JP2006505092A - Organic light emitting device structure having sealing structure that functions as multilayer mirror - Google Patents

Organic light emitting device structure having sealing structure that functions as multilayer mirror Download PDF

Info

Publication number
JP2006505092A
JP2006505092A JP2003553639A JP2003553639A JP2006505092A JP 2006505092 A JP2006505092 A JP 2006505092A JP 2003553639 A JP2003553639 A JP 2003553639A JP 2003553639 A JP2003553639 A JP 2003553639A JP 2006505092 A JP2006505092 A JP 2006505092A
Authority
JP
Japan
Prior art keywords
organic light
emitting device
electrode
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003553639A
Other languages
Japanese (ja)
Other versions
JP5143996B2 (en
Inventor
ウィーバー、マイケル、スチュアート
Original Assignee
ユニバーサル ディスプレイ コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーサル ディスプレイ コーポレイション filed Critical ユニバーサル ディスプレイ コーポレイション
Publication of JP2006505092A publication Critical patent/JP2006505092A/en
Application granted granted Critical
Publication of JP5143996B2 publication Critical patent/JP5143996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)

Abstract

単一の多層スタックによって、望ましい光学的特性及びバリア特性を同時に実現することができる、OLEDデバイスに関する新規な構造を提供する。OLED構造体は、(a)基板(110)と、(b)基板上に形成され、(1)第1の電極(142)と、(2)第1の電極上に形成された発光部(144)と、(3)発光部上に形成された第2の電極(146)とを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイス(140)と、(c)基板上に形成され、(1)第1の屈折率を有する平坦化層(121a〜121c)と、(2)第1の屈折率とは異なる第2の屈折率を有する高密度層(122a〜122c)とが交互に連続的に配設された多層ミラー(120)とを備える。平坦化層及び高密度層の厚さは、多層ミラーが所定の範囲の波長内のピーク波長の光を透過するように選択される。平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐ。It provides a novel structure for OLED devices that can simultaneously achieve desirable optical and barrier properties with a single multilayer stack. The OLED structure is formed on (a) a substrate (110), (b) a substrate, (1) a first electrode (142), and (2) a light emitting unit (1) formed on the first electrode ( 144) and (3) an organic light-emitting device (140) having a second electrode (146) formed on the light-emitting portion and emitting light of a predetermined range of wavelengths when turned on, and (c) (1) a planarization layer (121a to 121c) having a first refractive index, and (2) a high-density layer (122a to 122a) having a second refractive index different from the first refractive index. 122c) and a multilayer mirror (120) arranged alternately and continuously. The thicknesses of the planarization layer and the high-density layer are selected so that the multilayer mirror transmits light having a peak wavelength within a predetermined range of wavelengths. The planarization layer and the dense layer cooperate to prevent water and oxygen permeation.

Description

本発明は、周囲の環境内の有害化学種(harmful species)から有機発光デバイスを保護する構造及びこのようなデバイスから出射された光を反射及び透過させる構造に関する。   The present invention relates to structures for protecting organic light emitting devices from harmful species in the surrounding environment and structures for reflecting and transmitting light emitted from such devices.

ポリマ有機発光デバイス及び低分子有機発光デバイスを含む有機発光デバイス(organic light emitting devices:以下、OLEDという。)は、例えばラップトップコンピュータ、テレビジョン受像機、デジタル腕時計、電話機、ページャ、移動電話機、計算機等の様々な種類の仮想表示型ディスプレイ(virtual-view type displays)及び直接表示型ディスプレイ(virtual-and direct-view type displays)に採用されている。有機発光デバイスは、無機半導体発光デバイスとは異なり、一般的に構造が単純であり、製造が比較的簡単で安価である。更に、OLEDは、多種多様な色を必要とする用途及び表示領域が広い機器への用途にも容易に用いることができる。   Organic light emitting devices (hereinafter referred to as OLED) including polymer organic light emitting devices and small molecule organic light emitting devices are, for example, laptop computers, television receivers, digital watches, telephones, pagers, mobile telephones, computers. Are used in various types of virtual-view type displays and virtual-and direct-view type displays. Unlike inorganic semiconductor light-emitting devices, organic light-emitting devices generally have a simple structure, are relatively easy to manufacture, and are inexpensive. Furthermore, the OLED can be easily used for applications that require a wide variety of colors and for devices with a wide display area.

画像表示用途(imaging applications)のための2次元OLEDアレーは、当該技術分野において知られており、通常、行及び列に配列された複数のアクティブ画素からなるOLED表示領域を含む。図1Aは、従来のOLED構造を概略的に示す図(断面図)である。ここに示すOLED構造は、単一のアクティブ画素15を備え、アクティブ画素15は、例えば電極部(electrode region)であるアノード部(以下、単にアノードという。)12と、アノード12上に形成された発光層14と、発光層14上に形成された他方の電極部であるカソード部(以下、単にカソードという。)16とから構成されている。アクティブ画素15は、基板10上に配設されている。カバー20及び基板10は、封止部25とともに協働して、外部環境からアクティブ画素15に酸素や水蒸気が浸入することを防いでいる。   Two-dimensional OLED arrays for imaging applications are known in the art and typically include an OLED display area consisting of a plurality of active pixels arranged in rows and columns. FIG. 1A is a diagram (cross-sectional view) schematically showing a conventional OLED structure. The OLED structure shown here includes a single active pixel 15, and the active pixel 15 is formed on an anode 12 (hereinafter simply referred to as an anode) 12 that is, for example, an electrode region, and on the anode 12. The light emitting layer 14 and a cathode portion (hereinafter simply referred to as a cathode) 16 which is the other electrode portion formed on the light emitting layer 14 are configured. The active pixel 15 is disposed on the substrate 10. The cover 20 and the substrate 10 cooperate with the sealing portion 25 to prevent oxygen and water vapor from entering the active pixels 15 from the external environment.

従来の手法では、発光層14からの光は、基板10を介して下方に透過される。このような「下方取出し(bottom emitting)」構成では、基板10及びアノード12は、透明材料から形成される。一方、この構成では、カソード16及びカバー20は、透明である必要はない。   In the conventional method, the light from the light emitting layer 14 is transmitted downward through the substrate 10. In such a “bottom emitting” configuration, the substrate 10 and the anode 12 are formed from a transparent material. On the other hand, in this configuration, the cathode 16 and the cover 20 do not need to be transparent.

「上取出し(top- emitting)」OLED及び透明OLED(transparent OLED:TOLED)等の他のOLED構造も知られている。上取出しOLEDでは、発光層14から出射された光は、カバー20を介して上方に透過される。したがって、この場合、基板10は、不透明な材料から形成してもよく、カバー20は、透明な材料から形成する必要がある。図1Aに示すような設計に基づく上取出し構成では、カソード16に透明材料を用いるが、アノード12は、透明である必要はない。図1Bに示す他の上取出し構成では、図1Aにおけるアノード12とカソード16の位置を入れ替え、このため透明なアノード12を用いている。この場合、カソード16は、不透明であってもよい。このような構成は、「反転構成("inverted" configuration)」と呼ばれることもある。   Other OLED structures are also known, such as “top-emitting” OLEDs and transparent OLEDs (TOLEDs). In the top extraction OLED, the light emitted from the light emitting layer 14 is transmitted upward through the cover 20. Therefore, in this case, the substrate 10 may be formed from an opaque material, and the cover 20 needs to be formed from a transparent material. In the top extraction configuration based on the design as shown in FIG. 1A, a transparent material is used for the cathode 16, but the anode 12 need not be transparent. In the other top extraction configuration shown in FIG. 1B, the positions of the anode 12 and cathode 16 in FIG. 1A are interchanged, and thus a transparent anode 12 is used. In this case, the cathode 16 may be opaque. Such a configuration is sometimes referred to as an “inverted configuration”.

光が上方及び下方の両方向に(すなわち、デバイスの上面と底面の両方から)出射されるTOLEDでは、基板10、アノード12、カソード16、カバー20の全てが透明である必要がある。この構成は、図1A又は図1Bに示すものと同様の構成を有していてもよい。   In a TOLED where light is emitted in both upward and downward directions (i.e., from both the top and bottom surfaces of the device), the substrate 10, anode 12, cathode 16, and cover 20 must all be transparent. This configuration may have a configuration similar to that shown in FIG. 1A or 1B.

OLEDを形成する場合、通常、反応性金属(reactive metal)の層をカソードとして用いて、効率的な電子注入及び低い動作電圧を実現している。しかしながら、反応性金属及び反応性金属と有機材料の間の界面は、酸素及び水分に影響を受けやすく、これによりデバイスの寿命が著しく制限される。水分及び酸素は、この他にも悪い影響を生じることが知られている。例えば、水分及び酸素により、OLEDにおける「ダークスポット領域(dark spot area)」が増加することが知られている。当該技術分野では、このような外部環境からの化学種(species)を侵入させないための様々なバリア部が知られている。その具体例としては、その開示内容全体が引用により本願に援用される米国特許第5,757,126号明細書、第6,146,225号明細書、第6,268,295号明細書等に開示されている多層構造(multi-layer structures)が含まれる。   When forming OLEDs, a layer of reactive metal is typically used as the cathode to achieve efficient electron injection and low operating voltage. However, reactive metals and interfaces between reactive metals and organic materials are sensitive to oxygen and moisture, which severely limits the lifetime of the device. It is known that moisture and oxygen have other adverse effects. For example, it is known that moisture and oxygen increase the “dark spot area” in OLEDs. Various barrier parts are known in the art to prevent the entry of such species from the external environment. Specific examples thereof include US Pat. Nos. 5,757,126, 6,146,225, and 6,268,295, the entire disclosures of which are incorporated herein by reference. Multi-layer structures disclosed in US Pat.

更に、OLEDに関連して分布ブラッグ反射器(distributed Bragg reflector:以下、DBRという。)を利用することも知られている。これらのDBRは、多くの場合いわゆる「1/4波長スタック(quarter-wave stack)」を用いた多層ミラー構造を有する。このような構造により、とりわけ、発光波長帯域のスペクトル(spectrum of the emission band)を狭くし、ピーク出力輝度を高くし、出射光の向きを変えることができる。このような構造の具体例は、例えば、ドダバラプー(Dodabalapur)他の米国特許第5,674,636号明細書、ドダバラプー他の米国特許第5,814,416号明細書、ボロビック(Bulovic)他の米国特許第5,834,893号明細書、ジョーンズ(Jones)他の米国特許第5,920,080号明細書等に開示されている。これらの文献は、それぞれ引用により本願に援用されるものとする。   Furthermore, it is also known to use a distributed Bragg reflector (hereinafter referred to as DBR) in connection with the OLED. These DBRs often have a multilayer mirror structure using a so-called “quarter-wave stack”. With such a structure, in particular, the spectrum of the emission band can be narrowed, the peak output luminance can be increased, and the direction of outgoing light can be changed. Examples of such structures include, for example, Dodabalapur et al., US Pat. No. 5,674,636, Doda Balapu et al., US Pat. No. 5,814,416, Bulovic et al. U.S. Pat. No. 5,834,893, Jones et al. U.S. Pat. No. 5,920,080, and the like. Each of these documents is hereby incorporated by reference.

本発明の目的は、OLEDデバイスに関連して用いられ、多層ミラーとして及び外部環境からの有害化学種に対するバリアとして同時に機能する新たな構造を提供することである。   It is an object of the present invention to provide a new structure used in connection with OLED devices that simultaneously functions as a multilayer mirror and as a barrier against harmful chemical species from the external environment.

本発明に係る有機発光デバイス構造体は、(a)基板と、(b)基板上に形成され、第1の電極と、第1の電極上に形成された発光部と、発光部上に形成された第2の電極とを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、(c)基板上に形成され、(1)第1の屈折率を有する平坦化層と、(2)第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された多層ミラーとを備える。平坦化層及び高密度層の厚さは、多層ミラーが所定の範囲の波長内のピーク波長の光を透過するように選択される。平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐ。   An organic light emitting device structure according to the present invention is formed on (a) a substrate, (b) a substrate, a first electrode, a light emitting portion formed on the first electrode, and a light emitting portion. An organic light-emitting device that emits light having a predetermined wavelength when turned on, and (c) a planarization formed on a substrate and having (1) a first refractive index And (2) a multilayer mirror in which high-density layers having a second refractive index different from the first refractive index are alternately and continuously disposed. The thicknesses of the planarization layer and the high-density layer are selected so that the multilayer mirror transmits light having a peak wavelength within a predetermined range of wavelengths. The planarization layer and the dense layer cooperate to prevent water and oxygen permeation.

多層ミラーは、好ましくは、1/4波長スタック(quarter-wave stack)である。好ましくは、第1の電極はアノードであり、第2の電極はカソードであるが、これと反対の構成としてもよい。更に、用途に応じて、有機発光デバイスは、上取出し型デバイス、下方取出し型デバイス、透明デバイスのいずれであってもよい。   The multilayer mirror is preferably a quarter-wave stack. Preferably, the first electrode is an anode and the second electrode is a cathode, but may be configured in the opposite manner. Furthermore, depending on the application, the organic light emitting device may be any one of an upper extraction device, a lower extraction device, and a transparent device.

幾つかの実施例においては、1/4波長スタックは有機発光デバイスと基板との間に配設され、第1の電極は透明電極である。これらの実施例では、第2の電極も透明にしてもよく、この場合、必要であれば、第2の電極上に更なる1/4波長スタックを形成してもよい。一方、第2の電極は不透明であってもよく、この場合、第2の電極は反射性を有する反射電極であることが好ましい。   In some embodiments, the quarter wave stack is disposed between the organic light emitting device and the substrate, and the first electrode is a transparent electrode. In these embodiments, the second electrode may also be transparent, in which case an additional quarter-wave stack may be formed on the second electrode if desired. On the other hand, the second electrode may be opaque. In this case, the second electrode is preferably a reflective electrode having reflectivity.

他の実施例では、1/4波長スタックは有機発光デバイス上に配設され、第2の電極は透明電極である。この実施例では、第1の電極は不透明であってもよく、この場合、第1の電極は反射性を有する反射電極であることが好ましい。   In other embodiments, the quarter wave stack is disposed on the organic light emitting device and the second electrode is a transparent electrode. In this embodiment, the first electrode may be opaque. In this case, the first electrode is preferably a reflective electrode having reflectivity.

本発明の他の側面である有機発光デバイス構造体は、(a)透明基板と、(b)透明基板上に形成され、透明アノードと、透明アノード上に形成された発光部と、発光部上に形成された反射カソードとを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、(c)基板上に形成され、(1)第1の屈折率を有する平坦化層と、(2)第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された1/4波長スタックとを備える。   An organic light emitting device structure according to another aspect of the present invention includes (a) a transparent substrate, (b) a transparent anode formed on the transparent substrate, a light emitting portion formed on the transparent anode, and a light emitting portion. An organic light emitting device that is turned on and emits light of a wavelength in a predetermined range; and (c) a planarization formed on a substrate and having (1) a first refractive index. And a quarter-wave stack in which (2) a high-density layer having a second refractive index different from the first refractive index is alternately and continuously disposed.

この実施例における平坦化層及び高密度層の厚さは、1/4波長スタックが所定の範囲の波長内のピーク波長の光を透過するように選択される。更に、平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐ。   The thicknesses of the planarization layer and the high density layer in this embodiment are selected so that the quarter wavelength stack transmits light having a peak wavelength within a predetermined range of wavelengths. Furthermore, the planarization layer and the dense layer cooperate to prevent water and oxygen permeation.

本発明の他の側面である有機発光デバイス構造体は、(a)基板と、(b)基板上に形成され、反射アノードと、反射アノード上に形成された発光部と、発光部上に形成された透明カソードとを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、(c)基板上に形成され、(1)第1の屈折率を有する平坦化層と、(2)第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された1/4波長スタックとを備える。この場合も、上述と同様に、平坦化層及び高密度層の厚さは、1/4波長スタックが所定の範囲の波長内のピーク波長の光を透過するように選択され、平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐ。   An organic light emitting device structure according to another aspect of the present invention is formed on (a) a substrate, (b) a reflective anode, a light emitting portion formed on the reflective anode, and a light emitting portion. An organic light emitting device that is turned on and emits light of a wavelength in a predetermined range; (c) a planarization layer formed on a substrate and having (1) a first refractive index; (2) a quarter-wave stack in which high-density layers having a second refractive index different from the first refractive index are alternately and continuously disposed. Again, as above, the thicknesses of the planarization layer and the high density layer are selected so that the quarter wavelength stack transmits light of a peak wavelength within a predetermined range of wavelengths, The dense layer cooperates to prevent water and oxygen permeation.

本発明では、単一の多層スタックによって、望ましい光学的特性及びバリア特性を同時に実現することができる。   In the present invention, the desired optical and barrier properties can be achieved simultaneously with a single multilayer stack.

本発明のこれらの及びこの他の実施例、及び利点は、以下の説明によって当業者に明らかとなる。   These and other embodiments and advantages of the invention will be apparent to those skilled in the art from the following description.

以下、本発明の好ましい実施例を示す図面を参照して、本発明を詳細に説明する。但し、本発明は、ここに説明する実施例とは異なる形式で実施することもでき、本発明の構成は、ここに示す形式に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating preferred embodiments of the present invention. However, the present invention can be implemented in a format different from the embodiments described herein, and the configuration of the present invention is not limited to the format shown here.

なお、図面は、一般的な図面の場合と同様、単純化された図式的な表現に過ぎず、実際の構造は、構成部品の相対的な尺度を含む多くの点で、図面とは異なっている。   It should be noted that the drawings are only simplified schematic representations, as in general drawings, and the actual structure differs from the drawings in many respects, including the relative scale of the components. Yes.

ここで用いる所定の材料の「層(layer)」とは、厚さが長さ及び幅に対して小さい材料の部分を指す。層には、シート(sheet)、箔(foil)、膜(film)、積層(lamination)、コーティング(coating)等が含まれる。この明細書において層は、必ずしも平面状である必要はなく、例えば、他の構成部品を少なくとも部分的に包み込むように、湾曲し、屈曲し、又は他の形状に曲がっていてもよい。「層」は、2つ以上の副次的な層、すなわち「副層(sublayer)」を含んでいてもよい。   As used herein, a “layer” of a given material refers to the portion of the material whose thickness is small relative to its length and width. Layers include sheets, foils, films, laminations, coatings, and the like. In this specification, the layers are not necessarily planar, and may be curved, bent or bent into other shapes, for example, so as to at least partially enclose other components. A “layer” may include two or more sublayers, or “sublayers”.

図2は、包括的に符号100で指示されるOLEDデバイスの構造を示し、OLEDデバイス100は、基板110と、多層ミラー(この場合、1/4波長スタック)120と、OLED140と、カバー部150とを備える。   FIG. 2 shows the structure of an OLED device indicated generally by the reference numeral 100, which comprises a substrate 110, a multilayer mirror (in this case a quarter wavelength stack) 120, an OLED 140 and a cover part 150. With.

OLED140は、周知のいかなるOLEDであってもよい。例えば、上述のように、OLED140は、そのアノード及びカソードとして機能する電極部142、146を備える。更に、OLED140は、電極部142、146間に配設された発光部144(放射部)144を備える。   The OLED 140 may be any known OLED. For example, as described above, the OLED 140 includes the electrode portions 142 and 146 that function as an anode and a cathode thereof. Further, the OLED 140 includes a light emitting unit 144 (radiating unit) 144 disposed between the electrode units 142 and 146.

発光部144は、(a)正孔輸送層と、発光層と、電子輸送層とからなる3層構成(すなわちダブルヘテロ構造構成)、(b)正孔輸送層と、発光及び電子輸送機能を提供する層とからなる2層構成、又は電子輸送層と、発光及び正孔輸送機能を有する層とからなる2層構成(すなわち、シングルヘテロ構造構成)(c)正孔輸送、電子輸送、発光機能を有する単一の層からなる構成(すなわち、単層構成)を含む、数多くの周知の構成に関連して設けることができる。各構成において、更なる層を追加してもよく、例えば、正孔注入又は電子注入を促進するための層を追加してもよく、或いは正孔又は電子をブロックするための層を設けてもよい。このようなデバイスの様々な構造については、例えば、米国特許第5,707,745号明細書に開示されており、この文献の開示内容全体は、引用により本願に援用される。当該技術分野では、より複雑なOLED構造も実用化されている。   The light emitting unit 144 has (a) a three-layer structure (that is, a double hetero structure structure) composed of a hole transport layer, a light emitting layer, and an electron transport layer, and (b) a hole transport layer and a light emitting and electron transport function. A two-layer configuration consisting of a layer to be provided, or a two-layer configuration consisting of an electron transport layer and a layer having a light emission and hole transport function (ie, a single heterostructure configuration) (c) hole transport, electron transport, light emission It can be provided in connection with a number of well known configurations, including functional single layer configurations (ie, single layer configurations). In each configuration, additional layers may be added, for example, a layer for promoting hole injection or electron injection may be added, or a layer for blocking holes or electrons may be provided. Good. Various configurations of such devices are disclosed, for example, in US Pat. No. 5,707,745, the entire disclosure of which is incorporated herein by reference. More complex OLED structures have also been put into practical use in the art.

図2に示す実施例では、多くの場合、電極部146と1/4波長スタック120の組合せによって、微小共振器効果(microcavity effect)が生じる。この実施例においては、電極部142は、多くの場合、OLEDの所望の出力波長である所定の波長の出力光に対して透明性を有する。ここで言う「透明(transparent)」とは、その領域(この場合、電極部142)を通過する出力光の減衰量が小さく、所定の波長において、透過率が通常80%より大きいことを意味する。   In the embodiment shown in FIG. 2, in many cases, the combination of the electrode portion 146 and the quarter-wave stack 120 causes a microcavity effect. In this embodiment, the electrode unit 142 is often transparent to output light having a predetermined wavelength that is a desired output wavelength of the OLED. Here, “transparent” means that the amount of attenuation of output light passing through the region (in this case, the electrode part 142) is small, and the transmittance is usually larger than 80% at a predetermined wavelength. .

好ましい構成として、電極部142をアノードとして選択した場合、適切な透明性を有する材料としては、酸化インジウム−スズ(indium tin oxide:以下、ITOという。)、酸化亜鉛−スズ等の金属酸化物及び当分野で周知の他の材料が用いられる。電極部142をカソードとして選択した場合には、適切な透明性を有する材料としては、例えば、Mg−Ag/ITO、LiF/Al/ITO等の金属/金属酸化物の組合せ又は当分野で周知の他の材料が用いられる。   As a preferred configuration, when the electrode portion 142 is selected as an anode, materials having appropriate transparency include metal oxides such as indium tin oxide (hereinafter referred to as ITO), zinc oxide-tin, and the like. Other materials well known in the art are used. When the electrode part 142 is selected as the cathode, examples of suitable transparent materials include metal / metal oxide combinations such as Mg-Ag / ITO and LiF / Al / ITO, or those well known in the art. Other materials are used.

図2に示す構造の好ましい実施例として、図2に示すOLEDデバイス100を下方取出し型OLEDとした場合、基板110は透明である必要があり、一方、カバー150は、透明である必要はない。この構成においては、電極部146は、例えばOLEDデバイス100の共振器効果(cavity effect)を高めるために、反射性材料から形成することが望ましい。ここで「反射性」とは、所定の波長の出力光の相当な量、典型的には少なくとも80%が反射されることを意味する。電極部146をカソードとして選択した場合、適切な反射性を有する材料としては、アルミニウム、アルミニウム/リチウム、アルミニウム/フッ化リチウム、アルミニウム/酸化リチウム及び当該技術分野で周知の他の材料を用いることができる。一方、電極部146をアノードとして選択した場合、適切な反射性を有する材料としては、例えば金、クロム、ニッケル、プラチナ及び当分野で周知の他の材料を用いることができる。   As a preferred embodiment of the structure shown in FIG. 2, when the OLED device 100 shown in FIG. 2 is a bottom-out OLED, the substrate 110 needs to be transparent, while the cover 150 does not need to be transparent. In this configuration, the electrode portion 146 is preferably formed of a reflective material, for example, in order to enhance the cavity effect of the OLED device 100. Here, “reflective” means that a substantial amount of output light of a given wavelength, typically at least 80%, is reflected. When the electrode portion 146 is selected as the cathode, suitable reflective materials include aluminum, aluminum / lithium, aluminum / lithium fluoride, aluminum / lithium oxide, and other materials well known in the art. it can. On the other hand, when the electrode portion 146 is selected as the anode, as the material having appropriate reflectivity, for example, gold, chromium, nickel, platinum, and other materials known in the art can be used.

図2に示すOLEDデバイス100をTOLEDとした場合、基板110及びカバー150の両方は透明である。更に、電極部146も透明である。電極部146に用いることができる透明な材料としては、電極部142に関して上述した材料と同様の材料がある。   When the OLED device 100 shown in FIG. 2 is a TOLED, both the substrate 110 and the cover 150 are transparent. Furthermore, the electrode part 146 is also transparent. Examples of the transparent material that can be used for the electrode portion 146 include the same materials as those described above with respect to the electrode portion 142.

図2に示すOLEDデバイス100を上取出し型OLEDとした場合、カバー150及び電極部146は透明である。   When the OLED device 100 shown in FIG. 2 is an upper extraction type OLED, the cover 150 and the electrode portion 146 are transparent.

図2に示すOLEDデバイス100の特に好ましい構成は、下方取出し型構成であり、この場合、基板110は透明基板であり、電極部142が透明アノードである、電極部146が反射性カソードである。   A particularly preferred configuration of the OLED device 100 shown in FIG. 2 is a downward take-out configuration, where the substrate 110 is a transparent substrate, the electrode portion 142 is a transparent anode, and the electrode portion 146 is a reflective cathode.

図3は、包括的に符号200で示される、本発明の他の実施例であるOLEDデバイスの構造を示している。この実施例では、多層ミラー(ここでは、1/4波長スタック220)を電極部246上に基板210とは反対側に設けている。   FIG. 3 shows the structure of an OLED device that is another embodiment of the present invention, indicated generally at 200. In this embodiment, a multilayer mirror (in this case, a quarter-wave stack 220) is provided on the electrode 246 on the side opposite to the substrate 210.

後により詳細に説明するように、本発明に基づく1/4波長スタック220は、周辺環境における有害化学種の侵入を阻止する機能を有するため、この実施例では、別個のカバーを設ける必要がない。図3では、1/4波長スタック220を電極部246上に直接設けているが、1/4波長スタック220の形成において用いられるあらゆる基体(substrate)を含む介在層(intervening region)を設けてもよい。また、介在層は、従来と同様、本発明に基づくデバイスの他の様々な層間に設けることができる。   As will be described in more detail later, the quarter-wave stack 220 according to the present invention has the function of preventing the invasion of harmful chemical species in the surrounding environment, and therefore, in this embodiment, it is not necessary to provide a separate cover. . In FIG. 3, the quarter wavelength stack 220 is directly provided on the electrode portion 246, but an intervening region including any substrate used in forming the quarter wavelength stack 220 may be provided. Good. In addition, the intervening layer can be provided between various other layers of the device according to the present invention as in the prior art.

図3に示す実施例では、微小共振器効果は、電極部242と1/4波長スタック220の組合せによって生じる。この実施例では、電極部246は、透明である。   In the embodiment shown in FIG. 3, the microresonator effect is generated by the combination of the electrode portion 242 and the quarter wavelength stack 220. In this embodiment, the electrode portion 246 is transparent.

OLEDデバイス200を下方取出し型OLEDとした場合、又はOLEDデバイス200をTOLEDとした場合、基板210及び電極部242も透明にする。   When the OLED device 200 is a downward take-out type OLED, or when the OLED device 200 is a TOLED, the substrate 210 and the electrode part 242 are also made transparent.

図3に示す構造の好ましい実施例として、OLEDデバイス200を上取出し型OLEDとした場合、電極部242を反射性材料から形成して、例えばこのOLEDデバイス200の共振器効果を高めることができる。これに代えて、上取出し構成においても、電極部242を透明材料から形成してもよい。   As a preferred embodiment of the structure shown in FIG. 3, when the OLED device 200 is an upper extraction type OLED, the electrode portion 242 can be formed from a reflective material to enhance the resonator effect of the OLED device 200, for example. Alternatively, the electrode portion 242 may be formed of a transparent material in the upper extraction configuration.

図2と同様、電極部242は、好ましくはアノードであり、電極部246は、好ましくはカソードである。   As in FIG. 2, the electrode portion 242 is preferably an anode, and the electrode portion 246 is preferably a cathode.

また、この他、数多くの構成が可能である。例えば、図4に示すOLEDデバイス300は、基板310と、2つの多層ミラー(この場合、1/4波長スタック320a、320b)と、OLED340とを備える。微小共振器効果は、1/4波長スタック320aと1/4波長スタック320bの組合せによって生じる。この実施例では、電極部342、346は、共に透明である。ここでは、電極部342をアノードとし、電極部346をカソードとすることが好ましい。   Many other configurations are possible. For example, the OLED device 300 shown in FIG. 4 includes a substrate 310, two multilayer mirrors (in this case, quarter-wave stacks 320a and 320b), and an OLED 340. The microresonator effect is generated by the combination of the quarter-wave stack 320a and the quarter-wave stack 320b. In this embodiment, the electrode portions 342 and 346 are both transparent. Here, the electrode portion 342 is preferably an anode and the electrode portion 346 is preferably a cathode.

OLEDデバイス300は、下方取出し型でも、上取出し型でも、透明型でもよく、この実施例に上述と同様の変形を適用することができる。例えば、OLEDデバイス300をTOLED又は下方取出し型デバイスとした場合、基板310は透明である。図3に示す実施例において好ましい構成は、透明(TOLED)構成である。   The OLED device 300 may be a lower extraction type, an upper extraction type, or a transparent type, and the same modification as described above can be applied to this embodiment. For example, when the OLED device 300 is a TOLED or a lower extraction device, the substrate 310 is transparent. A preferred configuration in the embodiment shown in FIG. 3 is a transparent (TOLED) configuration.

上述のように、基板110、210、310及びカバー150は、望まれる構成に応じて、透明であることが要求される場合もあり、透明であることが要求されない場合もある。これらのコンポーネントの一般的な材料としては、ポリマ、セラミクス、半導体、金属等がある。   As described above, the substrates 110, 210, 310 and cover 150 may or may not be required to be transparent depending on the desired configuration. Common materials for these components include polymers, ceramics, semiconductors and metals.

金属は、基板及びカバーについて通常用いられる厚さでは、実質的な透明性を有さないが、優れたバリア特性を提供する。更に、金属は、例えば金属缶(metal cans)や金属箔等の様々な構成で設けることができる。この目的に適した金属としては、アルミニウム、金、ニッケル、ニッケル合金、インジウム及び当該技術分野で周知の他の材料を用いることができる。   The metal does not have substantial transparency at the thickness commonly used for substrates and covers, but provides excellent barrier properties. Furthermore, the metal can be provided in various configurations, such as metal cans or metal foils. Suitable metals for this purpose can include aluminum, gold, nickel, nickel alloys, indium and other materials well known in the art.

半導体(例えば、シリコン)は、金属と同様、通常、良好な透明性を示さない。しかしながら、半導体は、水、酸素及びこの他の有害化学種に対する良好なバリア特性を有するとともに、電気回路を作り上げることができる基板を提供する。   Semiconductors (eg, silicon), like metals, usually do not show good transparency. However, the semiconductor provides a substrate that has good barrier properties against water, oxygen, and other harmful chemical species, and that can create an electrical circuit.

セラミクスは、多くの場合、低い透過性と、透明性とを示す。好ましいセラミクスは、ガラスであり、より好ましくはソーダ石灰ガラス及びホウケイ酸ガラスである。   Ceramics often exhibits low transparency and transparency. The preferred ceramic is glass, more preferably soda lime glass and borosilicate glass.

光学的な透明性が望まれる場合、ポリマを材料として用いることが望ましい場合も多い。しかしながら、ポリマを基板又はカバーとして選択した場合、殆どのポリマは、透過であるので、更なるバリア領域を設けることが望ましい。必要であれば、本発明に基づく多層ミラーによりこの機能を実現してもよい。   When optical transparency is desired, it is often desirable to use a polymer as the material. However, when a polymer is selected as the substrate or cover, it is desirable to provide an additional barrier region since most polymers are transmissive. If necessary, this function may be realized by a multilayer mirror according to the present invention.

図2に示す特定の実施例では、基板110の材料は、多くの場合、光学的特性、柔軟性、他の表面に対する適合性(conformability)、処理(例えばウェハベースのプロセスを想定)時における寸法の安定性、他のコンポーネント(例えば、この実施例では、1/4波長スタック120の協働的なバリア層)との十分な接着性等を含む1つ以上の有利な特性に基づいて選択される。   In the particular embodiment shown in FIG. 2, the material of the substrate 110 is often optical properties, flexibility, conformability to other surfaces, and dimensions during processing (eg, assuming a wafer-based process). Selected on the basis of one or more advantageous properties, including, for example, sufficient stability with other components (eg, in this embodiment, a coherent barrier layer of the quarter wave stack 120), etc. The

柔軟性が望まれる場合、基板110は、紙、織地、金属泊、フレキシブルガラス(ショットガラステクノロジー社(Schott Glass Technologies)から入手可能)及び/又はポリマ層から構成してもよい。より好ましい柔軟性を有する基板材料としては、他の材料に対して強力な接着力を有する例えばポリエステル、ポリカーボネート、ポリエーテル、ポリイミド、ポリオレフィン、フルオロポリマ等の1つ以上のポリマコンポーネントがある。このようなポリマコンポーネントは、例えば、ホモポリマ、コポリマ、ポリマ混合体等として入手可能である。好ましいポリマコンポーネントの具体例としては、例えば、ポリエーテルスルホン、ポリアリレート、ポリエステルカーボナート、ポリエチレンナフタレート、ポリエチレンテレフタラート、ポリエーテルイミド、ポリアクリラート、デュポン社(DuPont)から入手可能なカプトン(Kapton:商標)ポリイミド薄膜のようなポリイミド、ハネウェル社(Honeywell)から入手可能なアクラ(Aclar:商標)フルオロポリマのようなフルオロポリマ、BFグッドリッチ社(BF Goodrich)から入手可能なアピア(Appear:商標)ポリノルボルネン(polynorbornene:PNB)、BFグッドリッチ社から入手可能なアートン(Arton:商標)等がある。これらの材料を用いる場合の基板110の厚さは、代表的には75〜625μmの範囲内である。   If flexibility is desired, the substrate 110 may be composed of paper, fabric, metal anchors, flexible glass (available from Schott Glass Technologies) and / or polymer layers. More preferred flexible substrate materials include one or more polymer components such as polyesters, polycarbonates, polyethers, polyimides, polyolefins, fluoropolymers, etc. that have strong adhesion to other materials. Such polymer components are available, for example, as homopolymers, copolymers, polymer blends, and the like. Specific examples of preferred polymer components include, for example, polyethersulfone, polyarylate, polyester carbonate, polyethylene naphthalate, polyethylene terephthalate, polyetherimide, polyacrylate, Kapton available from DuPont. : A polyimide such as a polyimide thin film, a fluoropolymer such as Aclar ™ fluoropolymer available from Honeywell, an Appear available from BF Goodrich, Inc. ) Polynorbornene (PNB), Arton (trademark) available from BF Goodrich. When these materials are used, the thickness of the substrate 110 is typically in the range of 75 to 625 μm.

多層ミラー(この実施例では、1/4波長スタック120)は、基板110上に、平坦化材料(planarizing material)121a〜121cと高密度材料(high-density material)122a〜122cの両方を含む一連の協働的なバリア層を形成することによって形成できる。これらの協働的なバリア層は、交互に積層された構成となっている。好ましくは、2〜10対(又はこれ以上)の層を用いる。すなわち、図2では、3対の層を示しているが、この他の層構成も可能である。更に、図2に示すように、底面層は、平坦化材料層121aであることが望ましいが、底面層は、例えば高密度材料層であってもよい。同様に、図2に示す最上位層は、高密度材料層122cであるが、この最上位層は、平坦化材料層であってもよい。   A multilayer mirror (in this example, a quarter wave stack 120) includes a series of planarizing materials 121a-121c and high-density materials 122a-122c on a substrate 110. Can be formed by forming a cooperative barrier layer. These cooperating barrier layers are alternately stacked. Preferably, 2-10 pairs (or more) of layers are used. In other words, FIG. 2 shows three pairs of layers, but other layer configurations are possible. Furthermore, as shown in FIG. 2, the bottom layer is desirably a planarizing material layer 121a, but the bottom layer may be, for example, a high-density material layer. Similarly, although the top layer shown in FIG. 2 is the high-density material layer 122c, this top layer may be a planarizing material layer.

この結果、本発明に基づく多層ミラー構造は、水分及び酸素の侵入の防止に適した、複合バリア層(composite barrier layer)としても機能する。更に、これらの構造は、生来的に柔軟性を有し、したがって、フレキシブルOLED(flexible OLED:FOLED)の製造に非常に適している。   As a result, the multilayer mirror structure according to the present invention also functions as a composite barrier layer that is suitable for preventing intrusion of moisture and oxygen. Furthermore, these structures are inherently flexible and are therefore very suitable for the production of flexible OLEDs (FOLEDs).

なお、「平坦化材料(planarizing material)」とは、基底にある表面の不規則な凹凸を反映した表面を形成するのではなく、その材料によって円滑な平面状の表面を形成する材料を意味する。平坦化材料として好ましい材料は、表面に堆積したときに、コンフォーマルでない液体(non-conformal liquid)となる材料である。このような材料としては、例えばアクリラートモノマがある(アクリラートモノマは、通常、紫外線又は電子ビームに晒されて、モノマを架橋させてポリアクリラートを形成する)。好ましい平坦化材料は、例えばフッ化ポリマ、パリレン、シクロテン、ポリアクリラートがある。平坦化材料層121a〜121cは、例えば、ディッピング、スピンコーティング、スパッタリング、蒸着コーティング、噴霧、フラッシュ蒸着、化学気相成長等の当該技術分野において周知の技術で形成することができる。   Note that “planarizing material” means a material that does not form a surface reflecting irregular irregularities of the underlying surface, but forms a smooth planar surface with the material. . A preferred material for the planarizing material is a material that, when deposited on the surface, becomes a non-conformal liquid. An example of such a material is an acrylate monomer (the acrylate monomer is usually exposed to ultraviolet light or an electron beam to crosslink the monomer to form a polyacrylate). Preferred planarizing materials include, for example, fluorinated polymers, parylene, cyclotenes, polyacrylates. The planarizing material layers 121a to 121c can be formed by techniques well known in the art such as dipping, spin coating, sputtering, vapor deposition coating, spraying, flash vapor deposition, chemical vapor deposition, and the like.

高密度材料とは、特に水や酸素等の汚染物質及び有害化学種(deleterious species)が拡散することを防ぐように、原子間距離が十分小さい材料を意味する。好ましい高密度材料には、例えば、一酸化シリコン(SiO)や二酸化シリコン(SiO)を含む酸化シリコン、窒化シリコン(通常、Si)、酸窒化シリコン、酸化アルミニウム(通常、Al)、酸化チタン、酸化インジウム−スズ(ITO)、酸化亜鉛インジウム−スズ(zinc indium tin oxide)、及び例えば銀、クロム、アルミニウム、金等の金属がある。高密度材料層122a〜122cは、例えば抵抗加熱蒸着、スパッタリング、プラズマ化学気相成長(plasma-enhanced chemical vapor deposition:PECVD)、電子ビーム法等の当該技術分野において周知の方法で形成することができる。 A high density material means a material with a sufficiently small interatomic distance so as to prevent the diffusion of pollutants such as water and oxygen and deleterious species. Preferred high-density materials include, for example, silicon oxide containing silicon monoxide (SiO) and silicon dioxide (SiO 2 ), silicon nitride (usually Si 3 N 4 ), silicon oxynitride, and aluminum oxide (usually Al 2 O 3 ), titanium oxide, indium tin oxide (ITO), zinc indium tin oxide, and metals such as silver, chromium, aluminum, gold and the like. The high-density material layers 122a to 122c can be formed by a method well known in the art such as resistance heating vapor deposition, sputtering, plasma-enhanced chemical vapor deposition (PECVD), electron beam method, and the like. .

多層バリア部の形成に関する更なる情報は、例えば米国特許第4,842,893号明細書、第4,954,371号明細書、第5,260,095号明細書、第6,224,948号明細書に開示されており、これらの文献の開示内容全体は、引用により本願に援用されるものとする。   Further information regarding the formation of a multilayer barrier section can be found, for example, in U.S. Pat. Nos. 4,842,893, 4,954,371, 5,260,095, 6,224,948. The entire disclosure of these documents is hereby incorporated by reference.

適切な透明性及び十分に異なる屈折率を有する平坦化材料層121a〜121c及び高密度材料層122a〜122cを選択することにより、多層ミラー120を形成することができる。好ましくは、多層ミラー内の各層の厚さは、透過するように選択された光のピーク波長をλとすると、λ/4とする。なお、本発明に基づく多層ミラー構造を含む多層ミラー構造では、通常、単一の波長ではなく、所定の範囲内に分布する波長の光の波長が透過される。ここで、当該技術分野では周知のように、層の厚さが略λ/4であれば、透過レベルのピークは、略λで生じる。(このような透過波長の分布の結果、特定の波長を透過させるのではなく、特定の波長を反射させる場合には、層の厚さは、λ/4とは大きく異ならせる必要がある。)。このような多層ミラーは、周知であり、多層ミラー内の層の厚さに基づいて、「1/4波長スタック(quater-wave stack)」と呼ばれる。多層ミラーの透過率/反射率は、層の対の数、層の厚さ、用いられる材料の屈折率に依存して定まることが知られている。   By selecting planarizing material layers 121a-121c and high-density material layers 122a-122c having appropriate transparency and sufficiently different refractive indices, the multilayer mirror 120 can be formed. Preferably, the thickness of each layer in the multilayer mirror is λ / 4 where λ is the peak wavelength of light selected to be transmitted. In the multilayer mirror structure including the multilayer mirror structure according to the present invention, the wavelength of light having a wavelength distributed within a predetermined range is normally transmitted instead of a single wavelength. Here, as is well known in the art, if the layer thickness is approximately λ / 4, the peak transmission level occurs at approximately λ. (As a result of such a transmission wavelength distribution, if the specific wavelength is reflected instead of transmitting the specific wavelength, the thickness of the layer needs to be greatly different from λ / 4.) . Such multilayer mirrors are well known and are referred to as “quater-wave stacks” based on the thickness of the layers in the multilayer mirror. It is known that the transmittance / reflectance of a multilayer mirror depends on the number of layer pairs, the layer thickness, and the refractive index of the material used.

本発明を実現するために好ましい平坦化材料と高密度材料の対としては、例えばポリアクリラートと酸化アルミニウムの対がある。   A preferred planarizing material and high density material pair for implementing the present invention is, for example, a polyacrylate and aluminum oxide pair.

図3及び図4に示す実施例にも、図2に示す1/4波長スタック120と同様の1/4波長スタック220、320a、320bが設けられている。これらのスタックは、平坦化材料層221a〜221c、321a〜321cと、高密度材料層222a〜222c、322a〜322cとを含んでいる。なお、1/4波長スタック320bは、基板310の上に形成されている。一方、1/4波長スタック220、320aは、OLED240、340上に形成されており、これらのOLED240、340は、後に形成される協働的なバリア層221a〜221c、222a〜222c、321a〜321c、322a〜322cに対して「基板」として機能する。   3 and 4 are also provided with quarter-wave stacks 220, 320a, and 320b similar to the quarter-wave stack 120 shown in FIG. These stacks include planarization material layers 221a-221c, 321a-321c and high density material layers 222a-222c, 322a-322c. The quarter wavelength stack 320b is formed on the substrate 310. On the other hand, the quarter wave stacks 220 and 320a are formed on the OLEDs 240 and 340, and these OLEDs 240 and 340 are cooperative barrier layers 221a to 221c, 222a to 222c, and 321a to 321c to be formed later. 322a to 322c function as a “substrate”.

具体的な幾つかの実施例を用いて本発明を説明したが、上述した実施例を様々に変形できることは、当業者にとって明らかである。これらの変形は、本発明の範囲内にあり、本発明の範囲は、特許請求の範囲のみによって限定されるものである。   Although the present invention has been described using several specific embodiments, it will be apparent to those skilled in the art that various modifications can be made to the embodiments described above. These variations are within the scope of the present invention, which is limited only by the scope of the claims.

周知のOLED構造を単純化して示す断面図である。It is sectional drawing which simplifies and shows a known OLED structure. 周知のOLED構造を単純化して示す断面図である。It is sectional drawing which simplifies and shows a known OLED structure. 本発明の実施例であるOLED構造の断面図である。It is sectional drawing of the OLED structure which is an Example of this invention. 本発明の他の実施例であるOLED構造の断面図である。It is sectional drawing of the OLED structure which is another Example of this invention. 本発明の更に異なる実施例であるOLED構造の断面図である。FIG. 5 is a cross-sectional view of an OLED structure that is yet another embodiment of the present invention.

Claims (19)

基板と、
上記基板上に形成され、第1の電極と、該第1の電極上に形成された発光層と、該発光層上に形成された第2の電極とを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、
上記基板上に形成され、(a)第1の屈折率を有する平坦化層と、(b)該第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された多層ミラーとを備え、
上記平坦化層及び高密度層の厚さは、上記多層ミラーが上記所定の範囲の波長内のピーク波長の光を透過するように選択され、上記平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐことを特徴とする有機発光デバイス構造体。
A substrate,
A first electrode formed on the substrate; a light-emitting layer formed on the first electrode; and a second electrode formed on the light-emitting layer. An organic light emitting device emitting light in a range of wavelengths;
(A) a planarization layer having a first refractive index and (b) a high-density layer having a second refractive index different from the first refractive index are alternately and continuously formed on the substrate. And a multi-layer mirror disposed in
The thicknesses of the planarization layer and the high density layer are selected such that the multilayer mirror transmits light having a peak wavelength within the predetermined range of wavelengths, and the planarization layer and the high density layer cooperate. An organic light emitting device structure characterized by preventing permeation of water and oxygen.
上記多層ミラーは、1/4波長スタックからなることを特徴とする請求項1記載の有機発光デバイス構造体。   2. The organic light emitting device structure according to claim 1, wherein the multilayer mirror comprises a quarter wavelength stack. 上記平坦化層は、フッ化ポリマ、パリレン、シクロテン、ポリアクリラートから選択される材料から形成されることを特徴とする請求項2記載の有機発光デバイス構造体。   3. The organic light emitting device structure according to claim 2, wherein the planarizing layer is formed of a material selected from a fluorinated polymer, parylene, cycloten, and polyacrylate. 上記高密度層は、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウム、酸化チタン、酸化インジウム−スズ、酸化亜鉛インジウム−スズ、金属から選択される材料から形成されることを特徴とする請求項2記載の有機発光デバイス構造体。   The high-density layer is formed of a material selected from silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, titanium oxide, indium-tin oxide, zinc indium-tin oxide, and metal. 3. The organic light emitting device structure according to 2. 上記平坦化層は、ポリアクリラートから形成され、上記高密度層は、酸化アルミニウムから形成されることを特徴とする請求項2記載の有機発光デバイス構造体。   3. The organic light emitting device structure according to claim 2, wherein the planarizing layer is made of polyacrylate, and the high density layer is made of aluminum oxide. 上記第1の電極は、アノードであり、上記第2の電極は、カソードであることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 2, wherein the first electrode is an anode, and the second electrode is a cathode. 当該有機発光デバイスは、上取出し型デバイスであることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 2, wherein the organic light-emitting device is a top take-out type device. 当該有機発光デバイスは、下方取出し型デバイスであることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light emitting device structure according to claim 2, wherein the organic light emitting device is a downward take-out type device. 当該有機発光デバイスは、透明デバイスであることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light emitting device structure according to claim 2, wherein the organic light emitting device is a transparent device. 上記1/4波長スタックは、上記有機発光デバイスと上記基板の間に配設され、上記第1の電極は、透明電極であることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 2, wherein the quarter-wave stack is disposed between the organic light-emitting device and the substrate, and the first electrode is a transparent electrode. 上記第1の電極は、透明アノードであり、上記第2の電極は、カソードであることを特徴とする請求項10記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 10, wherein the first electrode is a transparent anode, and the second electrode is a cathode. 上記第2の電極は、反射カソードであることを特徴とする請求項11記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 11, wherein the second electrode is a reflective cathode. 上記第2の電極は、透明電極であり、該第2の電極上に形成された更なる1/4波長スタックを備えることを特徴とする請求項10記載の有機発光デバイス構造体。   11. The organic light emitting device structure according to claim 10, wherein the second electrode is a transparent electrode, and further comprises a quarter wavelength stack formed on the second electrode. 上記第1の電極は、透明アノードであり、上記第2の電極は、透明カソードであることを特徴とする請求項13記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 13, wherein the first electrode is a transparent anode, and the second electrode is a transparent cathode. 上記1/4波長スタックは、上記有機発光デバイス上に配設され、上記第2の電極は、透明電極であることを特徴とする請求項2記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 2, wherein the quarter-wave stack is disposed on the organic light-emitting device, and the second electrode is a transparent electrode. 上記第1の電極は、アノードであり、上記第2の電極は、透明カソードであることを特徴とする請求項15記載の有機発光デバイス構造体。   16. The organic light emitting device structure according to claim 15, wherein the first electrode is an anode, and the second electrode is a transparent cathode. 上記第1の電極は、反射アノードであることを特徴とする請求項16記載の有機発光デバイス構造体。   The organic light-emitting device structure according to claim 16, wherein the first electrode is a reflective anode. 透明基板と、
上記透明基板上に形成され、透明アノードと、該透明アノード上に形成された発光層と、該発光層上に形成された反射カソードとを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、
上記基板上に形成され、(a)第1の屈折率を有する平坦化層と、(b)該第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された1/4波長スタックとを備え、
上記平坦化層及び高密度層の厚さは、上記1/4波長スタックが上記所定の範囲の波長内のピーク波長の光を透過するように選択され、上記平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐことを特徴とする有機発光デバイス構造体。
A transparent substrate;
A transparent anode formed on the transparent substrate, having a light emitting layer formed on the transparent anode, and a reflective cathode formed on the light emitting layer. An organic light emitting device that emits light,
(A) a planarization layer having a first refractive index and (b) a high-density layer having a second refractive index different from the first refractive index are alternately and continuously formed on the substrate. A quarter-wave stack disposed in
The thicknesses of the planarization layer and the high-density layer are selected so that the quarter-wave stack transmits light having a peak wavelength within the predetermined range of wavelengths. An organic light-emitting device structure that cooperates to prevent permeation of water and oxygen.
基板と、
上記基板上に形成され、反射アノードと、該反射アノード上に形成された発光層と、該発光層上に形成された透明カソードとを有し、オンにされて所定の範囲の波長の光を発する有機発光デバイスと、
上記基板上に形成され、(a)第1の屈折率を有する平坦化層と、(b)該第1の屈折率とは異なる第2の屈折率を有する高密度層とが交互に連続的に配設された1/4波長スタックとを備え、
上記平坦化層及び高密度層の厚さは、上記1/4波長スタックが上記所定の範囲の波長内のピーク波長の光を透過するように選択され、上記平坦化層及び高密度層は、協働して、水及び酸素の透過を防ぐことを特徴とする有機発光デバイス構造体。
A substrate,
A reflective anode formed on the substrate, a light emitting layer formed on the reflective anode, and a transparent cathode formed on the light emitting layer, and is turned on to emit light in a predetermined range of wavelengths. An organic light emitting device that emits,
(A) a planarization layer having a first refractive index and (b) a high-density layer having a second refractive index different from the first refractive index are alternately and continuously formed on the substrate. A quarter-wave stack disposed in
The thicknesses of the planarization layer and the high-density layer are selected so that the quarter-wave stack transmits light having a peak wavelength within the predetermined range of wavelengths. An organic light-emitting device structure that cooperates to prevent permeation of water and oxygen.
JP2003553639A 2001-11-06 2002-11-06 Organic light emitting device structure having sealing structure that functions as multilayer mirror Expired - Lifetime JP5143996B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/992,437 2001-11-06
US09/992,437 US6888305B2 (en) 2001-11-06 2001-11-06 Encapsulation structure that acts as a multilayer mirror
PCT/US2002/035671 WO2003052842A2 (en) 2001-11-06 2002-11-06 Encapsulation structure that acts as a multilayer mirror

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012214792A Division JP5379287B2 (en) 2001-11-06 2012-09-27 Organic light emitting device structure having sealing structure that functions as multilayer mirror

Publications (2)

Publication Number Publication Date
JP2006505092A true JP2006505092A (en) 2006-02-09
JP5143996B2 JP5143996B2 (en) 2013-02-13

Family

ID=25538343

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003553639A Expired - Lifetime JP5143996B2 (en) 2001-11-06 2002-11-06 Organic light emitting device structure having sealing structure that functions as multilayer mirror
JP2012214792A Expired - Lifetime JP5379287B2 (en) 2001-11-06 2012-09-27 Organic light emitting device structure having sealing structure that functions as multilayer mirror

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012214792A Expired - Lifetime JP5379287B2 (en) 2001-11-06 2012-09-27 Organic light emitting device structure having sealing structure that functions as multilayer mirror

Country Status (9)

Country Link
US (1) US6888305B2 (en)
EP (1) EP1442488B1 (en)
JP (2) JP5143996B2 (en)
KR (1) KR100923086B1 (en)
CN (1) CN100435376C (en)
AT (1) ATE384340T1 (en)
AU (1) AU2002365092A1 (en)
DE (1) DE60224698T2 (en)
WO (1) WO2003052842A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541137A (en) * 2007-09-26 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic devices
WO2011055440A1 (en) * 2009-11-05 2011-05-12 キヤノン株式会社 Display device
JP2013069702A (en) * 2012-12-14 2013-04-18 Panasonic Corp Organic electroluminescent element
KR101421169B1 (en) 2011-07-15 2014-07-24 엘지디스플레이 주식회사 Organic light emitting display device
US9105873B2 (en) 2011-03-24 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
JP2018519652A (en) * 2015-06-24 2018-07-19 ジョン エヌ マグノ Band edge emission enhanced organic light-emitting diode with localized emitter

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330748A1 (en) 1999-10-25 2010-12-30 Xi Chu Method of encapsulating an environmentally sensitive device
US20090191342A1 (en) * 1999-10-25 2009-07-30 Vitex Systems, Inc. Method for edge sealing barrier films
US6866901B2 (en) * 1999-10-25 2005-03-15 Vitex Systems, Inc. Method for edge sealing barrier films
US6623861B2 (en) * 2001-04-16 2003-09-23 Battelle Memorial Institute Multilayer plastic substrates
US7198832B2 (en) 1999-10-25 2007-04-03 Vitex Systems, Inc. Method for edge sealing barrier films
US6664137B2 (en) * 2001-03-29 2003-12-16 Universal Display Corporation Methods and structures for reducing lateral diffusion through cooperative barrier layers
US6879618B2 (en) * 2001-04-11 2005-04-12 Eastman Kodak Company Incoherent light-emitting device apparatus for driving vertical laser cavity
US20090208754A1 (en) * 2001-09-28 2009-08-20 Vitex Systems, Inc. Method for edge sealing barrier films
US6765351B2 (en) 2001-12-20 2004-07-20 The Trustees Of Princeton University Organic optoelectronic device structures
US7038377B2 (en) * 2002-01-16 2006-05-02 Seiko Epson Corporation Display device with a narrow frame
US6730615B2 (en) * 2002-02-19 2004-05-04 Intel Corporation High reflector tunable stress coating, such as for a MEMS mirror
KR100563675B1 (en) * 2002-04-09 2006-03-28 캐논 가부시끼가이샤 Organic luminescence device and organic luminescence device package
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9129552B2 (en) 2002-05-08 2015-09-08 Zeolux Corporation Display devices using feedback enhanced light emitting diode
DE10228939A1 (en) * 2002-06-28 2004-01-15 Philips Intellectual Property & Standards Gmbh Electroluminescent device with transparent cathode
JP4185341B2 (en) * 2002-09-25 2008-11-26 パイオニア株式会社 Multilayer barrier film structure, organic electroluminescence display panel, and manufacturing method
US7018713B2 (en) * 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
US7648925B2 (en) * 2003-04-11 2010-01-19 Vitex Systems, Inc. Multilayer barrier stacks and methods of making multilayer barrier stacks
US7510913B2 (en) * 2003-04-11 2009-03-31 Vitex Systems, Inc. Method of making an encapsulated plasma sensitive device
US20050023974A1 (en) * 2003-08-01 2005-02-03 Universal Display Corporation Protected organic electronic devices and methods for making the same
US6998648B2 (en) 2003-08-25 2006-02-14 Universal Display Corporation Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant
CN100407474C (en) * 2003-09-15 2008-07-30 统宝光电股份有限公司 Organic luminous component with optical efficiency raising structure
JP4939742B2 (en) * 2003-10-28 2012-05-30 株式会社半導体エネルギー研究所 Method for producing optical film
CN100489569C (en) 2003-10-28 2009-05-20 株式会社半导体能源研究所 Method of manufacturing optical film
GB0401613D0 (en) * 2004-01-26 2004-02-25 Cambridge Display Tech Ltd Organic light emitting diode
CN100482026C (en) * 2004-03-05 2009-04-22 出光兴产株式会社 Organic electroluminescent element and display device
US7196835B2 (en) * 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack
US20050269943A1 (en) * 2004-06-04 2005-12-08 Michael Hack Protected organic electronic devices and methods for making the same
KR100615234B1 (en) * 2004-08-03 2006-08-25 삼성에스디아이 주식회사 Inorganic electroluminescent display device and the method of manufacturing that device
JP2006092936A (en) * 2004-09-24 2006-04-06 Toyota Industries Corp Organic el device
KR100683737B1 (en) * 2004-12-13 2007-02-15 삼성에스디아이 주식회사 Electroluminescence display device
EP1701395B1 (en) * 2005-03-11 2012-09-12 Novaled AG Transparent light emitting element
DE502005009415D1 (en) * 2005-05-27 2010-05-27 Novaled Ag Transparent organic light emitting diode
FR2887684A1 (en) * 2005-06-28 2006-12-29 Thomson Licensing Sa ELECTROLUMINESCENT DIODE OF WHICH ONE OF THE ELECTRODES IS MULTILAYER IN AMORPHOUS CARBON
US20080206589A1 (en) * 2007-02-28 2008-08-28 Bruce Gardiner Aitken Low tempertature sintering using Sn2+ containing inorganic materials to hermetically seal a device
US7722929B2 (en) * 2005-08-18 2010-05-25 Corning Incorporated Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device
US7829147B2 (en) 2005-08-18 2010-11-09 Corning Incorporated Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device
US20070040501A1 (en) 2005-08-18 2007-02-22 Aitken Bruce G Method for inhibiting oxygen and moisture degradation of a device and the resulting device
US7767498B2 (en) 2005-08-25 2010-08-03 Vitex Systems, Inc. Encapsulated devices and method of making
US7521860B2 (en) * 2005-08-29 2009-04-21 Chunghwa Picture Tubes, Ltd. Organic electro-luminescence display with multiple protective films
US8044571B2 (en) * 2005-12-14 2011-10-25 General Electric Company Electrode stacks for electroactive devices and methods of fabricating the same
US20080048178A1 (en) * 2006-08-24 2008-02-28 Bruce Gardiner Aitken Tin phosphate barrier film, method, and apparatus
KR101201782B1 (en) * 2006-08-25 2012-11-15 삼성디스플레이 주식회사 Light emitting device and display apparatus using the same
EP1895608A3 (en) * 2006-09-04 2011-01-05 Novaled AG Organic light-emitting component and method for its manufacture
KR101691274B1 (en) * 2006-09-29 2016-12-29 오스람 오엘이디 게엠베하 Organic lighting device and lighting equipment
US8115326B2 (en) 2006-11-30 2012-02-14 Corning Incorporated Flexible substrates having a thin-film barrier
BRPI0721301A2 (en) * 2006-12-29 2014-03-25 3M Innovative Properties Co METHOD FOR HEALING FILMS CONTAINING METAL ALCOHIDE
KR20170019491A (en) * 2006-12-29 2017-02-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of making inorganic or inorganic/organic hybrid films
US20080164812A1 (en) * 2007-01-08 2008-07-10 Tpo Displays Corp. Method for fabricating a system for displaying images
JP2008210665A (en) * 2007-02-27 2008-09-11 Canon Inc Organic light-emitting element, and display device using the same
KR100873082B1 (en) 2007-05-30 2008-12-09 삼성모바일디스플레이주식회사 Organic light emitting display device and method of manufacturing the same
KR101563025B1 (en) * 2007-12-28 2015-10-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Flexible encapsulating films and a method of making the same
KR101448003B1 (en) * 2008-04-04 2014-10-08 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing the same
CA2724602A1 (en) * 2008-04-16 2009-12-17 Hzo, Inc. Metal and electronic device coating process for marine use and other environments
GB2460822A (en) * 2008-06-03 2009-12-16 Cambridge Display Tech Ltd Organic electroluminescent device
KR20170005154A (en) * 2008-06-30 2017-01-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Method of making inorganic or inorganic/organic hybrid barrier films
EP2370985A1 (en) * 2008-10-17 2011-10-05 Bloominescence LLC Transparent polarized light-emitting device
US8637331B2 (en) 2008-10-17 2014-01-28 Bloominescence, Llc Transparent polarized light-emitting device
US20110223434A1 (en) * 2008-11-17 2011-09-15 Roehrig Mark A Gradient composition barrier
FR2939907B1 (en) * 2008-12-15 2011-03-25 Centre Nat Rech Scient METHOD FOR STRUCTURING AN OMNIDIRECTIONAL MULTILAYER NON-METALLIC MIRROR
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US20100167002A1 (en) * 2008-12-30 2010-07-01 Vitex Systems, Inc. Method for encapsulating environmentally sensitive devices
WO2012037445A2 (en) 2010-09-17 2012-03-22 Drexel University Novel applications for alliform carbon
US20110008525A1 (en) * 2009-07-10 2011-01-13 General Electric Company Condensation and curing of materials within a coating system
DE102009034822A1 (en) * 2009-07-27 2011-02-03 Osram Opto Semiconductors Gmbh Electronic component as well as electrical contact
KR101569406B1 (en) * 2009-08-19 2015-11-17 주성엔지니어링(주) Organic light emitting deivce and method for manufacturing the same
US8590338B2 (en) 2009-12-31 2013-11-26 Samsung Mobile Display Co., Ltd. Evaporator with internal restriction
US9752932B2 (en) 2010-03-10 2017-09-05 Drexel University Tunable electro-optic filter stack
US11038144B2 (en) 2010-12-16 2021-06-15 Samsung Display Co., Ltd. Organic light-emitting display apparatus
KR101752876B1 (en) 2010-12-16 2017-07-03 삼성디스플레이 주식회사 Organic light emitting display device
CN103178077B (en) * 2011-12-21 2016-08-24 昆山工研院新型平板显示技术中心有限公司 Organic elctroluminescent device and method for packing thereof
KR101450963B1 (en) * 2012-07-27 2014-10-16 율촌화학 주식회사 Lamination barrier film
CN102832356B (en) 2012-08-30 2015-04-08 京东方科技集团股份有限公司 Organic light-emitting diode (OLED) packaging structure, manufacturing method thereof and luminescent device
CN104659270B (en) * 2012-08-30 2017-08-08 京东方科技集团股份有限公司 OLED encapsulating structures and its manufacture method, luminescent device
US9385172B2 (en) 2012-10-19 2016-07-05 Universal Display Corporation One-way transparent display
JP6256349B2 (en) * 2012-11-28 2018-01-10 コニカミノルタ株式会社 Transparent electrode and electronic device
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US9629449B2 (en) 2014-02-12 2017-04-25 Sang Geun Lee Portable interdental toothbrush
KR101497266B1 (en) 2014-02-24 2015-02-27 이상근 A portable proxabrush
JP6685932B2 (en) * 2014-05-16 2020-04-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Barrier layer stack, method for manufacturing barrier layer stack, and ultra-high barrier layer and antireflection system
US9750335B2 (en) 2014-07-17 2017-09-05 Sang Geun Lee Portable interdental toothbrush
US9907390B2 (en) 2014-09-02 2018-03-06 Sang Geun Lee Portable interdental toothbrush
CN105161584A (en) * 2015-09-17 2015-12-16 Tcl集团股份有限公司 QLED having optical microcavity structure and preparation method thereof
US20180241005A1 (en) * 2015-09-21 2018-08-23 Sabic Global Technologies B.V. Distributed bragg reflector on color conversion layer with micro cavity for blue oled lighting application
KR102477262B1 (en) * 2016-08-05 2022-12-14 삼성디스플레이 주식회사 Organic electroluminescence display device
JP6695785B2 (en) * 2016-11-29 2020-05-20 株式会社Joled Light emitting device, display device, and lighting device
KR101886284B1 (en) * 2017-06-26 2018-08-08 삼성디스플레이 주식회사 Organic light emitting display device
KR102418609B1 (en) * 2017-11-16 2022-07-08 삼성디스플레이 주식회사 Display device
US10892296B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting device having commonly connected LED sub-units
US12100696B2 (en) 2017-11-27 2024-09-24 Seoul Viosys Co., Ltd. Light emitting diode for display and display apparatus having the same
US10892297B2 (en) 2017-11-27 2021-01-12 Seoul Viosys Co., Ltd. Light emitting diode (LED) stack for a display
US11527519B2 (en) 2017-11-27 2022-12-13 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US10748881B2 (en) 2017-12-05 2020-08-18 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US10886327B2 (en) 2017-12-14 2021-01-05 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552057B2 (en) 2017-12-20 2023-01-10 Seoul Viosys Co., Ltd. LED unit for display and display apparatus having the same
US11522006B2 (en) 2017-12-21 2022-12-06 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
US11552061B2 (en) 2017-12-22 2023-01-10 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11114499B2 (en) 2018-01-02 2021-09-07 Seoul Viosys Co., Ltd. Display device having light emitting stacked structure
US10784240B2 (en) 2018-01-03 2020-09-22 Seoul Viosys Co., Ltd. Light emitting device with LED stack for display and display apparatus having the same
US11552159B2 (en) 2018-06-18 2023-01-10 Universal Display Corporation OLED display with all organic thin film layers patterned
KR20210072199A (en) 2019-12-06 2021-06-17 삼성디스플레이 주식회사 Organic light emitting display apparatus
JP7419821B2 (en) 2020-01-06 2024-01-23 セイコーエプソン株式会社 Organic electroluminescent devices and electronic equipment
JP7415561B2 (en) * 2020-01-06 2024-01-17 セイコーエプソン株式会社 Organic electroluminescent devices and electronic equipment
US12065728B2 (en) 2020-05-11 2024-08-20 Universal Display Corporation Apparatus and method to deliver organic material via organic vapor jet printing (OVJP)
CN112310308B (en) * 2020-10-22 2022-04-26 深圳市华星光电半导体显示技术有限公司 Display panel and preparation method thereof
CN112649903B (en) * 2020-12-28 2022-07-01 厦门天马微电子有限公司 Composite film group, preparation method thereof, lighting device and display device
US20230157058A1 (en) 2021-11-12 2023-05-18 Universal Display Corporation Organic electroluminescent devices
US20230292605A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230357918A1 (en) 2022-05-09 2023-11-09 Universal Display Corporation Organic vapor jet printing system
US20230363244A1 (en) 2022-05-09 2023-11-09 Universal Display Corporation Organic vapor jet printing system
US20230413590A1 (en) 2022-06-17 2023-12-21 Universal Display Corporation Organic electroluminescent devices
US20240206208A1 (en) 2022-10-27 2024-06-20 Universal Display Corporation Organic electroluminescent materials and devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364003A (en) * 1986-09-05 1988-03-22 Teijin Ltd Optical filter
JPH088061A (en) * 1993-11-22 1996-01-12 At & T Corp Layer structure of light-emitting element and flat panel display containing it
JPH0992466A (en) * 1995-09-20 1997-04-04 Idemitsu Kosan Co Ltd Organic electroluminescent element
JPH1012376A (en) * 1996-06-24 1998-01-16 Nec Kansai Ltd Electroluminescent light
JPH11224783A (en) * 1998-02-04 1999-08-17 Toyota Central Res & Dev Lab Inc Organic electroluminescence element
JP2000047028A (en) * 1998-07-30 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Dielectric multilayered film filter, its production and optical part using the filter
JP2000068069A (en) * 1998-08-13 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescence device and its manufacture
JP2000266930A (en) * 1999-03-15 2000-09-29 Fuji Photo Film Co Ltd Optical selective filter
WO2000076010A1 (en) * 1999-06-02 2000-12-14 Seiko Epson Corporation Multiple wavelength light emitting device, electronic apparatus, and interference mirror
WO2001029137A1 (en) * 1999-10-20 2001-04-26 Flex Products, Inc. Color shifting carbon-containing interference pigments

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842893A (en) 1983-12-19 1989-06-27 Spectrum Control, Inc. High speed process for coating substrates
US4954371A (en) 1986-06-23 1990-09-04 Spectrum Control, Inc. Flash evaporation of monomer fluids
US5260095A (en) 1992-08-21 1993-11-09 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
US5478658A (en) 1994-05-20 1995-12-26 At&T Corp. Article comprising a microcavity light source
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5780174A (en) 1995-10-27 1998-07-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Micro-optical resonator type organic electroluminescent device
US5686360A (en) * 1995-11-30 1997-11-11 Motorola Passivation of organic devices
US5814416A (en) 1996-04-10 1998-09-29 Lucent Technologies, Inc. Wavelength compensation for resonant cavity electroluminescent devices
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US5920080A (en) 1997-06-23 1999-07-06 Fed Corporation Emissive display using organic light emitting diodes
US6224948B1 (en) 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
JP3827839B2 (en) 1997-11-27 2006-09-27 富士通株式会社 Manufacturing method of semiconductor device
US6146225A (en) 1998-07-30 2000-11-14 Agilent Technologies, Inc. Transparent, flexible permeability barrier for organic electroluminescent devices
CA2353506A1 (en) 1998-11-02 2000-05-11 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
EP1524708A3 (en) 1998-12-16 2006-07-26 Battelle Memorial Institute Environmental barrier material and methods of making.
WO2000065879A1 (en) 1999-04-28 2000-11-02 Emagin Corporation Organic electroluminescence device with high efficiency reflecting element
JP2001043980A (en) * 1999-07-29 2001-02-16 Sony Corp Organic electroluminescent element and display device
US6879618B2 (en) * 2001-04-11 2005-04-12 Eastman Kodak Company Incoherent light-emitting device apparatus for driving vertical laser cavity

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364003A (en) * 1986-09-05 1988-03-22 Teijin Ltd Optical filter
JPH088061A (en) * 1993-11-22 1996-01-12 At & T Corp Layer structure of light-emitting element and flat panel display containing it
JPH0992466A (en) * 1995-09-20 1997-04-04 Idemitsu Kosan Co Ltd Organic electroluminescent element
JPH1012376A (en) * 1996-06-24 1998-01-16 Nec Kansai Ltd Electroluminescent light
JPH11224783A (en) * 1998-02-04 1999-08-17 Toyota Central Res & Dev Lab Inc Organic electroluminescence element
JP2000047028A (en) * 1998-07-30 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Dielectric multilayered film filter, its production and optical part using the filter
JP2000068069A (en) * 1998-08-13 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescence device and its manufacture
JP2000266930A (en) * 1999-03-15 2000-09-29 Fuji Photo Film Co Ltd Optical selective filter
WO2000076010A1 (en) * 1999-06-02 2000-12-14 Seiko Epson Corporation Multiple wavelength light emitting device, electronic apparatus, and interference mirror
JP2003528421A (en) * 1999-06-02 2003-09-24 セイコーエプソン株式会社 Multi-wavelength light emitting device, electronic device and interference mirror
WO2001029137A1 (en) * 1999-10-20 2001-04-26 Flex Products, Inc. Color shifting carbon-containing interference pigments
JP2003512497A (en) * 1999-10-20 2003-04-02 フレックス プロダクツ インコーポレイテッド Color-shifting carbon-containing interference pigment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541137A (en) * 2007-09-26 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic devices
US8987708B2 (en) 2007-09-26 2015-03-24 Osram Opto Semiconductors Gmbh Optoelectronic component
WO2011055440A1 (en) * 2009-11-05 2011-05-12 キヤノン株式会社 Display device
JPWO2011055440A1 (en) * 2009-11-05 2013-03-21 キヤノン株式会社 Display device
US8482195B2 (en) 2009-11-05 2013-07-09 Canon Kabushiki Kaisha Display apparatus
US9105873B2 (en) 2011-03-24 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element
KR101421169B1 (en) 2011-07-15 2014-07-24 엘지디스플레이 주식회사 Organic light emitting display device
JP2013069702A (en) * 2012-12-14 2013-04-18 Panasonic Corp Organic electroluminescent element
JP2018519652A (en) * 2015-06-24 2018-07-19 ジョン エヌ マグノ Band edge emission enhanced organic light-emitting diode with localized emitter
US11387434B2 (en) 2015-06-24 2022-07-12 Red Bank Technologies Llc Band edge emission enhanced organic light emitting diode with a localized emitter
US11895865B2 (en) 2015-06-24 2024-02-06 Red Bank Technologies Llc Band edge emission enhanced organic light emitting diode with a localized emitter

Also Published As

Publication number Publication date
JP5143996B2 (en) 2013-02-13
JP5379287B2 (en) 2013-12-25
EP1442488B1 (en) 2008-01-16
WO2003052842A2 (en) 2003-06-26
DE60224698T2 (en) 2009-01-15
KR100923086B1 (en) 2009-10-22
US6888305B2 (en) 2005-05-03
CN100435376C (en) 2008-11-19
KR20040065554A (en) 2004-07-22
AU2002365092A1 (en) 2003-06-30
CN1582504A (en) 2005-02-16
DE60224698D1 (en) 2008-03-06
US20030085652A1 (en) 2003-05-08
JP2012253046A (en) 2012-12-20
ATE384340T1 (en) 2008-02-15
EP1442488A2 (en) 2004-08-04
WO2003052842A3 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP5379287B2 (en) Organic light emitting device structure having sealing structure that functions as multilayer mirror
KR100873082B1 (en) Organic light emitting display device and method of manufacturing the same
US7012363B2 (en) OLEDs having increased external electroluminescence quantum efficiencies
JP5107396B2 (en) Organic light emitting diode
TWI392128B (en) Organic light emitting device, method for producing thereof and array comprising a plurality of organic light emitting devices
US20060250084A1 (en) OLED device with improved light output
JP2007536697A (en) Flexible electroluminescence device
JP4832781B2 (en) Organic electroluminescence display device
US20070096112A1 (en) Area light emitting device
KR101297185B1 (en) Organic electroluminescent diode and diode panel with anti-reflective coating conductive to the emission of light
US8928013B2 (en) Organic electroluminescence device and multi-color display apparatus using the same
JP2007519196A5 (en)
US20060267485A1 (en) Organic light emitting diode (oled) with contrast enhancement features
JP2008210665A (en) Organic light-emitting element, and display device using the same
JP2008538155A (en) OLED device with improved light output
US20060284170A1 (en) Transparent Light-Emitting Component
JP2007095330A (en) Light emitting device, manufacturing method of light emitting device and electronic apparatus
JP2007280677A (en) Light-emitting device and electronic apparatus
JP2003303682A (en) Electroluminescent display device
JP4742717B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
KR20080104324A (en) Flexible electroluminescent devices
JP7434511B2 (en) light emitting device
CN111477673B (en) Array substrate, display panel and display device
CN115411212A (en) Display panel and display device
KR20060111643A (en) Flexible electroluminescent devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100419

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110519

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term