JP2006513675A - 複数のチャンネルをもつ通信システムにおける電力及びビットロード割り当て - Google Patents

複数のチャンネルをもつ通信システムにおける電力及びビットロード割り当て Download PDF

Info

Publication number
JP2006513675A
JP2006513675A JP2005512250A JP2005512250A JP2006513675A JP 2006513675 A JP2006513675 A JP 2006513675A JP 2005512250 A JP2005512250 A JP 2005512250A JP 2005512250 A JP2005512250 A JP 2005512250A JP 2006513675 A JP2006513675 A JP 2006513675A
Authority
JP
Japan
Prior art keywords
channel
bit
bits
bit load
error rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005512250A
Other languages
English (en)
Other versions
JP4070788B2 (ja
Inventor
オラフ ティルッコーネン
ピルヨ パサネン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Oyj
Original Assignee
Nokia Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Oyj filed Critical Nokia Oyj
Publication of JP2006513675A publication Critical patent/JP2006513675A/ja
Application granted granted Critical
Publication of JP4070788B2 publication Critical patent/JP4070788B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本発明は、複数のチャンネルを経て送信器と受信器との間でデータを転送するための通信システムにおいてビットロード及び電力割り当てを最適化することに関する。このシステムは、1組の考えられるビットロードシーケンスを与える複数の異なる変調アルファベットを有する変調回路を備えている。又、このシステムは、エラー率を最小にすることに基づき各ビットロードシーケンスに対して割り当てられる電力を決定するための回路と、最低のビットエラー率をもつビットロードシーケンスを選択するための回路とを有する。

Description

本発明は、ワイヤレス通信システムに係り、より詳細には、複数のチャンネルを経て送信器と受信器との間でデータを転送するための通信システムに係るが、これに限定されない。
高いデータレートをサポートすることのできる技術及びシステムに対する要望は、近代的な通信システムにおいて重要である。システム容量を増加する1つの方法は、多数の送信アンテナ及び多数の受信アンテナで構成されたMIMOシステムを使用することである。即ち、1人のユーザを含むMIMOシステムでは、ユーザの信号を送信アンテナ間に分配し、そして多数の受信アンテナへ送信することができる。それ故、MIMOシステムの利点は、送信端及び受信端においてある方法でデータを合成することによりシステムの全体的クオリティ(ビットエラー率BER)又は容量(ビットレート)を改善できることである。
ワイヤレス通信システムに対する中心的な特徴の1つは、いわゆる多経路フェージング作用であり、これは、多経路信号により構造的及び破壊的な干渉作用を引き起こす。即ち、送信信号が、例えば、ビルのようなある媒体で跳ね返ったり遅延されたりする複数の二次信号を発生し、その結果、多数の信号経路が形成されそして受信が行なわれる。
慣習的な単一アンテナシステムは、多経路フェージングで悩まされているが、MIMOシステムは、ランダムフェージング効果を使用して、スペクトル効率を改善することでチャンネルの容量を改善する。送信器と受信器との間に複数の独立した経路を導入することにより、悪いチャンネル条件の影響を軽減することができ、システムのいわゆる「ダイバーシティ」が改善される。
図1は、典型的なMIMOシステムを示すもので、このシステムは、Nt個の送信アンテナを有する送信器2と、Nr個の受信アンテナを有する受信器6とを備え、無線チャンネル4を経てデータが転送される。送信器2は、送信されるべき到来データ流8を受信するためのコードユニット12を含むように示されている。このコードユニット12は、例えば、あるFEC(前進エラー修正)コードを使用してデータをエンコードするように働き、無線チャンネル4を経て送信するときに導入されるノイズN0により生じるエラーを軽減する。又、このコードユニットは、ノイズデータのバーストにより生じる問題を軽減するためにビットをインターリーブする機能を含んでもよい。
コード化された信号は、変調器14へ送信され、ここで、エンコードされたビットは、特定の変調アルファベット、例えば、QPSK(直角位相シフトキーイング)又はQAM(直角振幅変調)を使用して複素数値変調記号へと変換される。幾つかの変調アルファベットは、異なるチャンネル条件又はシステム要件に良く適している。それ故、適応変調、即ち変調アルファベットが変化する変調が、MIMOシステムのフェージングチャンネルに特に有益である。
変調された信号は、重み付けユニット16へ送信され、該ユニットは、以下に詳細に述べるように、ビーム整形を実行すると共に、各送信アンテナにより送信されるべき電力を割り当てるように重みファクタを決定する。
次いで、信号は、MIMOチャンネル4を経て受信ユニット6へ送信され、該受信ユニットは、送信されたデータストリームを回復するための逆重み付け機能18、復調機能20及びデコード機能22を有する。
考えられる数のNt*Nr通信チャンネルが無線インターフェイス上に存在し、各チャンネルは、それ自身のチャンネル特性を有し、そこから、例えば、既知のトレーニングシーケンスを既知のやり方で使用してチャンネルマトリクスHを決定することができる。他の幾つかの規格では、トレーニングシーケンスは、パイロットシーケンスとして知られている。ここに示す実施形態に関する限り、送信端及び受信端において知られたデータのシーケンスを使用することができる。
独特値即ち固有値のような数学的操作を使用すると、システムの固有モード、即ちどれほど多くの独立した有効チャンネルがシステムに存在するかを決定することができる。独立した有効チャンネルを使用して、図2に示すような並列データストリームを送信することができる。即ち、送信器2と受信器6との間のMIMOチャンネル4は、複数の平行な独立したサブチャンネル(固有モード)にデカップルすることができる。
図1のMIMOシステムは、Nt個の送信アンテナ及びNr個の受信アンテナを有するものとして示され、SVD(独特値分解)を使用して、チャンネルマトリクスHを、次のように、3つのマトリクスの積に分解することができる。
H=UHΣV (1)
但し、UHは、NtxNtの単位マトリクスの複素共役であり、Vは、NrxNrの単位マトリクスであり、そしてΣは、min(NtxNr)独特値を有する主対角方向を除いてエレメントが全てゼロであるNtxNrマトリクスである。
或いは又、HHHにより表わされたチャンネル相関マトリクスは、次のように分解された固有値でよい。
HH=VHΛV (2)
但し、Λ=Σ2は、チャンネル相関マトリクスのNt個の固有値λiを主対角方向に有する対角マトリクスである。
ビーム整形は、MIMOシステムに使用される別の技術で、これは、あるチャンネルのエネルギーを集中させるために送信アンテナ又は受信アンテナの各々に使用することができる。例えば、送信アンテナの各々にそれらの推定チャンネルクオリティに基づいて電力重みファクタを適用することにより、システムの容量又は性能を全体的に最適化することができる。
従って、信頼性のあるチャンネル情報を有するMIMOシステム、例えば、信頼性のあるフィードバックを伴うTDD(時分割デュープレックス)又はFDD(周波数分割デュープレックス)では、送信器2が、Hマトリクス(即ち固有値及び固有ベクトル)並びにノイズ電力スペクトル密度N0のほぼ完全な知識をもつと仮定することができる。この場合、最適な戦略は、ビーム整形を実行して、図2に示すように、直交ビームであって互いに全く干渉しないせいぜいmin(NtxNr)の固有ビームを設定することである。
過去において、いわゆる水充填(water-filling)技術を使用し、固有モードの各々に重み付けファクタとして適用される最適な電力を決定することによりシステム容量が最大にされていた。この技術は、シャノンコード定理の理論的限界に大きく依存し、最大の全体的容量に対して、各固有モードiは、次の式で決定される電力重み付けファクタPiを有する。
Figure 2006513675
但し、Wsは、シャノンチャンネル帯域巾であり、λiは、Hマトリクスのi番目の固有モードに対する固有値であり、μは、全電力を越えないように選択しなければならないラグランジェの乗数(即ち水レベル)であり(即ちΣii=P)、そしてクアン−タッカー(Kuhn-Tucker)境界条件は、ビームに負の電力が割り当てられないよう確保する(即ちPi>0)。
水充填の背後にある基本的な考え方は、良好なチャンネルを経てより多くの情報を送信することであるから、良好なチャンネルにより強い電力重み付けファクタPiが適用されるだけでなく、強いチャンネルにはより多くのビットが割り当てられるので水充填解決策にはいわゆる「ビットローディング」が内在する。
水充填解決策は、システム容量を考慮するが、その欠点は、使用されるかもしれない異なる変調方法の性能に対する影響(即ちビットエラー率)を考慮しないことである。通常、若干の異なる記号変調しか使用できず、従って、全てのビットレートが可能というのではない。
むしろ、性能を最適化する既知の方法は、参考としてここに援用するIEEEProc.Asilomar、1999年、第1巻、第215−219ページに掲載されたヘマンス・サンパス及びアログヤスワミ・パールラ著の論文「Joint Transmit and Receive Optimization for High Data Rate Wireless Communication using Multiple Antennas」に提案されている。その考え方は、所与の変調アルファベット、例えばQPSKにおける記号が各固有モードにおいて送信され、そして線形平均2乗エラーメトリック(MSE)が最小になるように電力が割り当てられるというものである。これは、弱い固有モードにより多くの電力が割り当てられそしてその逆のことも言える点で逆の水充填を招く。逆の水充填は、特に、高い信号対雑音比(SNR)の領域において明らかである。
MSEを最小にすることは、記号検出に生じるエラーが最小になる(即ち、MMSEが最小平均2乗エラーである)ことを意味する。しかしながら、記号検出エラーは、BER(ビットエラー率)に直接変換されない。異なる変調記号が異なる空間固有モードに使用されるときには、全記号エラーを最小にすると、準最適なビットエラー率を招く。例えば、16−QAM記号が第1固有モードλ1に使用され、そしてQPSKがλ2に使用される場合には、MSEの最小化を適用すると、16−QAM記号のエラーが、QPSK記号のエラーとおそらく同程度に生じるような解決策を導く。記号におけるビットの数は同じでないから、これは、BERに関して最適な解決策ではない。
2002年5月のIEEEトランザクションズ・オン・シグナル・プロセッシング、第50巻、第5号に掲載されたアナ・スカグリオン、ペトレ・ストイカ、サージオ・バーバロッサ、ジョージオスB.ギアナキス、及びヘマンス・サンパス著の「Optimal designs for space-time linear precoders and decoders」と題する彼等の論文に提案された別の参照文献は、多数の異なる最適化方法について述べている。MMSEに加えて、彼らは、全ての記号が特定の変調アルファベットを使用する場合にBERを間接的に最適化する最適化方法を構成している。これは不都合である。というのは、そこに説明されたように、フェージングチャンネルは、変調アルファベットが変化する適応変調をもつことがしばしば有利だからである。
本発明の実施形態の目的は、上述した問題の1つ以上に対処することである。
本発明の1つの態様によれば、複数のチャンネルを経て送信器と受信器との間でデータを転送するための通信システムにおいて、1組の考えられるビットロードシーケンスを与える複数のアルファベットを有する変調回路と、エラー率を最小にすることに基づいて各ビットロードシーケンスに対して電力割り当てを決定するための回路と、最低のエラー率をもつビットロードシーケンスを選択するための回路とを備えた通信システムが提供される。
好ましくは、チャンネルは、MIMOチャンネルから分解された独立した論理チャンネルである。
或いは又、チャンネルは、OFDMチャンネルから分解された独立した論理チャンネルである。
本発明の別の態様によれば、通信チャンネルを経て送信器と受信器との間でデータを転送するための方法において、複数の変調アルファベットから1組の考えられるビットロードシーケンスを識別するステップと、エラー率を最小にすることに基づいて各ビットロードシーケンスに対して電力割り当てを決定するステップと、最低のエラー率をもつビットロードシーケンスを選択しそして前記チャンネルに電力割り当てを適用するステップとを備えた方法が提供される。
本発明の更に別の態様によれば、通信チャンネルを経て送信器と受信器との間でデータを転送するための通信システムにおいて、通信チャンネルを複数の論理チャンネルへ分解するための回路と、異なる数のビットを使用してデータを各々表わすことのできる複数のアルファベットを有し、固定データレートに対して、各論理チャンネルにロードされるべきビットの数を指定する1組のビットロードシーケンスが識別されるようにする変調回路と、その識別されたビットロードシーケンス各々のビットエラー率を最小にするために各論理チャンネルに電力重みを割り当てる回路と、最小のビットエラー率をもつビットロードシーケンスを選択するための回路とを備えた通信システムが提供される。
本発明の更に別の態様によれば、通信チャンネルを経て送信器と受信器との間でデータを転送するための方法において、通信チャンネルを複数の論理チャンネルへ分解するステップと、データを変調するために、異なる数のビットを使用してデータを各々表わすことのできる複数のアルファベットから選択を行うステップと、固定データレートに対し、各論理チャンネルにロードされるべきビットの数を指定する1組のビットロードシーケンスを識別するステップと、その識別されたビットロードシーケンス各々のビットエラー率を最小にするために各論理チャンネルに電力重みを割り当てるステップと、最小のビットエラー率をもつビットロードシーケンスを選択するステップとを備えた方法が提供される。
以下、添付図面を参照して、本発明の実施形態を一例として詳細に説明する。
本発明の一実施形態において、MIMOチャンネルは、多数の実質的に独立した論理チャンネルに分解され、これらを使用して、独立したデータストリームを送信することができる。
しかしながら、別の実施形態では、OFDM(直交周波数分割マルチプレクシング)システムを使用することができる。広く述べると、OFDMは、使用可能な全帯域巾を、互いに干渉しない充分な周波数分離でサブチャンネルに分割し、各サブチャンネルを経て独立したデータ流を送信するものである。このように、周波数サブキャリア(サブチャンネル)は、MIMO実施形態の場合と同様に、周波数固有モード、即ち実質的に独立した論理チャンネルとして自動的に働く。これら論理チャンネルの相対的強度(即ち固有モードの固有値)に関するチャンネル状態情報を送信器にもたせることにより、ビットローディング及び/又は電力割り当てをこれらチャンネルにわたって実行することができる。
MIMO及びOFDM実施形態について説明したが、多数の同時に使用可能なチャンネルを有する他の実施形態も使用できることが明らかであろう。その原理は、これらチャンネルを、空間方向(多数の個別アンテナ−>MIMO)、周波数方向(周波数分割マルチプレクシング=FDM)、時間方向(TDM)のいずれかに分離できるというものであり、或いはチャンネルを分離できるこれら又は他のシステムを組み合わせてもよい。
限定された1組の個別の変調アルファベットについて考える。これらアルファベット及び所与の数の固有モードでは、ビットを固有モードにロードする限定された1組の考えられる方法がある。
一般に、データを送信すべきビットレートは、チャンネル条件及び多数の他のファクタに基づいて変化する。ビットレートを決定するために、おおよそのCQI(チャンネルクオリティインジケータ)計算が、送信器2においてTDD(時分割デュープレックス)システムで実行されるか、或いは受信器6においてFDD(周波数分割デュープレックス)システムで実行されて、送信器へフィードバックされる。CQIは、固有値λiを考慮し、そして種々の条件数字、即ち固有値の異なる比に基づくことができる。
CQI、QoS要求、及び/又はユーザの考えられるサービスクラスに基づいて、送信器は、送信されるべきビットレートを判断する。選択されたビットレートに対応する固定の1組の考えられるビットロードシーケンスがある。この選択は、従来の知識を使用することにより更に限定されてもよい。例えば、強く相関されたチャンネルでは、一般的に1つの固有モードが大きく、残りの固有モードが弱い。それ故、一実施形態では、弱い固有モードにビットをロードするビットロードシーケンスは、自動的に破棄されてもよい。
CQIに関しては、チャンネルを特徴付ける多数の異なる方法がある(即ちMIMO又はOFDM)ことが明らかである。最も完全な方法は、全ての固有値を指定することであるが、多数の独立したチャンネルがあるときには、これは、非常に大きなサイズのLUT(ルックアップテーブル)を招くことになる。例えば、各固有値が20個の異なるCQI値を有するように固有値が量子化される場合には、サイズ204=160000のテーブルが4x4アンテナMIMOに対して必要となる。それ故、別の実施形態では、ほぼCQIを使用するのが好ましい。
固定ビットレートと、限定数の許されたビットロードシーケンスが決定されると、各固有モードにおいて最適な電力割り当て及びビットロードを決定することが必要となる。
一例として、図1に示すように、Nt=Nr=4で、4つの固有モードが存在するMIMOシステムについて考え、そして16−QAM(4ビット)、QPSK(2ビット)及び「送信なし」(0)である1組の変調アルファベットを取り上げる。全部で8ビットのビットロードシーケンスのみに限定する場合には、考えられるビットロードシーケンスは、次の通りである。
1)4、4、0、0
2)4、2、2、0
3)2、2、2、2
ここで、固有モードは、小さくなる順に、即ちλ1≧λ2≧λ3≧λ4に順序付けされ、従って、より強いモードに、より多くのビットがロードされる。
順序付けされた固有モードλ1、λ2、λ3、λ4に対応するのは、電力割り当て重み付けファクタω1、ω2、ω3、ω4である。重み付けファクタωiは、送信ビットEb当りの平均電力が異なる変調アルファベットにおいて同じになるように正規化される。従って、16−QAM変調記号は、QPSK変調記号の平均電力の2倍となる。これは、16−QAM/QPSKシーケンスを考慮する場合に、次の電力制約があることを意味し、
Σbjωj=8 (9)
但し、bjは、固有モードλjにロードされるビットの数である。これは、異なる電力割り当ての異なるビットロードシーケンスの全送信電力が同じであることを保証する電力制約である。
最適な電力割り当ては、電力制約を受けて、ωiに対してビットエラー確率の最小値を見出すことにより導出することができる。
λiで特徴付けされるチャンネルにおけるQPSK記号の平均BERは、次のように書き表すことができる。
Figure 2006513675
電力制約ω1+ω2=2の状態で2つのQPSK記号間で最適な重みを見つけるために、ω1に対するPQPSK1ω1b/N0)+PQPSK2(2−ω1)Eb/N0)の導関数をとり、そしてそれをゼロにセットする。これは、次の式を生じる。
ω1+ω2=2
Figure 2006513675
これらは、分析で解くことはできないが、全ての実際的な目的に対し、次の式で厳密に近似することができる。
λ1ω1=λ2ω2 (12)
2つの16−QAM記号の場合には、式が更に複雑になるが、同じ近似で依然正確である。それ故、同じ記号をもつ固有モードに対する受信SNRを等しくしたときには、最適に近いBERが得られる。この場合に、MMSE電力割り当て及びBER最適電力割り当てが、高いSNR値において等しくなることに注意されたい。
対照的に、非均質な変調の場合には(即ち、ビットロードシーケンスに異なる変調記号が使用されるときには)、全BERを最小にすることに基づいて電力割り当てを決定する必要がある。
4、2、2、0のBLシーケンスでは、ω1及びω2の比は、最も強い固有モードで送信される16−QAM記号が、固有モードλ2及びλ3で送信されるQPSK記号とほぼ同じ平均性能を有するように決定される。
これらの原理によれば、この例のビットロードシーケンスに対する最適に近い電力割り当ては、次のように実行される。
1)4、4、0、0のBLシーケンスの場合、
Figure 2006513675
更に、電力制約(9)は、ω1+ω2=2を指令する。これは、直接的に次の式を生じる。
Figure 2006513675
次いで、平均BERは、次のようになる。
Figure 2006513675
2)4、2、2、0のBLシーケンスの場合には、同じビット数をもつ2つの中間固有モードの重みが解かれる。
Figure 2006513675
従って、固有モードλ2及びλ3で送信されるQPSK記号のBERは、同じである。電力制約(9)は、ここで次の式を指令する。
Figure 2006513675
16−QAM記号とQPSK記号との間の最適な電力割り当ては、式(17)を条件として、ω1及びω2に対して次の式を最小にすることにより見出すことができる。
16QAM1ω1b/N0)+PQPSK2ω2b/N0) (18)
16−QAM記号の平均BERは、QPSKより更に複雑であるので、次のようになる。
Figure 2006513675
最小化の問題に対する分析解は、あまり実際的でない。
高いSNRにおいて有効な近似的解は、式(19)の2つの最後の項を削除し、そして式(17)を条件に、式(18)の導関数のゼロを求めることにより、見出すことができる。従って、次の式又はその線形形態を解き、
Figure 2006513675
右側の最後の対数、即ち次の項
Figure 2006513675
を省略すれば充分である。線形形態、又は右側をゼロにセットすることで、最適な解の非常に良好な近似が与えられることを数値で証明することができる。
次いで、平均BERは、次のようになる。
Figure 2006513675
但し、ω1、ω2は、λjの項において上述したように解かれたものである。
3)2、2、2、2のBLシーケンスの場合に、
λ1ω1=λ2ω2=λ3ω3=λ4ω4 (22)
は、電力制約Σωj=4を受ける。ここで、最適な重みは、次のようになる。
ωj=s/λj (23)
但し、
Figure 2006513675
平均BERは、次のようになる。
2222=PQPSK1ω1b/N0) (25)
全ての考えられるビットロードシーケンスに対する最適な電力割り当てが決定された後に、最良の性能をもつシーケンスが選択される(即ち最低のBERを有するビットロードシーケンス)。
従って、ビットロードシーケンスの選択は、固有モードλ1、λ2、λ3、λ4により特徴付けられたチャンネルに依存する。ここに示す例では、P4400、P4220、P2222の最小BERを有するビットロードシーケンスが選択され、そしてこれに基づき、且つ最低のBERをもつ相対的ビットロードシーケンスに対して計算された最適な電力割り当て重みを使用して、ビットが送信される。
ゆっくりと移動する移動ステーションユーザの場合には、電力割り当て及びビットロードは、フレーム対フレームベースで実行されてもよい。この場合に、最適な電力割り当て及びビットロードを決定するための非常に複雑な計算を使用することができる。
しかしながら、幾つかの計算の線形近似は、極めて良好な結果を与え、そしてフィードバックチャンネル状態情報から不完全さが生じても、これを使用することができる。
迅速に移動する移動ユーザの場合には、スロット対スロット(又はOFDMの記号対記号)ベースでチャンネルの再割り当てが要求され、複雑さが問題となる。実際のアプリケーションに対しては、所与のチャンネル条件に対して最適なビットロード及び電力割り当て情報が集められたルックアップテーブルを構成することができる。
ここに開示する電力割り当て及びビットロード方法は、1組の変調アルファベットに関連して使用することができ、特に、ビット/記号/座標インターリーブを伴ったり伴わなかったりする連結チャンネルコードと共に使用することができる。ビットロード及び電力割り当ては、考えられるチャンネルコードに基づいて最適化されてもよい。以上に述べた電力割り当て及びビットロードは、全てのビットが等しく処理されるという点でビットロードシーケンスのビット間を区別しない。これは、チャンネルコードが存在しない場合、又はチャンネルコードが最大見込みデコーディングに適用され、例えば、ビタビデコーディングを伴うコンボリューションコードに適用される場合に、最適である。
しかしながら、ほぼシャノン限界性能をもつ近代的コード、例えば、ターボ、LDPC及びジグザグコードは、反復デコーディングを適用し、これは、MLとはアルゴリズム的に非常に異なるやり方で動作するが、ほぼML性能に達する。反復デコーディングは、異なるビットを異なるやり方で処理する。系統的ビットのエラーは、パリティビットのエラーより性能に影響することが知られている。それ故、別の実施形態は、ビット間を区別し、それに応じてそれらを処理することにより、電力割り当て及びビットロードを最適化する。
例えば、図3は、系統的ビット32がパリティビット34から区別される実施形態を示す。図1を参照すれば、コードユニット12は、転送されるべきデータストリーム8の主要部を構成する系統的ビット32にパリティビット34を追加する。受信器6は、次いで、実際のシステムビット32とパリティビット34との間を区別する機能を有する。
例えば、高速ダウンリンクパケットアクセス(HSDPA)に適したレート3/4ターボコードを考える。ビットの3/4は系統的であり、そして1/4はパリティビットである。この例では、これは、ロードされる8ビットの中の2つがパリティビットであることを意味する。これらは、弱い固有モードにおけるQPSK記号、又は16−QAM記号の最下位ビットのいずれかにマップされるのが好ましい。この例のビットロードシーケンスの各々に対して、これは、次のように解くことができる。
1.4、4、0、0のビットロードシーケンスの場合に、パリティビットは、弱い固有モードλ2にロードされた4つのビット(16−QAM記号)の最下位ビットにロードされる。更に、別の実施形態では、例えば、4、4、0、0の場合に、パリティビットに対する電力割り当てを減少して、λ2における最上位ビットの平均性能が、λ1における全てのビット(即ち最も強い固有モードの16−QAM記号)の平均性能に等しくなるようにすることができる。
2.4、2、2、0のビットロードシーケンスの場合に、パリティビットは、λ3におけるQPSK記号で送信され、この記号に対する電力割り当てが減少される。別の実施形態では、パリティビットは、λ1における16−QAM記号の最下位ビットで送信され、そして電力割り当ては、全ての系統的ビット32の平均性能(BER)がほぼ等しくなるように実行される。パリティビットが16−QAMの最下位ビットで送信される状態で、この16QAMの最上位ビットは、パリティビットによる付加的なノイズを伴うQPSK記号のように働く。従って、系統的ビットは、3つのQPSK記号において効率的に送信される。式(12)は、QPSK記号に電力を割り当てるためのBERのほぼ最適状態が、各記号におけるビットのBERが同じときであることを示している。従って、全ての系統的ビットの予想されるBERは、最上位の16−QAMにマップされるか又はQPSKにマップされるかに関わらず、ほぼ同じでなければならない。固有値拡散(即ち各固有モードの強度間の大きさの差)は、そのときのシステムにどの実施形態が良く適しているかを決定する。
3.2、2、2、2のビットロードシーケンスの場合に、パリティビット34は、λ4におけるQPSK記号で送信され、この場合も、この記号に対する電力割り当てが減少される。
上述した各シーケンスに対して、ビットロード及び電力割り当ての多数の異なるやり方が、コード化(系統的及びパリティ)ビットをマップするために決定された。これらシーケンスの各々は、系統的ビットに対する特定のビットエラー率(BERs)及びパリティビットに対するビットエラー率(BERp)を生じる。それ故、コード化ビット(デコード後)のBERは、BERs及びBERpの関数として近似することができる。最小のコード化BERを与えるビットロード及び電力割り当てシーケンスが選択される。この判断は、ルックアップテーブルを使用することにより簡単化することができる。
送信要素2及び受信要素6に関連したコード化、変調及び重み付け機能は、図1に示す個々のユニットによって実施される必要がないことが明らかであろう。
本発明の実施形態は、一端に多数の送信器をそして他端に多数の受信器を有する適当なワイヤレスシステムに使用することができる。送信器には単一アンテナが設けられてもよいし、或いは各送信器にアンテナアレーが設けられてもよい。
本発明の実施形態は、チャンネル状態に関するフィードバック情報に関連して使用されてもよい。フィードバック情報は、フィードバックチャンネルを使用して受信器により送信器へ供給されてもよい。位相、振幅、固有値、長時間(相関)、摂動又は差動フィードバックを含む従来の任意のフィードバック方法が適用されてもよい。
本発明の実施形態は、コード分割多重アクセス、周波数分割多重アクセス、時分割多重アクセス、直交周波数分割多重アクセス、又は他の拡散スペクトル技術、並びにその組合せのような任意の規格又はアクセス方法に関連付けられてもよい。
本発明の実施形態は、セルラー通信ネットワークにおいて実施されてもよい。セルラー通信ネットワークでは、ネットワークによりカバーされるエリアが複数のセル又はセルセクターへと分割される。一般に、各セル又はセルセクターは、エアインターフェイス(例えば、高周波を使用する)を経て各セル内のユーザ装置と通信するように構成されたベースステーションによりサービスされる。ユーザ装置は、移動電話、移動ステーション、パーソナルデジタルアシスタント、パーソナルコンピュータ、ラップトップコンピュータ等である。マルチユーザスケジューリング方法を、本発明の実施形態に関連して使用して、多数のユーザ間にリソース(時間、周波数、拡散コード等)を振り分けることもできる。
送信器は、ベースステーション又はユーザ装置でよく、同様に、受信器も、ベースステーション又はユーザ装置でよい。
又、ここでは、本発明の実施形態を説明したが、特許請求の範囲に規定された本発明の範囲から逸脱せずに、ここに開示された解決策に多数の種々の変更や修正がなされ得ることに注意されたい。
本発明の実施形態を使用できるMIMOシステムを示す図である。 本発明による独立した固有モードを示す図である。 パリティビットから区別される系統的ビットを示す図である。

Claims (21)

  1. 複数のチャンネルを経て送信器と受信器との間でデータを転送するための通信システムにおいて、
    1組の考えられるビットロードシーケンスを与える複数のアルファベットを有する変調回路と、
    エラー率を最小にすることに基づいて各ビットロードシーケンスに対して電力割り当てを決定するための回路と、
    最低のエラー率をもつビットロードシーケンスを選択するための回路と、
    を備えた通信システム。
  2. 前記チャンネルは、MIMOチャンネルから分解された独立した論理チャンネルである請求項1に記載の通信システム。
  3. 前記チャンネルは、OFDMチャンネルから分解された独立した論理チャンネルである請求項1に記載の通信システム。
  4. 各変調アルファベットは、異なる数のビットを使用してデータを表わすことができる請求項1から3のいずれかに記載の通信システム。
  5. 固定データレートに対し、各チャンネルにロードされるべきビットの数を指定する考えられる1組のロードシーケンスが識別される請求項4に記載の通信システム。
  6. 前記固定データレートは、チャンネルクオリティ指示子(CQI)に基づいて選択される請求項5に記載のシステム。
  7. 前記チャンネルクオリティ指示子は、送信器において計算される請求項5又は6に記載のシステム。
  8. 前記チャンネルクオリティ指示子は、受信器において計算される請求項6又は7に記載のシステム。
  9. 前記決定された電力割り当ては、各チャンネルの電力重みを与える請求項1から8のいずれかに記載の通信システム。
  10. 2つ以上の論理チャンネルに同じ変調アルファベットが使用される場合には、弱い論理チャンネルに大きな電力重みが割り当てられる請求項9に記載のシステム。
  11. データを転送するのに使用される電力割り当ては、前記選択されたビットロードシーケンスに対応する電力割り当てである請求項1から10のいずれかに記載のシステム。
  12. 前記送信器は、複数の送信アンテナを有する請求項1から11のいずれかに記載のシステム。
  13. 前記受信器は、複数の受信アンテナを有する請求項1から12のいずれかに記載のシステム。
  14. システムビットにパリティビットを追加すると共に、これらビット間を区別するためのコード回路を備えた請求項1から13のいずれかに記載のシステム。
  15. 前記パリティビットは、最も弱いチャンネルに転送される請求項14に記載のシステム。
  16. 少なくとも2つのチャンネルに同じアルファベットを有するビットロードシーケンスに対し、前記パリティビットが最も弱いチャンネルに転送され、そして電力割り当てが減少される請求項14又は15に記載のシステム。
  17. 前記チャンネルに異なるアルファベットを有するビットロードシーケンスに対し、前記パリティビットが、最も強いチャンネルに使用される変調アルファベットの最下位ビットにおいて転送される請求項14、15又は16に記載のシステム。
  18. 通信チャンネルを経て送信器と受信器との間でデータを転送するための方法において、
    複数の変調アルファベットから1組の考えられるビットロードシーケンスを識別するステップと、
    エラー率を最小にすることに基づいて各ビットロードシーケンスに対して電力割り当てを決定するステップと、
    最低のエラー率をもつビットロードシーケンスを選択しそして前記チャンネルに電力割り当てを適用するステップと、
    を備えた方法。
  19. 通信チャンネルを経て送信器と受信器との間でデータを転送するための通信システムにおいて、
    前記通信チャンネルを複数の論理チャンネルへ分解するための回路と、
    異なる数のビットを使用してデータを各々表わすことのできる複数のアルファベットを有し、固定データレートに対して、各論理チャンネルにロードされるべきビットの数を指定する1組のビットロードシーケンスが識別されるようにする変調回路と、
    前記識別されたビットロードシーケンス各々のビットエラー率を最小にするために各論理チャンネルに電力重みを割り当てる回路と、
    最小のビットエラー率をもつビットロードシーケンスを選択するための回路と、
    を備えた通信システム。
  20. 通信チャンネルを経て送信器と受信器との間でデータを転送するための方法において、
    前記通信チャンネルを複数の論理チャンネルへ分解するステップと、
    データを変調するために、異なる数のビットを使用してデータを各々表わすことのできる複数のアルファベットから選択を行うステップと、
    固定データレートに対し、各論理チャンネルにロードされるべきビットの数を指定する1組のビットロードシーケンスを識別するステップと、
    前記識別されたビットロードシーケンス各々のビットエラー率を最小にするために各論理チャンネルに電力重みを割り当てるステップと、
    最小のビットエラー率をもつビットロードシーケンスを選択するステップと、
    を備えた方法。
  21. 前記転送されるべきデータは、系統的ビット及びパリティビットを含み、該パリティビットは、弱い論理チャンネルにロードされるのが好ましい請求項20に記載の方法。
JP2005512250A 2003-02-28 2004-02-24 複数のチャンネルをもつ通信システムにおける電力及びビットロード割り当て Expired - Fee Related JP4070788B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45032803P 2003-02-28 2003-02-28
PCT/IB2004/000643 WO2004077778A1 (en) 2003-02-28 2004-02-24 Power and bit loading allocation in a communication system with a plurality of channels

Publications (2)

Publication Number Publication Date
JP2006513675A true JP2006513675A (ja) 2006-04-20
JP4070788B2 JP4070788B2 (ja) 2008-04-02

Family

ID=32927635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512250A Expired - Fee Related JP4070788B2 (ja) 2003-02-28 2004-02-24 複数のチャンネルをもつ通信システムにおける電力及びビットロード割り当て

Country Status (8)

Country Link
US (1) US20040171359A1 (ja)
EP (1) EP1597886A1 (ja)
JP (1) JP4070788B2 (ja)
KR (1) KR100779734B1 (ja)
CN (1) CN1698334A (ja)
AU (1) AU2004214706A1 (ja)
CA (1) CA2497392A1 (ja)
WO (1) WO2004077778A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306446A (ja) * 2006-05-15 2007-11-22 Hitachi Ltd Mimo無線通信方法およびmimo無線通信装置
JP2009525696A (ja) * 2006-02-03 2009-07-09 インターデイジタル テクノロジー コーポレーション 高速パケットアクセスエボリューションおよびロングタームエボリューションシステムにおけるサービス品質ベースのリソース決定および割り振り装置および手順
JP2009290406A (ja) * 2008-05-28 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> 空間・周波数分割多元接続装置および空間・周波数分割多元接続方法
JP4860001B2 (ja) * 2009-02-03 2012-01-25 シャープ株式会社 無線通信システム、基地局装置、移動局装置および通信方法
JP2012157041A (ja) * 2005-09-29 2012-08-16 Interdigital Technology Corp Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム
JP5546681B2 (ja) * 2011-04-19 2014-07-09 パナソニック株式会社 プリコーディング方法、プリコーディング装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890906A (zh) * 2003-08-27 2007-01-03 美商内数位科技公司 多重使用者正交分频多任务系统的实时服务的次载波及位分配
US7564820B2 (en) * 2003-11-21 2009-07-21 Motorola, Inc. Method and apparatus for resource allocation and scheduling
US7599443B2 (en) * 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
US7609780B2 (en) * 2004-09-30 2009-10-27 Intel Corporation Method and apparatus for performing sequential closed loop multiple input multiple output (MIMO)
US7577209B2 (en) * 2004-09-30 2009-08-18 Intel Corporation Deterministic spatial power allocation and bit loading for closed loop MIMO
US7545875B2 (en) 2004-11-03 2009-06-09 Nokia Corporation System and method for space-time-frequency coding in a multi-antenna transmission system
JP4589711B2 (ja) 2004-12-14 2010-12-01 富士通株式会社 無線通信システム及び無線通信装置
JP4464836B2 (ja) 2005-01-14 2010-05-19 パナソニック株式会社 マルチアンテナ通信装置の通信方法及びマルチアンテナ通信装置
CN101133558B (zh) * 2005-02-03 2010-10-06 新加坡科技研究局 发射数据的方法、接收数据的方法、发射器和接收器
US7742444B2 (en) 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8085871B2 (en) * 2005-04-21 2011-12-27 Broadcom Corporation Adaptive modulation in a multiple input multiple output wireless communication system with optional beamforming
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
CN101352073A (zh) 2005-10-27 2009-01-21 高通股份有限公司 在无线通信系统中发送接入探测的方法和设备
US20090207790A1 (en) 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
JP4772514B2 (ja) * 2005-10-31 2011-09-14 株式会社エヌ・ティ・ティ・ドコモ 上りリンクの送信パラメータを決定する装置
US7965649B2 (en) * 2005-11-04 2011-06-21 Samsung Electronics Co., Ltd. Apparatus and method for feedback of subcarrier quality estimation in an OFDM/OFDMA system
US7586990B2 (en) * 2005-11-22 2009-09-08 Motorola, Inc. Method and system for allocating subcarriers to subscriber devices
US7702353B2 (en) * 2005-12-27 2010-04-20 Nortel Networks Limited Transmit power allocation in a distributed MIMO system
US8483761B2 (en) * 2006-01-18 2013-07-09 Intel Corporation Singular value decomposition beamforming for a multiple-input-multiple-output communication system
KR101376867B1 (ko) * 2006-03-03 2014-03-20 닛본 덴끼 가부시끼가이샤 다입력 다출력 통신 시스템, 송신기 및 그들에 리소스를 할당하기 위한 방법
KR100766322B1 (ko) * 2006-06-01 2007-10-11 한국전자통신연구원 다중 입출력 시스템에서의 송신기 및 데이터 송신 방법
CN102035773B (zh) * 2009-09-25 2013-09-11 中兴通讯股份有限公司 一种通讯系统中的上行突发脉冲形成方法及装置
CN101902431B (zh) * 2010-07-08 2012-11-21 山东大学 一种用于ofdm动态资源分配的动态边界约束方法
WO2014180795A1 (en) 2013-05-05 2014-11-13 Lantiq Deutschland Gmbh Timesharing for low power modes
TWI540888B (zh) 2014-06-04 2016-07-01 國立中山大學 可調式視訊傳輸於多輸入多輸出系統的功率分配方法
US9379791B2 (en) * 2014-08-01 2016-06-28 Qualcomm Incorporated Multiple input multiple output (MIMO) communication systems and methods for chip to chip and intrachip communication
US9319113B2 (en) 2014-09-19 2016-04-19 Qualcomm Incorporated Simplified multiple input multiple output (MIMO) communication schemes for interchip and intrachip communications
CN107113036B (zh) * 2014-12-15 2020-10-09 日本电气株式会社 用于mimo通信的方法和系统
WO2023013795A1 (ko) * 2021-08-03 2023-02-09 엘지전자 주식회사 무선 통신 시스템에서 연합학습을 수행하는 방법 및 이를 위한 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610115B2 (ja) * 1994-05-20 2005-01-12 キヤノン株式会社 撮像装置
US6085106A (en) * 1997-07-29 2000-07-04 Nortel Networks Limited Forward link power control in a cellular radiotelephone system
US6075821A (en) * 1997-12-16 2000-06-13 Integrated Telecom Express Method of configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US6084917A (en) * 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
KR100335916B1 (ko) * 1999-12-10 2002-05-10 이계안 차량용 자동 변속기의 변속 제어 방법
US6393052B2 (en) * 2000-02-17 2002-05-21 At&T Corporation Method and apparatus for minimizing near end cross talk due to discrete multi-tone transmission in cable binders
DE60141613D1 (de) * 2000-08-03 2010-04-29 Infineon Technologies Ag Konfigurierbarer Modulator
US7110378B2 (en) * 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US7133459B2 (en) * 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
US6925131B2 (en) * 2001-08-03 2005-08-02 Lucent Technologies Inc. Determining channel characteristics in a wireless communication system that uses multi-element antenna
KR100703295B1 (ko) * 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
RU2004117073A (ru) * 2001-11-05 2005-03-27 Нокиа Корпорейшн (Fi) Частично заполненный блочный перемежитель для системы связи
KR100810350B1 (ko) * 2002-01-07 2008-03-07 삼성전자주식회사 안테나 어레이를 포함하는 부호분할다중접속 이동통신시스템에서 다양한 채널상태에 따른 데이터 송/수신 장치 및 방법
US7145956B2 (en) * 2002-06-27 2006-12-05 Smart Link Ltd. Method for achieving a target bit rate in a multi-carrier data communication system
US7460876B2 (en) * 2002-12-30 2008-12-02 Intel Corporation System and method for intelligent transmitted power control scheme
KR20050050322A (ko) * 2003-11-25 2005-05-31 삼성전자주식회사 직교주파수다중화방식의 이동통신시스템에서 적응변조 방법
KR101050603B1 (ko) * 2004-06-23 2011-07-19 삼성전자주식회사 무선 통신 시스템에서 다중 안테나를 이용한 패킷 데이터송/수신 장치 및 방법

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553521B2 (en) 2005-09-29 2013-10-08 Interdigital Technology Corporation MIMO beamforming-based single carrier frequency division multiple access system
JP2012157041A (ja) * 2005-09-29 2012-08-16 Interdigital Technology Corp Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム
JP2012178850A (ja) * 2005-09-29 2012-09-13 Interdigital Technology Corp Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム
US9184808B2 (en) 2005-09-29 2015-11-10 Interdigital Technology Corporation Mimo beamforming-based single carrier frequency division multiple access system
JP2009525696A (ja) * 2006-02-03 2009-07-09 インターデイジタル テクノロジー コーポレーション 高速パケットアクセスエボリューションおよびロングタームエボリューションシステムにおけるサービス品質ベースのリソース決定および割り振り装置および手順
JP4870785B2 (ja) * 2006-02-03 2012-02-08 インターデイジタル テクノロジー コーポレーション 高速パケットアクセスエボリューションおよびロングタームエボリューションシステムにおけるサービス品質ベースのリソース決定および割り振り装置および手順
JP2007306446A (ja) * 2006-05-15 2007-11-22 Hitachi Ltd Mimo無線通信方法およびmimo無線通信装置
JP2009290406A (ja) * 2008-05-28 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> 空間・周波数分割多元接続装置および空間・周波数分割多元接続方法
JP4860001B2 (ja) * 2009-02-03 2012-01-25 シャープ株式会社 無線通信システム、基地局装置、移動局装置および通信方法
US8369240B2 (en) 2009-02-03 2013-02-05 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, and communication method
US9232483B2 (en) 2009-02-03 2016-01-05 Sharp Kabushiki Kaisha Communication using control information that includes information specifying the access scheme and TPC (transmit power control) control data
JP5546681B2 (ja) * 2011-04-19 2014-07-09 パナソニック株式会社 プリコーディング方法、プリコーディング装置
JP2014197850A (ja) * 2011-04-19 2014-10-16 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America プリコーディング方法、プリコーディング装置

Also Published As

Publication number Publication date
AU2004214706A1 (en) 2004-09-10
CN1698334A (zh) 2005-11-16
JP4070788B2 (ja) 2008-04-02
CA2497392A1 (en) 2004-09-10
KR100779734B1 (ko) 2007-11-26
EP1597886A1 (en) 2005-11-23
WO2004077778A1 (en) 2004-09-10
US20040171359A1 (en) 2004-09-02
KR20050016698A (ko) 2005-02-21

Similar Documents

Publication Publication Date Title
JP4070788B2 (ja) 複数のチャンネルをもつ通信システムにおける電力及びビットロード割り当て
US10148481B2 (en) Method and apparatus for data transmission in a multiuser downlink cellular system
US8184734B2 (en) Method of data transmission in a wireless communication system
US9577862B2 (en) Method for performing an adaptive modulation and coding scheme in mobile communication system
US7599443B2 (en) Method and apparatus to balance maximum information rate with quality of service in a MIMO system
KR101405974B1 (ko) 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
US7532599B2 (en) Apparatus and method for allocating user in a multiple antenna mobile communication system supporting multi-user diversity
US8223734B2 (en) Apparatus and method for transmitting and receiving forward shared control channel in a mobile communication system
US8179783B2 (en) System and method of modulation and coding scheme adjustment for a LTE shared data channel
KR100842620B1 (ko) 분산 무선 통신 시스템에서 직교 공간 시간 블록 코드를위한 심볼 에러율 기반 송신 전력 할당 방법
WO2003052983A1 (en) Multi-carrier variable mode method and system
US20050254461A1 (en) Apparatus and method for data transmission/reception using channel state information in wireless communication system
CN1692596A (zh) 通信系统
KR20090067136A (ko) 이동통신 시스템에서의 망 접속 방법 및 이를 지원하는 단말기
EP1802017A1 (en) Link-adaptation system in mimo-ofdm system, and method therefor
KR101352042B1 (ko) 다중 입출력 무선통신 시스템에서 다중 사용자 모드를 위한채널 정보 산출 장치 및 방법
JP5487090B2 (ja) 無線信号処理方法および無線通信装置
US20110255467A1 (en) Method and system of radio communications with various resolution levels of signal modulation depending on propagation conditions
JP4542156B2 (ja) 伝播状況に応じての信号変調の多様な解像度レベルを伴う無線通信の方法およびシステム
WO2011046825A1 (en) An adaptive beam-forming and space-frequency block coding transmission scheme for mimo-ofdma systems
US20070211666A1 (en) Apparatus and method for determining a search set for resource allocation in a multi-antenna system
Sari et al. MIMO techniques and full frequency reuse in mobile WiMAX systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees