JP2006348836A - Fluid control device - Google Patents

Fluid control device Download PDF

Info

Publication number
JP2006348836A
JP2006348836A JP2005175526A JP2005175526A JP2006348836A JP 2006348836 A JP2006348836 A JP 2006348836A JP 2005175526 A JP2005175526 A JP 2005175526A JP 2005175526 A JP2005175526 A JP 2005175526A JP 2006348836 A JP2006348836 A JP 2006348836A
Authority
JP
Japan
Prior art keywords
control valve
valve
passage
actuator
control valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005175526A
Other languages
Japanese (ja)
Other versions
JP4530920B2 (en
Inventor
Masaru Asari
大 浅利
Masami Oshima
正美 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005175526A priority Critical patent/JP4530920B2/en
Publication of JP2006348836A publication Critical patent/JP2006348836A/en
Application granted granted Critical
Publication of JP4530920B2 publication Critical patent/JP4530920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Mechanically-Actuated Valves (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the load of an actuator which opens/closes first and second control valves while surely restricting the closing positions of the first and second control valves of a fluid control device. <P>SOLUTION: When the first and second control valves 19, 20 for opening/closing an intake passage 15 and a bypass passage 17, respectively, are driven to be opened/closed in mutually opposite directions by a common actuator, the first and second control valves 19, 20 connected to each other via a link means 21 consisting of first and second levers 39, 40 are energized to be closed by first and second torsion springs 41, 43. The closing positions of the first and second control valves 19, 20 are thereby surely restricted by the resilient force of the first and second torsion springs 41, 43 as well as the resilient force of the first torsion springs 41 is counterbalanced with that of the second torsion spring 43 even when the fist and second control valves are opened/closed in any direction. This reduces the size of the actuator and the consumption of driving energy while avoiding an increase in the load of the actuator due to the provision of the first and second torsion springs 41, 43. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体が流通する第1通路と、第1通路から分岐して該第1通路を迂回する第2通路と、第1通路を開閉する第1制御バルブと、第2通路を開閉する第2制御バルブと、第1、第2制御バルブを開閉駆動する共通のアクチュエータとを備えた流体制御装置に関する。   The present invention provides a first passage through which a fluid flows, a second passage that branches from the first passage and bypasses the first passage, a first control valve that opens and closes the first passage, and opens and closes the second passage. The present invention relates to a fluid control device including a second control valve and a common actuator that opens and closes the first and second control valves.

ターボチャージャを備えたディーゼルエンジンの吸気通路にインタークーラを配置するとともに、このインタークーラをバイパスするバイパス通路の両端を吸気通路に接続し、吸気通路およびバイパス通路の分岐部の近傍にそれぞれ設けた2個の制御バルブを共通のアクチュエータで開閉駆動するものが、下記特許文献1により公知である。
特公平5−74688号公報
An intercooler is disposed in an intake passage of a diesel engine equipped with a turbocharger, and both ends of a bypass passage that bypasses the intercooler are connected to the intake passage, and provided in the vicinity of branch portions of the intake passage and the bypass passage, respectively. Japanese Patent Application Laid-Open Publication No. 2004-151542 discloses that a single control valve is opened and closed by a common actuator.
Japanese Patent Publication No. 5-74688

アクチュエータで開閉される制御バルブの閉弁位置を確実に規制するには、その制御バルブをスプリング等の弾発手段で閉弁方向に付勢することが必要である。しかしながら、制御バルブを弾発手段で閉弁方向に付勢すると、アクチュエータで制御バルブを開弁する際に必要な駆動力が弾発手段の弾発力の分だけ大きくなるため、大型のアクチュエータが必要になったりアクチュエータの消費電力が増加したりする問題がある。   In order to reliably regulate the valve closing position of the control valve that is opened and closed by the actuator, it is necessary to bias the control valve in the valve closing direction by a resilient means such as a spring. However, when the control valve is urged in the valve closing direction by the resilient means, the driving force required to open the control valve by the actuator increases by the amount of the resilient force of the resilient means. There is a problem that it becomes necessary or the power consumption of the actuator increases.

本発明は前述の事情に鑑みてなされたもので、流体制御装置の第1、第2制御バルブの閉弁位置を確実に規制しながら、第1、第2制御バルブを開閉するアクチュエータの負荷を低減することを目的とする。   The present invention has been made in view of the above-described circumstances. The load on the actuator that opens and closes the first and second control valves is reliably controlled while the valve closing positions of the first and second control valves of the fluid control device are reliably regulated. The purpose is to reduce.

上記目的を達成するために、請求項1に記載された発明によれば、流体が流通する第1通路と、第1通路から分岐して該第1通路を迂回する第2通路と、第1通路を開閉する第1制御バルブと、第2通路を開閉する第2制御バルブと、第1、第2制御バルブを開閉駆動する共通のアクチュエータとを備えた流体制御装置において、第1制御バルブが開弁するときに第2制御バルブが閉弁し、第1制御バルブが閉弁するときに第2制御バルブが開弁するように該第1、第2制御バルブを連動手段で連結し、第1制御バルブを第1弾発手段で閉弁方向に付勢するとともに第2制御バルブを第2弾発手段で閉弁方向に付勢したことを特徴とする流体制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, a first passage through which a fluid flows, a second passage branched from the first passage and bypassing the first passage, In a fluid control device including a first control valve that opens and closes a passage, a second control valve that opens and closes a second passage, and a common actuator that opens and closes the first and second control valves, the first control valve includes: The first and second control valves are connected by interlocking means so that the second control valve is closed when the valve is opened, and the second control valve is opened when the first control valve is closed. A fluid control device is proposed in which one control valve is urged in the valve closing direction by the first elastic means and the second control valve is urged in the valve closing direction by the second elastic means.

また請求項2に記載された発明によれば、請求項1の構成に加えて、アクチュエータを第1制御バルブに接続し、第2弾発手段の弾発力を第1弾発手段の弾発力よりも強く設定したことを特徴とする流体制御装置が提案される。   According to the second aspect of the present invention, in addition to the configuration of the first aspect, the actuator is connected to the first control valve, and the elastic force of the second elastic means is the elastic force of the first elastic means. A fluid control device is proposed which is characterized by being set stronger than the force.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、第1、第2制御バルブの全閉位置をそれぞれ規制するストッパ手段を設けたことを特徴とする流体制御装置が提案される。   According to a third aspect of the invention, in addition to the configuration of the first or second aspect, the stopper means for restricting the fully closed positions of the first and second control valves is provided. A fluid control device is proposed.

尚、実施例の上流側吸気通路14および下流側吸気通路15は本発明の第1通路に対応し、実施例の上流側バイパス通路16および下流側バイパス通路17は本発明の第2通路に対応し、実施例の第1捩じりばね41は本発明の第1弾発手段に対応し、実施例の第2捩じりばね43は本発明の第2弾発手段に対応し、実施例のストッパ突起39b,40bおよびストッパボルト42,44は本発明のストッパ手段に対応する。   The upstream intake passage 14 and the downstream intake passage 15 of the embodiment correspond to the first passage of the present invention, and the upstream bypass passage 16 and the downstream bypass passage 17 of the embodiment correspond to the second passage of the present invention. The first torsion spring 41 of the embodiment corresponds to the first resilient means of the present invention, and the second torsion spring 43 of the embodiment corresponds to the second resilient means of the present invention. The stopper protrusions 39b and 40b and the stopper bolts 42 and 44 correspond to the stopper means of the present invention.

請求項1の構成によれば、第1通路および第2通路にそれぞれ設けた第1、第2制御バルブを共通のアクチュエータで相互に逆方向に開閉駆動する際に、連動手段で連結された第1、第2制御バルブをそれぞれ第1、第2弾発手段で閉弁方向に付勢したので、第1、第2弾発手段の弾発力で第1、第2制御バルブの閉弁位置を確実に規制することができるだけでなく、第1、第2制御バルブを何れの方向に開閉する場合でも第1、第2弾発手段の弾発力が相殺するので、第1、第2弾発手段を設けたことによるアクチュエータの負荷増大を回避して該アクチュエータの小型化や駆動エネルギーの節減を図ることができる。   According to the configuration of the first aspect, when the first and second control valves respectively provided in the first passage and the second passage are opened / closed in the opposite directions by the common actuator, the first and second control valves are connected by the interlocking means. Since the first and second control valves are energized in the valve closing direction by the first and second resilient means, respectively, the first and second control valves are closed by the resilient force of the first and second resilient means. In addition, the first and second bullets are canceled out in any direction when the first and second control valves are opened and closed, so that the first and second bullets cancel each other. By avoiding an increase in actuator load due to the provision of the emitting means, the actuator can be reduced in size and drive energy can be reduced.

請求項2の構成によれば、アクチュエータを第1制御バルブに接続したので、第2制御バルブは第1制御バルブにより連動手段を介して間接的に駆動されるが、第2制御バルブを閉弁方向に付勢する第2弾発手段の弾発力を第1制御バルブを閉弁方向に付勢する第1弾発手段の弾発力よりも強く設定したので、アクチュエータの駆動力に頼らずに第2制御バルブを確実に閉弁することができる。   According to the configuration of the second aspect, since the actuator is connected to the first control valve, the second control valve is indirectly driven by the first control valve via the interlocking means, but the second control valve is closed. Since the resilient force of the second resilient means biasing in the direction is set to be stronger than the resilient force of the first resilient means biasing the first control valve in the closing direction, it does not depend on the driving force of the actuator. In addition, the second control valve can be reliably closed.

請求項3の構成によれば、第1、第2制御バルブの全閉位置をそれぞれ規制するストッパ手段を設けたので、第1、第2制御バルブを精度良く全閉位置に停止させることができる。   According to the configuration of the third aspect, since the stopper means for restricting the fully closed positions of the first and second control valves is provided, the first and second control valves can be accurately stopped at the fully closed position. .

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図6は本発明の一実施例を示すもので、図1はインタークーラ装置の全体正面図、図2は図1の2−2線拡大断面図、図3は図2の3−3線矢視図、図4は図3に対応する作用説明図、図5はインタークーラ装置の模式図、図7は第1、第2制御バルブのトルク特性を示すグラフである。   1 to 6 show an embodiment of the present invention. FIG. 1 is an overall front view of an intercooler device, FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1, and FIG. FIG. 4 is an operation explanatory view corresponding to FIG. 3, FIG. 5 is a schematic diagram of an intercooler device, and FIG. 7 is a graph showing torque characteristics of the first and second control valves.

図1および図5に示すように、自動車のディーゼルエンジン11を過給するターボチャージャ12で圧縮された吸気を冷却するインタークーラ13は、その上流側が上流側吸気通路14を介してターボチャージャ12に接続され、その下流側が下流側吸気通路15を介してディーゼルエンジン11に接続される。上流側吸気通路14から分岐する上流側バイパス通路16と、下流側吸気通路15から分岐する下流側バイパス通路17との間に、ディーゼルエンジン11の冷却水が流通するウオーマ18が接続される。下流側吸気通路15にはそれを開閉するバタフライバルブよりなる第1制御バルブ19が設けられ、下流側バイパス通路17にはそれを開閉するバタフライバルブよりなる第2制御バルブ20が設けられる。第1、第2制御バルブ19,20は、第1制御バルブ19が開弁しているときに第2制御バルブ20が閉弁し、かつ第2制御バルブ20が開弁しているときに第1制御バルブ19が閉弁するように連動手段21で連結されており、共通のアクチュエータ22によって相互に連動して開閉駆動される。   As shown in FIGS. 1 and 5, an intercooler 13 that cools intake air compressed by a turbocharger 12 that supercharges a diesel engine 11 of an automobile has an upstream side connected to the turbocharger 12 via an upstream side intake passage 14. The downstream side is connected to the diesel engine 11 via the downstream side intake passage 15. A warmer 18 through which the cooling water of the diesel engine 11 flows is connected between an upstream bypass passage 16 branched from the upstream intake passage 14 and a downstream bypass passage 17 branched from the downstream intake passage 15. The downstream intake passage 15 is provided with a first control valve 19 comprising a butterfly valve for opening and closing it, and the downstream bypass passage 17 is provided with a second control valve 20 comprising a butterfly valve for opening and closing it. The first and second control valves 19 and 20 are closed when the first control valve 19 is opened and the second control valve 20 is closed and when the second control valve 20 is opened. 1 The control valve 19 is connected by an interlocking means 21 so as to be closed, and is driven to open and close in conjunction with each other by a common actuator 22.

図2〜図4に示すように、下流側吸気通路15と一体に形成されて下流側バイパス通路17の一部を含むバルブハウジング23は、その開口部を覆うように3本のボルト24…で固定されたカバー25を備えており、カバー25の外面にアクチュエータ22が図示せぬボルトで固定される。下流側吸気通路15を開閉する第1制御バルブ19は、バルブハウジング23に一対のボールベアリング26,27で回転自在に支持した第1バルブシャフト28に固定され、下流バイパス通路17を開閉する第2制御バルブ20は、バルブハウジング23に一対のボールベアリング29,30で回転自在に支持した第2バルブシャフト31に固定される。   As shown in FIGS. 2 to 4, the valve housing 23 formed integrally with the downstream side intake passage 15 and including a part of the downstream side bypass passage 17 is composed of three bolts 24 so as to cover the opening. A fixed cover 25 is provided, and the actuator 22 is fixed to the outer surface of the cover 25 with a bolt (not shown). A first control valve 19 that opens and closes the downstream side intake passage 15 is fixed to a first valve shaft 28 that is rotatably supported by the valve housing 23 with a pair of ball bearings 26 and 27, and a second control valve 19 that opens and closes the downstream bypass passage 17. The control valve 20 is fixed to a second valve shaft 31 that is rotatably supported on the valve housing 23 by a pair of ball bearings 29 and 30.

アクチュエータ22は電気モータ32の出力軸32aの回転を減速して第1バルブシャフト28に伝達する減速機構33を備える。減速機構33はバルブハウジング23の内部に回転自在に支持した中間軸34を備えており、電気モータ32の出力軸32aと中間軸34とが適宜の減速伝動手段35を介して連結され、かつ中間軸34に固定した第1スパーギヤ37が第1バルブシャフト28の端部に固定した第2スパーギヤ38に噛合する。   The actuator 22 includes a speed reduction mechanism 33 that decelerates and transmits the rotation of the output shaft 32 a of the electric motor 32 to the first valve shaft 28. The speed reduction mechanism 33 includes an intermediate shaft 34 that is rotatably supported inside the valve housing 23, and the output shaft 32 a of the electric motor 32 and the intermediate shaft 34 are connected via an appropriate speed reduction transmission means 35. A first spur gear 37 fixed to the shaft 34 meshes with a second spur gear 38 fixed to the end of the first valve shaft 28.

第1、第2制御バルブ19,20の開閉を連動させる連動手段で21は、第1バルブシャフト28の軸端に固定した第1レバー39と、第2バルブシャフト31の軸端に固定した第2レバー40とを備える。第1バルブシャフト28の周囲を囲むように配置された第1捩じりばね41の一端をバルブハウジング23に設けたばね受け23aに係止し、かつ他端を第1レバー39に設けたばね受け39aに係止することで、第1レバー39は図3および図4の時計方向に、つまり第1制御バルブ19が閉弁する方向に付勢される。第1制御バルブ19の閉弁位置は、第1レバー39に設けたストッパ突起39bがバルブハウジング23に位置調整可能に設けたストッパボルト42に当接することで精度良く規制される(図4参照)。   The interlocking means 21 for interlocking opening and closing of the first and second control valves 19 and 20 includes a first lever 39 fixed to the shaft end of the first valve shaft 28 and a first lever 39 fixed to the shaft end of the second valve shaft 31. 2 levers 40. One end of a first torsion spring 41 disposed so as to surround the first valve shaft 28 is engaged with a spring receiver 23 a provided on the valve housing 23, and the other end is provided with a spring receiver 39 a provided on the first lever 39. The first lever 39 is biased in the clockwise direction of FIGS. 3 and 4, that is, in the direction in which the first control valve 19 is closed. The valve closing position of the first control valve 19 is regulated with high accuracy by the stopper projection 39b provided on the first lever 39 coming into contact with the stopper bolt 42 provided on the valve housing 23 so that the position can be adjusted (see FIG. 4). .

また第2バルブシャフト31の周囲を囲むように配置された第2捩じりばね43の一端をバルブハウジング23に設けたばね受け23bに係止し、かつ他端を第2レバー40に設けたばね受け40aに係止することで、第2レバー40は図3および図4の時計方向に、つまり第2制御バルブ20が閉弁する方向に付勢される。第2制御バルブ20の閉弁位置は、第2レバー40に設けたストッパ突起40bがバルブハウジング23に位置調整可能に設けたストッパボルト44に当接することで精度良く規制される(図3参照)。   Further, one end of a second torsion spring 43 disposed so as to surround the second valve shaft 31 is engaged with a spring receiver 23 b provided on the valve housing 23 and the other end is provided on a second lever 40. By engaging with 40a, the second lever 40 is urged in the clockwise direction of FIGS. 3 and 4, that is, in the direction in which the second control valve 20 is closed. The valve closing position of the second control valve 20 is accurately regulated by the stopper projection 40b provided on the second lever 40 coming into contact with the stopper bolt 44 provided on the valve housing 23 so that the position can be adjusted (see FIG. 3). .

第1レバー39に設けたローラ45が第2レバー40に形成したカム面40cに当接可能に対向しており、ローラ45およびカム面40cの当接により第1、第2レバー39,40は相互に連動して回転する。   A roller 45 provided on the first lever 39 is opposed to a cam surface 40c formed on the second lever 40 so that the roller 45 and the cam surface 40c are in contact with each other, and the first and second levers 39 and 40 are brought into contact with each other. Rotates in conjunction with each other.

次に、上記構成を備えた実施例の作用を説明する。   Next, the operation of the embodiment having the above configuration will be described.

ディーゼルエンジン11が通常運転状態にあるとき、図3に示すように、第1制御バルブ19が開弁して下流側吸気通路15を開放し、かつ第2制御バルブ20が閉弁して下流側バイパス通路17を閉塞する。このとき、第1レバー39のローラ45が第2レバー40のカム面40cから僅かに離間し、かつ第2捩じりばね43の弾発力で第2レバー40のストッパ突起40bがストッパボルト44に当接することで、第2制御バルブ20の閉弁位置を正確に規制してカジリの発生を防止することができる。この状態では、ターボチャージャ12で圧縮された高温の吸気が上流側吸気通路14および下流側吸気通路15間のインタークーラ13を通過するので、インタークーラ13で吸気を冷却してディーゼルエンジン11の出力を更に増加させることができる。   When the diesel engine 11 is in a normal operation state, as shown in FIG. 3, the first control valve 19 opens to open the downstream intake passage 15, and the second control valve 20 closes to the downstream side. The bypass passage 17 is closed. At this time, the roller 45 of the first lever 39 is slightly separated from the cam surface 40 c of the second lever 40, and the stopper projection 40 b of the second lever 40 is moved to the stopper bolt 44 by the elastic force of the second torsion spring 43. By abutting on the valve, the valve closing position of the second control valve 20 can be accurately regulated to prevent galling. In this state, since the high-temperature intake air compressed by the turbocharger 12 passes through the intercooler 13 between the upstream intake passage 14 and the downstream intake passage 15, the intake air is cooled by the intercooler 13 to output the diesel engine 11. Can be further increased.

ディーゼルエンジン11の排気中のPM(排気微粒子:Particulate Matter)を吸着して浄化処理するためのPMトラップを定期的に再生するためには、吸気温度を高めることで排気温度を高め、高温の排ガスでPMトラップ中のPMを燃焼させる必要がある。この場合には、アクチュエータ22を駆動して開弁状態にある第1制御バルブ19を閉弁するとともに、閉弁状態にある第2制御バルブ20を開弁することで、図4に示すように、下流側吸気通路15を閉塞して下流側バイパス通路17を開放する。その結果、ターボチャージャ12で圧縮された高温の吸気は、インタークーラ13を通過することなく、上流側バイパス通路16および下流側バイパス通路17間のウオーマ18を通過することで、更に加熱された状態でディーゼルエンジン11に供給される。   In order to periodically regenerate PM traps for adsorbing and purifying PM (Particulate Matter) in the exhaust of the diesel engine 11, the exhaust gas temperature is increased by raising the intake air temperature, and the exhaust gas is hot. Therefore, it is necessary to burn the PM in the PM trap. In this case, the actuator 22 is driven to close the first control valve 19 in the open state, and the second control valve 20 in the closed state is opened, as shown in FIG. Then, the downstream side intake passage 15 is closed and the downstream side bypass passage 17 is opened. As a result, the high-temperature intake air compressed by the turbocharger 12 passes through the warmer 18 between the upstream bypass passage 16 and the downstream bypass passage 17 without passing through the intercooler 13, and is further heated. Is supplied to the diesel engine 11.

第1、第2制御バルブ19,20を図3の状態から図4の状態に開閉すべくアクチュエータ22を駆動すると、電気モータ32の出力軸32aの回転が減速伝動手段35、中間軸34、第1スパーギヤ37および第2スパーギヤ38を介して第1バルブシャフト28に伝達され、第1バルブシャフト28に設けた第1制御バルブ19を閉弁位置へと駆動する。図4に示すように、第1制御バルブ19が閉弁位置にあるとき、第1レバー39のストッパ突起39bがストッパボルト42に当接することで、第1制御バルブ19の閉弁位置を正確に規制してカジリの発生を防止することができる。   When the actuator 22 is driven to open and close the first and second control valves 19 and 20 from the state of FIG. 3 to the state of FIG. 4, the rotation of the output shaft 32 a of the electric motor 32 is caused by the speed reduction transmission means 35, the intermediate shaft 34, The first control valve 19 provided on the first valve shaft 28 is driven to the closed position by being transmitted to the first valve shaft 28 via the first spur gear 37 and the second spur gear 38. As shown in FIG. 4, when the first control valve 19 is in the valve closing position, the stopper protrusion 39b of the first lever 39 abuts against the stopper bolt 42, so that the valve closing position of the first control valve 19 is accurately set. It can be regulated to prevent galling.

第1制御バルブ19と共に第1レバー39が図3の位置から図4の位置へと時計方向に回転すると、第1レバー39のローラ45にカム面40cを押圧された第2レバー40が第2捩じりばね43の弾発力に抗して反時計方向に回転することで、第2制御バルブ20が開弁する。このとき、第1捩じりばね41の弾発力は第1制御バルブ19の回転を補助する方向に作用するが、第2捩じりばね43の弾発力は第2制御バルブ20の回転を阻止するように作用するため、第1、第2捩じりばね41,43の弾発力が相殺してアクチュエータ22の負荷を軽減し、電気モータ32の小型化を可能にするとともに消費電力の節減を図ることができる。   When the first lever 39 is rotated together with the first control valve 19 from the position of FIG. 3 to the position of FIG. 4, the second lever 40 whose cam surface 40 c is pressed by the roller 45 of the first lever 39 is the second lever 40. The second control valve 20 is opened by rotating counterclockwise against the elastic force of the torsion spring 43. At this time, the elastic force of the first torsion spring 41 acts in the direction of assisting the rotation of the first control valve 19, but the elastic force of the second torsion spring 43 is the rotation of the second control valve 20. Therefore, the elastic forces of the first and second torsion springs 41 and 43 cancel each other to reduce the load on the actuator 22, thereby enabling the electric motor 32 to be reduced in size and power consumption. Can be saved.

逆に、第1、第2制御バルブ19,20を図4の状態から図3の状態に開閉する場合には、先ずアクチュエータ22の駆動力で第1制御バルブ19が反時計方向に回転して開弁し、第1制御バルブ19と一体の第1レバー39のローラ45にカム面40cを追従させながら、第2捩じりばね43の弾発力で第2レバー40が時計方向に回転して制御バルブ20が閉弁する。このとき、第1捩じりばね41の弾発力は第1制御バルブ19の回転を阻止する方向に作用するが、第2捩じりばね43の弾発力は第2制御バルブ20の回転を補助するように作用するため、第1、第2捩じりばね41,43の弾発力が相殺してアクチュエータ22の負荷を軽減し、電気モータ32の小型化を可能にするとともに消費電力の節減を図ることができる。 以上のように、共通のアクチュエータ22で第1、第2制御バルブ19,20の一方を開弁して他方を閉弁するとき、第1、第2制御バルブ19,20を閉弁方向に付勢する第1、第2捩じりばね41,43の弾発力が相殺されるので、第1、第2捩じりばね41,43の弾発力で第1、第2制御バルブ19,20を確実に閉弁させながら、アクチュエータ22の駆動力を節減することができる。   Conversely, when opening and closing the first and second control valves 19 and 20 from the state of FIG. 4 to the state of FIG. 3, the first control valve 19 is first rotated counterclockwise by the driving force of the actuator 22. The second lever 40 is rotated clockwise by the resilience of the second torsion spring 43 while the cam surface 40c follows the roller 45 of the first lever 39 integrated with the first control valve 19. As a result, the control valve 20 is closed. At this time, the elastic force of the first torsion spring 41 acts in a direction to prevent the rotation of the first control valve 19, but the elastic force of the second torsion spring 43 is the rotation of the second control valve 20. Therefore, the elastic forces of the first and second torsion springs 41 and 43 cancel each other, thereby reducing the load on the actuator 22 and allowing the electric motor 32 to be reduced in size and power consumption. Can be saved. As described above, when one of the first and second control valves 19 and 20 is opened by the common actuator 22 and the other is closed, the first and second control valves 19 and 20 are attached in the valve closing direction. Since the elastic forces of the first and second torsion springs 41 and 43 are canceled out, the elastic forces of the first and second torsion springs 41 and 43 cancel the first and second control valves 19 and 43. The driving force of the actuator 22 can be reduced while reliably closing the valve 20.

また第1制御バルブ19はアクチュエータ22によって直接駆動されるが、第2制御バルブ20は第1制御バルブ19によって連動手段21を介して間接的に駆動されるものであり、しかも連動手段21はローラ45とカム面40cとの接触により駆動力を伝達する構造であるため、アクチュエータ22の駆動力によって第2制御バルブ20を直接閉弁することはできず、第2制御バルブ20は第2捩じりばね43の弾発力で閉弁することになる。このとき、第1制御バルブ19の第1捩じりばね41の弾発力は第2制御バルブ20を開弁する方向に作用するが、第2制御バルブ20を閉弁する方向に作用する第2捩じりばね43の弾発力を第1捩じりばね41の弾発力よりも強く設定することで、第2制御バルブ20を確実に開弁することができる。   The first control valve 19 is directly driven by the actuator 22, while the second control valve 20 is indirectly driven by the first control valve 19 via the interlocking means 21, and the interlocking means 21 is a roller. Since the driving force is transmitted by the contact between the cam 45 and the cam surface 40c, the second control valve 20 cannot be closed directly by the driving force of the actuator 22, and the second control valve 20 is in the second twisted state. The valve is closed by the elastic force of the spring 43. At this time, the elastic force of the first torsion spring 41 of the first control valve 19 acts in the direction of opening the second control valve 20, but the second force acting in the direction of closing the second control valve 20. By setting the resilient force of the second torsion spring 43 to be stronger than the resilient force of the first torsion spring 41, the second control valve 20 can be reliably opened.

図6のグラフの横軸は第1制御バルブ19の位相であって、第1制御バルブ19は位相0°の全閉位置と位相80°の全開位置との間を回転する。レバー比は第2レバー40のレバー長を第1レバー39のレバー長で除算したもので、第1制御バルブ19の位相の増加に伴ってレバー比は一旦減少した後に増加する。また第1、第2捩じりばね41,43の弾発力によるトルクは第1制御バルブ19の位相の増加に伴ってリニアに変化する。第1バルブシャフト28の軸トルクは、第1、第2捩じりばね41,43の弾発力によるトルクとレバー比とから算出されるもので、この第1バルブシャフト28の軸トルクがアクチュエータ22に加わる負荷になる。   The horizontal axis of the graph of FIG. 6 is the phase of the first control valve 19, and the first control valve 19 rotates between a fully closed position with a phase of 0 ° and a fully open position with a phase of 80 °. The lever ratio is obtained by dividing the lever length of the second lever 40 by the lever length of the first lever 39, and the lever ratio increases after decreasing once as the phase of the first control valve 19 increases. Further, the torque due to the elastic force of the first and second torsion springs 41 and 43 changes linearly with the increase in the phase of the first control valve 19. The axial torque of the first valve shaft 28 is calculated from the torque by the resilient force of the first and second torsion springs 41 and 43 and the lever ratio. The axial torque of the first valve shaft 28 is the actuator. 22 is a load applied.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、本発明の流体制御装置は実施例のインタークーラ装置以外の任意の用途に適用することができる。   For example, the fluid control device of the present invention can be applied to any application other than the intercooler device of the embodiment.

またアクチュエータ22は電気モータ32を駆動源とするものに限定されず、油圧モータやソレノイド等の他の任意の駆動源を持つものに適用することができる。   The actuator 22 is not limited to the one having the electric motor 32 as a driving source, and can be applied to one having other arbitrary driving sources such as a hydraulic motor and a solenoid.

また連動手段21は第1、第2レバー39,40を用いたものに限定されず、カム機構、リンク機構、ギヤ機構等の任意のものを採用することができる。   The interlocking means 21 is not limited to the one using the first and second levers 39 and 40, and any one of a cam mechanism, a link mechanism, a gear mechanism, and the like can be adopted.

また本発明の弾発手段は捩じりばね41,43に限定されず、任意の構造のばねを採用することができる。   The elastic means of the present invention is not limited to the torsion springs 41 and 43, and a spring having an arbitrary structure can be adopted.

インタークーラ装置の全体正面図Overall front view of intercooler device 図1の2−2線拡大断面図2-2 line enlarged sectional view of FIG. 図2の3−3線矢視図3-3 arrow view of FIG. 図3に対応する作用説明図Action explanatory diagram corresponding to FIG. インタークーラ装置の模式図Schematic diagram of intercooler device 第1、第2制御バルブのトルク特性を示すグラフGraph showing torque characteristics of first and second control valves

符号の説明Explanation of symbols

14 上流側吸気通路(第1通路)
15 下流側吸気通路(第1通路)
16 上流側バイパス通路(第2通路)
17 下流側バイパス通路(第2通路)
19 第1制御バルブ
20 第2制御バルブ
21 連動手段
22 アクチュエータ
39b ストッパ突起(ストッパ手段)
40b ストッパ突起(ストッパ手段)
41 第1捩じりばね(第1弾発手段)
42 ストッパボルト(ストッパ手段)
43 第2捩じりばね(第2弾発手段)
44 ストッパボルト(ストッパ手段)
14 Upstream intake passage (first passage)
15 Downstream intake passage (first passage)
16 Upstream bypass passage (second passage)
17 Downstream bypass passage (second passage)
19 First control valve 20 Second control valve 21 Interlocking means 22 Actuator 39b Stopper protrusion (stopper means)
40b Stopper protrusion (stopper means)
41 1st torsion spring (1st spring means)
42 Stopper bolt (stopper means)
43 Second torsion spring (second spring means)
44 Stopper bolt (stopper means)

Claims (3)

流体が流通する第1通路(14,15)と、第1通路(14,15)から分岐して該第1通路(14,15)を迂回する第2通路(16,17)と、第1通路(14,15)を開閉する第1制御バルブ(19)と、第2通路(16,17)を開閉する第2制御バルブ(20)と、第1、第2制御バルブ(19,20)を開閉駆動する共通のアクチュエータ(22)とを備えた流体制御装置において、
第1制御バルブ(19)が開弁するときに第2制御バルブ(20)が閉弁し、第1制御バルブ(19)が閉弁するときに第2制御バルブ(20)が開弁するように該第1、第2制御バルブ(19,20)を連動手段(21)で連結し、第1制御バルブ(19)を第1弾発手段(41)で閉弁方向に付勢するとともに第2制御バルブ(20)を第2弾発手段(43)で閉弁方向に付勢したことを特徴とする流体制御装置。
A first passage (14, 15) through which a fluid flows, a second passage (16, 17) branched from the first passage (14, 15) and bypassing the first passage (14, 15); The first control valve (19) for opening and closing the passage (14, 15), the second control valve (20) for opening and closing the second passage (16, 17), and the first and second control valves (19, 20) A fluid control device comprising a common actuator (22) for opening and closing the
The second control valve (20) is closed when the first control valve (19) is opened, and the second control valve (20) is opened when the first control valve (19) is closed. The first and second control valves (19, 20) are connected by the interlocking means (21), and the first control valve (19) is urged in the valve closing direction by the first elastic means (41). 2. A fluid control device characterized in that the control valve (20) is urged in the valve closing direction by the second elastic means (43).
アクチュエータ(22)を第1制御バルブ(19)に接続し、第2弾発手段(43)の弾発力を第1弾発手段(41)の弾発力よりも強く設定したことを特徴とする、請求項1に記載の流体制御装置。   The actuator (22) is connected to the first control valve (19), and the resilient force of the second resilient means (43) is set stronger than the resilient force of the first resilient means (41). The fluid control device according to claim 1. 第1、第2制御バルブ(19,20)の全閉位置をそれぞれ規制するストッパ手段(39b,40b,42,44)を設けたことを特徴とする、請求項1または請求項2に記載の流体制御装置。
The stopper means (39b, 40b, 42, 44) for restricting the fully closed positions of the first and second control valves (19, 20), respectively, is provided. Fluid control device.
JP2005175526A 2005-06-15 2005-06-15 Fluid control device Expired - Fee Related JP4530920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175526A JP4530920B2 (en) 2005-06-15 2005-06-15 Fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175526A JP4530920B2 (en) 2005-06-15 2005-06-15 Fluid control device

Publications (2)

Publication Number Publication Date
JP2006348836A true JP2006348836A (en) 2006-12-28
JP4530920B2 JP4530920B2 (en) 2010-08-25

Family

ID=37644945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175526A Expired - Fee Related JP4530920B2 (en) 2005-06-15 2005-06-15 Fluid control device

Country Status (1)

Country Link
JP (1) JP4530920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510425A (en) * 2006-11-20 2010-04-02 バレオ・システムズ・ドウ・コントロール・モトウール Intake device and charge air cooler unit in internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104323A (en) * 1981-12-01 1983-06-21 ア−・ベ−・ボルボ Apparatus for supplying air to over-charge internal combustion engine while charged air is cooled
JPS6057741U (en) * 1983-09-28 1985-04-22 いすゞ自動車株式会社 Intake system for turbocharged engine
JP2002332887A (en) * 2001-05-10 2002-11-22 Fuji Heavy Ind Ltd Combustion controller of compression ignition engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104323A (en) * 1981-12-01 1983-06-21 ア−・ベ−・ボルボ Apparatus for supplying air to over-charge internal combustion engine while charged air is cooled
JPS6057741U (en) * 1983-09-28 1985-04-22 いすゞ自動車株式会社 Intake system for turbocharged engine
JP2002332887A (en) * 2001-05-10 2002-11-22 Fuji Heavy Ind Ltd Combustion controller of compression ignition engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510425A (en) * 2006-11-20 2010-04-02 バレオ・システムズ・ドウ・コントロール・モトウール Intake device and charge air cooler unit in internal combustion engine
JP2010510424A (en) * 2006-11-20 2010-04-02 バレオ・システムズ・ドウ・コントロール・モトウール Gas intake device
KR101291482B1 (en) * 2006-11-20 2013-07-30 발레오 시스템므 드 꽁트롤르 모뙤르 Intake device and charge-air cooler unit in an internal combustion engine
KR101295403B1 (en) 2006-11-20 2013-08-09 발레오 시스템므 드 꽁트롤르 모뙤르 Gas intake device

Also Published As

Publication number Publication date
JP4530920B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US9689308B2 (en) Throttle valve assembly
US8074628B2 (en) Air intake device for a heat engine with a cooled main circulation system and a bypass system equipped with a heating mechanism
US9145841B2 (en) Low-pressure exhaust gas recirculation system
US9273786B2 (en) Three-way valve with return end-stop on the air pathway
KR20100096109A (en) Actuating drive for bidirectional actuator
JP5359324B2 (en) Exhaust throttle valve for internal combustion engine
JP5146484B2 (en) Low pressure EGR device
JP6157500B2 (en) Safety double channel controller for automobile engines
JP2000234565A (en) Exhaust gas recirculation system
JP2007002846A (en) Actuator used for actuating mechanism
JP5273203B2 (en) Gear subassembly and exhaust gas recirculation device
JP5299390B2 (en) Turbocharger
JP2006214405A (en) Exhaust gas circulating device for internal combustion engine, and valve module for internal combustion engine
JP4530920B2 (en) Fluid control device
US20080314037A1 (en) Exhaust Gas Diverter
JP5874680B2 (en) Valve drive device
JP4380072B2 (en) EGR valve integrated electronic venturi
JP3948230B2 (en) Tandem valve type throttle body
US9169906B2 (en) Link apparatus
WO2012176866A1 (en) Multistage supercharging system
JP2010285876A (en) Engine intake control device
JP5783434B2 (en) Valve drive device
JP2004169627A (en) Throttle valve controller for engine
JP2014101839A (en) Intake throttle valve and internal combustion engine
JP7563327B2 (en) Valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees