JP2006526241A - 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置 - Google Patents

多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置 Download PDF

Info

Publication number
JP2006526241A
JP2006526241A JP2006507567A JP2006507567A JP2006526241A JP 2006526241 A JP2006526241 A JP 2006526241A JP 2006507567 A JP2006507567 A JP 2006507567A JP 2006507567 A JP2006507567 A JP 2006507567A JP 2006526241 A JP2006526241 A JP 2006526241A
Authority
JP
Japan
Prior art keywords
bit
stripe
row
detector
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006507567A
Other languages
English (en)
Inventor
クーネ,ウィレム エム イェー エム
ペー ヘクストラ,アンドリース
イミンク,アルベルト ハー イェー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2006526241A publication Critical patent/JP2006526241A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3905Maximum a posteriori probability [MAP] decoding or approximations thereof based on trellis or lattice decoding, e.g. forward-backward algorithm, log-MAP decoding, max-log-MAP decoding
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • G11B20/10287Improvement or modification of read or write signals bit detection or demodulation methods using probabilistic methods, e.g. maximum likelihood detectors
    • G11B20/10296Improvement or modification of read or write signals bit detection or demodulation methods using probabilistic methods, e.g. maximum likelihood detectors using the Viterbi algorithm
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/3961Arrangements of methods for branch or transition metric calculation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • H03M13/4138Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions
    • H03M13/4146Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors soft-output Viterbi algorithm based decoding, i.e. Viterbi decoding with weighted decisions soft-output Viterbi decoding according to Battail and Hagenauer in which the soft-output is determined using path metric differences along the maximum-likelihood path, i.e. "SOVA" decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6343Error control coding in combination with techniques for partial response channels, e.g. recording
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • H03M13/6505Memory efficient implementations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • G11B2020/1249Formatting, e.g. arrangement of data block or words on the record carriers on discs wherein the bits are arranged on a two-dimensional hexagonal lattice
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1288Formatting by padding empty spaces with dummy data, e.g. writing zeroes or random data when de-icing optical discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Error Detection And Correction (AREA)

Abstract

二次元データ領域を処理するとき、その二次元データ領域をストライプに分割し、ストライプに関する検出器を用いて各々のストライプを処理することは有利であるとして知られている。2つ以上のガードバンドにより区切られたデータ領域を処理するとき、検出器のサブセットによりガードバンドから得られるサイド情報の改善された信頼性を伝播するために、各々のガードバンドからビット検出器のサブセットを開始することは有利である。それらのサブセットは同時に処理を開始するために、全体的な検出遅延を減少させることができる。

Description

本発明は、記録担体に記録されたチャネルデータストリームのシンボルを検出するための格子に基づくシンボル検出方法に関する。本発明は、例えば、磁気記録システム、光記録システム等のようなディジタル記録システムに適用することができる。本発明は、次世代の光記録のために見込まれる技術の1つである二次元光記録に対して、特に有利である。
今日の最先端技術の光ディスクシステムは一次元(1D)光記録に基づいている。単一のレーザビームが単一の情報トラックに方向付けられ、その情報トラックはディスクにおいて、ディスクの外側端部の方に螺旋形を描いて連続螺旋形に構成される。単一の螺旋は、ビットの単一の(又は、一次元(1D)の)トラックを有する。単一のトラックは、一続きの非常に小さいピットマーク又はピットとそれらの間の空間とを有し、それらはランドマーク又はランドと呼ばれている。レーザ光はトラックのピット構造において回折される。反射された光は光検出集積回路(IC)において検出され、単一の高周波数の信号が生成され、その単一の高周波数の信号はビット決定が導き出される波形として用いられる。既に成功しているDVD(Digital Video Disc)技術において“ブルーレイディスク”又は“DVR”を成功させる光記録技術の第4世代のための新しいルートは、二次元(2D)バイナリ光学記録に基づいている。2D記録手段は、例えば、10個のトラックがそれらの間に案内空間を有することなくディスクにおいて平行に記録されていることを意味する。それ故、それらの10個のトラックは共に1つの大きい螺旋を構成している。2D光記録のためのディスク(“2Dディスク”と短縮していう)のフォーマットはその広い螺旋に基づいていて、その螺旋において、情報は2D特徴の形で記録される。情報はハニカム構造として書き込まれ、2Dチャネル符合を用いて符号化され、その2Dチャネル符合はビット検出を容易にする。ディスクは、プレーヤにおいてサンプルの二次元アレイを得るために、適切な調子でサンプリングされる、例えば、10個(それ以上)の光スポットのアレイを用いて読み出される。並列読み出しが、単一のレーザビームを用いて実現され、その単一のレーザビームは格子を通過し、その格子はレーザスポットのアレイをもたらす。そのスポットのアレイは広い螺旋の全幅を走査する。各々のレーザスポットからの光はディスクにおける2Dパターンにより反射され、多くの高周波信号波形を生成する光検出器ICにおいて検出される。それらの信号波形の集合は2Dの単一処理の入力として用いられる。2D記録の背後にある動機づけは、非常に少ないディスク空間がガードスペースとして浪費されていることにあり、それ故、ディスクの記録容量を増加させることができる。2D記録は、先ず、光記録について研究されているが、同時に、磁気記録が又、二次元においてなされている。そのような記録技術の新しい特徴の1つは、それらが二次元の単一の螺旋を必要とすることである。特に、1つの光スポットは、入力として“ピット”/“ランド”(又は、“マーク”及び“非マーク”)の平面を取り、対応する出力を生成する装置とみなされる必要がある。光スポット転送機能は2Dローパスフィルタの特性を有し、その2Dローパスフィルタの形状は円錐により近似されることができる。その線形転送特性以外に、2D光チャネルは又、非線形の寄与を有する。その円錐の半径は、レンズの開口数と光の波長とにより決定されるカットオフ周波数に対応する。このフィルタリング特性は、プレーヤにおける2D符号間干渉(ISI)をもたらす。それは、(線形及び非線形の両方であることが可能である)このISI(の殆んど)を全滅させるためのビット検出器のタスクである。ビット検出器を実施するための最適方法はビタビアルゴリズムを用いることである。ビタビビット検出器はノイズを増幅しない。軟判定出力、即ち、ビットに関する高信頼性情報が必要である場合、デュアル−ビタビ、即ち、(Max−)(Log−)MAP、MAP又はSOVA(軟出力ビタビ)アルゴリズムが用いられる。2Dの場合についてビット検出器のデザインの困難性の1つは、簡単なビタビビット検出器は、ISIのメモリのために、“古い”トラックビットの1つ又はそれ以上の列をその“状態”として必要とすることである。例えば、10個のトラックが2D幅広螺旋において並列状態で記録される場合、及び、例えば、2Dインパルス応答の接線方向の広がり(トラックに沿った)のために、トラック当たり2つの古いビットが状態の適切な記述のために必要とされる場合、これは、2x10=20ビットの状態を結果として得る。それ故、ビタビ(又は、MAP、(Max−)(Log−)MAP、MAP、SOVA等)アルゴリズムにおける状態数は220となり、それは全く現実的ではない。これは、最適から僅かにずれているが、複雑度が著しく低い方法を必要とする。
欧州特許第02292937.6号明細書において、行のサブセットを各々が有する幾つかのストライプに幅広螺旋を分割することによる、それ故、各々の検出器が幅広螺旋の行のサブセットをカバーすることのみを必要とするために検出器の複雑度を減少させることによる、そして、実質的に複数の検出器の複雑度を減少させることによる解決方法を提供している。
幅広螺旋の行全てにおいて検出を実行するために、検出器はストライプを処理し、出力シンボルと共に、隣接ストライプを処理し、それ故、単一の検出器により幅広螺旋の全体をカバーするように検出結果にリンクするときに検出器により用いられるようになっているサイド情報を与える。
このような実施は、所望の低誤差フロアを達成するために高複雑度のシンボル検出器を必要とする不利点を有する。
本発明の目的は、所望の低誤差フロアを達成する、複雑度が低減されたシンボル検出器を用いる検出方法を提供することにより、上記不利点を克服することである。
この目的を達成するために、本発明は、高信頼性を伴って検索することができるデータを有し、N次元チャネルチューブを区切るガードバンドから開始するシンボル検出器の第1サブセットと、高信頼性を伴って検索することができる更なるデータを有し、N次元チャネルチューブを区切る更なるガードバンドから開始するシンボル検出器の第2サブセットとを用いて、反復アルゴリズムが適用されることを特徴とする。
ストライプに関するビット検出器の1つの反復は、幅広螺旋の上部におけるガードバンドから幅広螺旋の下部におけるガードバンドの方に開始するストライプを螺旋の連続処理から離して有することが可能である。それに代えて、両方のガードバンドからのストライプから開始し、両側から幅広螺旋の中央の方に処理する多くのストライプを連続して処理することができる。その結果は、連続ストライプに対する検出器はV字型に配置されることである。ビタビ検出器の第1サブセットは、それぞれの検出器をバックトラッキングすることを可能にするために、相互遅延を伴って互いにカスケードされ、カスケードは、上部ガードバンドから幅広螺旋の中心の方に開始し、そららのビタビ検出器の各々は上部ビット行のためのビット決定を出力として有する。それらのビタビ検出器の各々は又、
ブランチメトリックにおける更なる追加行としてストライプ上方のビット行における単一波形サンプルを用いる。同様に、ビタビ検出器の第2サブセットは、下部バードバンドから幅広螺旋の中心の方に開始して、バックトラッキング目的で相互遅延を又伴って、互いにカスケードされる。それらのビタビ検出器の各々は、下部ビット行のためのビット決定を出力として有する。それらのビタビ検出器の各々は又、ブランチメトリックにおける更なる付加行としてストライプの下方のビット行において単一波形サンプルを用いる。それらのカスケードされたビタビ検出器の2つのサブセットは互いに鏡像関係にある。最終的に、それら2つのストライプのカスケードは最後のストライプを有する幅広螺旋の中央において終了し、その最後のストライプは2ビット行を出力として有するストライプのみであり、そのストライプのブランチメトリックの演算に信号波形が含まれるストライプの両側において外部の付加ビット行を有する。
V字型ストライプに関するビット検出器を用いて、“ビット信頼性”の伝播方向は、ガードバンドの既知のビットから幅広螺旋の中央のビット行の方であり、それらの既知のビットは、それ故、ガードバンドからの最大距離を有する。“既知の”情報は両側から中央の方に伝播される。
本発明の方法の実施形態は、高信頼性を伴って検索することができるデータは所定のデータであることを特徴とする。
ガードバンドは所定のデータを有する。その所定のデータは、検出器にとって推測的に既知であるため、このデータを検出する際にエラーは生じず、データは、それ故、検出器から検出器に伝播するサイド情報の信頼性を高めながら、信頼性高く検出されることができる。
本発明の方法の実施形態は、高信頼性を伴って検索することができるデータは、冗長符号化を用いて保護されていることを特徴とする。
ガードバンドは、ガードバンドの外側のデータよりエラーに対してより大きい保護を与える冗長符号化を用いて保護されているデータを有する。データはより高い信頼性を伴って検出されることができるため、このデータを検出する際のエラーは少なく、それ故、検出器から検出器に伝播するガードデータにおけるデータの検出から導き出されるサイド情報の信頼性を高めながら、データは信頼性高く、検索されることができる。
この概念は、次のように一般化される。それらのストライプは、著しい高ビット信頼性を有する2D領域における2ビット行の何れの対の間にV字型構成を形成する2つの集合としてカスケードされ、それ故、それらのストライプは、高ビット信頼性を有する2つの行の間の中央領域において互いの方に向かう両側方式で連続ストライプが伝播することができるアンカーポイントとしての役割を果たすことができる。検出器に対して既知であるビットを有する2つのガードバンドを有する幅広螺旋の(上記のような)特定な場合、2つのアンカービット行のビット信頼性は100%である。他の例は、幅広螺旋の中央における付加ビット行を用いる2Dフォーマットの場合であり、即ち、他の行より高ビット信頼性を有するように符号化される場合であり、次いで、ストライプの2つのV字型進行が考え出され、それらの進行の一は、中心ビット行と上部ガードバンドとの間で操作され、他は、同じ中央ビット行と低いガードバンドとの間で操作される(図11参照)。例えば、中心ビット行は、チャネルに対して冗長送信を可能にする1Dランレングス制限(RLL)チャネル符号を用いてチャネル符号化されることが可能であり、例えば、d=1RLLチャネル符号は、単一パターンの重なり合った領域におけるクラスタの一部を除去し(隣接ビットとして“1”の中心ビットと6つの“0”ビット全てを有するクラスタ、及びその逆も成立する)、それにより、一方で、ビット検出の冗長性は高くなるが、他方で、制限されたチャネル符号化のために、その行に対して記憶能力を減少させる。
所定のストライプに対するビタビ処理器のバックトラッキング中、殆どの最近のビット推定を有するビットアレイが記憶されるようにストライプのビット行全てを出力することはオプションである。この測定の目的は、V字型検出スキームの上部半分、下部半分及び中心領域においてビタビ処理器に対してより均一なアーキテクチャを実現することである。
本発明の実施形態は、第1螺旋が所定のデータを有する行を有することを特徴とする。
この実施形態においては、所定データを有する直接隣接するストライプから導き出されるサイド情報は現ストライプのビット検出のための最も適切なサイド情報であるため、サイド情報は直接隣接するストライプから導き出される。これは、導入後、残りのストライプにより伝播する、第1ビット検出に対する、所定データの信頼性から導き出されるサイド情報の信頼性の向上に導く最初の段階である。
本発明の実施形態は、第1ストライプが冗長符号化を用いて高度に保護されるデータを有することを特徴とする。
所定のデータ、即ち、存在することが予め分かっているデータを用いることに代えて、サイド情報がデータから導き出される前に、殆どの又は全ての誤差が補正されるような冗長符号を用いて、高度に保護されているデータから、サイド情報が又導き出される。これは、サイド情報は高い信頼性を有するため、現ストライプの高信頼性のビット検出を結果的にもたらす。
他の固有な有利点は、冗長符号化を用いて高度に保護されているデータから導き出されたサイド情報の信頼性は一連のビット検出器により伝播されることである。高度に保護されたデータから得られたサイド情報は現ストライプのビット検出の正確度を向上させるため、現ストライプから導き出され、次の隣接ストライプに与えられるサイド情報の信頼性が又、向上し、その結果又、次のストライプのより正確且つ高信頼性のビット検出が得られ、それにより又、次のストライプの次のストライプのためのより信頼性高いサイド情報が得られ、それが繰り返される。各々のビット検出は、高度に保護されたデータが用いられない状態に比べて、より正確な出力信号を得るため、各々のストライプに対するより少ない反復が目的のビット誤差レートを得るために必要とされる。従って、これは、全体として幅広螺旋のために所望のビット誤差レートを得るために必要な時間を短縮することができる。
本発明の実施形態は、所定データがガードバンドデータであることを特徴とする。
幅広螺旋を区切るガードバンドは、ガードバンドとしての機能において、ビット検出に関連しない他の理由のための所定データを既に有するため、開始点としてうまく適合している。このような所定データは、本発明において、ガードバンドにおける所定データの他の使用に加えて、幅広螺旋のビット検出を実行するために必要な時間の短縮を効果的に得るために及び幅広螺旋のストライプに関するビット検出の信頼性を向上させるために用いられる。
本発明の方法の実施形態は、検出器の第1サブセットは、検出器の第2サブセットと同時に少なくとも一部において動作することを特徴とする。
複数のガードバンドを用いることにより、上記実施形態において概観した方法を、並列させて複数のビット検出を開始するために用いることができる。各々のガードバンド近くにおいて、カスケード状態にある各々のビット検出器はカスケード状態にある前検出器の後を追うビット検出器のカスケードを、そのガードバンドから導き出されたサイド情報を用いて、開始する。例として2次元の幅広螺旋を用いるとき、例えば、2つのガードバンドであって、上部において幅広螺旋を区切る第1ガードバンドと下部において幅広螺旋を区切る第2ガードバンドとを有する。ビット検出器の第1カスケードは第1ガードバンドで開始し、第2ガードバンドの方にカスケード状態で向上した信頼性を伝播する。ビット検出器の第2カスケードは第2ガードバンドで開始し、第1ガードバンドの方にカスケード状態で向上した信頼性を伝播する。
ビット検出器のそれら2つのカスケードは、幅広螺旋のどこかであって、例えば、幅広螺旋のストライプン下方部分、幅広螺旋のストライプン上方部分の各々をそれぞれ処理した、幅広螺旋の中央において、交わる。
グラフィックの観点からは、ビット検出器のカスケードは、V字型の開放端が幅広螺旋の処理方向において指し示したビット検出器のV字型集合を構成する。
2つのカスケードが交わるところで、ストライプの下方部分を処理したカスケードからのサイド情報のどちらかを用いて最終ストライプを処理するように選択することができ、カスケードからのそのサイド情報がストライプの上方部分を処理し、又は、サイド情報の両方がそれを処理する。
更に、最終ストライプを処理する両方のカスケードからのビット検出器を有することが可能である。
幅広螺旋の上方及び下方部分の両方を並列して作用させることにより、処理時間を非常に短縮することができる。
図1は、幅広螺旋を有する記録担体を示している。
本発明は、(i)ストライプの外側のビットの信号波形サンプルであって、それ故、所定のストライプに対してビタビプロセッサの状態に属さない、信号波形サンプルと、(ii)ストライプにおける異なるビット行に関連するブランチメトリック(branch metric)における個別の項に対して最大重み(1に等しく設定する)より小さい減じられた重みの導入と、(iii)信号依存性ノイズ特性のためのクラスタによりもたらされる重みの導入と、を有する、ストライプのビタビ格子に沿った処理のために用いられるブランチメトリクスの概念の拡張に関連する。
本発明の概念は、ディスク1又はカードにおいて2D方式で書き込まれる情報のためのビット検出アルゴリズムについてのデザインである。例えば、ディスク1に対して、幅広螺旋2は、半径方向で一のビット行を他のビット行に対して、即ち、螺旋2方向に対して直行する方向に、完全に位置合わせされた多くのビット行3を有する。ビット4は、準最密二次元格子の状態で積み重ねられている。2D格子についての可能な候補は、六方格子、正方格子及び千鳥状矩形格子である。ここでの説明は、最も高い記録密度が可能であるために、六方格子に基づいている。
意欲的な記録密度に対して、従来の“眼”は閉じることとする。そのような方式においては、簡単な閾値検出の適用により、ECC符号化に先立って、許容できない高ビットエラーレート(10−2乃至10−1であって、記憶密度による)に繋がる。典型的には、バイト重視のECC(ブルーレイディスクのフォーマット、BDにおいて用いられるポケットECCのような)の場合のランダムエラーに対するシンボル又はバイトエラーレート(BER)は、典型的には、2x10−3より大きくならないようにする必要があり、符号化されていないチャネルビットストリームに対して、これは、2.5x10−4の許容可能なチャネルビットエラーレート(bER)における上限に対応している。
他方、本格的なPRMLタイプのビット検出器は、非常に高い状態複雑度である短所を有する、幅広螺旋2の全幅に対してデザインされる格子を必要とする。例えば、幅広スパイラル2の方向に沿った接線方向インパルス応答の水平方向の期間がMで表される場合、及び幅広螺旋がNrow個のビット行を有する場合、本格的な“全ての行”のビタビビット検出器に対する状態数は2^((M−1)Nrow)となる(ここで、^は冪乗を表す)。それらの状態の各々は又、2^(Nrow)個の先行状態を有し、それ故、状態間のブランチ又は遷移数は、全体で、2^(MNrow)に等しい。後者の数(ビタビ格子におけるブランチ数)は2Dビット検出器のハードウェアの複雑度に対してよい指標である。
このような指数関数的に増加する状態複雑度の大部分を回避するための方法は、幅広螺旋2を複数のストライプに分割することである。状態複雑度をストライプに基づくPRML検出器により減少させることができ、1つのストライプから次のストライプへと繰り返される。ストライプは、幅広螺旋において連続的“水平”ビット行の集合として規定される。そのようなビット検出器はストライプに関する検出器と簡潔に呼ばれる。重なり合ったストライプ間の反復、非常に多くの状態であって、即ち、2行のストライプについての16個の状態及び3行のストライプについての64個の状態、非常に多くのブランチであって、即ち、2行のストライプに対して4個のブランチ及び3行のストライプについて8個のブランチ、並びに各々の個別のPRMLの反復文字は、そのような検出器のハードウェアの複雑度を尚も非常に大きくする。
本発明の目的は、ストライプに関するビット検出器の複雑度の更なる減少を提供し、その一方で、その検出器の性能を犠牲にしないことである。
図2は、リークする信号エネルギーの寄与を示している。
六方格子において2D記録するための信号レベルは、有効な六方クラスタ全ての完全な集合に対する振幅値のプロットにより特定される。六方クラスタ20は、中心格子サイトにおいて中心ビット21と隣接格子サイトにおける6つの最近接ビット22a、22b、22c、22d、22e、22fとを有する。チャネルインパルス応答は等方性であると仮定される、即ち、チャネルインパルス応答は円形対称である。これは、7ビットの六方クラスタ20を特徴付けるために、中心ビット21と、中心ビット21と最近接ビット22a、22b、22c、22d、22e、22f(それらの6つの最近接ビットの中の0、1、...、6は“1”ビットである)の中の“1”ビット(又は、“0”ビット)の数とを特定することのみが重要である。“0”ビットはこの詳細説明においてランドビットである。
等方性の仮定は、単に簡潔な説明目的のための仮定であることに留意されたい。タイルを敷き詰めたような状態のディスクを用いる実際の場合、2Dインパルス応答は対称性を有する。後者の問題に対しては2つの解決方法であって、(i)回転対称のインパルス応答を回復させる2D等化フィルタの適用と、(ii)ブランチメトリック演算において用いられる非常に大きい基準レベルの集合の適用とがあり、所定のクラスタの各々の回転分散はそれ自体の基準レベルを有する。この一般的な場合であって、中心ビット21とその6つの近接ビット22a、22b、22c、22d、22e、22fに対しては、上記の等方性の仮定の場合における14個の基準レベルに代えて、2^7=128個の基準レベルを有する。
ディスクにおいて書き込まれるチャネルはランドタイプ(ビット“0”)又はピットタイプ(ビット“1”)を有する。物理的六方ビットセル21、22a、22b、22c、22d、22e、22fは、各々のビットにより、2D六方格子におけるビットの格子位置に対して集められ、関連付けられている。ランドビットについてのビットセルはランドレベルにおいて一様な均一領域であり、ピットビットは六方ビットセルにおいて中心を据えた(円形)ピットホールのマスタリングにより認識される。ピットホールのサイズはビットセルのサイズの半分に匹敵するか又はそれより小さい。この要求は、六方ビットセル21、22a、22b、22c、22d、22e、22fの全領域を覆うビットホールに対して起こる“信号折り返し”問題を取り除く。そのような場合、全ての1(全てのピット)及び全ての0(全てのランド)のクラスタの両方について、理想的な信号レベルを伴って、完全なミラー関係が得られる。信号レベルにおける曖昧性は、信頼性高いビット検出を妨害するため、回避されなければならない。
高密度の2D光学的記憶に対して、線形チャネルの2Dインパルス応答を、2に等しいタップ値cを有する中心タップにより及び1に等しいタップ値cを有する6つの最近接タップにより正確な応答レベルに近付けることができる。この7つのタップの応答の全エネルギーは、接線方向(中心タップと2つの隣接タップ)の6のエネルギーと隣接ビット行(2つの隣接タップを有する各々)の各々に沿った2のエネルギーとを有し、10に等しい。
それらのエネルギーの考慮から、2D変調の主な有利点の1つは“結合2Dビット検出”の特徴であるとして論じられることができ、各々の単一ビットに関連付けられるエネルギー全てはビット検出に対して用いられる。これは、“トラックに沿った”エネルギーのみが用いられる標準的なクロストーク削除による1D検出とは対照的であり、即ち、ビット当たり40%のエネルギー損失をもたらす。
類似する議論は、(最初のビット行の出力を求められる)2Dストライプの端部においてビット検出を考慮するときに適用することができる。最初の行におけるビットの信号エネルギーの20%のオーダーがストライプの真上のビット行における2つのサンプルの信号波形のサンプルにおいてリークした場合、それら2つのサンプルは現ストライプの最初の行におけるビットの最近接サイトに位置付けられる。最初のビット行からリークする他の20%はストライプにおける最初のビット行の下のビット行においてリークする。このエネルギーは、そのストライプ(少なくとも2つのビット行幅の)はストライプの最初のビット行の下のビット行を又、有するために、用いられる。その結果、“上”方向にリークしたリーク情報を用いないことは、ストライプの最初の行におけるビット検出特性における損失に繋がる。
上記の短所の解決方法は、性能指数の演算において、ストライプの上方のビット行におけるHFサンプルを有することである。その行の信号波形のサンプルのみが、ここでは、重要であり、その行におけるビットは、それらが所定のストライプのためのビタビ検出器の状態及び格子に沿って変化するビットの集合に属さないため、特定されない。そのストライプの上方のビット行の行指数をl−1で表すと、ブランチメトリックを次式により表すことができる(ここでは、“1”から開始する実行指数jを用いる)。
Figure 2006526241
ストライプの上方のビット行における信号サンプルの行の包含ビットを用いるブランチメトリックの演算のこの拡張について、図6に模式的に示している。基準レベルの演算において、ストライプ内の必要なビット全ては所定のブランチを成す2つの状態により設定され、ストライプの外側の必要なビット全ては、ストライプに関するビット検出器の現反復における前ストライプにより又はストライプに関するビット検出器の前反復により決定される。
完全を期すために、上記の説明はストライプの上部から下部への処理に対して適用され、各々のストライプの出力はその最初のビット行であり、ブランチメトリックで説明される付加的ビット行は、指数j=−1を有する、ストライプの真上の行である。しかしながら、下部から上部への反対の処理順序に対して、各々のストライプの出力はその下部ビット行であり、ブランチメトリックで説明される付加的ビット行は、指数j=3(3つの行のストライプに対して)を有する、ストライプの真上の行である。
図3は、3つの行のストライプにおけるビタビ検出器に対する状態及びブランチを示している。
先ず、図3に示す格子の基本構造について、3つの行のストライプ30の実際的な場合を扱いながら、説明する。2Dインパルス応答の接線方向の期間は3ビット幅であり、状態は六方グリッドにおける高密度記録に対する実際的条件に適合する。状態31a,31bは、ストライプ30の行33a、33b、33cの全半径方向の幅に亘って広がっている2つの列により特定される。それ故、この例においては、正確に2^6=64個の状態が存在する。ビタビビット検出器の速度は3ビット列34における放射の周波数と調和する。3ビット列34の放射は、所謂、出発状態Σ31aから、所謂、到着状態Σ31bまでの状態遷移と対応する。各々の到着状態31bに対して、正確に8個の有効な出発状態31a、及び、それ故、8個の有効な遷移が存在する。2つの状態31aと31bとの間の遷移は、標準的ビタビ/PRML用語においてブランチと呼ばれる。各々の遷移に対して、それ故、2つの状態と、従って、それらの2つの状態により完全に特定される全9ビットとが存在する。各々のブランチに対して、ブランチのビットにおける信号波形の理想的な値をもたらす基準値の集合が存在する。それらの理想的な値は、ストライプ30に沿った実際の2Dビットストリームが、ノイズのない場合において所定の遷移に繋がる。HFにより表される観測される“ノイズを含む”信号波形のサンプルとRLにより表される対応する基準レベルとの間に存在する差に基づいて所定のブランチ又は遷移に対する“適合度”又は“性能指数”を与えるブランチメトリックを各々の遷移と関連付けることができる。その波形の所定サンプルにおけるノイズが電気ノイズ、レーザノイズ、媒体ノイズ、ショットノイズ、2次元インパルス応答の所定期間を超える残留ISI等のためであり得ることに留意する必要がある。それらの性能指数に対する差が測定されるブランチビットであって、ブランチを成す両方の状態31a、31bに共通であるビットとみなすことは一般的な方法であり、図3において、そのブランチビットは、2つの状態31a、31bの共通部分における列の3ビットである。それ故、kがその共通部分の列の位置における接線方向の指数を表し、lがストライプ30の上部ビット行33aを表す場合、状態Σm31aと状態Σnとの間のブランチメトリックβmnが次式により与えられる。
Figure 2006526241
前記式、付加された白色ガウスノイズ(AWGN)の仮定に対して最適である性能指数(L−基準)に対する二乗誤差測定についての仮定に基づいている。それは、差(L1−基準)の絶対値のような誤差測定に対しの基準レベルの決定に対して、位置k、l+jの周りの6つの周囲ビット22a、22b、22c、22d、22e、22fは中心ビット21の値と共に必要とされ、それらの7つのビット21、22a、22b、22c、22d、22e、22fは、所定のビット位置21における所定の状態遷移又はブランチについて用いられる基準レベルを一意に特定する。
図4は、幅広螺旋を処理する複数の検出器を示している。
ストライプに関するビット検出器の動作の標準的方式について、以下、説明する。ストライプ43、45は、限定されたビット行44a、44b、44cを有する。図4には、ストライプにおいて2つのビット行を有するストライプの実際的な場合について示している。図4においては、ビット行はそのエッジにおける2つの2つの水平方向の線により境界が形成されている。ストライプの数は、ストライプ当たり2つのビット行の場合のビット行の数に等しい。ビタビビット検出器V00、V01、V02、V03、V04、V05、V06、V07、V08、V09、V10の集合は、各々のストライプに1つ、考案されている。ビタビビット検出器は個別の検出器として示されているが、検出器の集合V00、V01、V02、V03、V04、V05、V06、V07、V08、V09、V10の機能を実行するために単一の検出器を用いることができる。ブランチメトリックの演算のために必要である所定のストライプの外側のビットは、隣接ストライプの出力から取り出される、又は不明であると仮定される。第1反復においては、不明ビットは0に設定されることが可能である。その上部行として、ガードバンド46に最近接であるビット行44aを有する第1上部ストライプ43が、入力の何れの遅延を伴うことなく、ビット検出器V00により処理される。それは、既知のビットとしてガードバンド46のビットを用いる。第1ストライプを処理するビット検出器V00の出力は第1ビット行44aにおけるビット決定である。第2ストライプ45は、第2行44bと第3ビット行44cとを有し、第1ストライプ43のビタビ検出器のバックトラッキング深さを調和させる遅延を有する第2ビット検出器V01により処理され、それ故、第1ストライプ43を処理するビット検出器V00の出力からの検出ビットを、第2ストライプ45のブランチメトリックのために用いることができる。上記のように、第2ビット検出器V01の機能は又、第1ストライプ43の検出を実行する同じ検出器V00により実行される。これは、第1検出器が第1ストライプ43のセクションを終了した後に第2ストライプ45の処理のみを開始することができるために、その検出器における長い遅延をもたらす。この方法は、幅広螺旋2におけるストライプ全てに対して継続される。幅広螺旋2の上部から下部までの全処理は、ストライプに関する検出器の1つの反復であるとみなされる。実質的には、この処理は、上部におけるガードバンド46から再び開始して繰り返され、所定のストライプの下部の真下のビット行におけるビットに対して、前反復からのビット決定を用いることができる。これは、検出器の第1集合V00、V01、V02、V03、V04、V05、V06、V07、V08、V09、V10の後に続く検出器の第2集合V10、V11、V12、V13、V14、V15、V16、V17、V18、V19、V20により図4に模式的に示されている。その第2集合における検出器の複雑度は、同じストライプを処理する第1集合における検出器の複雑度に比べて大きい。第1反復において、検出は比較的低い信頼性のデータに関して実行されるため、検出の結果、データの信頼性が改善される。高い複雑度を有する検出器を用いる場合、低い複雑度を有する検出器が用いられる状態に比べて実質的な改善は得られない。第2反復においては、検出が実行されるデータは第1反復の結果として改善され、より高い複雑度の検出器はより良好な検出結果をもたらす。1つの反復において検出器の複雑度が変わることが可能であるため、例えば、高い信頼性を有するサイド情報がガードバンド46から導き出される第1ストライプ43に対してより高い複雑度の検出器を用いることにより、反復の間の検出器の複雑度の増加を同じストライプを処理する検出器間で受けることとなる。
サイド情報の信頼性が検出器から更に減少することはガードバンドからもたらされることは、図4から又、明らかである。ガードバンド46に最近接の第1検出器V00は、サイド情報が所望の検出器の結果は既知であるために検出器誤差が生成されることがない所定の情報か又は誤差補正符号化により高信頼性を有して情報が検索される誤差保護情報のどちらかであるため、高信頼性を有するサイド情報を得る。第2検出器V01は、第1検出器V00から信頼性の低いサイド情報を受ける。第2検出器V01の複雑度は、それ故、第1検出器V00の複雑度より低い。各々の検出器は、次の検出器、同じ反復における隣接する検出器又は次の反復における検出器に各々の検出器が与えるサイド情報に、誤差をもたらすため、続く検出器の複雑度は減少する。各々の反復の検出器全てが同じ複雑度を有するように選択されるとき、検出器における複雑度は反復毎に変化する。
連続するストライプの上部から下部への処理において、最後のストライプ処理器V10は上部のビット行を出力すると仮定される。ここでは、他の実施が可能である。下部のストライプビット検出器V10を省くことが可能であり、3つのビット行44i、44j、44kを処理するために2行ストライプ処理器V09を変えることが可能であり、それ故、同時に両方の行を出力するように、幅広螺旋2の2つの下部の行44j、44kが処理される。
図5は、ストライプに関するビット検出器における重みの減少を示している。
図4において、下方向における幅広螺旋の上部からその螺旋の下部の方にストライプがシフトすることを示している。ストライプは下方へ行毎にシフトする。各々のストライプは、最も信頼性が高いストライプの上部のビット行のビット決定を出力として有する。その出力ビット行は又、1ビット行、下方にシフトされるストライプである次のストライプのビット検出のためのサイド情報として用いられる。他方、ストライプの下部におけるビット行は尚も現反復において決定される必要があり、それ故、ストライプに関するビット検出器の第1反復又は何れの続く反復において初期設定されたビット値を用いることができる。ストライプに関するビット検出器の前反復からもたらされたビット決定がそのビット行に対して用いられる。それ故、図5において、情報のビット行51における3行ストライプに関するビット検出器V02のビット決定は、下部ビット行53におけるビット決定より信頼性が高い。この理由は、1つのストライプの出力は上部ビット行であることである。又、下部ビット行における必要な基準レベルの演算に対しては、図2において説明したように、下部ビット行におけるブランチビット54の6つの最近接ビットを必要とする。それらの最近接ビットの2つの隣接ビット55a、55bは所定のストライプの直下のビット行56に位置していて、例えば、前反復からの予備ビット決定のみがそれらの隣接ビット55a、55bに対して有効である。その結果、現ストライプ50の下のビット行56のそれらの2つの隣接ビット55a、55bにおけるビット誤差の場合に、それらの誤差はビタビ格子に沿った存続経路における選択されたブランチに影響を及ぼす。実際には、それらの2つの近接ビット55a、55bにおけるビット誤差はそのストライプに沿った状態にある誤ったビットを選択することにより補償されることが可能であり、それ故、下部のブランチビットにおける誤差測定は十分小さく維持される。残念ながら、このようなバランス化は、ストライプ50の上部ビット行51の方に誤差を伝播させ、このことは回避されなければならない。
ストライプ50の上部ビット行51の方への誤差の伝播を回避するために、性能指数における下部ブランチビットのための相対重みが、全部の100%、即ち、重み付け1からより小さい割合に減じられる。ストライプのi番目の行におけるブランチの重みを表すwを用いると、ブランチメトリックは次式のようになる。
Figure 2006526241
1より非常に小さいストライプ50における下部行53の重みを選択することにより、現ストライプ50の直下のビット行56における未知の又は予備的に知られたビット55a、55bの負の影響が非常に減少される。ブランチメトリックへの信号波形のそれぞれの寄与の重みは又、周囲のビットにおけるビット決定は徐々に信頼性高くなっていくため、1つの反復から次の反復に変化される。
完全性のために、上記説明はストライプの上部から下部への処理に適用され、各々のストライプの出力はその上部ビット行であり、下部ビット行の重みは減少する。しかしながら、下部から上部への反対の処理順序に対しては、各々のストライプの出力はその下部ビット行であり、上部ビット行の重みは減少する。
検出理論においては、最適なビタビ検出器において、ブランチメトリックは所定のチャネル出力値を与えるチャネル入力ビットの(負の)対数尤度である。上記のように、次式のようなブランチメトリックの式は、ノイズが付加的、ガウス分布及び白色であるとの仮定から導き出される。
Figure 2006526241
上記の合計の内側の二乗は、次式のような二乗を又有するノイズgmnのガウス確率密度関数の対数から得られる。
−log(Pr{gmn=g})=(1/2)x(log(2πN))+g/2N
ノイズの白色度の仮定は、異なるノイズ成分が統計的に独立していて、それ故、それらの確率密度関数を乗算することができる。それ故、それらの尤度関数を、βmnの式におけるように、加算することができる。
ここで考慮したい問題点は、例えば、光学的記録に対して、ノイズNの変動は所定のチャネル出力HFk,i+jの中心入力ビットと最近接入力のクラスタとに依存することである。例えば、レーザノイズが支配的である場合、より大きいチャネル出力HFk,i+jはより大きい(乗法的)レーザノイズ(通常、‘RIN’という、“相対的強度ノイズ”)をもたらす。これは、βmnのためのブランチメトリックの式においてどのような値のノイズNを用いるべきかという問題に繋がる。
この問題の解は非常に単純である。クラスタ依存性ノイズ変動のテーブルに基づいて、状態遷移(Σ→Σ)及び行指数jの関数としてノイズ変動N(Σ→Σ,j)のためのテーブルを作成し、次式のように、ブランチメトリックの式における調節値Nで除算する。
Figure 2006526241
ノイズが所定のチャネル出力の中心入力ビット及びクラスタに実際に依存するとき、上記のブランチメトリックの式におけるようにこれを考慮することにより、このサブセクションの序文で述べたように、対数尤度関数に略等しいブランチメトリックを作成される。これは、一般に、ビット検出器において、得られるビット誤差レートの改善をもたらす。
図6は、ストライプより上のビット行のビットにおける信号波形のサンプルを有するブランチメトリックの演算の拡張を示している。
図4において、下方における幅広螺旋の上部からその螺旋の下部の方へストライプがシフトすることを示している。ストライプに関する処理は行毎に下方にシフトする。各々のストライプに関する検出器は、最も信頼性の高いストライプの上部ビット行から導き出されるビット決定を出力として有する。前のストライプのその出力ビット行66は又、1ビット行下方にシフトされるストライプである次のストライプのビット検出のためのサイド情報として用いられる。図6に示すように、ストライプ60は3つのビット行61、62、63を有する。図5において、上方への伝播からより低いビット行63のビットと関連する大きい不確実性によりもたらされる誤差を回避するように、下部ビット行63の重み付けは減少されることが示されている。
前のストライプのビット検出により生成された出力ビット行66は高い信頼性を有し、次のストライプ60の処理のためのサイド情報としてこのビット行66のビット65a、65bを用いることができる。特に、前のストライプのビット検出により生成された出力ビット行66がガードバンドから導き出されるときである。ガードバンドは非常によく符号化された情報を有し、所定のデータは、次のストライプ60のビット検出において用いられるサイド情報の100%の信頼性をもたらす。
図7は、反復当たり異なるビット行数を有するストライプを処理する検出器を用いる反復を示している。
検出器が独立しているとき、それらの検出器は、導き出されたサイド情報が有効になるとすぐ、データのブロックの処理を開始することができる。第2検出器V01は、第1検出器V00により処理されたストライプ43に隣接するストライプ45を処理し、第1検出器V00によりサイド情報が与えられるとすぐ、開始することができる。第3検出器V10は、しかしながら、第2反復の一部において、第1検出器V00より多い行44a、44b、44cをカバーし、一旦、ストライプ47における行44a、44b、44c全てが第1シンボル検出器V00と第2シンボル検出器V01により前の反復中に処理されると、ストライプ47の処理のみを開始する。第4シンボル検出器V11は、第3シンボル検出器V10により処理されたストライプ47に隣接するストライプ48を処理し、それ故、第3シンボル検出器V10ga必要な再度情報を与えるまで待つ必要がある。この方法は、各々の反復中、シンボル検出器のカスケードにより、幅広螺旋を処理する。
ストライプに関するビット検出器の反復数を2のみに制限するときであって、最後の反復が最も強力な反復であり、bERにおいてできるだけ大きく低下するとき、ビットエラーレート(bER)に関する最良の性能が達成される。それ故、この最後の反復は、達成可能である最小のエラーフロアの影響を受ける。最後の反復を実行する検出器V10、V11、V12、V13、V14、V15、V16、V17、V18は、十分に高い品質であることが必要である、前の(第1の)反復を実行する検出器V00、V01、V02、V03、V04、V05、V06、V07、V08の出力を、その入力として必要とする。3行ストライプが第2反復中に用いられるとき、第1反復中に2行ストライプを用いることが満足されることが、シミュレーション実験において観測された。図7は、連続する2つのV字型反復であって、2行ストライプを有する右側の第1反復と、3行ストライプを有する左側の第2反復とを示している。異なるビタビ検出器についての説明は、図4における2行ストライプに対して与えられた。3行ビタビ検出器V10、V11、V12、V13は、幅広螺旋の上部のガードバンド46から開始して、次々にカスケードされ、各々のストライプの上部ビット行を出力として有する。下部行における信号波形サンプルのブランチメトリックにおける重みは1以下に減少する。ブランチメトリックは、ストライプの直上のビット行の信号波形サンプルを有するように拡張される。同様に、3行ビタビ検出器V14、V15、V16、V17は、幅広螺旋の下部のガードバンド80から次々に開始して、次々にカスケードされ、各々のストライプの下部ビット行を出力として有する。上部行における信号波形サンプルのブランチメトリックにおける重みは1以下に減少する。ブランチメトリックは、ストライプの直上のビット行の信号波形サンプルを有するように拡張される。それらのカスケードされるビタビ検出器の2つの集合は互いに鏡像関係にある。最終的に、3行ストライプ検出器V10、V11、V12、V13、V14、V15、V16、V17の2つのカスケードは、最後のストライプのための検出器V18を有する幅広螺旋の中央で終了し、その検出器18は3ビット行を出力として有する検出器のみであり、そのストライプのブランチメトリックの演算において信号波形が含まれる、処理されるべきストライプの両側に付加的な外部のビット行を有する。又、このストライプの両側のビット行は、前のストライプ全てにおけるビタビ検出器V10、V11、V12、V13、V14、V15、V16、V17の2つのカスケードの実行中に決定されたため、ブランチビットにおける信号波形全ては1に等しく設定される。
ハードウェアの複雑度(ビタビ検出器における状態とブランチとの積の数に関して都合よく計算される)は、2ストライプビタビの場合より3ストライプビタビの場合に8倍大きいことに留意されたい。それ故、過度に性能を犠牲にすることなく、3ストライプビタビのハードウェアの複雑度を減少させることが可能である付加手段を考案することは有利である。
図8は、2つのガードバンドを有する幅広螺旋のストライプに関する検出を示している。
ストライプに関するビット検出器の1つの反復は、上記のように、図4に示すような幅広螺旋を横断する斜め模様の検出器V00、V01、V02、V03、V04、V05、V06、V07、V08、V09、V10の線形行をもたらす幅広螺旋の下部におけるガードバンド80の方に幅広螺旋の上部におけるガードバンド46から開始して、ストライプ43、45の連続処理を有することが可能である。代替として、両方のガードバンド46、80からストライプ43、81を用いて開始することができ、両側から幅広螺旋の中央の方に向かって進んで、ストライプ数を連続して処理することができる。ストライプの連続検出器V00、V00a、V01、V01a、V02、V02a、V03、V03a、V04、V04aは、2ビット行を成すストライプ43、45及び11行幅広ストライプの実際的な場合に対して図8に示しているようにV字型に配列されている。ビタビ検出器V00、V00a、V01、V01a、V02、V02a、V03、V03a、V04、V04aは、それぞれの検出器のバックトラッキングを可能にするために相互遅延を伴って次々にカスケードされ、そのカスケードは、ガードバンド46の上部から幅広螺旋の中心に向かって開始する。それらのビタビ検出器V00、V01、V02、V03、V04の各々は上部ビット行のためのビット決定を出力として有する。それらのビタビ検出器V00、V01、V02、V03、V04の各々は又、ブランチメトリックにおける追加する付加行としてストライプの上のビット行において信号は系サンプルを用いる。ストライプの下部行における信号波形サンプルの重みは最大値(1に等しく設定された)以下に減少される。同様に、ビタビ検出器V00a、V01a、V02a、V03aは、下部ガードバンド80から幅広螺旋の中央の方へ(又、バックトラッキング目的のために相互遅延を伴って)開始して、次々にカスケードされる。それらの検出器V00a、V01a、V02a、V03aの各々は下部ビット行のためのビット決定を出力として有する。それらの検出器V00a、V01a、V02a、V03aの各々は又、ブランチメトリックにおける追加の付加的行としてストライプの下のビット行において信号波形サンプルを用いる。ストライプの上部行における信号波形サンプルの重みは最大値(1に等しく設定されている)以下に減少される。それらのカスケードされたビタビ検出器の2つの集合V00、V01、V02、V03、V00a、V01a、V02a、V03aは互いに鏡像関係にある。最終的に、ストライプのための検出器の2つのカスケードは、最後のストライプ44fのための最後の検出器V04aにより幅広螺旋の中央で終了し、その最後の検出器V04aは2ビット行を出力として有するストライプのためのみの検出器であり、その2ビット行はストライプ(そのストライプのブランチマトリックの演算において信号波形を有する)の両側に付加的な外側のビット行を有する。又、ブランチビットにおける全ての信号波形の重みは最大値1に設定される(このストライプの両側におけるビット行は全ての前のストライプにおけるビタビ検出器の2つのカスケードの実行中に決定されるため)。
V字型ストライプに関するビット検出器V00、V01、V02、V03、V00a、V01a、V02a、V03a、V04、V04aを用いて、“ビット信頼性”の伝播方向は、ガードバンド46、80の既知のビットから幅広螺旋の中央におけるビット行44Fの方向であり、それ故、そのビット行44Fはガードバンドから最大距離を有する。“既知の”情報は両側から中央の方に伝播し、その方法は、幅広螺旋の上部から下部の方に伝播する方法より良好な方法である。
検出器に対して既知であるビットを有する2つのガードバンド46、80を有する幅広螺旋についての特別の場合には、2つのアンカービット行46、80のビット信頼性は100%である。両方のガードバンド46、80を利用するために、終了検出器の線形行が、図8に示しているように、再整形されることができる。これは、各々の検出器が次の検出器に与えるサイド情報の信頼性を高めることを通して信頼性を伝播することにより両方のガードバンド46、80の信頼性を利用するばかりでなく、第1検出器V00、V00a、V01、V01a、V02、V02a、V03、V03aは必要なサイド情報を有するより速く最後の検出器V04、V04aを並列の状態で与えて機能するために、検出を実行するために必要な時間を減少させる。最後の2つの検出器V04、V04aの代替として、まさに2行に代えて、同時に、中央の3ビット行44e、44f、44gを処理する信号検出器を用いることができる。最終検出器V04、V04aが中間から外れている検出器V00、V00a、V01、V01a、V02、V02a、V03、V03aによりサイド情報を受けるため、V字型の全体的な信頼性は、通常の検出器の線形行の場合より高い。
上記のサブセクションにおける方法を、次のように一般化することができる。著しく高いビット信頼性を有する2D領域における2ビット行の何れの対の間で、ストライプはV字型構成を構成する2つの集合としてカスケードされることができ、それ故、それらのストライプは、高いビット信頼性を有する2行間の中央領域において互いの方に向かう両側方式で連続ストライプが伝播することができるアンカーポイントとしての役割を果たすことができる。検出器にとって既知であるビットを有する2つのガードバンド46、80を有する幅広螺旋の特別な場合には、2つのアンカービット行のビット信頼性は100%である。他の例は、螺旋の中央に付加ビット行を有する2Dフォーマットの場合であって、即ち、他の行より高いビット信頼性を有するように符号化された2Dフォーマットの場合である。それ故、ストライプを処理する検出器の2つのV字型処理であって、1つは中央のビット行44fと下方のガードバンド46との間で動作し、他は同じ中央のビット行44fと下方のガードバンド80との間で動作する、2つのV字型処理を考案することができる。例えば、中央ビット行44fは、チャネルに対するローバスト送信を可能にする1Dランレングス制限(RLL)チャネル符号を用いて符号化されたチャネルであることが可能である。例えば、d=1のRLLチャネル符号はクラスタの一部を移動させ、信号パターンの重なり合った領域において、それらは“1”の中央ビットと隣接ビットとして6つの“0”のビットを有し、それにより、一方で、ビット検出のローバスト性を増加させるが、他方で、制限付きチャネル符号化のためにその行のための記憶容量を減少させることができる。
所定のストライプのためのビタビ処理器のバックトラッキング中、最も最近のビット評価を有するビットアレイが記憶されるように、ストライプのビット行全てを出力することはオプションである。この測定の目的は、V字型ビット検出スキームの上部半分、下部半分及び中央領域におけるビタビ処理器のためのより均一なアーキテクチャを達成することである。
何れのビタビビット検出に先立ち、比較的劣るビット誤差レート(bER)性能にも拘らず、一部の予備ビット決定を有することは有利である。例えば、各々のストライプの一方側において、ストライプがガードバンドに直接隣接して位置しているとき、ビットは前のストライプから決定される又は0に設定される。ストライプの他方側においては、ストライプ内の隣接するビットストライプにおけるビットのための基準レベルを導き出すことができるように、ビット決定が必要とされる。それらのビット決定は、ストライプに関するビット決定の前の反復から、又は、ストライプに関するビット検出器の第1反復が実行されているときの予備ビット決定から、導き出される。それらの予備決定は、全てのビットを0にすることによりまさに得られるが、それはそれ程賢明な方法ではない。
より良好な方法は、行が全て0を有する又はそうでないガードバンドに隣接しているかどうかに依存する閾値レベル、即ちスライサレベルに基づく閾値検索を適用することである。ガードバンド46、80に隣接するビット行44a、44kの場合、幾つかのクラスタレベルは禁止されている。その結果、閾値レベルは上方にシフトされている。それは、0に等しい中央ビットと隣接ビットとしての3つの1に等しいビットに対するクラスタレベルと、1に等しい中央ビットと隣接ビットとしての1つの1に等しいビットに対するクラスタレベルとの間のレベルとして演算される。この単純な閾値検出の予測されるビット誤差レートは、それ故、この場合については、2/32に等しく、それは約6%である。ガードバンドに隣接していないビット行の場合、閾値レベルは、0に等しい中央ビットと隣接ビットとしての4つの1に等しいビットに対するクラスタレベルと、1に等しい中央ビットと隣接ビットとしての2つの1に等しいビットに対するクラスタレベルとの間のレベルとして演算される。この単純な閾値検出の予測されるビット誤差レートは、それ故、この場合については、14/128に等しく、それは約11%である。それらのbERは非常に大きいが、それらは、特にガードバンドに隣接するビット行において、コイントスにより得られる50%のbERより非常に良好である。ストライプに関するビット検出器の実行に先立って得られるそれらの予備ビット決定は又、ディジタル受信器(例えば、タイミング回復、利得及びオフセット制御、適応同期等についての)の適応制御ループのための入力として用いられる。上記の適切なスライサレベルの導出は、選択された実際の2D記憶密度と、“信号パターン”における信号レベルの結果として得られた重なり合いと、に依存することに留意されたい。
チャネル出力は格子において必ずしもサンプリングされない、又は、チャネル出力はチャネル入力(記録マーク)の格子として類似する格子においてサンプリングされる必要はないことに留意する必要がある。例えば、チャネル出力は、チャネル入力(記録マーク)の格子に対してシフトされる格子ハットに従ってサンプリングされることが可能であり、例えば、サンプリングは六方格子のセルのエッジを越えて起こり得る。又、(信号)依存性オーバーサンプリングが、他の方向に比べて、特定方向において、より高いサンプリング密度を伴って適用されることが可能であり、それらの特定方向は、信号入力(記録マーク)の格子に対して並べられることが必要である。
更に、次のように留意する必要がある。
1.検出されるシンボルはチャネルシンボルである。
2.検出されるシンボルはチャネルシンボルの線形関数である。
3.検出されるシンボルはチャネルシンボルの線形関数であり、それらのチャネルシンボルの前反復から予測される。
4.検出されるシンボルはチャネルシンボルの線形関数であり、それらのチャネルシンボルの線形関数の前反復から予測される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法において、ブランチメトリックは、差の二乗の総和又は差の絶対値又は差の集合に関する何れの他の適用可能な基準を反映し、前記差は、所定のブランチに対して典型的である適切に決定されたノイズのない基準レベルと受信された又は観測された信号波形のサンプルとの間で演算され、前記ブランチメトリックは、ビタビ処理の関連格子に沿った有効な状態遷移の各々に対して適用され、前記ブランチメトリックは次のような特徴に関して一般化される。
− 各々のストライプは多数のビット行を同時に処理するが、その境界の1つにおけるビット行のみを出力として有する。ブランチメトリック演算は、出力ビット行の信号エネルギーが前記外側のビット行のサンプルに部分的にリークするため、ストライプの出力ビット行の側及びストライプのすぐ外側の隣接ビット行におけるビットからの信号波形サンプルを有するように拡張される。出力ビット行の側であって、ストライプを越えた前記外側のビット行におけるビットは、ビタビ検出器の格子に従って変化されるが、前記外側のビット行がストライプの前の位置の出力ビット行であるとき、ストライプの前の位置から決定される。
− ブランチメトリックは個別の項の総和であり、各々のブランチビットの1つの項はブランチメトリックに寄与するように考慮されている。各々の項は、前記ストライプのエッジに対する前記ブランチメトリックの位置に依存する局所重みであって、例えば、ストライプの一方側の出力ビット行から遠く離れているブランチビットについての重みを有することが可能であり、小さい値に設定されることが可能である。
− ブランチメトリックにおける各々の項は遷移依存性及びクラスタ依存性ノイズ変化により重み付けされることが可能であり、前記重みは信号依存性ノイズに有効である。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法において、ブランチメトリックは、差の二乗の総和又は差の絶対値又は差の集合に関する何れの他の適用可能な基準を反映し、前記差は、所定のブランチに対して典型的である適切に決定されたノイズのない基準レベルと受信された又は観測された信号波形のサンプルとの間で演算され、前記ブランチメトリックは、ビタビ処理の関連格子に沿った有効な状態遷移の各々に対して適用され、前記ブランチメトリックは次のような特徴に関して一般化される。
− 各々のストライプは多数のビット行を同時に処理するが、その境界の1つにおけるビット行のみを出力として有する。ブランチメトリック演算は、出力ビット行の信号エネルギーが前記外側のビット行のサンプルに部分的にリークするため、ストライプの出力ビット行の側及びストライプのすぐ外側の隣接ビット行におけるビットからの信号波形サンプルを有するように拡張される。出力ビット行の側であって、ストライプを越えた前記外側のビット行におけるビットは、ビタビ検出器の格子に従って変化されるが、前記外側のビット行がストライプの前の位置の出力ビット行であるとき、ストライプの前の位置から決定される。
− ブランチメトリックは個別の項の総和であり、各々のブランチビットの1つの項はブランチメトリックに寄与するように考慮されている。各々の項は、前記ストライプのエッジに対する前記ブランチメトリックの位置に依存する局所重みであって、例えば、ストライプの一方側の出力ビット行から遠く離れているブランチビットについての重みを有することが可能であり、小さい値に設定されることが可能である。
− ブランチメトリックにおける各々の項は遷移依存性及びクラスタ依存性ノイズ変化により重み付けされることが可能であり、前記重みは信号依存性ノイズに有効であり、ここで、前記ストライプの外側のビット行のブランチメトリックにおける重みは0に設定される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法において、ブランチメトリックは、差の二乗の総和又は差の絶対値又は差の集合に関する何れの他の適用可能な基準を反映し、前記差は、所定のブランチに対して典型的である適切に決定されたノイズのない基準レベルと受信された又は観測された信号波形のサンプルとの間で演算され、前記ブランチメトリックは、ビタビ処理の関連格子に沿った有効な状態遷移の各々に対して適用され、前記ブランチメトリックは次のような特徴に関して一般化される。
− 各々のストライプは多数のビット行を同時に処理するが、その境界の1つにおけるビット行のみを出力として有する。ブランチメトリック演算は、出力ビット行の信号エネルギーが前記外側のビット行のサンプルに部分的にリークするため、ストライプの出力ビット行の側及びストライプのすぐ外側の隣接ビット行におけるビットからの信号波形サンプルを有するように拡張される。出力ビット行の側であって、ストライプを越えた前記外側のビット行におけるビットは、ビタビ検出器の格子に従って変化されるが、前記外側のビット行がストライプの前の位置の出力ビット行であるとき、ストライプの前の位置から決定される。
− ブランチメトリックは個別の項の総和であり、各々のブランチビットの1つの項はブランチメトリックに寄与するように考慮されている。各々の項は、前記ストライプのエッジに対する前記ブランチメトリックの位置に依存する局所重みであって、例えば、ストライプの一方側の出力ビット行から遠く離れているブランチビットについての重みを有することが可能であり、小さい値に設定されることが可能である。
− ブランチメトリックにおける各々の項は遷移依存性及びクラスタ依存性ノイズ変化により重み付けされることが可能であり、前記重みは信号依存性ノイズに有効であり、ここで、前記ストライプ内の全てのビット行のブランチメトリックにおける重みは互いに等しく設定される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法において、ブランチメトリックは、差の二乗の総和又は差の絶対値又は差の集合に関する何れの他の適用可能な基準を反映し、前記差は、所定のブランチに対して典型的である適切に決定されたノイズのない基準レベルと受信された又は観測された信号波形のサンプルとの間で演算され、前記ブランチメトリックは、ビタビ処理の関連格子に沿った有効な状態遷移の各々に対して適用され、前記ブランチメトリックは次のような特徴に関して一般化される。
− 各々のストライプは多数のビット行を同時に処理するが、その境界の1つにおけるビット行のみを出力として有する。ブランチメトリック演算は、出力ビット行の信号エネルギーが前記外側のビット行のサンプルに部分的にリークするため、ストライプの出力ビット行の側及びストライプのすぐ外側の隣接ビット行におけるビットからの信号波形サンプルを有するように拡張される。出力ビット行の側であって、ストライプを越えた前記外側のビット行におけるビットは、ビタビ検出器の格子に従って変化されるが、前記外側のビット行がストライプの前の位置の出力ビット行であるとき、ストライプの前の位置から決定される。
− ブランチメトリックは個別の項の総和であり、各々のブランチビットの1つの項はブランチメトリックに寄与するように考慮されている。各々の項は、前記ストライプのエッジに対する前記ブランチメトリックの位置に依存する局所重みであって、例えば、ストライプの一方側の出力ビット行から遠く離れているブランチビットについての重みを有することが可能であり、小さい値に設定されることが可能である。
− ブランチメトリックにおける各々の項は遷移依存性及びクラスタ依存性ノイズ変化により重み付けされることが可能であり、前記重みは信号依存性ノイズに有効であり、ここで、重みは反復依存性である。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行は、ビット検出器にとって推測的に既知であるビットを有する幅広螺旋のバードバンドである。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行は、ビット検出器にとって推測的に既知であるビットを有する幅広螺旋のバードバンドであり、ガードバンドにおけるビットは同じバイナリビット値に全て設定される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行の1つは、チャネルに亘って良好な送信特性を有するように付加的にチャネル符号化されたビット行のバンドの一部であるビット行である。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行の1つは、チャネルに亘って良好な送信特性を有するように付加的にチャネル符号化されたビット行のバンドの一部であるビット行であり、前記のビット行のバンドはまさに1ビット行を有する。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行の1つは、チャネルに亘って良好な送信特性を有するように付加的にチャネル符号化されたビット行のバンドの一部であるビット行であり、前記のビット行のバンドはまさに1ビット行を有し、前記の高ビット信頼性を有するビット行はランレングス制限変調符号を用いてチャネル符号化される。
通常の2D格子であって、好適には、六方ビット格子において配列されているビットの2Dアレイにおけるビット検出についてのビット検出は、ストライプに関するビット検出器に基づいていて、その方法においては、ストライプがビット信頼性の非常に高い確実性を有する2Dビットアレイにおけるビット行から高いビット信頼性の前記2つのビット行により境界付けられている2D領域の中央の方に向かって開始する、カスケード方式で連続して処理され、ここで、高ビット信頼性を有するビット行の1つは、チャネルに亘って良好な送信特性を有するように付加的にチャネル符号化されたビット行のバンドの一部であるビット行であり、前記のビット行のバンドはまさに1ビット行を有し、前記の高ビット信頼性を有するビット行はランレングス制限変調符号を用いてチャネル符号化され、前記ランレングス制限変調符号はd=1のランレングス制限を満足する。
幅広螺旋を有する記録担体を示す図である。 リークする信号エネルギーの寄与を示す図である。 3行ストライプにおけるビタビ検出器のための状態及びブランチを示す図である。 幅広螺旋を処理する複数の検出器を示す図である。 ストライプに関するビット検出器における重みの減少を示す図である。 ストライプの上方のビット行のビットにおける信号波形のサンプルを有するブランチメトリックの演算の拡張を示している。 ストライプが異なる方向に方向付けられている幅広螺旋に沿ったストライプに関するビット検出を示す図である。 第1反復を実行する検出器に比べてより高い複雑度を有する検出器を有する第2反復を実行する結果を示す図である。

Claims (7)

  1. N次元のチャネルチューブに沿って記録されるデータブロックのシンボル値を検出するためのシンボル検出方法であって、Nは少なくとも2であり、第1方向に沿って一次元的に進展し且つ少なくとも第2のN−1個の他の方向に沿って互いに整列されている、シンボル行の集合の記録担体において、前記のN−1個の他の方向と共に前記第1方向はシンボル位置のN次元格子を成す方法であり、シンボル検出段階のストライプ適用により反復ストライプを有し、ストライプは少なくとも1つの行と1つの隣接する行の副集合である、シンボル検出方法であり、シンボル検出に基づく前記ストライプに関する反復は:
    第1ストライプにおいてシンボル値を評価する段階であって、サイド情報は前記シンボル値の評価において用いられる現副集合に隣接する少なくとも1つの行から導き出される、段階;及び
    前記第1ストライプから導き出されるサイド情報を用いて第2ストライプを処理する段階であって、高信頼性を伴って検索されることができるデータを有し、N次元チャネルチューブを区切るガードバンドから開始するシンボル検出器の第1サブセットと、高信頼性を伴って検索されることができる他のデータを有し、前記N次元チャネルチューブを区切る他のガードバンドから開始するシンボル検出器の第2サブセットとを用いて、反復アルゴリズムが適用される、段階;
    を有する、ことを特徴とするシンボル検出方法。
  2. 請求項1に記載のシンボル検出方法であって、高信頼性を伴って検索されることができる前記データは所定データである、ことを特徴とするシンボル検出方法。
  3. 請求項1に記載のシンボル検出方法であって、高信頼性を伴って検索されることができる前記データは冗長符号化を用いて保護されている、ことを特徴とするシンボル検出方法。
  4. 請求項1乃至3の何れ一項に記載のシンボル検出方法であって、前記の検出器の第1サブセットは前記の検出器の第2サブセットと同時に少なくとも一部において動作する、ことを特徴とするシンボル検出方法。
  5. 第1ストライプにおいてシンボル値を推測するための推測手段と、前記第1ストライプに隣接する少なくとも1つの行から導き出されるサイド情報を受信する受信手段であって、前記第1ストライプは、前記シンボル値の推測で用いるための前記推測手段に前記サイド情報を与えるための前記出力手段に結合されている、受信手段と、他のサイド情報を与えるための出力手段と、を有する第1検出器と;
    第2ストライプにおいてシンボル値を推測するための他の推測手段と、前記第1検出器
    の出力から導き出されるサイド情報を受信するための他の受信手段であって、前記第2ストライプからの前記シンボル値の推測で用いられる前記の他の推測手段に前記サイド情報を与えるための前記の他の推測手段に結合されている、他の受信手段と、を有する第2検出器と;
    を有することを特徴とするシンボル検出器。
  6. 請求項5に記載のシンボル検出器を有することを特徴とする再生装置。
  7. 請求項1乃至6の何れ一項に記載の方法の一を用いることを特徴とするコンピュータプログラム。
JP2006507567A 2003-05-12 2004-05-11 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置 Withdrawn JP2006526241A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03076441 2003-05-12
PCT/IB2004/050635 WO2004100151A2 (en) 2003-05-12 2004-05-11 Iterative stripwise trellis-based symbol detection method and device for multi-dimensional recording systems

Publications (1)

Publication Number Publication Date
JP2006526241A true JP2006526241A (ja) 2006-11-16

Family

ID=33427145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006507567A Withdrawn JP2006526241A (ja) 2003-05-12 2004-05-11 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置

Country Status (6)

Country Link
US (1) US20060227691A1 (ja)
EP (1) EP1625585A2 (ja)
JP (1) JP2006526241A (ja)
KR (1) KR20060016779A (ja)
CN (1) CN1788314A (ja)
WO (1) WO2004100151A2 (ja)

Also Published As

Publication number Publication date
WO2004100151A3 (en) 2005-03-10
EP1625585A2 (en) 2006-02-15
KR20060016779A (ko) 2006-02-22
US20060227691A1 (en) 2006-10-12
WO2004100151A2 (en) 2004-11-18
CN1788314A (zh) 2006-06-14

Similar Documents

Publication Publication Date Title
US20070014385A1 (en) Evaluating device, reproducing device, and evaluating method
JP3886300B2 (ja) 信号処理装置及びその信号処理方法
EP1443509A2 (en) Signal evaluation method, information recording/reproducing apparatus, information reproducing apparatus, and information recording medium
CN1685416A (zh) 维特比位检测方法和设备
JP2006526240A (ja) 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置
US20070085709A1 (en) Symbol detection apparatus and method for two-dimensional channel data stream with cross-talk cancellation
JP2006526863A (ja) 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置
JP2006526241A (ja) 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法及び装置
JP2006526239A (ja) 多次元記録システムのためのストライプに関する格子に基づく反復シンボル検出方法
US20060067714A1 (en) Bit detector having partitioned photo detector
US9461672B2 (en) Signal quality evaluation apparatus, signal quality evaluation method, and reproducing device
JP2006501595A (ja) ビット検出の方法および装置
US10410667B2 (en) High density optical disk processing apparatus, method, and computer-readable medium
JP2003520383A (ja) アナログ信号を二進出力信号に変換する方法
TW200416712A (en) Iterative stripewise trellis-based symbol detection method and device
KR20060091725A (ko) 멀티 광 기록 채널을 위한 부분 응답 최대 유사 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080226