JP4380072B2 - EGR valve integrated electronic venturi - Google Patents

EGR valve integrated electronic venturi Download PDF

Info

Publication number
JP4380072B2
JP4380072B2 JP2001067398A JP2001067398A JP4380072B2 JP 4380072 B2 JP4380072 B2 JP 4380072B2 JP 2001067398 A JP2001067398 A JP 2001067398A JP 2001067398 A JP2001067398 A JP 2001067398A JP 4380072 B2 JP4380072 B2 JP 4380072B2
Authority
JP
Japan
Prior art keywords
egr valve
throttle valve
egr
shaft
venturi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001067398A
Other languages
Japanese (ja)
Other versions
JP2002266664A (en
Inventor
二郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001067398A priority Critical patent/JP4380072B2/en
Publication of JP2002266664A publication Critical patent/JP2002266664A/en
Application granted granted Critical
Publication of JP4380072B2 publication Critical patent/JP4380072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子ベンチュリに関し、特に内燃機関のEGR量を高効率で制御するEGR弁一体型電子ベンチュリに関する。
【0002】
【従来の技術】
図10は従来技術の一例要部構成図である。従来技術として、例えば、特開平10−110633号公報(ディーゼルエンジンの吸気絞り装置)がある。この文献には、吸気通路を開閉するスロットル弁(THRV)と、EGRガスの排気調整を行なうEGR弁(EGRV)と、これらスロットル弁とEGR弁の開閉を制御するステップモータ(M)と、このステップモータの動作を制御するコンピュータ(ECU)とで構成された吸気絞り装置が開示されている。本例では、吸気流量がほとんど変化しないスロットル弁の高開度範囲内にてスロットル弁の所定位置を検出してその検出信号をECUに出力する位置検出手段(PD)が設けられ、ECUは現在のスロットル弁がディーゼルエンジンの運転に支障のない基準位置にあるようにステップモータを駆動し、かつ位置検出手段からの検出信号によりステップモータのステップ初期化を行なう。
【0003】
【発明が解決しようとする課題】
上記の従来技術の構成は、図示のように、スロットル弁の開閉動作を制御するアクチュエータ機構(A1)と、EGR弁の開閉動作を制御するアクチュエータ機構(A2)とが、ボデー本体(B)にそれぞれ別個に配設されているとともに、ステップモータはスロットル弁のアクチュエータ機構(A1)のみを駆動制御している。
【0004】
しかしながら、このように、スロットル弁のアクチュエータ機構とEGR弁のアクチュエータ機構が別個に配設されているために、両方のアクチュエータ機構により装置全体が大きくなるばかりか、そのために装置コストも上昇する問題がある。さらに付随的に、ECUにより両方のアクチュエータ機構の制御と両方の弁の開閉をリンクさせた制御を必要とするため、ECUによる制御量が多くなるという問題があった。
【0005】
そこで、本発明の目的は、スロットル弁のアクチュエータ機構とEGR弁のアクチュエータ機構を、駆動モータを介して機械的に一体的に結合させることにより、装置の小型化とコストの低減を図ることにある。
【0006】
【課題を解決するための手段】
請求項1〜7の発明によれば、スロットル弁のアクチュエータ機構とEGR弁のアクチュエータ機構を、駆動モータのモータ軸を介して機械的に一体的に結合させたので、装置のアクチュエータ機構を小さくすることができ、それにより装置コストの低減を図ることができるばかりか、ECUの制御量も低減でき負担を軽減することができる。
【0007】
【発明の実施の形態】
図1は本発明によるEGR弁一体型電子ベンチュリの原理図である。図中、Mは駆動モータ、THRVはスロットル弁、EGRVはEGR弁、L1はスロットル弁と駆動モータを機械的に結合する第1のレバー、L2はEGR弁と駆動モータを機械的に結合する第2のレバー、SPG1及びSPG2はスロットル弁の開閉位置を保持するスプリング、SPG3はEGR弁の開閉位置を保持するスプリングである。
【0008】
本発明では、以下の図面(図4〜図7)で詳細に説明するように、正転及び逆転可能な駆動モータMのモータ軸をスロットル弁軸の端部に設けられたレバー1と機械的に結合させ、さらに上記モータ軸をEGR弁軸の端部に設けられたバー2と機械的に結合させる。スロットル弁は、全開状態を中心として正転側及び逆転側に回転可能であり、中立位置で全開(図示の状態)となり、正転側に回転しても逆転側に回転してもスロットルは全閉となる。一方、EGR弁は図示の位置で全閉状態となっている。
【0009】
図2は図1構成のEGR弁一体型電子ベンチュリの基本構成図である。図示のように、本発明では、スロットル弁のアクチュエータ機構(L1参照)とEGR弁のアクチュエータ機構(L2参照)を、駆動モータのモータ軸を介して機械的に一体的に結合させたアクチュエータ機構Aを配置しており、その結果、装置のアクチュエータ機構を小さくすることができ、それにより装置コストの低減を図ることができるばかりか、ECUの制御量も駆動モータの制御となるので負担を軽減することができる。即ち、ECUは、回転角度センサの検出信号に基づいて、後述する図8に示すように、中立点を境にして、駆動モータMの正転時はスロットル弁(実線参照)が全開で、まずEGR弁(一点鎖線参照)が開き始めの少量のEGR制御を行い、その後、スロットル弁を閉じて大量のEGRガスの制御を行なう。さらに駆動モータの逆転時はスロットル弁のみを制御する。
【0010】
図3は図1構成のEGR弁一体型電子ベンチュリの要部詳細構成図である。図中、SPG1,SPG2は釣り合いによりスロットル弁を全開状態に保持(付勢)するスプリングであり、SPG3はEGR弁を全閉状態に保持するスプリングである。また、Sはスロットル弁の減速ギヤに設けられモータ軸と共に回転する回転角センサである。上述のように、THRVはスロットル弁、EGRVはEGR弁、L1はスロットル弁軸の端部に設けられたレバー(以下、ギヤ)であり、モータ軸の回転を所定の角度範囲でスロットル弁軸に伝達しない構造を有する。また、L2はEGR弁軸の端部に設けられたレバー(以下、ギヤ)であり、モータ軸の回転を所定の範囲でEGR弁軸に伝達しない構造を有する。
【0011】
本発明のアクチュエータ機構Aは、スロットル弁(THRV)のアクチュエータ機構(SPG1とL1参照)とEGR弁(EGRV)のアクチュエータ機構(L2参照)を、駆動モータMのモータ軸を介して機械的に結合した構成である。上述した従来の装置のようにスロットル弁とEGR弁の各々にアクチュエータ機構を設けずに、機械的に一体的に結合させたので、アクチュエータ機構を小さくすることができ、それにより装置コストの低減を図ることができる。また、ECUは、回転角センサSからの検出信号に基づいて駆動モータを制御してギヤL1とギヤL2を同時に制御することができる。
【0012】
図4は図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤL1,L2の位置関係を説明する説明図(その1)である。図示のように、駆動モータのモータ軸はそのギヤ(G)を介してギヤL1とL2に機械的に結合している。図示のギヤL1及びL2の位置は、スロットル弁が全開で、EGR弁が全閉の状態である。
【0013】
このような状態は、駆動モータへ通電していない無通電時、フェール時(異常時)、及びエンジン運転時で駆動モータに通電し要求EGR量がゼロの時、である。無通電時及びフェール時では、スロットル弁(THRV)はスプリングSPG1,SPG2の釣り合いにより、ほぼ全開位置に固定される。また、EGR弁(EGRV)はスプリングSPG3により全閉位置に固定される。また、エンジン運転時で要求EGR量がゼロの時は、駆動モータに通電し、THRVが全開に、EGRVが全閉になる角度に保持する。
【0014】
図5は図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤL1,L2の位置関係を説明する説明図(その2)である。図示のギヤL1及びL2の位置は、THRVが全開で、EGRVが半開の状態である。このような状態は、エンジン運転時で要求EGR量が小さい時である。この場合、駆動モータに通電して正転方向に回転させる(矢印方向)。この回転により、ギヤGと結合するギヤL2が矢印方向に回転し、EGR弁を半開させる。一方、モータ軸とスロットル弁のギヤL1は係合しておらず空振りの状態となり、スプリングSPG1とSPG2とにより、全開位置に保持される。
【0015】
図6は図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤL1,L2の位置関係を説明する説明図(その3)である。図示のギヤL1及びL2の位置は、THRVが閉じ、EGRVが全開の状態である。このような状態は、エンジン運転時で要求EGR量が多い時である。この場合、駆動モータに通電してさらに正転方向に回転させる(矢印方向)。この回転により、ギヤGと結合するギヤL2が矢印方向に回転し、EGR弁を全開させる。一方、モータ軸とスロットル弁のギヤL1は係合してTHRVが閉じられる。THRVを全閉まで閉じれば、EGR率を100%とすることができる。なお、EGR率は、
{(EGRガス流量)/(吸気量+EGRガス流量)}×100(%)
で表される。
【0016】
図7は図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤL1,L2の位置関係を説明する説明図(その4)である。図示のギヤL1及びL2の位置は、THRVが適切な開度まで閉じられEGRVが全閉の状態(エンジン始動時)、もしくはTHRVが全閉でEGRVが全閉の状態である(エンジン停止時)。前者のエンジン始動時では、駆動モータに通電して逆転方向に回転させると、モータ軸の回転はギヤL1を介してTHRVに伝達されるため、THRVをエンジン始動時に適切な開度まで閉じることができる。一方、後者のエンジン停止時では、駆動モータに通電して逆転方向に回転させると、モータ軸の回転はギヤL1を介してTHRVに伝達され、THRVを全閉することができる。この時、EGR弁はモータ軸とは無関係に全閉位置に保持される。
【0017】
図8は本発明におけるスロットル弁開度とEGR弁開度と駆動モータの正転/逆転の関係を示したグラフである。図示のように、(A)の区間では、スロットル弁(THRV)が逆転でTHRVのみ制御し、(B)の区間では、THRVが全開で少量のEGRを制御し、(C)の区間では、THRVが正転で大量のEGRを制御する。
【0018】
THRV及びEGRVの作動の説明は、上記の図4〜図7で、ギヤL1及びL2の係合関係にそって説明したが、ここでは、作動の各時点にそって説明する。即ち、THRV及びEGRVの作動は、(1)駆動モータへ通電しない無通電時及びフェール時、(2)エンジン始動時、(3)エンジン運転時、(4)エンジン停止時、に大別することができる。さらに、(3)のエンジン運転時は、要求EGR量がゼロの時、要求EGR量が小さい時、要求EGR量が多い時、に分けられる。
(1)駆動モータへ通電しない無通電時及びフェール時では、スロットル弁は両方のスプリング(SPG1,SPG2)の釣り合いにより、ほぼ全開位置に固定され、EGR弁はスプリング(SPG3)により全閉位置に固定される。
(2)エンジン始動時では、駆動モータに通電し、逆転方向に回転させると、駆動モータの回転はギヤ(L1)を介してスロットル弁に伝達され、その結果、スロットル弁をエンジン始動に適切な開度まで閉じることができる。この時、EGR弁は駆動モータ軸とは無関係に、全閉位置に保たれる。このように、駆動モータを逆転させることにより、スロットル弁のみの開閉操作をすることができる。このように、モータを逆転させることにより、THRVのみ操作することができる。
(3)エンジン運転時において、要求EGR量がゼロの時は、駆動モータに通電し、スロットル弁が全開し、EGR弁が全閉となる角度に保持する。また、要求EGR量が小さい時は、駆動モータに通電し、正転方向に回転させる。この回転により、駆動モータ軸の一端がギヤ(L2)を介してEGR弁の軸と結合し、EGR弁を開く、但し、この時、駆動モータ軸の他端とスロットル弁の軸のギヤ(L1)は結合しておらず、スロットル弁は両方のスプリング(SPG1,2)により、ほぼ全開位置に保持されている。さらに、要求EGR量が多い時は、駆動モータに通電し、さらに正転方向に回転させる。この回転により、駆動モータ軸の一端がギヤ(L2)を介してEGR弁の軸と結合し、EGR弁を開き、さらに、駆動モータ軸の他端とスロットル弁の軸のギヤ(L1)が結合し、スロットル弁は閉じる。スロットル弁を全閉まで閉じれば、EGR率100%とすることができる。
(4)エンジン停止時では、駆動モータに通電し、逆転方向に回転させる。駆動モータの回転はギヤ(L1)を介してスロットル弁に伝達され、スロットル弁を全閉にする。この時、EGR弁は駆動モータ軸とは無関係に、全閉位置に保たれる。その結果、吸気がなくなり、排気ガスの還流もなくなるためエンジンが停止する。
【0019】
図9は本発明におけるECUの要部ブロック構成図である。要求EGR量判定手段1は、要求EGR量がゼロか、要求EGR量が小さいか、要求EGR量が多いかを判定し、判定結果を出力する。スロットル弁開度及びEGR弁開度判定手段2は、スロットル弁軸のギヤに設けられた回転角度センサSの検出信号に基づいてスロットル弁開度を判定し判定結果を出力する。モータ通電判定手段3は、駆動モータに通電されているか否かを判定し判定結果を出力する。エンジン運転状態判定手段4は、エンジンの始動時か、エンジンの運転時か、エンジンの停止時か判定し判定結果を出力する。EGR量制御手段5は、これら各手段1〜4の判定結果を受けて、駆動モータの正転/逆転と回転量を決定し、回転方向及び回転量を出力する。駆動モータ正転/逆転駆動手段6は駆動モータを回転方向及び回転量に基づいて駆動する。
【図面の簡単な説明】
【図1】 本発明によるEGR弁一体型電子ベンチュリの原理図である。
【図2】 図1構成のEGR弁一体型電子ベンチュリの基本構成図である。
【図3】 図1構成のEGR弁一体型電子ベンチュリの要部詳細構成図である。
【図4】 図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤの位置関係を説明する説明図(その1)である。
【図5】 図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤの位置関係を説明する説明図(その2)である。
【図6】 図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤの位置関係を説明する説明図(その3)である。
【図7】 図1構成のEGR弁一体型電子ベンチュリにおける両方のギヤの位置関係を説明する説明図(その4)である。
【図8】 本発明におけるスロットル弁開度とEGR弁開度と駆動モータの正転/逆転の関係を示したグラフである。
【図9】 本発明におけるECUの要部ブロック構成図である。
【図10】 従来技術の一例要部構成図である。
【符号の説明】
THRV…スロットル弁
EGRV…EGR弁
L1…第1のギヤ
L2…第2のギヤ
SPG…スプリング
1…要求EGR量判定手段
2…スロットル弁開度及びEGR弁開度判定手段
3…モータ通電判定手段
4…エンジン運転状態判定手段
5…EGR量制御手段
6…駆動モータ正転/逆転駆動手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic venturi, and more particularly to an EGR valve-integrated electronic venturi that controls the EGR amount of an internal combustion engine with high efficiency.
[0002]
[Prior art]
FIG. 10 is a block diagram of the main part of an example of the prior art. As a prior art, for example, there is JP-A-10-110633 (intake throttle device for a diesel engine). This document includes a throttle valve (THRV) that opens and closes an intake passage, an EGR valve (EGRV) that adjusts exhaust of EGR gas, a step motor (M) that controls the opening and closing of these throttle valve and EGR valve, An intake throttle device that includes a computer (ECU) that controls the operation of a step motor is disclosed. In this example, there is provided position detection means (PD) for detecting a predetermined position of the throttle valve within a high opening range of the throttle valve where the intake flow rate hardly changes and outputting the detection signal to the ECU. The step motor is driven so that the throttle valve is at a reference position that does not interfere with the operation of the diesel engine, and the step motor is initialized by the detection signal from the position detecting means.
[0003]
[Problems to be solved by the invention]
As shown in the figure, the above prior art configuration includes an actuator mechanism (A1) for controlling the opening / closing operation of the throttle valve and an actuator mechanism (A2) for controlling the opening / closing operation of the EGR valve in the body body (B). Each of the step motors is disposed separately, and the step motor drives and controls only the actuator mechanism (A1) of the throttle valve.
[0004]
However, since the actuator mechanism of the throttle valve and the actuator mechanism of the EGR valve are separately provided as described above, the entire apparatus is increased by both actuator mechanisms, and the cost of the apparatus is increased accordingly. is there. In addition, there is a problem that the amount of control by the ECU increases because the ECU requires control that links the control of both actuator mechanisms and the opening and closing of both valves.
[0005]
Accordingly, an object of the present invention is to reduce the size of the apparatus and reduce the cost by mechanically coupling the actuator mechanism of the throttle valve and the actuator mechanism of the EGR valve integrally through a drive motor. .
[0006]
[Means for Solving the Problems]
According to the first to seventh aspects of the present invention, since the actuator mechanism of the throttle valve and the actuator mechanism of the EGR valve are mechanically and integrally coupled via the motor shaft of the drive motor, the actuator mechanism of the device is made small. Therefore, not only the device cost can be reduced, but also the control amount of the ECU can be reduced, and the burden can be reduced.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a principle view of an EGR valve integrated electronic venturi according to the present invention. In the figure, M is a drive motor, THRV is a throttle valve, EGRV is an EGR valve, L1 is a first lever that mechanically couples the throttle valve and the drive motor, and L2 is a first lever that mechanically couples the EGR valve and the drive motor. The second lever, SPG1 and SPG2, are springs that hold the opening / closing position of the throttle valve, and SPG3 is a spring that holds the opening / closing position of the EGR valve.
[0008]
In the present invention, as will be described in detail in the following drawings (FIGS. 4 to 7), the motor shaft of the drive motor M capable of normal rotation and reverse rotation is mechanically coupled to the lever 1 provided at the end of the throttle valve shaft. Further, the motor shaft is mechanically coupled to the bar 2 provided at the end of the EGR valve shaft. The throttle valve can rotate to the forward rotation side and the reverse rotation side around the fully open state, and is fully opened at the neutral position (the state shown in the figure). Closed. On the other hand, the EGR valve is fully closed at the illustrated position.
[0009]
FIG. 2 is a basic configuration diagram of the EGR valve integrated electronic venturi having the configuration shown in FIG. As shown in the figure, in the present invention, an actuator mechanism A in which an actuator mechanism of a throttle valve (see L1) and an actuator mechanism of an EGR valve (see L2) are mechanically coupled together via a motor shaft of a drive motor. As a result, the actuator mechanism of the device can be reduced, thereby reducing the cost of the device, and the control amount of the ECU also controls the drive motor, thereby reducing the burden. be able to. That is, based on the detection signal of the rotation angle sensor, the ECU opens the throttle valve (see the solid line) fully open when the drive motor M is rotating forward from the neutral point as shown in FIG. A small amount of EGR control is performed when the EGR valve (see the alternate long and short dash line) begins to open, and then the throttle valve is closed to control a large amount of EGR gas. Furthermore, only the throttle valve is controlled when the drive motor rotates in reverse.
[0010]
FIG. 3 is a detailed configuration diagram of a main part of the EGR valve-integrated electronic venturi having the configuration shown in FIG. In the figure, SPG1 and SPG2 are springs that hold (bias) the throttle valve in a fully open state by balancing, and SPG3 is a spring that holds the EGR valve in a fully closed state. S is a rotation angle sensor that is provided in the reduction gear of the throttle valve and rotates together with the motor shaft. As described above, THRV is a throttle valve, EGRV is an EGR valve, L1 is a lever ( hereinafter referred to as a gear) provided at the end of the throttle valve shaft, and the rotation of the motor shaft is controlled to the throttle valve shaft within a predetermined angle range. It has a structure that does not transmit. L2 is a lever ( hereinafter referred to as a gear) provided at the end of the EGR valve shaft, and has a structure that does not transmit the rotation of the motor shaft to the EGR valve shaft within a predetermined range.
[0011]
The actuator mechanism A of the present invention mechanically couples the actuator mechanism (see SPG1 and L1) of the throttle valve (THRV) and the actuator mechanism (see L2) of the EGR valve (EGRV) via the motor shaft of the drive motor M. This is the configuration. Since the throttle valve and the EGR valve are not mechanically connected to each of the throttle valve and the EGR valve as in the conventional apparatus described above, the actuator mechanism can be made smaller, thereby reducing the cost of the apparatus. Can be planned. Further, ECU can control the drive motor for controlling the gear L1 and gear L2 simultaneously based on the detection signal from the rotation angle sensor S.
[0012]
FIG. 4 is an explanatory view (No. 1) for explaining the positional relationship between both gears L1, L2 in the EGR valve integrated electronic venturi having the configuration shown in FIG. As shown, the motor shaft of the drive motor is mechanically coupled to gears L1 and L2 via its gear (G). The positions of the illustrated gears L1 and L2 are in a state where the throttle valve is fully open and the EGR valve is fully closed.
[0013]
Such a state is when the drive motor is energized when the drive motor is not energized, at the time of failure (when abnormal), and when the engine is running and when the required EGR amount is zero. At the time of non-energization and at the time of failure, the throttle valve (THRV) is almost fixed at the fully open position by the balance of the springs SPG1 and SPG2. The EGR valve (EGRV) is fixed at the fully closed position by a spring SPG3. Further, when the required EGR amount is zero during engine operation, the drive motor is energized and maintained at an angle at which THRV is fully open and EGRV is fully closed.
[0014]
FIG. 5 is an explanatory diagram (No. 2) for explaining the positional relationship between both gears L1, L2 in the EGR valve integrated electronic venturi having the configuration shown in FIG. The positions of the illustrated gears L1 and L2 are such that THRV is fully open and EGRV is half open. Such a state is when the required EGR amount is small during engine operation. In this case, the drive motor is energized and rotated in the forward direction (arrow direction). By this rotation, the gear L2 coupled to the gear G rotates in the direction of the arrow, and the EGR valve is half-opened. On the other hand, the motor shaft and the gear L1 of the throttle valve are not engaged and are swung, and are held in the fully open position by the springs SPG1 and SPG2.
[0015]
FIG. 6 is an explanatory view (No. 3) for explaining the positional relationship between both gears L1, L2 in the EGR valve-integrated electronic venturi of FIG. The positions of the illustrated gears L1 and L2 are such that THRV is closed and EGRV is fully open. Such a state is when the required EGR amount is large during engine operation. In this case, the drive motor is energized and further rotated in the forward direction (arrow direction). By this rotation, the gear L2 coupled to the gear G rotates in the direction of the arrow, and the EGR valve is fully opened. On the other hand, the motor shaft and the gear L1 of the throttle valve are engaged to close THRV. If THRV is fully closed, the EGR rate can be set to 100%. The EGR rate is
{(EGR gas flow rate) / (intake air amount + EGR gas flow rate)} × 100 (%)
It is represented by
[0016]
FIG. 7 is an explanatory view (No. 4) for explaining the positional relationship between both gears L1, L2 in the EGR valve-integrated electronic venturi of FIG. The positions of the gears L1 and L2 shown in the figure are such that THRV is closed to an appropriate opening and EGRV is fully closed (when the engine is started), or THRV is fully closed and EGRV is fully closed (when the engine is stopped). . At the time of starting the engine, if the drive motor is energized and rotated in the reverse direction, the rotation of the motor shaft is transmitted to THRV through the gear L1, and therefore the THRV can be closed to an appropriate opening degree at the time of starting the engine. it can. On the other hand, when the latter engine is stopped, when the drive motor is energized and rotated in the reverse direction, the rotation of the motor shaft is transmitted to THRV via the gear L1, and THRV can be fully closed. At this time, the EGR valve is held in the fully closed position regardless of the motor shaft.
[0017]
FIG. 8 is a graph showing the relationship between the throttle valve opening, the EGR valve opening, and the forward / reverse rotation of the drive motor in the present invention. As shown in the figure, in the section (A), the throttle valve (THRV) is reversely controlled and only THRV is controlled. In the section (B), THRV is fully opened and a small amount of EGR is controlled. In the section (C), THRV is normal and controls a large amount of EGR.
[0018]
The operation of THRV and EGRV has been described along the engagement relationship between the gears L1 and L2 in FIGS. 4 to 7 described above. Here, the operation will be described along each time point of operation. In other words, the operation of THRV and EGRV is roughly divided into (1) when no power is supplied to the drive motor and when it fails, (2) when the engine is started, (3) when the engine is operating, and (4) when the engine is stopped. Can do. Furthermore, the engine operation of (3) is divided into when the required EGR amount is zero, when the required EGR amount is small, and when the required EGR amount is large.
(1) At the time of non-energization and failure when the drive motor is not energized, the throttle valve is fixed at the fully open position by the balance of both springs (SPG1, SPG2), and the EGR valve is at the fully closed position by the spring (SPG3). Fixed.
(2) When the engine is started, when the drive motor is energized and rotated in the reverse direction, the rotation of the drive motor is transmitted to the throttle valve via the gear (L1). It can be closed to the opening. At this time, the EGR valve is kept in the fully closed position regardless of the drive motor shaft. Thus, by opening and closing the drive motor, only the throttle valve can be opened and closed. Thus, only THRV can be operated by reversing the motor.
(3) When the required EGR amount is zero during engine operation, the drive motor is energized, and the throttle valve is fully opened and held at an angle at which the EGR valve is fully closed. When the required EGR amount is small, the drive motor is energized and rotated in the forward rotation direction. By this rotation, one end of the drive motor shaft is coupled with the shaft of the EGR valve via the gear (L2), and the EGR valve is opened. However, at this time, the other end of the drive motor shaft and the gear (L1 ) Are not coupled, and the throttle valve is held in the fully open position by both springs (SPG1, 2). Further, when the required EGR amount is large, the drive motor is energized and further rotated in the forward rotation direction. By this rotation, one end of the drive motor shaft is coupled to the shaft of the EGR valve via the gear (L2), the EGR valve is opened, and the other end of the drive motor shaft is coupled to the gear (L1) of the throttle valve shaft. Then, the throttle valve is closed. If the throttle valve is fully closed, the EGR rate can be 100%.
(4) When the engine is stopped, the drive motor is energized and rotated in the reverse direction. The rotation of the drive motor is transmitted to the throttle valve via the gear (L1), and the throttle valve is fully closed. At this time, the EGR valve is kept in the fully closed position regardless of the drive motor shaft. As a result, there is no intake air and no exhaust gas recirculation occurs, so the engine stops.
[0019]
FIG. 9 is a block diagram of the main part of the ECU according to the present invention. The requested EGR amount determination unit 1 determines whether the requested EGR amount is zero, the requested EGR amount is small, or the requested EGR amount is large, and outputs a determination result. The throttle valve opening and EGR valve opening determining means 2 determines the throttle valve opening based on the detection signal of the rotation angle sensor S provided on the gear of the throttle valve shaft, and outputs the determination result. The motor energization determining means 3 determines whether or not the drive motor is energized and outputs a determination result. The engine operation state determination means 4 determines whether the engine is starting, the engine is operating, or the engine is stopped, and the determination result is output. The EGR amount control means 5 receives the determination results of these means 1 to 4, determines the forward / reverse rotation and the rotation amount of the drive motor, and outputs the rotation direction and the rotation amount. The drive motor forward / reverse drive means 6 drives the drive motor based on the rotation direction and the rotation amount.
[Brief description of the drawings]
FIG. 1 is a principle view of an electronic venturi integrated with an EGR valve according to the present invention.
2 is a basic configuration diagram of an EGR valve-integrated electronic venturi configured as shown in FIG. 1;
3 is a detailed configuration diagram of a main part of an electronic Venturi integrated with an EGR valve configured as shown in FIG. 1;
4 is an explanatory view (No. 1) for explaining the positional relationship between both gears in the EGR valve-integrated electronic venturi having the configuration shown in FIG. 1; FIG.
5 is an explanatory diagram (No. 2) for explaining the positional relationship between both gears in the EGR valve-integrated electronic venturi having the configuration shown in FIG. 1; FIG.
6 is an explanatory diagram (No. 3) for explaining the positional relationship between both gears in the EGR valve-integrated electronic venturi having the configuration shown in FIG. 1; FIG.
7 is an explanatory diagram (No. 4) for explaining the positional relationship between both gears in the EGR valve-integrated electronic venturi having the configuration shown in FIG. 1; FIG.
FIG. 8 is a graph showing the relationship between the throttle valve opening, the EGR valve opening, and the forward / reverse rotation of the drive motor in the present invention.
FIG. 9 is a block diagram of a main part of an ECU according to the present invention.
FIG. 10 is a configuration diagram of a main part of an example of a conventional technique.
[Explanation of symbols]
THRV ... throttle valve EGRV ... EGR valve L1 ... first gear L2 ... second gear SPG ... spring 1 ... required EGR amount determining means 2 ... throttle valve opening and EGR valve opening determining means 3 ... motor energization determining means 4 ... Engine operation state determination means 5 ... EGR amount control means 6 ... Drive motor forward / reverse drive means

Claims (7)

内燃機関のEGR量を制御するEGR弁一体型電子ベンチュリであって、
正転/逆転可能な駆動モータと、
前記駆動モータのモータ軸と機械的に減速結合され、前記モータ軸の回転を所定の角度範囲で前記スロットル弁軸に伝達しない構造を有する第1のギヤと、
前記モータ軸と機械的に減速結合され、前記モータ軸の回転を所定の角度範囲でEGR弁軸に伝達しない構造を有する第2のギヤと、
を具備し、
前記スロットル弁軸と前記EGR弁軸とは平行である、
EGR弁一体型電子ベンチュリ。
An EGR valve integrated electronic venturi for controlling the EGR amount of an internal combustion engine,
A forward / reverse drive motor,
The mechanically decelerate coupled with the motor shaft of the driving motor, a first gear having a structure which does not transmitted to the throttle valve axis rotated at a predetermined angular range of said motor shaft,
A second gear having a structure that does not transmit the EGR valve shaft by said motor shaft and is mechanically decelerate binding a predetermined angle range rotation of the motor shaft,
Equipped with,
The throttle valve shaft and the EGR valve shaft are parallel.
EGR valve integrated electronic venturi.
前記スロットル弁は、全開状態を中心として正転側及び逆転側ともに回転可能な構造を有する請求項1に記載のEGR弁一体型電子ベンチュリ。  2. The EGR valve-integrated electronic venturi according to claim 1, wherein the throttle valve has a structure capable of rotating on both the forward rotation side and the reverse rotation side with a fully opened state as a center. 前記スロットル弁軸の端部に前記スロットル弁の回転角度を検出する回転角度センサをさらに具備する請求項1または2に記載のEGR弁一体型電子ベンチュリ。The EGR valve integrated electronic venturi according to claim 1 or 2 , further comprising a rotation angle sensor for detecting a rotation angle of the throttle valve at an end of the throttle valve shaft . 前記スロットル弁を全開状態に保持するための複数のスプリングをさらに具備する請求項1または2に記載のEGR弁一体型電子ベンチュリ。The EGR valve-integrated electronic venturi according to claim 1 or 2 , further comprising a plurality of springs for holding the throttle valve in a fully opened state . 前記EGR弁を全閉状態に保持するためのスプリングをさらに具備する請求項1または2に記載のEGR弁一体型電子ベンチュリ。The EGR valve-integrated electronic venturi according to claim 1 or 2 , further comprising a spring for holding the EGR valve in a fully closed state . 前記回転角度センサの検出信号を用いて前記駆動モータの正転/逆転を制御するコンピュータをさらに具備する請求項1〜5のいずれかに記載のEGR弁一体型電子ベンチュリ。The EGR valve integrated electronic venturi according to any one of claims 1 to 5 , further comprising a computer that controls forward / reverse rotation of the drive motor using a detection signal of the rotation angle sensor . 内燃機関のEGR量を制御するEGR弁一体型電子ベンチュリであって、
正転/逆転可能な駆動モータと、
全開状態を中心として正転側及び逆転側ともに回転可能なスロットル弁と、
前記駆動モータのモータ軸と機械的に減速結合され、前記モータ軸の回転を所定の角度範囲で前記スロットル弁の弁軸に伝達しない構造を有する第1のギヤと、
前記駆動モータのモータ軸と機械的に減速結合され、前記モータ軸の回転を所定の角度範囲でEGR弁軸に伝達しない構造を有する第2のギヤと
前記スロットル弁側の減速ギヤに固定された回転角度センサと、
前記スロットル弁を釣り合いにより全開状態に保持する2つのスプリングと、
前記EGR弁軸を全閉側に保持するスプリングと、
前記回転角度センサの検出信号を用いて前記駆動モータの正転/逆転を制御するコンピュータと、
を具備するEGR弁一体型電子ベンチュリ。
An EGR valve integrated electronic venturi for controlling the EGR amount of an internal combustion engine,
A forward / reverse drive motor,
A throttle valve that can rotate on both the forward and reverse sides around the fully open state;
A first gear that is mechanically decelerated and coupled to a motor shaft of the drive motor and has a structure that does not transmit rotation of the motor shaft to a valve shaft of the throttle valve within a predetermined angle range;
A second gear that is mechanically decelerated and coupled to the motor shaft of the drive motor and has a structure that does not transmit the rotation of the motor shaft to the EGR valve shaft within a predetermined angular range ;
A rotation angle sensor fixed to the reduction gear on the throttle valve side;
Two springs that hold the throttle valve in a fully open state by balancing;
A spring for holding the EGR valve shaft on the fully closed side;
A computer for controlling forward / reverse rotation of the drive motor using a detection signal of the rotation angle sensor;
EGR valve integrated electronic venturi comprising:
JP2001067398A 2001-03-09 2001-03-09 EGR valve integrated electronic venturi Expired - Fee Related JP4380072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067398A JP4380072B2 (en) 2001-03-09 2001-03-09 EGR valve integrated electronic venturi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067398A JP4380072B2 (en) 2001-03-09 2001-03-09 EGR valve integrated electronic venturi

Publications (2)

Publication Number Publication Date
JP2002266664A JP2002266664A (en) 2002-09-18
JP4380072B2 true JP4380072B2 (en) 2009-12-09

Family

ID=18925755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067398A Expired - Fee Related JP4380072B2 (en) 2001-03-09 2001-03-09 EGR valve integrated electronic venturi

Country Status (1)

Country Link
JP (1) JP4380072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784220B2 (en) 2014-09-30 2017-10-10 Hyundai Motor Company Intake air control apparatus of engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878944A (en) * 2003-11-28 2006-12-13 株式会社日立制作所 EGR control device and motor driven throttle valve device of diesel engine
AT504667B1 (en) * 2007-02-07 2008-07-15 Forschungsgesellschaft Fuer Ve DEVICE FOR EXHAUST GAS RECIRCULATION FOR A COMBUSTION ENGINE
FR2926114B1 (en) * 2008-01-03 2012-12-14 Valeo Sys Controle Moteur Sas EGR LOOP OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE
JP4935866B2 (en) * 2009-07-31 2012-05-23 株式会社デンソー Low pressure EGR device
JP5146484B2 (en) * 2010-04-14 2013-02-20 株式会社デンソー Low pressure EGR device
FR2984962B1 (en) * 2011-12-21 2013-11-29 Valeo Sys Controle Moteur Sas SECURED TWO-WAY DOSING DEVICE FOR MOTOR VEHICLE
FR2990726B1 (en) * 2012-05-15 2015-08-21 Valeo Sys Controle Moteur Sas TWO-WAY DOSER AND APPLICATIONS OF THE SAME
CN113710941B (en) 2019-04-17 2024-03-19 爱三工业株式会社 Gas valve and fuel cell system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784220B2 (en) 2014-09-30 2017-10-10 Hyundai Motor Company Intake air control apparatus of engine

Also Published As

Publication number Publication date
JP2002266664A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US9689308B2 (en) Throttle valve assembly
JP6100488B2 (en) Three-way valve with return drive end stopper in air passage
TWI292013B (en)
JP4380072B2 (en) EGR valve integrated electronic venturi
JP2013050211A (en) Three-way valve with top end-stop on air pathway
JPS63208632A (en) Throttle valve control device
JP2004525306A (en) Apparatus for avoiding sticking of exhaust gas recirculation valve after internal combustion engine shut down
JPS6385234A (en) Throttle valve control device
KR910009726B1 (en) Throttle valve conmtrol device in internal combustion engine
JPS6388231A (en) Speed control device for outboard engine
JP2003201866A (en) Control system of electronic throttle valve for vehicle
US20030075159A1 (en) EGR valve apparatus
JP2005098178A (en) Throttle valve control device
JP2002317658A (en) Throttle apparatus for internal combustion engine
JPS6385231A (en) Throttle valve control device for engine
EP1550802A1 (en) Throttle device
JP2004169627A (en) Throttle valve controller for engine
JPH11257103A (en) Throttle opening diagnostic device
EP1457721A1 (en) Throttle unit for internal combustion engines
JP3808522B2 (en) Engine intake air amount control device
JP4394962B2 (en) Throttle valve opening / closing control device for motorcycle engine
JP2000297660A (en) Intake air flow control device for diesel engine
JP2003083093A (en) Throttle valve controller for internal combustion engine
JP4347199B2 (en) 4-cycle engine with internal EGR system
JPH10325341A (en) Intake throttle device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4380072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees