifically, FIG. 1 (b) shows a horizontal section of the gas-liquid dissolution tank 5, but the non-injection area 16 is divided into two or more by the injection area 15 at the gas-liquid interface 17 in this way. ing. That is, in the present reference example, the injection region 15 is formed so that the opposite end portions of the end portion of the spray flow 14 that extends toward the gas-liquid interface 17 are positioned in the vicinity of the inner surface of the side wall of the gas-liquid dissolution tank 5. It has been done. Thus, since the non-injection area | region 16 divided | segmented in the injection area | region 15 is formed in the gas-liquid interface 17 of this reference example, the swirl flow 18 produced by the collision with the injection area | region 15 of the injection flow 14 is divided | segmented. It is possible to form a stable flow with no loss toward the non-injection region 16, and the liquid layer 10 is easily raised in the non-injection region 16, and an increase in the area of the gas-liquid interface 17 is promoted. In this respect, the contact area of the gas and liquid is increased, and the dissolution efficiency of the gas in the liquid is improved.

ここで、噴射流14にて形成される噴射域15は、本参考例では図1(b)のように平面視略楕円形状に形成されていてその長径方向の両端部が気液溶解タンク5の側壁内面の近傍位置に位置されていてその短径方向の両隣に2つに分断された各非噴射域16を位置させるようにしているが、これに限らず、たとえば図4(a)〜(c)のようにするのも好ましい。図4(a)の噴射域15は上記図1(b)と同形状の噴射域15同士を気液界面17内で直交するようにして非噴射域16を4つに分断させるように形成されたものであり、図4(b)の噴射域15は上記図1(b)と同形状の噴射域15同士を気液界面17内で間隔を隔てて平行に位置させて非噴射域16を3つに分断させるように形成されたものであり、また図4(c)の噴射域15はリング状に形成されていてその内周及び外周にそれぞれ2つに分断された各非噴射域16を位置させるようにしている。   Here, the injection area 15 formed by the injection flow 14 is formed in a substantially elliptical shape in plan view as shown in FIG. 1B in the present reference example, and both ends in the major axis direction are the gas-liquid dissolution tank 5. The non-injection regions 16 that are located in the vicinity of the inner surface of the side wall and are divided into two adjacent to each other in the minor axis direction are not limited to this. For example, FIG. It is also preferable to do as in (c). The injection region 15 in FIG. 4A is formed so as to divide the non-injection region 16 into four so that the injection regions 15 having the same shape as in FIG. 4 (b), the injection regions 15 having the same shape as in FIG. 1 (b) are arranged in parallel with a gap in the gas-liquid interface 17 so that the non-injection regions 16 are located. Each of the non-injection regions 16 is formed so as to be divided into three, and the injection region 15 in FIG. 4C is formed in a ring shape and divided into two at the inner periphery and the outer periphery, respectively. Is located.

また、気液溶解タンク5での気体の液体への溶解効率をより向上させるためには、たとえば図5や図6のようにしても好ましい。図5の例では、気液溶解タンク5の入口12近傍に気体混合液体が流れる流路2を塞ぐようにメッシュ体24を配設している。これによると、気体混合液体がメッシュ体24を通ることで、気体混合液体に混合している気体を細分化できるのであり、つまり気体混合液体における体積当たりの気体の表面積を増大させて気液の接触面積を増加できると共に気体混合液体中の液体及び気体の内圧を高めることができて、気体の液体への溶解効率を向上させることができるのである。また、図6の例では、気液溶解タンク5の気層11に入口12からの噴射流14を衝突させる衝突材23を配設している。これによると、気体混合液体である噴射流14に衝突材23への衝突圧を付与でき、つまり噴射流14に局所的な高圧部分を形成することができて、この高圧部分では気体混合液体に混合している気体の液体への溶解が行われ易くなるから、気体の液体への溶解効率を向上できるのである。また、本参考例のように気層11に配置された衝突材23に噴射流14が衝突したときには、その衝撃で噴射流14内に気層11の気体を取り込ませることができ、気液の接触面積を増加させて気体の液体への溶解効率の向上に資することができるのである。     Further, in order to further improve the dissolution efficiency of the gas in the gas-liquid dissolution tank 5, for example, it is also preferable as shown in FIGS. 5 and 6. In the example of FIG. 5, the mesh body 24 is disposed in the vicinity of the inlet 12 of the gas-liquid dissolution tank 5 so as to block the flow path 2 through which the gas mixed liquid flows. According to this, the gas mixed with the gas mixed liquid can be subdivided by passing the gas mixed liquid through the mesh body 24, that is, the surface area of the gas per volume in the gas mixed liquid is increased and The contact area can be increased and the internal pressure of the liquid and gas in the gas mixture liquid can be increased, so that the dissolution efficiency of the gas in the liquid can be improved. Further, in the example of FIG. 6, a collision material 23 that causes the jet flow 14 from the inlet 12 to collide with the gas layer 11 of the gas-liquid dissolution tank 5 is provided. According to this, it is possible to apply a collision pressure to the collision material 23 to the jet flow 14 that is a gas mixed liquid, that is, a local high-pressure portion can be formed in the jet flow 14. Since dissolution of the mixed gas into the liquid is facilitated, the dissolution efficiency of the gas into the liquid can be improved. Moreover, when the jet stream 14 collides with the collision material 23 arranged in the gas layer 11 as in this reference example, the gas in the gas layer 11 can be taken into the jet stream 14 by the impact, and the gas-liquid By increasing the contact area, it is possible to contribute to the improvement of the dissolution efficiency of the gas in the liquid.

本発明の実施形態について説明する。図7のように、気体混合液体が供給される気液溶解タンク5の入口12を、気液溶解タンク5の底面壁に設けるようにしてもよい。詳しくは、気液溶解タンク5の底面壁に設けた入口12は液層10に臨んで上方に向けて開口されており、この入口12から気体混合液体の末広がり状の噴射流14が液層10を介して気液界面17に至るようにされている。つまり、この末広がり状の噴射流14はその広がった状態の末端部で気液界面17に至るようにされているから、上記図1の参考例と同様に、噴射流14の気液界面17に至る部分での外縁長さ20を長く確保でき、気層11の気体を噴射流14や液層10に多く取り込むことができ、液層10に多く取り込まれた気体によって液体と気体との接触面積を増加させると共に、取り込まれた気体によって体積増加した液層10は噴射流14が至らない非噴射域16から盛り上がるようになって気液界面17の面積を増加させるのであり、気体の液体への溶解効率の向上が図られている。また、この例では、末広がり状の噴射流14が気液界面17に至る前で液層10に触れる液層接触面22を大きくとることができたものであり、ここで、この液層接触面22は液体同士が擦り合うような高圧部分であるから、噴射流14または液層10に混在する気体は噴射流14または液層10に溶解され易く、したがってこの点でも気体の液体への溶解効率の向上が図られているのである。なお、この例でも噴射域15の形状を図4(a)、(b)のようにするのも好ましく、また、図5のように気体混合液体が流れる流路2にメッシュ体24を配設したり、図6のように噴射流14を衝突させる衝撃材23を配設することも好ましい。なお、衝撃材23を液層10中に配設した場合には噴射流14の衝突の衝撃によって噴射流14内に液層10の液体を取り込むことができ、噴射流14と液層10との間の接触面積(液層接触面22)を増やして気体混合液体に混合している気体の液体への溶解効率を向上させることができる。 An embodiment of the present invention will be described. As shown in FIG. 7, the inlet 12 of the gas-liquid dissolution tank 5 to which the gas mixed liquid is supplied may be provided on the bottom wall of the gas-liquid dissolution tank 5. Specifically, the inlet 12 provided on the bottom wall of the gas-liquid dissolution tank 5 is opened upward facing the liquid layer 10, and the jet flow 14 in a divergent form of the gas mixture liquid from the inlet 12 is the liquid layer 10. To reach the gas-liquid interface 17. In other words, since the diverging jet flow 14 reaches the gas-liquid interface 17 at the end portion in the spread state, the gas-liquid interface 17 of the jet flow 14 is formed in the same manner as in the reference example of FIG. The outer edge length 20 can be ensured to be long, and a large amount of the gas in the gas layer 11 can be taken into the jet flow 14 and the liquid layer 10, and the contact area between the liquid and the gas is increased by the gas taken in the liquid layer 10. In addition, the liquid layer 10 whose volume is increased by the taken-in gas rises from the non-injection area 16 where the injection flow 14 does not reach and increases the area of the gas-liquid interface 17. Improvement of dissolution efficiency is achieved. Further, in this example, the liquid layer contact surface 22 that comes into contact with the liquid layer 10 before the divergent jet flow 14 reaches the gas-liquid interface 17 can be made large. Here, this liquid layer contact surface Since 22 is a high-pressure portion where the liquids rub against each other, the gas mixed in the jet stream 14 or the liquid layer 10 is easily dissolved in the jet stream 14 or the liquid layer 10. The improvement is aimed at. Note that FIG shape of the injection region 15 in this example 4 (a), also preferred for the as in (b), however, also provided a mesh member 24 in a flow path 2 through which the gas liquid mixture as in FIG. 5 It is also preferable to arrange an impact member 23 that causes the jet stream 14 to collide as shown in FIG. When the impact material 23 is disposed in the liquid layer 10, the liquid of the liquid layer 10 can be taken into the jet stream 14 by the impact of the collision of the jet stream 14, and the jet stream 14 and the liquid layer 10 By increasing the contact area (liquid layer contact surface 22), the dissolution efficiency of the gas mixed in the gas mixed liquid into the liquid can be improved.

上記実施形態にある微細気泡発生装置1では、気液溶解タンク5において気体と液体との溶解効率が高められているために、従来一般に行われている気液溶解タンク5の溶解効率を高めるために高出力のポンプ4を用いるといったことを行わずに済むものとなっており、しかして、高出力のポンプ4を用いることに伴う微細気泡発生装置1の大型化を回避することができたものである。これは、浴槽7に微細気泡を供給する微細気泡発生装置1のように、浴室内といった限られた空間内に微細気泡発生装置1を設置せねばならない場合に特に有用である。無論、微細気泡発生装置1で発生される微細気泡は、浮上速度が低くて液体中に長く滞留でき、液体内に微細気泡が含有した状態ではあたかも温泉水のように白濁した外観を得られる効果に加えて、体積当たりの表面積が大きくて液体中の汚れを吸着して浮上させて水質浄化ができるなどの効果もあるから、浴槽7に限らず浄化槽やいけす等に微細気泡を供給するようにしてもよく、この場合も微細気泡発生装置1の小型化による設置スペースの省スペース化という恩恵を受け得るのは言うまでもない。   In the fine bubble generating apparatus 1 in the above embodiment, the gas-liquid dissolution tank 5 has an increased dissolution efficiency between gas and liquid, and thus increases the dissolution efficiency of the gas-liquid dissolution tank 5 that has been generally performed conventionally. In other words, it is not necessary to use the high-output pump 4, and the enlargement of the microbubble generator 1 associated with the use of the high-output pump 4 can be avoided. It is. This is particularly useful when the fine bubble generator 1 must be installed in a limited space such as in a bathroom, such as the fine bubble generator 1 that supplies fine bubbles to the bathtub 7. Of course, the fine bubbles generated by the fine bubble generator 1 have a low ascent rate and can stay in the liquid for a long time, and in the state where the fine bubbles are contained in the liquid, it is possible to obtain a white turbid appearance like hot spring water. In addition, since the surface area per volume is large and the dirt in the liquid is adsorbed and floated, the water quality can be purified, so that fine bubbles are supplied not only to the bathtub 7 but also to the septic tank and the skein. Of course, in this case, it is needless to say that the space can be saved by reducing the size of the microbubble generator 1.

1 微細気泡発生装置
2 流路
3 気体混入部
4 ポンプ
5 気液溶解タンク
6 微細気泡発生部
10 液層
11 気層
14 噴射流
15 噴射域
16 非噴射域
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 2 Flow path 3 Gas mixing part 4 Pump 5 Gas-liquid dissolution tank 6 Fine bubble generation part 10 Liquid layer 11 Gas layer 14 Injection flow 15 Injection area 16 Non-injection area

Claims (3)

液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、内部に液層と未溶解気体の気層とを有すると共に気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けてなる微細気泡発生装置であって、気体混合液体が供給される気液溶解タンクの入口を液層に臨ませて設け、この入口から気体混合液体を液層を介して気液界面に向けて末広がり状に噴射して噴射流を形成し、気液界面に至る末広がり状の噴射流の末端部における対向する両端部を気液溶解タンクの壁内面の近傍位置に位置させて気液界面の噴射域を形成し、この噴射域にて非噴射域をほぼ分断させ、この末広がり状の噴射流の末端部で気液界面の一部に設けた噴射域に至らせ、気液界面に上記噴射域に隣接して噴射流が至らない上記噴射域よりも面積の大きい非噴射域を噴射域の全周に亙って設けたことを特徴とする微細気泡発生装置。 A gas mixing section that mixes gas into the liquid flowing through the flow path to obtain a gas mixed liquid, a pump that pressurizes the gas mixed liquid and flows it through the flow path, and a liquid layer and an undissolved gas inside A gas-liquid dissolution tank that has a layer and is supplied with a gas mixed liquid to dissolve the gas in the liquid to obtain a gas-dissolved liquid, and a micro-bubble generator that deposits the gas in the gas-dissolved liquid and generates fine bubbles A gas bubble-liquid dissolution tank to which a gas mixture liquid is supplied is provided with an inlet facing the liquid layer, and the gas mixture liquid is directed from the inlet to the gas-liquid interface through the liquid layer. Injecting in a divergent form to form a jet stream, and injecting the gas-liquid interface by positioning the opposite ends of the end part of the divergent jet stream that reaches the gas-liquid interface in the vicinity of the wall inner surface of the gas-liquid dissolution tank A non-injection area in this injection area Is pot divided, brought to the injection region provided in a part of the gas-liquid interface at the end of this flared jetting flow, than the gas-liquid the injection range jet does not reach adjacent to the injection region at the interface A fine bubble generator characterized in that a non-injection area having a large area is provided over the entire circumference of the injection area. 気液溶解タンク内に入口からの噴射流を衝突させる衝突材を配設したことを特徴とする請求項1に記載の微細気泡発生装置。2. The fine bubble generating device according to claim 1, wherein a collision material for colliding the jet flow from the inlet is disposed in the gas-liquid dissolution tank. 気体混合液体が流れる流路にメッシュ体を配設したことを特徴とする請求項1または2に記載の微細気泡発生装置。The fine bubble generating apparatus according to claim 1 or 2, wherein a mesh body is disposed in a flow path through which the gas mixed liquid flows.
JP2010140679A 2010-06-21 2010-06-21 Microbubble generator Expired - Fee Related JP5075230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140679A JP5075230B2 (en) 2010-06-21 2010-06-21 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140679A JP5075230B2 (en) 2010-06-21 2010-06-21 Microbubble generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005187261A Division JP4715335B2 (en) 2005-06-27 2005-06-27 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2010234372A JP2010234372A (en) 2010-10-21
JP5075230B2 true JP5075230B2 (en) 2012-11-21

Family

ID=43089228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140679A Expired - Fee Related JP5075230B2 (en) 2010-06-21 2010-06-21 Microbubble generator

Country Status (1)

Country Link
JP (1) JP5075230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878344B2 (en) * 2011-11-25 2016-03-08 株式会社ガスター PRESSURE CONTAINER AND AIR SOLUTION DEVICE USING THE PRESSURE CONTAINER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265015B2 (en) * 1998-12-24 2009-05-20 株式会社ノーリツ Fine bubble generator and bathtub system
JP3819732B2 (en) * 2001-05-28 2006-09-13 横河電機株式会社 Gas dissolving device
JP2004298840A (en) * 2003-04-01 2004-10-28 Tetsuhiko Fujisato Vessel for adjusting amount of gas to be dissolved
JP2005144352A (en) * 2003-11-17 2005-06-09 Yaskawa Electric Corp High-speed ozone catalytic reaction apparatus

Also Published As

Publication number Publication date
JP2010234372A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4759553B2 (en) Gas-liquid dissolution tank in microbubble generator
US7758024B2 (en) Microbubble generating device and hair washing device utilizing the same
JP4706664B2 (en) Fine bubble generating apparatus and fine bubble generating method
TWM483123U (en) Generation device for gas dissolution into liquid and fluid nozzle
JP4715335B2 (en) Microbubble generator
JP4631561B2 (en) Microbubble generator
JP5075230B2 (en) Microbubble generator
JP2007313465A (en) Gas dissolving apparatus
JP5456564B2 (en) Gas-liquid dissolution tank
JP2020151390A (en) shower head
JP5024144B2 (en) Gas dissolver
JP4706665B2 (en) Microbubble generator
JP4858327B2 (en) Microbubble generator
JP7265952B2 (en) Discharge device and plumbing equipment
JP4931008B2 (en) Microbubble production equipment
JP2009255039A (en) Gas dissolving vessel
JP4872459B2 (en) Gas dissolving device
JP5001327B2 (en) Gas dissolving device
JP5054507B2 (en) Bathtub with microbubble generator
JP2011183350A (en) Gas-liquid mixing apparatus
JP2011025197A (en) Fine air bubble generator
JP2010137176A (en) Gas-liquid dissolving tank in microbubble generating apparatus
JP2007000847A (en) Apparatus for generating fine bubble
JP5790139B2 (en) Bubble generator
JP2008178779A (en) Microbubble generating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees