JP2006503980A - Alloy heat treatment method - Google Patents

Alloy heat treatment method Download PDF

Info

Publication number
JP2006503980A
JP2006503980A JP2004545738A JP2004545738A JP2006503980A JP 2006503980 A JP2006503980 A JP 2006503980A JP 2004545738 A JP2004545738 A JP 2004545738A JP 2004545738 A JP2004545738 A JP 2004545738A JP 2006503980 A JP2006503980 A JP 2006503980A
Authority
JP
Japan
Prior art keywords
heat treatment
casting
alloy
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004545738A
Other languages
Japanese (ja)
Other versions
JP4812301B2 (en
Inventor
エッサー、ヴィンフリート
ゴールトシュミット、ディルク
オット、ミヒァエル
パウル、ウヴェ
ピッケルト、ウルズラ
ジー ボークト、ラッセル
アール ハンスリッツ、クリストファー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2006503980A publication Critical patent/JP2006503980A/en
Application granted granted Critical
Publication of JP4812301B2 publication Critical patent/JP4812301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

結晶粒界強度を改善するための要素を有する合金の熱処理に関する。鋳造直後の部品は、多くの場合、低い横方向結晶粒界強度を示すか、横方向結晶粒界強度を全く示さず、割れが起り、収率を低下させる。本発明は、低い横方向結晶粒界強度を導かず、有効な横方向結晶粒界強度を維持して、割れのない部品の収率を増加させるもので、鋳造後に合金のマトリックスに溶解温度で溶解する第二相が存在するようにし、該第二相を部分的にしか溶解しないように熱処理する。The present invention relates to heat treatment of alloys having elements for improving grain boundary strength. Parts immediately after casting often exhibit low transverse grain boundary strength or no transverse grain boundary strength at all, resulting in cracks and reduced yield. The present invention does not lead to low lateral grain boundary strength, maintains effective lateral grain boundary strength, and increases the yield of crack-free parts. A second phase to dissolve is present and heat treated to only partially dissolve the second phase.

Description

本発明は、合金、特にニッケル基超合金の熱処理方法および柱状晶粒ミクロ構造を有する鋳造物に関する。   The present invention relates to a heat treatment method for an alloy, particularly a nickel-base superalloy, and a casting having a columnar grain microstructure.

米国特許第4597809号明細書は、9.5〜14重量%のCr、7〜11重量%のCo、1〜2.5重量%のMo、3〜6重量%のW、1〜4重量%のTa、3〜4重量%のAl、3〜5重量%のTi、6.5〜8重量%のAl+Ti、0〜1重量%のNbおよび残部のニッケル成る組成のマトリックスを有するニッケル基超合金で造った単結晶鋳造物を記載しており、前記マトリックスは、0.05〜0.15重量%のCと、Cの含有量の1〜17倍に等しい量の追加のTaを前記合金に含めた結果として、炭化タンタルをベースにした相を0.4〜1.5容量%含有する。   U.S. Pat. No. 4,597,809 describes 9.5-14 wt% Cr, 7-11 wt% Co, 1-2.5 wt% Mo, 3-6 wt% W, 1-4 wt% Nickel-base superalloy having a matrix of the following composition: Ta, 3-4 wt% Al, 3-5 wt% Ti, 6.5-8 wt% Al + Ti, 0-1 wt% Nb and the balance nickel The matrix comprises 0.05 to 0.15 wt% C and an additional amount of Ta equal to 1 to 17 times the content of C in the alloy. As a result of inclusion, it contains 0.4 to 1.5% by volume of a phase based on tantalum carbide.

前述のニッケル基超合金から製造した単結晶鋳造物が示す横方向結晶粒界強度は、不十分である。本発明者らは、ニッケル基超合金の一方向凝固(DS)柱状晶粒鋳造物の製造を試みた。しかし、製造した一方向凝固(DS)柱状晶粒鋳造物は、前記鋳造物が、温度750℃と応力660Mpa(95.7Ksi)で試験した時、横方向結晶粒界強度および伸度を本質的に示さないため、DC鋳造物として不適格であった。横方向結晶粒界強度と伸度は、前記ニッケル基超合金から製造したDS鋳造粒子鋳造物をガスタービンエンジンがタービン翼としての使用に不適切なものとなる程不十分であった。   The transverse grain boundary strength exhibited by the single crystal casting produced from the nickel-base superalloy described above is insufficient. The inventors have attempted to produce unidirectionally solidified (DS) columnar grain castings of nickel-base superalloys. However, the produced unidirectionally solidified (DS) columnar grain castings essentially have transverse grain boundary strength and elongation when the castings are tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi). Therefore, it was not suitable as a DC casting. The transverse grain boundary strength and elongation were insufficient so that a DS cast particle casting made from the nickel-base superalloy would be inappropriate for use as a gas turbine engine turbine blade.

国際公開第99/67435号パンフレットは、DS鋳造物の横応力破断強度と伸度を改善すべく硼素を添加したニッケル基超合金鋳造物を開示する。該鋳造物は、1250℃で4時間熱処理し、第二相(γ’−相)の完全溶解を行っている。完全溶解熱処理後の結晶粒界割れのため、製造率は、前述のニッケル基合金から製造されるDS鋳造粒子鋳造物がガスタービンエンジンのタービン翼としての使用に不適となる程不十分である。   WO 99/67435 discloses a nickel-base superalloy casting to which boron is added to improve the transverse stress rupture strength and elongation of the DS casting. The casting is heat-treated at 1250 ° C. for 4 hours to completely dissolve the second phase (γ′-phase). Due to the grain boundary cracking after the complete melting heat treatment, the production rate is insufficient so that the DS cast particle casting produced from the nickel-base alloy described above becomes unsuitable for use as a turbine blade of a gas turbine engine.

本発明の目的は、合金、特に鋳放しの合金、例えば、前述の単結晶ニッケル基超合金をベースにしたDS柱状晶粒鋳造物に熱処理を施して、前記DS鋳造物がガスタービンエンジンのタービン翼等の高温適用物としての使用に耐えられる程度迄実質的に改善された横応力破断強度および伸度ならびに製造率を有するようにすることである。   It is an object of the present invention to heat treat an alloy, particularly an as-cast alloy, for example a DS columnar grain cast based on the aforementioned single crystal nickel-base superalloy, wherein the DS cast is a turbine of a gas turbine engine. It is to have transverse stress rupture strength and elongation and production rate substantially improved to the extent that they can be used as high temperature applications such as blades.

本発明は、第二相を部分的にしか溶解しない、例えば、完全溶解熱処理を行わない熱処理で製造された一方向凝固(DS)柱状晶粒鋳造物の横応力破断強度および伸度の有意な改善がわかるように結晶粒界強度を改善する、本明細書中上記のニッケル基超合金中の硼素等の少なくとも一つの添加物を有する超合金等の鋳造合金の熱処理を含む。   The present invention is significant in terms of transverse stress rupture strength and elongation of unidirectionally solidified (DS) columnar grain castings that are produced by a heat treatment that only partially dissolves the second phase, for example, without a complete solution heat treatment. Heat treatment of a cast alloy, such as a superalloy, having at least one additive such as boron in the nickel-base superalloy described hereinabove, which improves the grain boundary strength so that the improvement can be seen.

多くの場合、硼素は、硼素改質超合金から製造された一方向凝固柱状晶粒鋳造物の横応力破断強度と伸度を実質的に改善するのに有効な量で、超合金組成に添加する。このため硼素濃度は、超合金組成の0.003〜0.0175重量%の範囲内で調節するとよい。   In many cases, boron is added to the superalloy composition in an amount effective to substantially improve the transverse stress rupture strength and elongation of unidirectionally solidified columnar grain castings made from boron modified superalloys. To do. Therefore, the boron concentration is preferably adjusted within the range of 0.003 to 0.0175% by weight of the superalloy composition.

前記超合金組成への硼素の添加に関連して、炭素濃度は、その超合金組成の0.05〜0.11重量%の範囲内で調節するとよい。   In connection with the addition of boron to the superalloy composition, the carbon concentration may be adjusted within the range of 0.05 to 0.11% by weight of the superalloy composition.

本発明の一つの実施形態に従う好ましいニッケル基超合金は、11.6〜12.70重量%のCr、8.5〜9.5重量%のCo、1.65〜2.15重量%のMo、3.5〜4.10重量%のW、4.80〜5.20重量%のTa、3.40〜3.80重量%のAl、3.9〜4.25重量%のTi、0.05〜0.11重量%のC、0.003〜0.0175重量%のBおよび残部のNiから成る。この超合金は、周知のブリッジマン離型法等の通常のDS鋳造技術に従い、DS柱状晶粒鋳造物として鋳造できる。   A preferred nickel-base superalloy according to one embodiment of the present invention is 11.6-12.70 wt% Cr, 8.5-9.5 wt% Co, 1.65-2.15 wt% Mo. 3.5 to 4.10 wt% W, 4.80 to 5.20 wt% Ta, 3.40 to 3.80 wt% Al, 3.9 to 4.25 wt% Ti, 0 0.05 to 0.11 wt% C, 0.003 to 0.0175 wt% B and the balance Ni. This superalloy can be cast as a DS columnar crystal grain casting according to a normal DS casting technique such as the well-known Bridgeman mold release method.

このように製造したDS鋳造物は、その鋳造物の主応力軸とその主応力軸に対して一般に平行な<001>結晶軸の方向に伸びる多数の柱状晶粒を典型的には有する。本発明に従うDS柱状晶粒鋳造物は、好ましくは、温度750℃および応力660Mpa(95.7Ksi)で試験した時、少なくとも約100時間の応力破断寿命および少なくとも約2.5%の伸び率を示し、タービン翼、羽根、外部エアシール並びに工業用および航空用ガスタービンエンジンの他の部品として使用可能である。   The DS casting produced in this way typically has a main stress axis of the cast and a number of columnar grains extending in the direction of the <001> crystal axis that is generally parallel to the main stress axis. The DS columnar grain casting according to the present invention preferably exhibits a stress rupture life of at least about 100 hours and an elongation of at least about 2.5% when tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi). , Turbine blades, vanes, external air seals and other parts of industrial and aviation gas turbine engines.

本発明の目的と利点を、後続の詳細な説明と共に、図面を参照して明らかにする。   Objects and advantages of the present invention will become apparent with reference to the drawings, together with the following detailed description.

合金としての具体例として、9.5〜14重量%のCr、7〜11重量%のCo、1〜2.5重量%のMo、3〜6重量%のW、1〜6重量%のTa、3〜4重量%のAl、3〜5重量%のTi、0〜1重量%のNb、DS鋳造物の横応力破断強度を硼素が存在しない同様の鋳造物と比較して実質的に改善するために有効な量で存在するB並びに残部のNiから成るニッケル基超合金を選択する。   Specific examples of the alloy include 9.5 to 14% by weight of Cr, 7 to 11% by weight of Co, 1 to 2.5% by weight of Mo, 3 to 6% by weight of W, and 1 to 6% by weight of Ta. 3-4 wt% Al, 3-5 wt% Ti, 0-1 wt% Nb, DS substantially improves transverse stress rupture strength compared to similar castings without boron A nickel-base superalloy consisting of B present in an effective amount and the balance Ni is selected.

前記合金の結晶粒界強度を改善する添加物として、硼素が存在しない同様の鋳造物と比較して前記合金から製造されるDS柱状晶粒鋳造物の実質的な横応力破断強度および伸度を実現するために有効であるとわかった量での硼素の含有が選択される。   As an additive to improve the grain boundary strength of the alloy, the substantial transverse stress rupture strength and elongation of the DS columnar grain cast produced from the alloy compared to a similar cast without boron. The inclusion of boron in an amount found to be effective to achieve is selected.

このために、前記ニッケル基超合金は、その超合金組成の0.003〜0.0175重量%、好ましくは0.010〜0.015重量%の範囲内で硼素Bを含有することにより改質するとよい。   For this purpose, the nickel-base superalloy is modified by containing boron B within a range of 0.003 to 0.0175% by weight, preferably 0.010 to 0.015% by weight of the superalloy composition. Good.

前記超合金組成への硼素の添加に関連して、炭素C濃度は、その超合金組成の0.05〜0.11重量%の好ましい範囲内で調節される。ケイ素Si、ジルコニウムZrおよびハフニウムHfも添加物として使用できる。   In connection with the addition of boron to the superalloy composition, the carbon C concentration is adjusted within a preferred range of 0.05 to 0.11% by weight of the superalloy composition. Silicon Si, zirconium Zr and hafnium Hf can also be used as additives.

更に、B、C、Si、Zr、Hfの全ての組み合わせが可能である。   Furthermore, all combinations of B, C, Si, Zr, and Hf are possible.

改質熱処理でニッケル基超合金から製造されたDS鋳造物の横応力破断強度と伸度ならびに製造率は、それらの鋳造物をガスタービンエンジンのタービン翼および他の部品としての使用に耐えられるようにする程度迄実現される。   The transverse stress rupture strength and elongation and production rates of DS castings made from nickel-base superalloys with modified heat treatment make it possible to use them as turbine blades and other parts of gas turbine engines It is realized to the extent of making.

特に好適な硼素改質ニッケル基超合金鋳造物組成は、重量比にて11.6〜12.70%のCr、8.5〜9.5%のCo、1.65〜2.15%のMo、3.5〜4.10%のW、4.80〜5.20%のTa、3.4〜3.80%のAl、3.9〜4.25%のTi、0.05〜0.11%のC、0.003〜0.0175%のBおよび残部のNiであり、DS柱状晶粒ミクロ構造を実現すべく鋳造可能である。   A particularly preferred boron-modified nickel-base superalloy casting composition is 11.6-12.70% Cr, 8.5-9.5% Co, 1.65-2.15% by weight. Mo, 3.5-4.10% W, 4.80-5.20% Ta, 3.4-3.80% Al, 3.9-4.25% Ti, 0.05- 0.11% C, 0.003 to 0.0175% B and the balance Ni and can be cast to achieve a DS columnar grain microstructure.

前記柱状晶粒鋳造物のDSミクロ構造は、炭化タンタルをベースにした相を0.4〜1.5容量%含む。   The DS microstructure of the columnar grain casting includes 0.4 to 1.5 volume percent of a phase based on tantalum carbide.

いかなる理論にも拘束されることを望まないが、高い使用温度、例えばガスタービンエンジン翼で典型的な816℃で、硼素と炭素がDSミクロ構造内の結晶粒界に移動し、該粒界に強度と伸度を追加すると考えられる。典型的には、上記硼素改質ニッケル基超合金から製造されたDS柱状晶粒鋳造物は、前記鋳造物の主応力軸に対し平行な<001>結晶軸を有し、且つ温度750℃および前記鋳造物の<001>結晶軸に対し垂直に掛けられる応力660Mpa(95.7Ksi)で試験した時、少なくとも約100時間の応力破断寿命と少なくとも約2.5%の伸び率を示す。   While not wishing to be bound by any theory, at high service temperatures, such as 816 ° C. typical of gas turbine engine blades, boron and carbon migrate to the grain boundaries in the DS microstructure and It is thought to add strength and elongation. Typically, a DS columnar grain cast made from the boron modified nickel-base superalloy has a <001> crystal axis parallel to the principal stress axis of the cast and a temperature of 750 ° C. and When tested at a stress of 660 Mpa (95.7 Ksi) applied perpendicular to the <001> crystal axis of the casting, it exhibits a stress rupture life of at least about 100 hours and an elongation of at least about 2.5%.

例えば、以下のDS鋳造試験を行った。これらの試験は、本発明のさらなる説明を提供するものであり、本発明を制限するものではない。   For example, the following DS casting test was performed. These tests provide further explanation of the invention and do not limit the invention.

前述の米国特許第4 597 809号のニッケル基超合金組成を有する試料#1、ならびに硼素改質ニッケル基超合金の試料#1Aおよび#2および#3を、表Iに記載の以下の組成(単位:重量%)で調製した。   Sample # 1 having the nickel-base superalloy composition of the aforementioned US Pat. No. 4,597,809, and samples # 1A and # 2 and # 3 of boron-modified nickel-base superalloys were prepared as shown in Table I below. (Unit:% by weight).

Figure 2006503980
Figure 2006503980

各試料を鋳造して、ASTM E−139試験手順に従った横応力破断試験について角胴形を有するDS柱状晶粒非中空鋳造物を成形した。   Each sample was cast to form a DS columnar grain non-hollow casting having a square body shape for a transverse stress rupture test according to ASTM E-139 test procedure.

前記DS鋳造物は、例えば、通常のブリッジマン離型一方向凝固法を使用して製造した。   The DS casting was produced using, for example, the usual Bridgman mold release unidirectional solidification method.

例えば各試料を1ミクロンの真空下、通常の鋳造炉の坩堝内で溶融し、1427℃に加熱した。その加熱溶融物を、ジルコン/アルミナを含むさらなるスラリ/スタッコ層により裏打ちされたジルコンを含む表面塗膜を具備する焼流し精密鋳造用鋳型に注入した。その鋳型を1482℃に予熱し、チルプレートを載せて、鋳型内の溶融合金からの一方向的熱除去を行った。溶融物を満たした鋳型およびチルプレートを、1ミクロンの真空下、15〜40cm/時の取り出し速度で炉から取り出して、鋳造炉の凝固室に移した。   For example, each sample was melted in a crucible of a normal casting furnace under a vacuum of 1 micron and heated to 1427 ° C. The heated melt was poured into a casting precision casting mold with a surface coating comprising zircon lined with a further slurry / stucco layer comprising zircon / alumina. The mold was preheated to 1482 ° C., a chill plate was placed, and unidirectional heat removal from the molten alloy in the mold was performed. The mold and chill plate filled with the melt were removed from the furnace at a removal speed of 15-40 cm / hour under a vacuum of 1 micron and transferred to the solidification chamber of the casting furnace.

そのDS柱状晶粒鋳造物を真空下、その室内で室温に冷却し、機械的な突き出し手順を使用する通常の方法でその鋳型から取り出し、そのマトリックスへの第二相の溶解が、部分的にしか行われないような温度と時間で熱処理した。   The DS columnar grain casting is cooled to room temperature in the chamber under vacuum, removed from the mold in the usual manner using a mechanical extrusion procedure, and the dissolution of the second phase in the matrix is partially It was heat-treated at such a temperature and time that it can only be performed.

このニッケル基超合金は、第二相としてγ’−相を有する。   This nickel-base superalloy has a γ'-phase as the second phase.

請求項21の組成を有する試験品(例えばニッケル基超合金)については、本発明の熱処理を、鋳造後、この合金の第二相(例えば、y’相)の溶解温度ではない1213℃で少なくとも1時間行う。   For a test article (eg, nickel-base superalloy) having the composition of claim 21, the heat treatment of the present invention is at least 1213 ° C. after casting, which is not the melting temperature of the second phase (eg, y ′ phase) of the alloy Perform for 1 hour.

第二相がそのマトリックスに完全に溶解されない限りは、完全溶解処理に通常使用する1250℃の温度(完全溶解温度と呼ばれる)も使用できる。   As long as the second phase is not completely dissolved in the matrix, the 1250 ° C. temperature normally used for complete dissolution processing (referred to as the complete dissolution temperature) can also be used.

結晶粒界割れを回避し試験品の収率を高め、試験品の望ましい機械的特性を増させるために熱処理後のその幾何学的配置および製造率に依存して、マトリックスに溶解しない第二相の量は、90、70、50又は30容量%以下である。   A second phase that does not dissolve in the matrix, depending on its geometry and manufacturing rate after heat treatment to avoid grain boundary cracking, increase the yield of the specimen and increase the desired mechanical properties of the specimen Is less than 90, 70, 50 or 30% by volume.

本合金は、単結晶構造および一方向に沿った粒子のみを有する構造の何れかをとる。   This alloy takes either a single crystal structure or a structure having only particles along one direction.

必要なら、この溶解熱処理後に少なくとも2時間、1080℃でこの組成物に熟成熱処理を行う。更にその後、少なくとも12時間、870℃で二次熟成熱処理を行える。   If necessary, the composition is subjected to an aging heat treatment at 1080 ° C. for at least 2 hours after the solution heat treatment. Thereafter, a secondary aging heat treatment can be performed at 870 ° C. for at least 12 hours.

特に本発明の熱処理は、鋳造後に通常行う熱処理の後、割れが中実の試験品より頻繁に壁、特に薄壁で発生するので、中空の試験品、特に翼、羽根又はライナに使用される。   In particular, the heat treatment of the present invention is used for hollow specimens, especially wings, blades or liners, because cracks occur more frequently on walls, especially thin walls, after the heat treatment normally performed after casting, than on solid specimens. .

本発明の熱処理は、この熱処理の間に結晶粒界強度の増大をもたらし、熱処理後の収率(割れのない部品)を増大させる。   The heat treatment of the present invention results in an increase in grain boundary strength during this heat treatment and increases the yield after heat treatment (parts without cracks).

最終製品としての部品の横応力破断も、結晶粒界強度が増大するため、使用条件下で前記部品を使用している間に増大する。本発明の方法は、例えばガスタービンの中実部品についても良好な結果を生じる。   The transverse stress rupture of the part as a final product also increases during use of the part under the conditions of use due to the increased grain boundary strength. The method of the present invention also produces good results, for example for solid parts of gas turbines.

本鋳造物を化学的性質についても分析し、試験品形状に機械加工した。   The casting was also analyzed for chemical properties and machined into test specimen shapes.

応力破断試験は、空気中、温度750℃および試験品の<001>結晶軸に対して垂直に掛けられる応力660Mpa(95.7Ksi)で行った。   The stress rupture test was conducted in air at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi) applied perpendicular to the <001> crystal axis of the test product.

応力破断試験の結果を下の表IIに記載する。ここで、寿命(単位:時間)は試験品の破断迄の時間を示し、伸び率は破断迄の試験品の伸び率であり、面積の赤は破断迄の試験品の面積の減少である。基線データは、試料#1についての試験データに対応し、#1A、#2および#3のデータは、試料#1A、#2および#3についての試験データに各々対応する。基線データは、二つの応力破断試験試験品の平均を表すが、#1A、#2および#3のデータは、単一の応力破断試験用の試験品を表す。   The results of the stress rupture test are listed in Table II below. Here, the life (unit: time) indicates the time until the test article breaks, the elongation is the elongation of the test article until the break, and the area red indicates the decrease in the area of the test article until the break. The baseline data corresponds to the test data for sample # 1, and the data for # 1A, # 2 and # 3 correspond to the test data for samples # 1A, # 2 and # 3, respectively. The baseline data represents the average of two stress rupture test specimens, while the data for # 1A, # 2 and # 3 represent the specimen for a single stress rupture test.

Figure 2006503980
Figure 2006503980

試料#1から製造したDS柱状晶粒試験品が、温度750℃および応力660Mpa(95.7Ksi)で試験した時、横方向結晶粒界強度が本質的に無い結果(例えば応力破断寿命0時間)を示したことは、表IIから明らかである。即ちそれらの試験品は、即座に失敗して、ほぼゼロの応力破断寿命を生じた。更に伸び率と面積の減少データも略ゼロであった。これらの応力破断特性は、試料#1から製造したDS柱状晶粒鋳造物がガスタービンエンジンのタービン翼として使用するために不適格なものとなる程不十分である。   DS columnar grain test product produced from Sample # 1 has essentially no transverse grain boundary strength when tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi) (eg, stress rupture life 0 hours) It is clear from Table II that That is, these specimens failed immediately and produced a near zero stress rupture life. Furthermore, the elongation and area reduction data were also almost zero. These stress rupture properties are insufficient to render the DS columnar grain cast produced from Sample # 1 unfit for use as a turbine blade of a gas turbine engine.

対照的に、温度750℃と応力660Mpa(95.7Ksi)で試験した時、試料#1Aから製造したDS柱状晶粒試験品が、275時間の応力破断寿命、3.1%の伸び率および4.7の面積の減少を示し、試料#2から製造した試験品が、182時間の応力破断寿命、2.6%の伸び率および6.3%の面積の減少を示したことが表IIによって解る。本発明のこれらの応力破断特性は、試料#1から製造した試験品に勝る予想外の驚くべき改善を表し、また、本発明のこれらの応力破断特性によって、試料#1A、#2および#3から製造したDS柱状晶粒鋳造物が、ガスタービンエンジンのタービン翼と他の部品としての使用に更に適するようになる。   In contrast, when tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi), the DS columnar grain specimen produced from Sample # 1A has a 275 hour stress rupture life, 3.1% elongation, and 4 Table II shows that the specimen manufactured from Sample # 2 showed an area reduction of .7, and exhibited a stress rupture life of 182 hours, an elongation of 2.6% and an area reduction of 6.3%. I understand. These stress rupture properties of the present invention represent an unexpected and surprising improvement over the specimens made from sample # 1, and the stress rupture properties of the present invention also allow samples # 1A, # 2 and # 3. DS columnar grain castings made from are more suitable for use as turbine blades and other parts of gas turbine engines.

本発明は、実質的な横応力破断強度および伸度を有するDS柱状晶粒鋳造物を生じるために有効である。これらの特性は、DS鋳造物の引張り強度、クリープ強度、疲労強度、および耐食性等の他の機械的特性に悪影響を及ぼすことなく達成される。本発明は、定置型工業用ガスタービンエンジンのタービンの複数の段階を通して使用される、鋳造物に実質的な横応力破断強度と伸度を付与するために上記の合金組成を有し、約20〜60cmおよびそれより上(約90cm等)の長さを有する大型DS柱状晶粒工業用ガスタービン(IGT)翼鋳造物を作製するために特に有用である。上に記載した硼素改質ニッケル基超合金鋳造物組成は、DS柱状晶粒部品又は単結晶部品として鋳造できる。   The present invention is effective to produce DS columnar grain castings having substantial transverse stress rupture strength and elongation. These properties are achieved without adversely affecting other mechanical properties such as tensile strength, creep strength, fatigue strength, and corrosion resistance of the DS casting. The present invention has an alloy composition as described above for imparting substantial transverse stress rupture strength and elongation to a casting used throughout multiple stages of a turbine of a stationary industrial gas turbine engine. It is particularly useful for making large DS columnar grain industrial gas turbine (IGT) blade castings having lengths of ˜60 cm and above (such as about 90 cm). The boron-modified nickel-base superalloy casting composition described above can be cast as DS columnar grain parts or single crystal parts.

本発明を、本発明の具体的な実施形態の面から説明してきたが、本発明は、それらに限定されず、特許請求の範囲の記載によってのみ制限されるものである。   Although the present invention has been described in terms of specific embodiments of the present invention, the present invention is not limited thereto but only by the description of the scope of claims.

Claims (28)

結晶粒界強度を改善する添加物を少なくとも一つ含む鋳造合金の熱処理方法であって、
該合金が、鋳造後に合金のマトリックスに溶解温度で溶解する第二相を有し、
熱処理を、前記第二相が部分的にしか溶解しないように行う方法。
A method for heat treatment of a cast alloy comprising at least one additive for improving grain boundary strength,
The alloy has a second phase that melts at a melting temperature in the alloy matrix after casting;
A method in which the heat treatment is performed so that the second phase is only partially dissolved.
少なくもの一つのエージング処理を前記熱処理後に行う請求項1記載の方法。   The method of claim 1, wherein at least one aging treatment is performed after the heat treatment. 前記熱処理の温度が、完全溶解温度より低い請求項1記載の方法。   The method according to claim 1, wherein a temperature of the heat treatment is lower than a complete dissolution temperature. 前記熱処理の時間を、前記第二相が完全に溶解しないように選択する請求項1又は3記載の方法。   The method according to claim 1 or 3, wherein the time for the heat treatment is selected so that the second phase is not completely dissolved. 前記熱処理を、ニッケル又はコバルト基超合金に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on a nickel or cobalt base superalloy. 前記熱処理を、中空部品に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on a hollow part. 前記熱処理を、少なくとも200mmの長さを有する部品に対して行う請求項6記載の方法。   The method according to claim 6, wherein the heat treatment is performed on a part having a length of at least 200 mm. 前記熱処理を、8mm以下の外壁厚を持つ中空部品に対して行う請求項6記載の方法。   The method according to claim 6, wherein the heat treatment is performed on a hollow part having an outer wall thickness of 8 mm or less. 前記第二相が、γ’−相である請求項5記載の方法。   The method of claim 5, wherein the second phase is a γ′-phase. 前記熱処理を、添加物として硼素を含む合金に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on an alloy containing boron as an additive. 前記熱処理を、添加物として炭素を含む合金に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on an alloy containing carbon as an additive. 前記熱処理を、一方向凝固柱状晶粒を含む合金に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on an alloy including unidirectionally solidified columnar grains. 前記熱処理を、単結晶構造を含む合金に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on an alloy including a single crystal structure. 前記熱処理のパラメータを、溶解させる前記第二相の量が90容量%より少なくなるように選択する請求項1記載の方法。   The method of claim 1, wherein the heat treatment parameters are selected such that the amount of the second phase to be dissolved is less than 90% by volume. 前記熱処理のパラメータを、溶解させる前記第二相の量が70容量%より少なくなるように選択する請求項1記載の方法。   The method of claim 1, wherein the heat treatment parameters are selected such that the amount of the second phase to be dissolved is less than 70% by volume. 前記熱処理のパラメータを、溶解させる前記第二相の量が50容量%より少なくなるように選択する請求項1記載の方法。   The method of claim 1, wherein the heat treatment parameters are selected such that the amount of the second phase to be dissolved is less than 50% by volume. 前記熱処理のパラメータを、溶解させる前記第二相の量が30容量%より少なくなるように選択する請求項1記載の方法。   The method of claim 1, wherein the heat treatment parameters are selected such that the amount of the second phase to be dissolved is less than 30% by volume. 9.5〜14重量%のCr、
7〜11重量%のCo、
1〜2.5重量%のMo、
3〜6重量%のW、
1〜6重量%のTa、
3〜4重量%のAl、
3〜5重量%のTi、
0〜1重量%のNb、
鋳造物の横応力破断強度を硼素が存在しない同様の鋳造物と比較して実質的に改善するために有効な量で存在するBおよび
残部のNi
から成る一方向凝固柱状晶粒ニッケル基合金鋳造物に対し前記熱処理を行う請求項1記載の方法。
9.5 to 14% by weight of Cr,
7-11% by weight of Co,
1 to 2.5 wt% Mo,
3-6 wt% W,
1 to 6 wt% Ta,
3-4% by weight of Al,
3-5 wt% Ti,
0-1 wt% Nb,
B and balance Ni present in an effective amount to substantially improve the transverse stress rupture strength of the casting compared to a similar casting without boron.
The method according to claim 1, wherein the heat treatment is performed on a unidirectionally solidified columnar grain nickel-base alloy casting.
前記熱処理を、Bが0.003〜0.018重量%の範囲で存在する合金に対して行う請求項18記載の方法。   The method according to claim 18, wherein the heat treatment is performed on an alloy in which B is present in a range of 0.003 to 0.018% by weight. 前記熱処理後の合金を、温度750℃および前記鋳造物の<001>結晶軸に対して垂直方向に掛けられる応力660Mpa(95.7Ksi)で試験した時、少なくとも約100時間の応力破断寿命および少なくとも2.5%の破壊迄の伸び率を有する請求項18記載の方法。   When the heat-treated alloy is tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi) applied perpendicular to the <001> crystal axis of the casting, a stress rupture life of at least about 100 hours and at least The method of claim 18, having an elongation to failure of 2.5%. 11.6〜12.70重量%のCr、
8.5〜9.5重量%のCo、
1.65〜2.15重量%のMo、
3.5〜4.10重量%のW、
4.8〜5.20重量%のTa、
3.4〜3.80重量%のAl、
3.9〜4.25重量%のTi、
0.05〜0.11重量%のC、
0.003〜0.0175重量%のBおよび
残部のNi
から成り、硼素が存在しない同様の鋳造物と比較して優れた横応力破断強度を有する一方向凝固柱状晶粒ニッケル基合金鋳造物に対し前記熱処理を行う請求項1記載の方法。
11.6-12.70 wt% Cr,
8.5-9.5 wt% Co,
1.65 to 2.15 wt% Mo,
3.5-4.10 wt% W,
4.8-5.20 wt% Ta,
3.4-3.80 wt% Al,
3.9 to 4.25 wt% Ti,
0.05 to 0.11% by weight of C,
0.003 to 0.0175 wt% B and the balance Ni
2. The method of claim 1 wherein the heat treatment is performed on a unidirectionally solidified columnar grain nickel-base alloy casting comprising: and having superior transverse stress rupture strength compared to a similar casting without boron.
前記熱処理後の合金を、温度750℃および前記鋳造物の<001>結晶軸に対し垂直に掛かる応力660Mpa(95.7Ksi)で試験した時、少なくとも120時間の応力破断寿命および少なくとも2.5%の伸び率を有する請求項21記載の方法。   When the heat-treated alloy is tested at a temperature of 750 ° C. and a stress applied perpendicular to the <001> crystal axis of the cast, 660 Mpa (95.7 Ksi), a stress rupture life of at least 120 hours and at least 2.5% The method of claim 21 having an elongation of. 12.00重量%のCr、
9.00重量%のCo、
1.85重量%のMo、
3.70重量%のW、
5.10重量%のTa、
3.60重量%のAl、
4.00重量%のTi、
0.0125重量%のB、
0.09重量%のC、および
残部のNi
から成る規準組成を有し、かつ温度750℃および前記鋳造物の<001>結晶軸に対し垂直に掛ける応力660Mpa(95.7Ksi)で試験した時、少なくとも約100時間の応力破断寿命と少なくとも2.5%の破壊迄の伸び率を有する一方向凝固柱状晶粒ニッケル基合金鋳造物に対し前記熱処理を行う請求項1記載の方法。
12.00% by weight of Cr,
9.00% by weight Co,
1.85 wt% Mo,
3. 70 wt% W,
5. 10 wt% Ta,
3. 60% by weight of Al,
4.00 wt% Ti,
0.0125 wt% B,
0.09 wt% C, and the balance Ni
And a stress rupture life of at least about 100 hours and at least 2 when tested at a temperature of 750 ° C. and a stress of 660 Mpa (95.7 Ksi) applied perpendicular to the <001> crystal axis of the casting. The method of claim 1, wherein said heat treatment is performed on a unidirectionally solidified columnar grain nickel-base alloy casting having an elongation to failure of 5%.
前記熱処理を鋳造後に行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed after casting. 完全溶解温度を使用する請求項4記載の方法。   The process according to claim 4, wherein a complete dissolution temperature is used. 前記中空部品が、羽根、翼およびライナのいずれかである請求項6記載の方法。   The method according to claim 6, wherein the hollow part is one of a blade, a wing, and a liner. 前記熱処理を中実部品に対して行う請求項1記載の方法。   The method according to claim 1, wherein the heat treatment is performed on a solid part. 前記熱処理を、ジルコン、ケイ素、ハフニウムから成る群から選択した添加物を含む合金を用いて行う請求項1記載の方法。   The method of claim 1, wherein the heat treatment is performed using an alloy comprising an additive selected from the group consisting of zircon, silicon, and hafnium.
JP2004545738A 2002-10-23 2002-10-23 Alloy heat treatment method Expired - Fee Related JP4812301B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/011856 WO2004038056A1 (en) 2002-10-23 2002-10-23 Heat treatment of alloys having elements for improving grain boundary strength

Publications (2)

Publication Number Publication Date
JP2006503980A true JP2006503980A (en) 2006-02-02
JP4812301B2 JP4812301B2 (en) 2011-11-09

Family

ID=32116204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004545738A Expired - Fee Related JP4812301B2 (en) 2002-10-23 2002-10-23 Alloy heat treatment method

Country Status (8)

Country Link
EP (1) EP1438441B1 (en)
JP (1) JP4812301B2 (en)
CN (1) CN100449031C (en)
AU (1) AU2002337170A1 (en)
CA (1) CA2503326C (en)
DE (1) DE60215035T2 (en)
ES (1) ES2276959T3 (en)
WO (1) WO2004038056A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849879A1 (en) * 2006-04-26 2007-10-31 Siemens Aktiengesellschaft Cyclic heat treatment process for a superalloy
EP1900839B1 (en) 2006-09-07 2013-11-06 Alstom Technology Ltd Method for the heat treatment of nickel-based superalloys
WO2011047714A1 (en) * 2009-10-20 2011-04-28 Siemens Aktiengesellschaft Alloy for directional solidification and component made of stem-shaped crystals
EP2769802A1 (en) 2013-02-22 2014-08-27 Siemens Aktiengesellschaft Improved welding material with regard to weldability and grain stabilisation, method and component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067435A1 (en) * 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength

Also Published As

Publication number Publication date
DE60215035D1 (en) 2006-11-09
CN1617944A (en) 2005-05-18
AU2002337170A8 (en) 2004-05-13
WO2004038056A1 (en) 2004-05-06
EP1438441A1 (en) 2004-07-21
CA2503326A1 (en) 2004-05-06
CN100449031C (en) 2009-01-07
AU2002337170A1 (en) 2004-05-13
CA2503326C (en) 2011-02-08
ES2276959T3 (en) 2007-07-01
DE60215035T2 (en) 2007-01-11
JP4812301B2 (en) 2011-11-09
EP1438441B1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
US6231692B1 (en) Nickel base superalloy with improved machinability and method of making thereof
EP0746634B1 (en) Single crystal nickel-based superalloy
US20040011439A1 (en) Directionally solidified casting with improved transverse stress rupture strength
CA2957786C (en) Enhanced superalloys by zirconium addition
JP4885530B2 (en) High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method
US5173255A (en) Cast columnar grain hollow nickel base alloy articles and alloy and heat treatment for making
JPS62267440A (en) Monocrystal alloy product and its production
WO1994000611A9 (en) Single crystal nickel-based superalloy
JP4413492B2 (en) Directional solidified parts and nickel-base superalloys
AU621149B2 (en) Improvements in or relating to alloys
JP2019537665A (en) Titanium-free superalloys, powders, methods and components
CA2612815A1 (en) Low-density directionally solidified single-crystal superalloys
JP4222540B2 (en) Nickel-based single crystal superalloy, manufacturing method thereof, and gas turbine high-temperature component
JP3148211B2 (en) Nickel-based superalloy, article made of nickel-based superalloy, method of heat treatment of cast article made of nickel-based alloy, method of manufacturing cast article made of columnar particle nickel-based superalloy, and turbine blade of gas turbine engine made of columnar particle nickel-based superalloy Manufacturing method of cast member
JP4812301B2 (en) Alloy heat treatment method
JP2015165046A (en) Article and method for forming article
JPH06184685A (en) Precipitation hardened nickel super alloy and method of using said alloy as material for produc- ing adjustably solidified structural member
US20120175027A1 (en) Heat Treatment of Alloys Having Elements for Improving Grain Boundary Strength
JP2004332114A (en) Nickel-based superalloy and single crystal cast
US20060249233A1 (en) Heat treatment of alloys having elements for improving grain boundary strength
US20080163962A1 (en) Directionally solidified casting with improved transverse stress rupture strength
Erickson et al. Directionally Solidified DS CM 247 LC-Optimized Mechanical Properties Resulting From Extensive Solutioning
JP4223627B2 (en) Nickel-based single crystal heat-resistant superalloy, manufacturing method thereof, and turbine blade using nickel-based single crystal heat-resistant superalloy
JP2023018394A (en) Ni-BASED SUPERALLOY, AND TURBINE WHEEL
JP3209902B2 (en) High temperature corrosion resistant single crystal nickel-based superalloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100514

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees