JP2006526254A - Photoelectrochemical device - Google Patents

Photoelectrochemical device Download PDF

Info

Publication number
JP2006526254A
JP2006526254A JP2006504032A JP2006504032A JP2006526254A JP 2006526254 A JP2006526254 A JP 2006526254A JP 2006504032 A JP2006504032 A JP 2006504032A JP 2006504032 A JP2006504032 A JP 2006504032A JP 2006526254 A JP2006526254 A JP 2006526254A
Authority
JP
Japan
Prior art keywords
pec
metal
working electrode
counter electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006504032A
Other languages
Japanese (ja)
Other versions
JP4476278B2 (en
Inventor
タロック、ギャヴィン・エドマンド
スクリアビン、イゴール・リョヴォヴィッチ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sustainable Technologies International Pty Ltd
Original Assignee
Sustainable Technologies International Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sustainable Technologies International Pty Ltd filed Critical Sustainable Technologies International Pty Ltd
Publication of JP2006526254A publication Critical patent/JP2006526254A/en
Application granted granted Critical
Publication of JP4476278B2 publication Critical patent/JP4476278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

2つの基板を備える光電気化学(PEC)デバイスであって、少なくとも一方の基板は透明であり、透明電子導体(TEC)でコーティングされ、染料増感多孔性半導体を含む作用電極が一方の基板上に形成され、触媒層を含む対向電極が別の基板上に形成され、電解質が上記2つの基板間に配置され、金属導体を用いて、デバイス内に、且つデバイスから電流を流し、十分な導電率を有し、PECデバイスからの実用的な電気的出力を可能にする非金属材料の保護層を用いて、デバイスの電解質から上記金属導体を保護する。A photoelectrochemical (PEC) device comprising two substrates, at least one substrate being transparent, coated with a transparent electron conductor (TEC), and a working electrode comprising a dye-sensitized porous semiconductor on one substrate A counter electrode including a catalyst layer is formed on another substrate, an electrolyte is disposed between the two substrates, and a metal conductor is used to pass current into and out of the device to provide sufficient conductivity. The metal conductor is protected from the device electrolyte with a protective layer of non-metallic material that has a rate and allows practical electrical output from the PEC device.

Description

本発明は光起電(PV)デバイスに関し、より詳細には、限定はしないが、光電気化学光起電デバイスに関する。さらに、本発明はそのようなデバイスを製造する方法に関する。   The present invention relates to photovoltaic (PV) devices, and more particularly, but not exclusively, to photoelectrochemical photovoltaic devices. Furthermore, the invention relates to a method for manufacturing such a device.

[発明の背景]
電磁放射のエネルギーを電気エネルギーに変換するために種々の光起電デバイスを利用することができる。これらのデバイスには、従来の固体デバイス(M. Green著「Third generation photovoltaics : concepts for high efficiency at low cost」The Electrochemical Society Proceedings, Vol. 2001-10, p. 3-18を参照されたい)及び最近になって開発された光電気化学(PEC)デバイスが含まれる。
[Background of the invention]
Various photovoltaic devices can be used to convert the energy of electromagnetic radiation into electrical energy. These devices include conventional solid state devices (see “Third generation photovoltaics: concepts for high efficiency at low cost” by M. Green, The Electrochemical Society Proceedings, Vol. 2001-10, p. 3-18) and Included are recently developed photoelectrochemical (PEC) devices.

関係するタイプのPECセルの例が以下の米国特許に開示されている。
第4,927,721号Photoelectrochemical cell; Michael Graetzel and Paul Liska, 1990
第5,525,440号Method of manufacture of photo-electrochemical cell and a cell made by this method; Andreas Kay, Michael Graetzel and Brian O'Regan, 1996
第6,297,900号Electrophotochromic Smart Windows and Methods; G. E. Tulloch and I. L. Skryabin, 1997
第6,555,741号Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectorchemical devices; J. A. Hopkins, G. Phani,I. L. Skryabin, 1999
第6,652,904号Methods to manufacture single cell and multi-cell regenerative photoelectrochemical devices; J. A. Hopkins, D. Vittorio, G. Phani, 1999
Examples of related types of PEC cells are disclosed in the following US patents:
No. 4,927,721 Photoelectrochemical cell; Michael Graetzel and Paul Liska, 1990
No. 5,525,440 Method of manufacture of photo-electrochemical cell and a cell made by this method; Andreas Kay, Michael Graetzel and Brian O'Regan, 1996
No. 6,297,900 Electrophotochromic Smart Windows and Methods; GE Tulloch and IL Skryabin, 1997
No.6,555,741 Methods to implement interconnects in multi-cell regenerative photovoltaic photoelectorchemical devices; JA Hopkins, G. Phani, IL Skryabin, 1999
Nos. 6,652,904 Methods to manufacture single cell and multi-cell regenerative photoelectrochemical devices; JA Hopkins, D. Vittorio, G. Phani, 1999

前掲の特許に開示されるタイプのような光電気化学デバイスは、2つの大面積の基板間に積層して製造することができる。1つの典型的な構成は2つのガラス基板を含み、各基板は、基板の内側表面上において導電性コーティングを用いる。   Photoelectrochemical devices, such as the type disclosed in the aforementioned patent, can be manufactured by stacking between two large area substrates. One typical configuration includes two glass substrates, each using a conductive coating on the inner surface of the substrate.

上記第1及び第2の基板のうちの少なくとも一方は、被着される透明導電性(TEC)コーティングと同じように、可視光に対して概ね透過性である。PECセルは、通常、一方の導電性コーティングに被着される染料増感ナノ多孔性半導体酸化物(たとえば、チタニアとして知られている二酸化チタン)層を含む作用電極と、通常、他方の導電性コーティングに被着される酸化還元電気触媒層を含む対向電極とを含む。酸化還元メディエータを含む電解質が光陽極と陰極との間に配置され、その電解質は周囲の環境から密封される。   At least one of the first and second substrates is generally transmissive to visible light, similar to the deposited transparent conductive (TEC) coating. PEC cells typically have a working electrode that includes a dye-sensitized nanoporous semiconductor oxide (eg, titanium dioxide known as titania) layer that is deposited on one conductive coating, and typically the other conductive property. And a counter electrode including a redox electrocatalyst layer deposited on the coating. An electrolyte containing a redox mediator is disposed between the photoanode and the cathode, and the electrolyte is sealed from the surrounding environment.

多くの光電気化学デバイスでは、モジュールを大きくすることが有利に働くであろう。しかしながら、TECコーティングは、通常は金属酸化物(複数可)を含み、標準的な金属導体に比べて抵抗率が高く、結果として、大面積の光電気化学セルの場合には抵抗損が高くなり、高い照度条件においては特に、それがデバイスの効率に影響を及ぼす。   For many photoelectrochemical devices, it may be advantageous to make the module larger. However, TEC coatings usually contain metal oxide (s) and have a higher resistivity than standard metal conductors, resulting in higher resistance losses for large area photoelectrochemical cells. It affects the efficiency of the device, especially at high illumination conditions.

基板の電気抵抗は、金属板、金属箔又は金属網を用いることにより減少させることができる。しかしながら、一般的に用いられる金属のほとんどは光電気化学セルの電解質と化学反応する。PECセルの金属成分の腐食は、何年にもわたって、PECデバイスの商用化の成功を大きく制限しているものと見なされている。   The electrical resistance of the substrate can be reduced by using a metal plate, metal foil or metal mesh. However, most commonly used metals chemically react with the electrolyte of the photoelectrochemical cell. Corrosion of the metal components of PEC cells has been viewed as a major limitation on the successful commercialization of PEC devices for many years.

1つの構成では、光電気化学セルが、単一のモジュールの内部に直列に接続される。そのような相互接続をするために金属導体が用いられる。再び、光電気化学セルの典型的なヨウ化物含有電解質との化学的な相互作用に起因して、金属導体の選択は、プラチナ及び類似の金属、チタン並びにタングステンに限られる。   In one configuration, the photoelectrochemical cells are connected in series inside a single module. Metal conductors are used to make such interconnections. Again, due to the chemical interaction of the photoelectrochemical cell with typical iodide-containing electrolytes, the choice of metal conductors is limited to platinum and similar metals, titanium and tungsten.

それゆえ、本発明の目的は、光電気化学セルにおいて用いられる低コストの金属導体のための保護コーティングを提供し、実効的に性能を低下させることなく、コスト効率も依然として良い、有効な耐食性に関する複合的な問題を解決することである。。   Therefore, it is an object of the present invention to provide a protective coating for low-cost metal conductors used in photoelectrochemical cells and relates to effective corrosion resistance that remains cost effective without effectively degrading performance. To solve complex problems. .

[発明の概要]
上記の目的、及び関連する目的を達成する際に、本発明は、導電性であるが、化学反応を起こさない材料(たとえばダイヤモンド並びに導電性の窒化物及び炭化物)の層を用いて、光電気化学セルの金属成分を保護しながら、光電気化学セルの内部に電流を流すことを実現する。これらの材料は、PECにおいて用いられる電解質に対して化学反応を起こさないと同時に、これらの材料の薄い層が、導電率が高い金属成分を電気的に接続するだけの十分な導電率を与えることが知見された。その層を種々の応用形態(たとえば光条件)に対して最適化できるように組成又は厚みを変更することによって、保護層の導電率を変更することができる。
[Summary of Invention]
In achieving the above and related objectives, the present invention employs a layer of material that is electrically conductive but does not cause a chemical reaction (eg, diamond and conductive nitrides and carbides). The current is passed inside the photoelectrochemical cell while protecting the metal component of the chemical cell. These materials do not cause a chemical reaction to the electrolyte used in the PEC, while a thin layer of these materials provides sufficient conductivity to electrically connect metal components with high conductivity Was discovered. By changing the composition or thickness so that the layer can be optimized for various applications (eg, light conditions), the conductivity of the protective layer can be changed.

保護層は、それを形成するための任意の既知の技術(たとえば、アーク堆積、ゾル−ゲル、スパッタリング、CVDなど)を用いて堆積させることができる。光電気化学セルの成分と化学反応を起こさないようにしながら、実用的な電気的出力を可能にするために、その層は十分に導電性である必要がある。   The protective layer can be deposited using any known technique for forming it (eg, arc deposition, sol-gel, sputtering, CVD, etc.). The layer must be sufficiently conductive to allow practical electrical output while avoiding chemical reaction with the components of the photoelectrochemical cell.

そのような層の導電性を考慮に入れて、本発明はまた、導電率のための要件が高くないとき(たとえば光条件が低い場合、又はセルサイズが小さい場合)に、中間に位置する金属成分を用いることなく基板(ガラス、ポリマー材料)上にこれらの層が直に形成されることを実現する。   Taking into account the conductivity of such layers, the present invention also provides intermediate metals when the requirements for conductivity are not high (eg when the light conditions are low or the cell size is small). It realizes that these layers are formed directly on the substrate (glass, polymer material) without using any components.

本発明は、窒化チタンのようないくつかの材料が、金属導体を保護するための、ピンホールがなく強く結合されるコーティングを形成すると同時に、PECデバイスを良好に動作させるだけの十分な導電率を与えることを実現できることに基づく。本発明者らは実験で、保護をしていない316ステンレス鋼基板が、室温で動作させると数日以内に腐食し、PECデバイスの電解質に対して不可逆的な損傷を与えるが、同じ基板上に堆積させた薄く高密度のTiNコーティング層は、確実に、75℃で何ヶ月も良好に動作することを実証した。   The present invention provides sufficient conductivity for some materials, such as titanium nitride, to work well for PEC devices while at the same time forming a tightly bonded coating without pinholes to protect the metal conductor. Based on being able to realize. In our experiments, an unprotected 316 stainless steel substrate will corrode within a few days when operated at room temperature, causing irreversible damage to the electrolyte of the PEC device, but on the same substrate. The deposited thin and dense TiN coating layer has proven to work well at 75 ° C. for months.

さらに分析すると、或る特定の非金属材料が、数ミクロン厚の薄膜を用いることにより、腐食保護及び導電率の要件を満たすことが実証された。これらの材料には、ダイヤモンド、及び半金属、金属(及び多金属)窒化物、炭化物、酸化物、ホウ化物、リン化物、ケイ化物、アンチモン化物、ヒ化物、テルル化物及びその組み合わせ(たとえば、酸窒化物、ヒ素硫化物)が含まれる。   Further analysis has demonstrated that certain non-metallic materials meet corrosion protection and conductivity requirements by using thin films that are several microns thick. These materials include diamond and metalloids, metal (and multimetal) nitrides, carbides, oxides, borides, phosphides, silicides, antimonides, arsenides, tellurides and combinations thereof (eg, acid Nitride, arsenic sulfide).

本発明の目的を果たすのにさらに好ましい材料は窒化チタン(TiN)、窒化ジルコニウム及び炭化ホウ素である。   Further preferred materials for accomplishing the purpose of the present invention are titanium nitride (TiN), zirconium nitride and boron carbide.

さらに好ましい材料は、ニオブ、モリブデン、タンタル、タングステン又はバナジウムのケイ化物を含む。   Further preferred materials include niobium, molybdenum, tantalum, tungsten or vanadium silicides.

本発明は上記金属導体を保護するために用いられることになる、或る範囲の特定の材料を提供するが、これ以降の説明では、一例としてTiNが用いられる。   The present invention provides a range of specific materials that will be used to protect the metal conductors, but in the description that follows, TiN is used as an example.

本発明の一態様によれば、金属箔又は金属板(たとえばステンレス鋼箔)上にTiN層が堆積され、それにより金属箔がセルの電解質から保護される。   According to one aspect of the invention, a TiN layer is deposited on a metal foil or metal plate (eg, stainless steel foil), thereby protecting the metal foil from the cell electrolyte.

金属箔又は金属板は、光電気化学セルの作用電極又は対向電極のいずれかのための基板としての役割を果たす。   The metal foil or metal plate serves as a substrate for either the working electrode or the counter electrode of the photoelectrochemical cell.

本発明の別の態様によれば、セルの内部で局所的に生成される電流を外部端子まで流すために用いられる金属網上にTiNが堆積される。金属網は、光電気化学セルの作用電極及び/又は対向電極のいずれか又は両方に用いることができる。   According to another aspect of the present invention, TiN is deposited on a metal mesh that is used to pass a locally generated current inside the cell to an external terminal. The metal mesh can be used for either or both of the working electrode and / or the counter electrode of the photoelectrochemical cell.

本発明のさらに別の態様によれば、光電気化学セルを直列に接続されるモジュールとして相互接続するために用いられる金属導体上にTiN層が堆積される。この場合には、作用電極及び対向電極がいずれも、それぞれ電気的に分離された部分に分割され、その金属導体は作用電極の少なくとも1つの部分を対向電極の1つの部分に接続する。   According to yet another aspect of the invention, a TiN layer is deposited on a metal conductor used to interconnect photoelectrochemical cells as modules connected in series. In this case, both the working electrode and the counter electrode are each divided into electrically separated parts, and the metal conductor connects at least one part of the working electrode to one part of the counter electrode.

[実施例の説明]
本発明の本質を大まかに説明するために、ここで、一例として本発明の実施形態が説明されることになるが、それは例示にすぎない。以下の説明では、添付の図面が参照されるであろう。
[Description of Examples]
In order to broadly explain the essence of the present invention, an embodiment of the present invention will now be described by way of example, which is exemplary only. In the following description, reference will be made to the accompanying drawings.

図1を参照すると、作用電極基板がTiNコーティング2によって保護されるステンレス鋼箔1を含む。作用電極3(染料増感TiO)がTiNコーティング上に形成される(3ミクロン厚、フィルタードプラズマ堆積)。デバイスの対向電極5(薄く分散したPt触媒層)が透明導電性基板6(TECによってコーティングされたポリマー薄膜)上に形成される。電解質4が2つの電極間に配置される。そのデバイスはシリコーン系封止剤7によって封止される。そのデバイスは、対向電極側から照明されることになる。 Referring to FIG. 1, the working electrode substrate includes a stainless steel foil 1 that is protected by a TiN coating 2. A working electrode 3 (dye sensitized TiO 2 ) is formed on the TiN coating (3 micron thick, filtered plasma deposition). A counter electrode 5 (thinly dispersed Pt catalyst layer) of the device is formed on a transparent conductive substrate 6 (polymer thin film coated with TEC). An electrolyte 4 is disposed between the two electrodes. The device is sealed with a silicone sealant 7. The device will be illuminated from the counter electrode side.

図2Aを参照すると、TiNコーティング2によって保護されるステンレス鋼箔1がPECデバイスの対向電極5を支持する。作用電極は透明導電性基板6によって支持され、その基板に、TiN2によってコーティングされたステンレス鋼網8が取り付けられる。そのステンレス鋼網は、作用電極3(染料増感TiO)への電気的接続を改善する。そのデバイスはシリコーン系封止剤7によって封止される。このデバイスは作用電極側から照明されることになる。 Referring to FIG. 2A, a stainless steel foil 1 protected by a TiN coating 2 supports the counter electrode 5 of the PEC device. The working electrode is supported by a transparent conductive substrate 6 to which a stainless steel mesh 8 coated with TiN2 is attached. The stainless steel mesh improves the electrical connection to the working electrode 3 (dye sensitized TiO 2 ). The device is sealed with a silicone sealant 7. This device will be illuminated from the working electrode side.

図2Bを参照すると、ステンレス鋼網8(50μ孔、30μワイヤ)がTiNコーティング2によって保護される。   Referring to FIG. 2B, the stainless steel mesh 8 (50 μ holes, 30 μ wires) is protected by the TiN coating 2.

図3を参照すると、PECデバイスが2つの透明基板6間に形成される。各基板は透明電子導体9(TEC、Fドープト酸化スズ)によってコーティングされる。レーザ放射の助力によって形成されるTEC内の分離線10が各電極を小さな部分に分割する。作用電極基板は染料増感TiO層3によってコーティングされ、対向電極基板は触媒層5によってコーティングされる。その電極間の空間を電解質4で満たすことにより、3つの個別のセルが形成される。導体を用いてセルが直列に接続される。その導体はTiNコーティング12によって保護されるステンレス鋼コア11を含む。 Referring to FIG. 3, a PEC device is formed between two transparent substrates 6. Each substrate is coated with a transparent electronic conductor 9 (TEC, F-doped tin oxide). A separation line 10 in the TEC formed by the aid of laser radiation divides each electrode into smaller parts. The working electrode substrate is coated with a dye-sensitized TiO 2 layer 3 and the counter electrode substrate is coated with a catalyst layer 5. By filling the space between the electrodes with the electrolyte 4, three individual cells are formed. The cells are connected in series using a conductor. The conductor includes a stainless steel core 11 protected by a TiN coating 12.

本発明の一実施例に従って形成されるPECデバイスの拡大断面図である。1 is an enlarged cross-sectional view of a PEC device formed in accordance with one embodiment of the present invention. 本発明の別の実施例に従って形成されるPECデバイスの拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a PEC device formed in accordance with another embodiment of the present invention. 本発明のさらに別の実施例に従って形成されるPECデバイスの拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a PEC device formed in accordance with yet another embodiment of the present invention. 本発明の先行する実施例において用いられる保護されたステンレス鋼網の概略図である。1 is a schematic view of a protected stainless steel mesh used in a preceding embodiment of the present invention. FIG.

Claims (10)

2つの基板を備える光電気化学(PEC)デバイスであって、
少なくとも一方の基板は透明であり、透明電子導体(TEC)でコーティングされ、
染料増感多孔性半導体を含む作用電極が一方の基板上に形成され、
触媒層を含む対向電極が別の基板上に形成され、
電解質が前記2つの基板間に配置され、
金属導体を用いて、該デバイス内に、且つ該デバイスから電流を流し、
十分な導電率を有し、該PECデバイスからの実用的な電気的出力を可能にする非金属材料の保護層を用いて、該デバイスの前記電解質から前記金属導体を保護する、光電気化学(PEC)デバイス。
A photoelectrochemical (PEC) device comprising two substrates,
At least one substrate is transparent and coated with a transparent electron conductor (TEC);
A working electrode comprising a dye-sensitized porous semiconductor is formed on one substrate;
A counter electrode including a catalyst layer is formed on another substrate;
An electrolyte is disposed between the two substrates;
Using a metal conductor to pass current into and out of the device;
A photoelectrochemistry that protects the metal conductor from the electrolyte of the device with a protective layer of non-metallic material that has sufficient electrical conductivity and allows practical electrical output from the PEC device; PEC) device.
前記金属導体は金属板又は金属箔である、請求項1に記載のPECデバイス。   The PEC device according to claim 1, wherein the metal conductor is a metal plate or a metal foil. 前記金属板又は金属箔は、前記PECデバイスの前記作用電極又は前記対向電極のいずれかから電流を流す、請求項2に記載のPECデバイス。   The PEC device according to claim 2, wherein the metal plate or the metal foil allows a current to flow from either the working electrode or the counter electrode of the PEC device. 前記金属導体は金属網である、請求項1に記載のPECデバイス。   The PEC device according to claim 1, wherein the metal conductor is a metal net. 前記金属網を用いて、前記デバイスの前記作用電極又は前記対向電極のいずれかを電気的に接続する、請求項4に記載のPECデバイス。   The PEC device according to claim 4, wherein either the working electrode or the counter electrode of the device is electrically connected using the metal net. 前記作用電極及び前記対向電極はいずれも、それぞれ電気的に分離された部分に分割され、前記金属導体は前記作用電極の少なくとも1つの部分を前記対向電極の1つの部分に接続する、請求項1に記載のPECデバイス。   The working electrode and the counter electrode are both divided into electrically separated portions, and the metal conductor connects at least one portion of the working electrode to one portion of the counter electrode. The PEC device according to 1. 前記保護層は、ダイヤモンド又は半金属若しくは金属窒化物、炭化物、酸化物、ホウ化物、リン化物、硫化物、ケイ化物、アンチモン化物、ヒ化物、テルル化物及びその組み合わせを含む、請求項1に記載のPECデバイス。   The protective layer comprises diamond or metalloid or metal nitride, carbide, oxide, boride, phosphide, sulfide, silicide, antimonide, arsenide, telluride and combinations thereof. PEC device. 前記材料は窒化チタン又は窒化ジルコニウムである、請求項8に記載のPECデバイス。   The PEC device according to claim 8, wherein the material is titanium nitride or zirconium nitride. 前記炭化物はホウ炭化物である、請求項8に記載のPECデバイス。   The PEC device of claim 8, wherein the carbide is borocarbide. 前記ケイ化物は、ニオブ、モリブデン、タンタル、タングステン又はバナジウムのケイ化物である、請求項8に記載のPECデバイス。
9. A PEC device according to claim 8, wherein the silicide is a silicide of niobium, molybdenum, tantalum, tungsten or vanadium.
JP2006504032A 2003-05-05 2004-05-05 Photoelectrochemical device Expired - Fee Related JP4476278B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003902117A AU2003902117A0 (en) 2003-05-05 2003-05-05 Photovoltaic device
PCT/AU2004/000590 WO2004100196A1 (en) 2003-05-05 2004-05-05 Photoelectrochemical device

Publications (2)

Publication Number Publication Date
JP2006526254A true JP2006526254A (en) 2006-11-16
JP4476278B2 JP4476278B2 (en) 2010-06-09

Family

ID=31953470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006504032A Expired - Fee Related JP4476278B2 (en) 2003-05-05 2004-05-05 Photoelectrochemical device

Country Status (5)

Country Link
EP (1) EP1620870A4 (en)
JP (1) JP4476278B2 (en)
KR (1) KR100956366B1 (en)
AU (1) AU2003902117A0 (en)
WO (1) WO2004100196A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286534A (en) * 2005-04-04 2006-10-19 Nippon Oil Corp Flexible dye sensitized solar cell
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2009163930A (en) * 2007-12-28 2009-07-23 Dainippon Printing Co Ltd Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2012505962A (en) * 2008-10-15 2012-03-08 エイチ2 ソーラー ゲーエムベーハー Silicides for photoelectrochemical water splitting and / or electricity production
WO2014092080A1 (en) * 2012-12-10 2014-06-19 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP2014120243A (en) * 2012-12-13 2014-06-30 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon-dioxide solar cell
JP2014130766A (en) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon dioxide solar cell
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery
WO2015146762A1 (en) * 2014-03-28 2015-10-01 積水化学工業株式会社 Embedded structure for dye-sensitized photovoltaic cell, and slat for power generation blind

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812311B2 (en) * 2005-03-10 2011-11-09 Jx日鉱日石エネルギー株式会社 Dye-sensitized solar cell
JP4911556B2 (en) * 2005-05-13 2012-04-04 日本カーリット株式会社 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
GB0610596D0 (en) * 2006-05-30 2006-07-05 Johnson Matthey Plc Electrode
JP5127329B2 (en) * 2007-07-12 2013-01-23 日立造船株式会社 Photoelectric conversion element and manufacturing method thereof
JP5127330B2 (en) * 2007-07-12 2013-01-23 日立造船株式会社 Photoelectric conversion element and manufacturing method thereof
WO2009098857A1 (en) * 2008-02-06 2009-08-13 Fujikura Ltd. Dye-sensitized solar cell
KR101219488B1 (en) * 2011-05-12 2013-01-11 재단법인대구경북과학기술원 Dye-Sensitized Solar Cell and Method for the same
CN104505259A (en) * 2014-12-18 2015-04-08 中国科学院上海硅酸盐研究所 Counter electrode of dye-sensitized solar cell
JP6625260B1 (en) * 2018-10-18 2019-12-25 株式会社サイオクス Structure manufacturing method and structure manufacturing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993007646A1 (en) * 1991-10-08 1993-04-15 Unisearch Limited Improved optical design for photo-cell
DE19640616A1 (en) * 1996-10-01 1998-04-02 Bernd Dr Penth Photoelectrochemical cell for solar-powered electrical energy generation
SE518454C2 (en) * 1999-01-15 2002-10-08 Forskarpatent I Uppsala Ab Method for making an electrochemical cell and electrochemical cell
AU2274600A (en) * 1999-02-08 2000-08-29 Kurth Glas + Spiegel Ag Photovoltaic cell and method for the production thereof
AUPP967799A0 (en) * 1999-04-09 1999-05-06 Sustainable Technologies Australia Ltd Methods to implement sealing and electrical connections to single cell and multi-cell regenerative photovoltaic photoelectrochemical devices
EP1178542A4 (en) * 1999-12-27 2006-03-08 Seiko Epson Corp Solar cell and solar cell unit
KR100351633B1 (en) * 2000-04-04 2002-09-11 한국화학연구원 Preparation method of film type photo-active material treated with a metal chloride
JP2003123860A (en) * 2001-10-19 2003-04-25 Nec Corp Photoelectric conversion element and manufacturing method of the same
WO2004032274A1 (en) * 2002-10-03 2004-04-15 Fujikura Ltd. Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
JP4674435B2 (en) * 2003-01-15 2011-04-20 ソニー株式会社 Photoelectric conversion element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286534A (en) * 2005-04-04 2006-10-19 Nippon Oil Corp Flexible dye sensitized solar cell
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2009163930A (en) * 2007-12-28 2009-07-23 Dainippon Printing Co Ltd Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2012505962A (en) * 2008-10-15 2012-03-08 エイチ2 ソーラー ゲーエムベーハー Silicides for photoelectrochemical water splitting and / or electricity production
WO2014092080A1 (en) * 2012-12-10 2014-06-19 国際先端技術総合研究所株式会社 Silicon dioxide solar cell
JP2014116210A (en) * 2012-12-10 2014-06-26 International Frontier Technology Laboratory Inc Silicon dioxide solar cell
JP2014120243A (en) * 2012-12-13 2014-06-30 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon-dioxide solar cell
JP2014130766A (en) * 2012-12-28 2014-07-10 International Frontier Technology Laboratory Inc Dye-sensitized tandem silicon dioxide solar cell
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery
WO2015146762A1 (en) * 2014-03-28 2015-10-01 積水化学工業株式会社 Embedded structure for dye-sensitized photovoltaic cell, and slat for power generation blind
JP2015192030A (en) * 2014-03-28 2015-11-02 積水化学工業株式会社 Built-in structure of dye-sensitized solar cell and slat for power generation blind
CN105723481A (en) * 2014-03-28 2016-06-29 积水化学工业株式会社 Embedded structure for dye-sensitized photovoltaic cell, and slat for power generation blind

Also Published As

Publication number Publication date
EP1620870A4 (en) 2008-07-09
KR100956366B1 (en) 2010-05-07
WO2004100196A1 (en) 2004-11-18
JP4476278B2 (en) 2010-06-09
EP1620870A1 (en) 2006-02-01
AU2003902117A0 (en) 2003-05-22
KR20060035598A (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP4476278B2 (en) Photoelectrochemical device
EP1794766B1 (en) Photoelectrochemical photovoltaic panel and method to manufacture thereof
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
US20060243587A1 (en) Photoelectrochemical device
JP2006019278A (en) Dye sensitive solar battery utilizing photoelectric conversion element
Pettersson et al. Parallel‐connected monolithic dye‐sensitised solar modules
JP2000285974A (en) Photosensitized photovolatic power generation element
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
Park et al. Unassisted Water Splitting from Bipolar Pt∕ Dye-Sensitized TiO2 Photoelectrode Arrays
KR101050471B1 (en) Potoelectric conversion module
WO2007138348A2 (en) Photovoltaic cell with mesh electrode
JP2009289571A (en) Photoelectric conversion module
EP2407986A1 (en) Photoelectric conversion module and method of manufacturing the same
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
JP2010020938A (en) Dye-sensitized solar battery
AU2004236767B2 (en) Photoelectrochemical device
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2009129574A (en) Dye-sensitized solar cell
JP2003123855A (en) Electrode for photoelectric conversion element
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
JP4104108B2 (en) Organic dye-sensitized metal oxide semiconductor electrode and solar cell having the semiconductor electrode
KR101772569B1 (en) Catalyst electrode using metal silicide and dye-sensitized solar cell comprising thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080710

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees