JP2006344193A - Random traceability stratification average collation analysis method, x-r control chart function part program, random traceability stratification average collation cause analysis program - Google Patents

Random traceability stratification average collation analysis method, x-r control chart function part program, random traceability stratification average collation cause analysis program Download PDF

Info

Publication number
JP2006344193A
JP2006344193A JP2005199396A JP2005199396A JP2006344193A JP 2006344193 A JP2006344193 A JP 2006344193A JP 2005199396 A JP2005199396 A JP 2005199396A JP 2005199396 A JP2005199396 A JP 2005199396A JP 2006344193 A JP2006344193 A JP 2006344193A
Authority
JP
Japan
Prior art keywords
traceability
characteristic
average
random
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005199396A
Other languages
Japanese (ja)
Other versions
JP4172042B2 (en
Inventor
Masao Tsuruoka
正夫 寉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005199396A priority Critical patent/JP4172042B2/en
Priority to PCT/JP2005/018990 priority patent/WO2006132000A1/en
Publication of JP2006344193A publication Critical patent/JP2006344193A/en
Application granted granted Critical
Publication of JP4172042B2 publication Critical patent/JP4172042B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31469Graphical display of process as function of detected alarm signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a program allowing distinctive monitoring of influence collation for each factor in a precision area for analyzing a cause of a chronic characteristic failure problem while continuing production in a field, wherein influence collation cannot be determined conventionally due to deviation or interaction even when a component within a standard is used. <P>SOLUTION: The production with traceability is characterized in that possible traceability of production processes serving as all of product quality factors from a material to completion of a product, components, and materials are uniformly mixed at random. Also, the record of the production are collected intentionally, and as the flow of a chart, the record is stratified while using traceability identification for one factor as an item. Differently from a conventional method, one axis is added to the X-R control chart, and a product problem characteristic mean transition and a mean transition of a factor characteristic such as a component dimension are monitored on the same graph, and collation between the character means is checked. By automatic patrol between the factor and its factor characteristic, a cause of the factor characteristic, which is most correlative with influence, is automatically determined, and notification via sound is also carried out. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は原因分析をするための情報処理と統計処理のプログラムに関する。  The present invention relates to an information processing and statistical processing program for cause analysis.

原因分析では、部品や材料そして工程条件などの生産要素、燃料や機器そして運転条件などの運転要素のトレーサビリティの出生と内容(図2)が第一に正確でなければならない。このトレーサビリティと識別管理はISO−9000指針項目でもあり、この管理精度と管理範囲が品質管理に影響することは言うまでもない。CADを使った設計やシミュレータ確認そして高精度な測定ツールの進歩もあって要素精度も上がり、要求規格を著しく割るような工程上の不良発生も少なくなって来ているが、昨今では技術の発達と伴に製品の多機能高性能化から構成要素の働きも複雑化、微妙化しており、標準化規格内要素であれ、相互作用などで見えないでいるか、生産当初、影響が微小であると判断されて管理対象に含まれないでいるかして生ずる慢性化した問題が少なくもなく、特許文献1発明の詳細な説明の0004項記載の燃料設計の標準化でプラント要因と燃料要因の要因区別の期待ができるといったような状況ではなく、特許文献2発明の詳細な説明の0015項や0038項記載のように統計精度を上げる手立てが必要にせまられている。しかし、特許文献2のように全ての各要素特性を±σ内で統計しても、偏りや相互作用をオフセット仕切れてはいないので更に精度を上げる方法が求められている。  In causal analysis, the birth and content (Figure 2) of traceability of production factors such as parts, materials and process conditions, and operational factors such as fuel, equipment and operating conditions must be first accurate. This traceability and identification management are also ISO-9000 guideline items, and it goes without saying that this management accuracy and management range affect quality management. With the progress of design using CAD, simulator confirmation, and high-precision measurement tools, the element accuracy has also increased, and the occurrence of defects in the process that significantly breaks the required standards has been reduced. In addition, the functions of the components have become complicated and subtle due to the multi-functional high performance of the product, and even if it is an element within the standardized standard, it is not visible due to interaction, etc., or it is judged that the influence is small at the beginning of production As a result, there are many chronic problems that may occur if they are not included in the scope of management, and the standardization of the fuel design described in the paragraph 0004 of the detailed description of the invention of Patent Document 1 is expected to distinguish between plant factors and fuel factors. However, there is a need to improve the statistical accuracy as described in the paragraph 0015 and the paragraph 0038 in the detailed description of the invention of Patent Document 2. However, even if all the element characteristics are statistically within ± σ as in Patent Document 2, there is a demand for a method for further improving accuracy because the deviation and interaction are not offset-divided.

原因分析方法には、非特許文献1に書かれたATS手法がある。何で(WHAT)不良発生して何で発生していないか、何処(WHERE)で不良発生して何処で発生していないか、いつ(WHEN)不良発生していつ発生していないか、どのように(HOW)に不良発生してどのように発生しないかの4つの側面で実測、事実情報を収集し、区別点、変化点を捜し出し、その差を生じせしめる原因案を幾つか推定し、その区別点、変化点、そして4つの側面情報との矛盾の有無を確認し、一つとして矛盾点の無い案を最原因案とする、原因分析に於ける普遍的バイブル的な手順を、教育訓練および実務のための表による標準フォーム化した手法であり、持ち得る専門技術を効果的に活かして原因分析を行なう方法である。しかし、この手法を習得しながらも、前項記載の如く規格内の部品などの微細な変動や偏った要素特性の相互作用で生ずる観えない要因による工程不良の分析を、既存の単独機能な計算やグラフ化アプリケーションソフトを駆使して現場で生産をしながら原因分析をするには、きついものがあり一層に慢性化していることも少なくもない。論理から因子(要因候補)を絞りL12直行実験計画法などを駆使して分析可能な技術者を工程へ常駐させることも一方法ではあるが、製品の種類や産業分野、また専門技術者でも、少々専門技術が無く論理考察が出来ない者でも、分け隔てなく、平素の生産管理の中で、従来の製品性能特性できばえ監視と伴に、容易に統計的原因分析が可能な、標準的原因分析プログラムソフトが求められている。  As a cause analysis method, there is an ATS method described in Non-Patent Document 1. What (WHAT) defect occurred and why it did not occur, where (WHERE) where the defect occurred and where it did not occur, when (WHEN) when the defect occurred and when it did not occur, how (HOW) Measures and collects factual information on four aspects of how a defect occurs and how it does not occur, searches for distinction points and change points, estimates several possible causes of the difference, and distinguishes them Confirm the existence of contradictions between the points, change points, and the four aspects of information. It is a standard form method with tables for practical use, and is a method of causal analysis by effectively utilizing the expertise that can be possessed. However, while learning this method, as described in the previous section, analysis of process defects due to unobservable factors caused by minute fluctuations of parts within the standard and the interaction of biased element characteristics can be performed using existing single-function calculations. To analyze the cause while producing on-site using graphing and application software for graphing, there are many cases that are harsh and more chronic. Although it is one method to narrow down factors (factorial candidates) from logic and make engineers who can analyze using L12 direct experiment design method, etc. resident in the process, even in the types of products, industrial fields, and specialist engineers, Even those who do not have a little technical skill and can not make logical considerations are able to easily perform statistical cause analysis together with conventional product performance characteristics and supervision in plain production management. Cause analysis program software is required.

特開2001−153988号広報  Japanese Laid-Open Patent Publication No. 2001-153988 特開2005−38098号広報  Japanese Laid-Open Patent Publication No. 2005-38098 米国、ケプナートリゴー社、1977年著、ATS(アナリティック、トラブル、シューティング)手法  US, Kepner Trigo, 1977, ATS (Analytic, Trouble, Shooting) technique

背景技術の項で記載したごとく、高度に進んだ産業毎の専門技術下の生産にありながらも、慢性的な不良問題が少なくなく、解決しながらも次から次と新たな問題が生じて、工程作業者や技術者ともども日夜努力しているが、標準化されているにも拘らず、部品、材料、工程の構成要素の規格内変動など微小であったり相互作用で統計処理しても観えないでいる場合も多く、原因解明に苦慮しており、故に多数要因要素の統計的偏りを防ぎ、一要素の影響対照を際立てる方法を提供する。  As described in the background section, while there are many advanced problems in production under the specialized technology of each industry, there are a lot of chronic defect problems. Although both process workers and engineers are working hard day and night, even if they are standardized, they can be viewed even if they are statistically processed by minute or interaction such as fluctuations within the specifications of parts, materials, and process components. In many cases, it is difficult to elucidate the cause, thus providing a method to prevent statistical bias of multiple factor elements and to contrast the influence of one factor.

標準偏差や相関計算そして散布図などのグラフ作成の単独機能なプログラムは市場には沢山有り、それらを使い原因分析作業も少々容易になったが、それでも複雑化した現在の製品要素下では膨大な分析操作時間を要している。そこで、それら単独機能を体系的に連係動作させ、日々の生産管理に於ける製品性能特性の出来栄え監視をしながら、管理限界へ近づいた製品特性の変化、また、慢性化した工程不良の原因と要因要素をつかめるようにした、標準的に、製品や産業分野、そして一般の生産現場に従事する者、専門技術が有る者、少々無い者の分け隔てなく、簡単なパソコン操作で扱える統計的原因分析プログラムを提供する。  There are many single-function programs for creating graphs such as standard deviation, correlation calculation, and scatter plots, and using them, the cause analysis work has become a little easier, but it is still enormous under the complicated current product elements Analytical operation time is required. Therefore, these single functions are systematically linked to monitor the performance of the product performance characteristics in daily production management, change the product characteristics approaching the control limit, and cause the chronic process defects. Statistical causes that can be handled with simple personal computer operation, without distinguishing between those who are engaged in products, industrial fields, general production sites, those who have specialized skills, and those who do not have a little. Provide an analysis program.

ISO−9000指針での管理項目であるトレーサビリティと識別管理を全品質工程、に渡り、部品、材料、工程、製品品質管理へ徹底し、記録する。そして構成要素間の相互作用や偏りの影響をオフセットし、統計上の精度を上げるため、部品、材料、工程の生産上、有り得るトレーサビリティ違いをランダム均等に混ぜた量産、また蓄積記録から同様の均等ランダム要素トレーサビリティな製品の品質記録を作為的に採取し、非特許文献1のATS手法の前提と同じく、人為的要素を含むシミュレータなどの計算結果を含まず、4つの側面的なトレーサビリティ記録の事実情報と、実測記録のみで統計原因分析へ供する。  Traceability and identification management, which are the management items in the ISO-9000 guidelines, are thoroughly recorded in the quality control of parts, materials, processes, and products throughout all quality processes. In order to offset the influence of the interaction and bias between components and improve statistical accuracy, mass production in which traceability differences that are possible in the production of parts, materials, and processes are mixed randomly and equally from accumulated records Random element traceability product quality records are collected artificially, and as with the premise of the ATS method of Non-Patent Document 1, the calculation results of simulators including artificial elements are not included. Only information and actual measurement records are used for statistical cause analysis.

確認対象外要素の相互作用を有り得る量産変動の中心で固定して、確認対象外要素の変動や偏り影響をオフセットし、層別統計の精度を上げて、確認要素トレーサビリティの影響対照を際立たせるため、前項記載のランダムな要素トレーサビリティで構成した製品の品質記録をデータベースへ入力し、部品、材料、工程の要素トレーサビリティの識別を目(キーワード)に層別グループ分けし、分析対象の製品検査や運転出力評価特性のグループ平均を求め、全ての要素ごと、トレーサビリティ層別を繰り返し、その分析対象の特性平均のグループ間変動が最も有ったグループ目に相当する主要因要素である部品、材料、工程を特定する。  To fix the influence of non-confirmable elements at the center of possible mass production fluctuations, offset fluctuations and bias effects of non-confirmable elements, improve the accuracy of stratified statistics, and highlight the contrast of confirmation element traceability effects The product quality records composed of the random element traceability described in the previous section are input to the database, and the element traceability identification of parts, materials, and processes is divided into groups (keywords), and the product inspection and operation to be analyzed are performed. Obtain the group average of the output evaluation characteristics, repeat the traceability stratification for every element, and the parts, materials, and processes that are the main factor elements corresponding to the group that has the largest inter-group variation of the characteristic average of the analysis target Is identified.

そのあと、主要因要素の特定時と同じトレーサビリティ層別で、主要因要素を構成する部品寸法、材料成分率、工程条件パラメータなどの各要素特性のグループ平均とその分析対象特性のグループ平均間の相関確認を行い、最も相関を示す原因候補の要素特性を特定し、そして、その要素特性平均とその分析対象特性平均間の回帰評価を行ない、その分析対象特性の不良発生やバラツキを是正する為の要素特性の許容規格とオフセット量の見直し対策へ繋げる。  After that, with the same traceability layer as when the main factor element was specified, the group average of each element characteristic such as part dimensions, material composition ratio, process condition parameter, etc. constituting the main factor element and the group average of the analysis target characteristic To confirm the correlation, identify the element characteristic of the cause candidate that shows the most correlation, and perform regression evaluation between the element characteristic average and the analysis target characteristic average to correct the occurrence and variation of the analysis target characteristic This leads to a review of the tolerance standards for element characteristics and the offset amount.

0008項と0009項の処理をコンピュータに行なわせ、ランダム要素トレーサビリティな構成記録から主要因要素特性である原因候補を特定し、自動回答させ、それを更に検証確認し、そして原因対策のため回帰評価をするため、データベース機能部、2次データベース機能部、統計比較表機能部、ヒストグラム機能部、X−R管理図機能部、散布図機能部の6つの機能部を以下にプログラムへ構成する。  Causes the computer to perform the processing of paragraphs 0008 and 0009, identifies the cause factor that is the main factor element characteristic from the configuration record with random element traceability, automatically answers, verifies and confirms it, and performs regression evaluation for the cause countermeasure Therefore, the following six functions are configured into a program: a database function unit, a secondary database function unit, a statistical comparison table function unit, a histogram function unit, an X-R control chart function unit, and a scatter diagram function unit.

製品シリアル番号や機台番号と運転年月日時を含め記録したデータへ附したトレーサビリティ識別の記録と、製品や運転機器へランダムに組み込まれた部品、材料、燃料、工程の要素トレーサビリティ識別記録と、製品性能検査や運転出力評価結果の特性記録、そして組み込み要素のトレーサビリティ記録へリンクした部品の寸法、材料や燃料成分率、工程ないし運転条件パラメータなどの要素特性の記録の、4種類の記録を保管するデータベース機能部と、そのデータベース記録を分析段階ごとにトレーサビリティ識別を目(キーワード)にソートして層別し一時保管するための2次データベース機能部を設ける。  Traceability identification record attached to data recorded including product serial number, machine number and operation date, and element traceability identification record of parts, materials, fuels and processes randomly incorporated into products and operating equipment, Stores four types of records: product performance inspections, operation output evaluation result characteristics records, and component characteristics records such as component dimensions, material and fuel composition ratios, process and operating condition parameters linked to embedded element traceability records And a secondary database function unit for sorting and temporarily storing the database records for each analysis stage by sorting traceability identifications into eyes (keywords).

特定した要素のトレーサビリティでデータベースからソートした2次データベース記録の特異性を観るためデータベースと2次データベース双方記録の統計標準偏差、平均、最大、最小を比較モニターする統計比較表機能部と、原因の整合確認のために、そのデータベースと2次データベース双方記録の標準偏差および推定不良率を伴にモニターへ表し、問題特性の度数分布を表わすヒストグラム機能部を設ける。  Statistical comparison table function that compares and monitors the statistical standard deviation, average, maximum, and minimum of both database and secondary database records to see the specificity of secondary database records sorted from the database with the traceability of the identified elements, and the cause of the cause In order to check the consistency, a histogram function unit is provided that displays the standard deviation and the estimated defect rate of both the database and the secondary database on the monitor and indicates the frequency distribution of the problem characteristics.

X−R管理図上で、時間軸と限らず、確認したいトレーサビリティを軸として、また、製品性能特性や運転出力特性などの一特性平均の推移のみであらず、部品寸法、材料や燃料成分率、工程や機器運転設定条件パラメータなどの要素特性の平均推移とを同一グラフ上へ表わし、従来の一特性監視機能へ合わせて、その要素特性推移との相乗関係をモニター出来るようにし、要素特性と分析対象特性との層別平均間で最も相関を示す原因候補の主要因要素特性名と相関指数をモニター表示とメッセージダイヤグラムそして音声で回答するようにさせたX−R管理図機能部と、回帰線式と回帰線を含む散布図から要因要素特性の許容規格とオフセット量を見直し是正するためX−R管理図機能部で相関確認した分析対象特性と要素特性の層別平均間の回帰評価を行ないモニター表示する散布図機能部を設ける。  On the X-R chart, not only on the time axis, but on the traceability that you want to check, and not only the transition of one characteristic average such as product performance characteristics and operation output characteristics, but also part dimensions, materials, and fuel component ratios The average transition of element characteristics such as process and equipment operation setting condition parameters is displayed on the same graph, and the synergistic relationship with the transition of the element characteristics can be monitored according to the conventional one characteristic monitoring function. X-R control chart function unit that makes the response of the main cause element characteristic name and correlation index of the cause candidate showing the most correlation between the averages of the characteristics to be analyzed in the monitor display, message diagram, and voice, and regression The stratified level of the analysis target characteristics and element characteristics checked by the X-R control chart function unit to review and correct the tolerance standard and offset amount of the factor element characteristics from the scatter chart including the linear formula and regression line Providing a scatter plot function unit for monitor display performs regression evaluation between.

特許文献1が申請されている原子力発電の現場、それと特許文献2の発電所関係とは限らず、どこの産業現場でも、外れる程は違えど予定通り事が運ばないことが現実であり、いずれの対策でも原因の特定が前提であり、従来では観えなかった精度域の要因と原因分析が可能となり、精度ある生産品質向上が図れ、薬事医療分析、農業や工業を問わず、慢性不良問題の原因対策のみならず、正確な要因分析に伴う新分野への事業開拓や新製品の開発へも活かし得、機器個別の運転限界の明瞭化に伴う危機予防も前進し、そして、機器の高性能化と小型化が出来、しいては資源の無駄な消費の削減へも貢献する。  The situation of nuclear power generation for which Patent Document 1 has been applied is not necessarily related to the power plant of Patent Document 2, and it is a reality that no matter what the actual situation is, it will not be carried as planned. It is premised on the identification of the cause even in the countermeasures of the cause, it is possible to analyze the cause and cause of the accuracy range that could not be seen before, improve the production quality with accuracy, and the chronic defect problem regardless of pharmacy medical analysis, agriculture or industry It can be used not only for countermeasures for the cause, but also for business development in new fields and development of new products through accurate factor analysis, advancement of crisis prevention due to clarification of the operating limits of individual equipment, and Performance and miniaturization can be achieved, which contributes to reducing wasteful consumption of resources.

今や、パソコンはスーパー化すると伴に普及は当然に日常のツールと化したが、一側面、十分に活かされていない部分もあり、紙の上で容易に手書きできた従来のX−R管理図は製品性能特性などの特性推移の監視に役立って来たが、更に請求項1記載のX−R管理図機能部のモニターグラフは製品を構成する要素特性である部品寸法や材料や肥料の成分率、工程条件パラメータなどを一枚岩上で取り扱うことに依って、要素特性の推移を同一グラフ上で代わる代わるモニターでき、製品性能特性の異常や変化の原因要素特性を容易に判別できるようになった、故に製品や産業分野の分け隔てなく、能率的な生産工程管理ができるようになった。  Now that PCs have become supermarkets, the spread of them has naturally become a daily tool, but on one side, there are parts that are not fully utilized, and the conventional X-R control chart that can be easily handwritten on paper Has been useful for monitoring the performance transition of product performance characteristics, etc., but the monitor graph of the X-R control chart function section according to claim 1 is a component dimension, material or fertilizer component which is an element characteristic constituting the product. By processing rate, process condition parameters, etc. on a monolith, it is possible to monitor the transition of element characteristics instead of on the same graph, and it is now possible to easily identify the element characteristics that cause abnormalities and changes in product performance characteristics Therefore, it has become possible to manage production processes efficiently without dividing the product and industrial fields.

製品や機器一台ごと、構成する要素の特性値は違うので、人工衛星や航空機や自動車、液晶テレビなどあらゆるコンピュータを有す機器の運転制御へ、請求項3記載のランダムトレーサビリティ層別平均対照分析方法を仕組み、機器内全デバイスのパラメータ設定を、支障ない時に、無差別にランダム変更を機器自身にさせ各出力特性変化を記録蓄積し、全機器出力特性へのデバイス個別の影響と相関を読み、当然に要求条件優先で、無理のない全デバイスのパラメータ設定を機器自身にさせ、設計者も気付かない関係も明らかになり、危機時のみでなく、次席の要因や代行デバイスが有れば働かせることも可能であり、効率的な運転から延命効果をもたらし、一方、生産用自動組み立て機では自動調整機能の能率向上などへ役立つ。  Since the characteristic values of the constituent elements are different for each product or device, the average control analysis according to the random traceability layer according to claim 3 is applied to the operation control of devices having various computers such as satellites, aircraft, automobiles, and liquid crystal televisions. If there is no problem in setting the parameters of all devices in the device, make random changes to the device itself, record and accumulate each output characteristic change, and read the influence and correlation of each device on the output characteristics of all devices. Of course, priority is given to the requirements, let the device itself set the parameters of all devices without difficulty, and the relationships that the designers are not aware of will be clarified. It is possible to improve the efficiency of the automatic adjustment function in the automatic assembly machine for production.

分析用データを確保するために、図2に示す、製品シリアル番号、生産年月日時、生産地、生産工場、ライン名、生産工程番号などの例の図3の(1)の記録、部品や材料のトレーサビリティの例の(2)の記録、製品検査や運転出力評価結果の例の(3)の記録、そして要素特性の材料成分率、生産工程パラメータ、部品寸法などの例の(4)の記録、同様に、ISO−9000指針に従い、トレーサビリティと識別管理を、全品質工程の現場で徹底して実施記録し、そして、図3(1)(2)例のトレーサビリティ識別の工程上判別は製品、部品、材料の包装のバーコードやICタグや品へ付けたラベル等で読み取り、図3(3)(4)例の特性記録はネットワークやメールを通じて、各品質工程段階のトレーサビリティ内容記録が容易に入手できる環境を造り、分析時に必要な項目の記録だけ図3の様に取寄せられればよい。記録に際してコンピュータ化は必ずしも前提条件ではないが、整えばより採り込み時間を短縮することができる。  In order to secure the data for analysis, the records in FIG. 3 (1), such as the product serial number, production date, production location, production factory, line name, production process number, etc. shown in FIG. Record of (2) of example of material traceability, record of (3) of example of product inspection and operation output evaluation result, and (4) of example of material component ratio of element characteristics, production process parameters, part dimensions, etc. Records, as well as in accordance with ISO-9000 guidelines, traceability and identification management are thoroughly implemented at the site of all quality processes, and the traceability identification process discrimination in the examples of Fig. 3 (1) and (2) is the product 3) (3) (4) The characteristic records in the example of Fig. 3 (3) and (4) can be easily traced through the network and email. Build the available environment, only to be ordered as of the only Figure 3 record of items required at the time of analysis. Computerization is not necessarily a prerequisite for recording, but if it is arranged, the time taken in can be further reduced.

フロー図1の、トレーサビリティ混合生産とは、製品の構成要素である部品、材料、生産工程のトレーサビリティ違いを、型影響を調査するためにデータを取り寄せた図3の表中の例(2)部品毎のCV(生産使用型番号)の様にランダムに組み合わせた生産記録、また、生産帰歴に有する要素トレーサビリティをランダムに組み込む製品組立指示表を作り蓄積データから、その要素トレーサビリティの組み合せが一致する製品の記録を採取し、不足時は現存する要素で同様にして追加生産する。  The traceability mixed production in the flow diagram 1 is an example in the table of FIG. 3 in which data is collected in order to investigate the mold effects of the traceability differences in the components, materials, and production processes that are components of the product (2) Parts A combination of element traceability matches from the accumulated data by creating a product assembly instruction table that randomly incorporates the element traceability that is included in the production record and production records that are randomly combined, such as each CV (production use model number) A record of the product is collected, and when there is a shortage, additional production is performed in the same way with existing elements.

フロー図1のデータベース機能(部)の記録保管内容の例は、0017項と0018項と図3の表の例で説明した通りであり、図3例は、常時監視していた製品性能検査結果特性(3)内の特性Eの不良率拡大の起因バラツキが、どの部品と、どの寸法が主要因な原因であるかを分析するために、生産トレーサビリティ記録を取寄せたもので、(4)の寸法記録は最変動影響要素である部品Bを特定したのちに、データベース機能(部)に有する機能で、ランダムに組み込んだ部品Bのトレーサビリティ項目の図3(2)部品B.CV(型番号)へ合せて、別に部品生産時記録された型番号毎の寸法検査記録を写し振り分けして書き込んだものであり、手作業ではランダムへ合わせる作業であって膨大な時間を要するが内在する機能では一瞬の書き込みが出来る。図3はサンプルモニターしたものであり、実際には、(1)(2)(3)(4)の項目数は他に多数有るが、間引きして表示してあり、実際では上下左右スクロールして全容を観ることができる。本例プログラムでは、データNo.と特性項目の表セルへ色付けしてユーザーの任意で統計範囲を指定するようになっている。また、各種サーバーでの記録にはTXTタイプが多いので、説明フロー図1には無いが表変換採り込み機能(部)がデータベース機能(部)の前に位置して有る。  The example of the record storage contents of the database function (part) in the flow chart 1 is as described in the example of the paragraphs 0017 and 0018 and the table of FIG. 3, and the example of FIG. In order to analyze which part and which dimension are the main causes of the variation in the defect rate of characteristic E in characteristic (3), we have collected production traceability records. The dimension record is the function that the database function (part) has after identifying the part B that is the most variable influencing element, and the traceability items of the part B randomly incorporated in FIG. Along with the CV (model number), a dimensional inspection record for each model number separately recorded at the time of part production is copied and sorted and written manually. Intrinsic functions allow for instant writing. Figure 3 shows a sample monitor. Actually, there are many other items in (1), (2), (3), and (4), but they are thinned out and actually scrolled up and down, left and right. Can see the whole picture. In this example program, the data No. Colors are added to the table cells of the characteristic items and the statistical range is specified arbitrarily by the user. In addition, since there are many TXT types for recording in various servers, a table conversion incorporation function (part) is located in front of the database function (part), although not shown in the explanation flow diagram 1.

フロー図1の2次データベース機能(部)は、図4のようにデータベース機能(部)に保管したランダムな要素トレーサビリティで成る製品品質記録データを、トレーサビリティ項目(5)で識別符号(6)を目(キーワード)にソートして並べ替えグループ分けし、分析段階に応じたソート結果データ(7)を一時的に保管し、そのデータをモニターする機能である。図4表(7)はサンプルモニターし、項目(列)数を間引き、下方は表の中途でカットしており、実際では上下左右スクロールして全容を観ることができる。  As shown in FIG. 4, the secondary database function (part) in the flow diagram 1 stores product quality record data consisting of random element traceability stored in the database function (part), and the identification code (6) in the traceability item (5). This is a function for sorting the data into eyes (keywords), sorting them into sorting groups, temporarily storing the sorting result data (7) according to the analysis stage, and monitoring the data. The table (7) in FIG. 4 is sample-monitored, the number of items (rows) is thinned out, and the lower part is cut in the middle of the table. In fact, you can scroll up, down, left, and right to see the whole picture.

フロー図1の統計比較表機能(部)は、図5のように2次データベース(SortSheet)と元のデータベース(DataSheet)、双方の製品特性や出力特性および要素特性の分布差を数値で確認し、ソートした2次データベースのデータの特異性を観察するために、各特性規格上限下限の入力欄と、全特性の標準偏差、最大、最小、平均の数値表をモニターするようにした機能である。次項記載のヒストグラム作成準備機能部とも言える。当モニターは下方へスクロールして全容を観ることができる。  As shown in FIG. 5, the statistical comparison table function (part) in the flow chart 1 confirms the distribution difference between the product characteristics, output characteristics, and element characteristics of the secondary database (SortSheet) and the original database (DataSheet) numerically. In order to observe the peculiarity of the data of the sorted secondary database, it is a function to monitor the numerical value table of the standard deviation, maximum, minimum and average of all characteristics and the input field of each characteristic specification upper and lower limit . It can also be said to be a histogram creation preparation function section described in the next section. This monitor can be scrolled down to see the whole picture.

フロー図1のヒストグラム機能(部)は、図6のように、製品特性や出力特性および要素特性の、前項記載の図5統計比較表の中のいずれかの特性名をダブルクリックして選択駆動させると、予め任意のトレーサビリティでソートした2次データベースの特性分布の特異性を確認するため、元のデータベースの同特性の度数分布とをヒストグラム(8)〜(11)と並べて表示し、双方の標準偏差、最大最小、平均そして推定不良率(12)、(13)を表わし、モニターできるようにした機能である。図6例は部品Bを型番号2で組んだ生産記録を2次データベースへソートして観た製品問題特性Eのヒストグラムであり、1番から8番まである部品Bの型の内、2番型は不良を出さないことが、(13)の推定不良率がゼロであることから判る。用途は、このように、要因や原因の部品の一部のトレーサビリティでの生産品質が元の全体母集団の、どの分布位置に存在するか、要因や原因特定結果の整合を確認し、部品ロットや型番号などのトレーサビリティ毎の使用可否の判断をする目的などがある。図1のヒストグラム機能(部)へ来る記録データ情報の流れは、必ずしも原因特定前の流れでもないので図中のフロー矢線を点線にしている。  As shown in FIG. 6, the histogram function (part) in the flow chart 1 is selectively driven by double-clicking on any of the characteristic names in the statistical comparison table of FIG. 5 described in the previous section for product characteristics, output characteristics, and element characteristics. Then, in order to confirm the peculiarity of the characteristic distribution of the secondary database sorted in advance by arbitrary traceability, the frequency distribution of the same characteristic of the original database is displayed side by side with the histograms (8) to (11). This function represents the standard deviation, maximum / minimum, average, and estimated defect rate (12), (13), and can be monitored. FIG. 6 shows a histogram of product problem characteristics E viewed by sorting production records in which the part B is assembled with the model number 2 into the secondary database. The 2nd among the types of the parts B from the 1st to the 8th It can be seen from the fact that the estimated defect rate in (13) is zero that the mold does not produce defects. In this way, confirm the consistency of the factor and cause identification results to confirm the distribution location of the production quality of the traceability of part of the factor and cause parts in the original whole population, and check the lot of parts There is a purpose to determine whether or not each traceability such as model number can be used. The flow of recorded data information coming to the histogram function (part) in FIG. 1 is not necessarily the flow before specifying the cause, so the flow arrow line in the figure is a dotted line.

フロー図1のX−R管理図機能(部)は、従来X−R管理図に代えて、図7のように時系列と限らず、部品、材料、工程の要素トレーサビリティ(識別)項目(14)の符号列(15)を推移確認軸とし、その全ての要素トレーサビリティ項目を参照巡回して、問題の運転出力特性平均推移や製品特性平均推移、例(18)の変動をモニターし、最も変動する(14)に現れたトレーサビリティ識別項目に当たる部品、材料、工程の要素を特定し、図7画面で見えないがスクロールした画面下方の設定する場所で、その特定要素に該当する要素特性項目の範囲を指定し、その範囲の部品寸法、材料成分率、工程条件パラメータなどの要素特性項目を、最大影響要素の特定時と同じトレーサビリティ識別項目での層別軸で自動参照巡回し、現れた要素特性平均推移(21)と製品特性平均推移(18)の相関を確認し、その要素特性項目間から自動で最も相関のある要素特性である原因候補名(19)と相関指数(22)とをモニターグラフ下方へ表し、同内容をメッセージダイヤグラム(23)と音声で、結果回答報告する。  The X-R control chart function (part) of the flow diagram 1 is not limited to the time series as shown in FIG. 7 instead of the conventional X-R control chart, and the element traceability (identification) item (14) of parts, materials, and processes is used. ) Code sequence (15) is used as the transition confirmation axis, and all the element traceability items are referred to and monitored, and the change in the problem of the driving output characteristics, the average transition of the product characteristics, and the fluctuation in the example (18) are monitored. Specify the parts, materials, and process elements that correspond to the traceability identification items that appear in (14). The range of the element characteristic items that correspond to the specified elements at the location set at the bottom of the scrolled screen that cannot be seen on the screen of FIG. The element characteristic items such as part dimensions, material composition ratio, process condition parameters, etc. in that range are automatically referenced and circulated by the stratified axis with the same traceability identification items as when the largest influential elements were identified. The correlation between the element characteristic average transition (21) and the product characteristic average transition (18) is confirmed, and from among the element characteristic items, the cause candidate name (19) and the correlation index (22) which are the element characteristics that are the most correlated automatically Is displayed in the lower part of the monitor graph, and the same content is reported in the message diagram (23) and voice.

ISO−9000指針に従い、品質工程全般に渡り、トレーサビリティの記録管理が取れていれば、日常生産管理に、従来のX−R管理図の代わり本例プログラムを使用し、従来同様に毎日、数台を抜き取り、製品トレーサビリティと組み込み要素トレーサビリティと製品性能特性の記録を、DataSheet(データベース)へ残しておれば、急なバラツキ増や変化の原因要素の部品や材料そして工程の敏速な特定が、このX−R管理図機能部で可能である。なお、原因要素特性の部品寸法や材料成分率そして工程条件パラメータ設定などの、正確な精度での規格見直しのための回帰評価には、0018項記載のランダムトレーサビリティ要素構成の記録が必要であり、蓄積が不足であればランダム組立指示表に従い追加生産を行なう。  If traceability records can be managed throughout the quality process in accordance with ISO-9000 guidelines, this example program can be used instead of the conventional X-R chart for daily production management. If the product traceability, built-in element traceability, and product performance characteristics are recorded in the DataSheet (database), rapid identification of the components, materials, and processes that cause the rapid variation and change is possible. -R control chart functional unit is possible. In addition, it is necessary to record the random traceability element configuration described in paragraph 0018 for regression evaluation for reviewing the standards with accurate accuracy, such as the component dimensions and material component ratios of the cause element characteristics and process condition parameter settings, If the accumulation is insufficient, additional production is performed according to the random assembly instruction table.

フロー図1の散布図機能(部)は、X−R管理図機能(部)で確認した両特性の相関状態を図8散布図のようにモニターするものであり、相関R二乗値(24)(25)の高い方の回帰線式(26)(27)に従い原因候補や要因の要素特性の許容規格とオフセット量の見直しへ繋げる。以上が、原因分析プログラム実施例の説明である。  The scatter diagram function (part) of the flow diagram 1 monitors the correlation state of both characteristics confirmed by the XR control chart function (part) as shown in the scatter diagram of FIG. 8, and the correlation R square value (24) In accordance with the higher regression line equation (26) (27) of (25), it leads to the review of the allowable standard of the cause candidate and the element characteristic of the factor and the offset amount. The above is the description of the cause analysis program embodiment.

現在では、コンピュータを使い機器の複数の出力特性の各関連デバイスをマルチに制御することは当然になっているが、それに、このランダムトレーサビリティ層別平均対照分析方法を加え、要求条件優先型で機器内要素デバイスの設定パラメータの自由設定型な制御を構築する。人工衛星や航空機、液晶テレビなどあらゆる機器で、全ての出力や速度や輝度などの出力特性データと、時点で加えた構成要素側の、燃料や電力などの入力量、内部デバイスのパラメータ設定や特性、及び外気温、明るさなどの環境測定データをコンピュータ中の一枚テーブルに載せて、この対照分析方法を使い、時々、支障ないタイミング範囲で関係の有り無しを無差別に機器内、全ての構成するデバイスのパラメータ設定を同時にランダム及びフルレンジ内で何回か変更し、機器の複数出力特性への影響を同時に測定する自己テストを試みる、また、蓄積から同様なランダムな構成のデータを選び出し、算出された時点の出力特性と各パラメータ設定との相関とその回帰評価結果の能力の限界内で、出力と効率などの要求条件を最優先に従い、機器内複数要因デバイスそれぞれのパラメータ設定を自己制御させ、機器内−デバイスの負担を軽減し、効率よく働かせて延命効果を得るとともに、一部デバイスが故障なり劣化した時も急遽、代替デバイスを主に働かせ、そして、その記録経緯は修理サービスや新商品設計へ活かす。  At present, it is natural to use a computer to control each related device of multiple output characteristics of a device in multiple ways. Construct free control of setting parameters of internal element devices. For all devices such as satellites, aircraft, and LCD TVs, output characteristics data such as all outputs, speed, and brightness, input amounts such as fuel and power on the component side added at the time, internal device parameter settings and characteristics In addition, the environmental measurement data such as outside temperature and brightness are placed on a single table in the computer, and this contrast analysis method is used. Change the parameter setting of the device to be configured several times within random and full range at the same time, try self-test to measure the influence on the multiple output characteristics of the device at the same time, select the data of similar random configuration from the accumulation, Priority is placed on requirements such as output and efficiency within the limits of the correlation between the calculated output characteristics and each parameter setting and the capability of the regression evaluation results. In addition, self-control of the parameter settings of each of the multiple factor devices in the equipment, reduces the burden on the equipment-the device, and works efficiently to obtain a life-prolonging effect. Is used mainly for repair services and new product design.

製品自動調整組立機にもいろいろあるが、例えば多軸調芯のある光学レンズとレンズ枠の光学球軸調芯接着固定組立では、調整完了実績の平均空間座標からスタートして実績調整時間が平均して一番短かった方向へ移動スタートを切る方法などあるが、レンズとレンズ枠それぞれ一個ごと寸法や形状も違うので、迷走も多く、折角の自動化のメリットも乏しくなるケースも少なくもない、そこで、本ランダムトレーサビリティ層別平均対照分析方法を使い、各軸座標の移動平均が自動機の軸可動範囲の中心になるように各軸のランダム組み合わせな測定空間座標点と、その空間点を結ぶ最短の巡回ルートを予め決めておいて、レンズとレンズ枠の一組み毎にその空間点ごとに光学特性の影響を計り、それらの軸座標との回帰評価に従い調整範囲を絞る方法で確実に迷走を防止し、急がば回れで、能率的な調整を行なう。  There are various automatic adjustment assembly machines, but for example, in optical ball axis alignment adhesive fixing assembly of multi-axis alignment optical lens and lens frame, the actual adjustment time is averaged starting from the average space coordinates of the adjustment completion record There is a method of starting the movement in the shortest direction, but the size and shape of each lens and lens frame are different, so there are many cases of stray, and there are not many cases where the merit of automating the corners is poor. Using this random-traceability stratified average contrast analysis method, the measurement space coordinate point that is a random combination of each axis so that the moving average of each axis coordinate becomes the center of the axis movable range of the automatic machine, and the shortest connecting the space point For each pair of lens and lens frame, the effect of the optical characteristics is measured for each spatial point, and the adjustment range is determined according to the regression evaluation with those axis coordinates. It prevented reliably vagus in a way that squeezing the at less haste, perform efficient adjustment.

ランダムトレーサビリティ層別平均対照分析方法と原因分析フロー図である。It is a random traceability stratum average control analysis method and cause analysis flow chart. トレーサビリティと識別の管理と生産工程の関係を説明するフロー図である。It is a flowchart explaining the relationship between management of traceability, identification, and a production process. データベース機能部モニター画面である。It is a database function part monitor screen. 2次データベース機能部モニター画面である。It is a secondary database function part monitor screen. 統計比較表機能部モニター画面である。It is a statistics comparison table function part monitor screen. ヒストグラム機能部モニター画面である。It is a histogram function part monitor screen. X−R管理図機能部モニター画面である。It is a XR control chart function part monitor screen. 散布図機能部モニター画面である。It is a scatter diagram function part monitor screen.

符号の説明Explanation of symbols

1 生産トレーサビリティ項目(図例:製品の生産月日と標本番号)
2 製品ごとへ組み込まれた要素トレーサビリティの項目(図例:部品BとCの型番号)
3 製品特性項目(図例:製品特性DとE)
4 要素特性項目(図例:部品Bの各寸法)
5 ソートキー項目の設定欄(図例:部品B.CV(型番号))
6 ソートキーワードの設定欄(図例:部品B.CVの型番符号)
7 ソート結果(図例:部品B.CVの型番号で統計範囲の記録を層別した結果)
8 データベースの最大と最小間のヒストグラム(図例:特性Eヒストグラム)
9 データベースの規格などの指定数値間のヒストグラム
10 2次データベースの最大と最小間のヒストグラム(図例:部品Bを型番号2で組んだ製品群の特性Eヒストグラム)
11 2次データベースの規格などの指定数値間のヒストグラム
12 データベースの確認特性(図例:特性E)の推定不良率
13 2次データベースの確認特性(図例:特性E)の推定不良率
14 グラフ横軸の項目設定欄(図例:部品B.CV)
15 グラフ横軸ラベル(図例:要素トレーサビリティ識別の部品Bの型番符号)
16 分析対象特性項目設定欄(図例:特性E)
17 分析対象特性平均値軸(図例:特性E平均値軸)
18 分析対象特性平均推移(図例:特性E平均推移)
19 相関確認要素特性項目欄(図例:部品B寸法5.2±0.03)
20 相関確認要素特性平均値軸(図例:部品B寸法5.2±0.03の平均値軸)
21 相関確認要素特性平均推移(図例:部品B寸法5.2±0.03の平均推移)
22 相関指数(図例:製品特性Eと部品B寸法6.2±0.03の相関指数)
23 最大相関要素特性(原因候補)自動検索結果報告メッセージダイヤグラム
24 直線相関で観た相関指数R二乗値
25 多項式相関で観た相関指数R二乗値
26 直線相関回帰線式
27 多項式相関回帰曲線式
1 Production traceability items (Example: Product production date and sample number)
2 Element traceability items incorporated into each product (example: model numbers of parts B and C)
3. Product characteristic items (Example: Product characteristics D and E)
4 Element characteristic items (example: each dimension of part B)
5 Setting field for sort key item (example: part B. CV (model number))
6 Sort keyword setting field (Example: Part B. CV model code)
7 Sort result (Example: Part B. Result of categorizing statistical range records by model number of CV)
8 Histogram between maximum and minimum of database (example: characteristic E histogram)
9 Histogram between specified numerical values such as database standards 10 Histogram between maximum and minimum of secondary database (example: characteristic E histogram of product group in which part B is assembled with model number 2)
11 Histogram between specified numerical values such as secondary database standards 12 Estimated failure rate of database confirmation characteristics (example: characteristic E) 13 Estimated failure rate of secondary database confirmation characteristics (example: characteristic E) 14 Next to graph Axis item setting field (example: part B.CV)
15 Graph horizontal axis label (Example: Part number code of component B for element traceability identification)
16 Analysis target characteristic item setting field (example: characteristic E)
17 Analysis target characteristic average value axis (example: characteristic E average value axis)
18 Analysis target characteristic average transition (example: characteristic E average transition)
19 Correlation confirmation element characteristic item column (example: part B dimension 5.2 ± 0.03)
20 Correlation confirmation element characteristic average value axis (example: average value axis of part B dimension 5.2 ± 0.03)
21 Correlation confirmation element characteristic average transition (example: average transition of component B size 5.2 ± 0.03)
22 Correlation index (Example: Correlation index of product characteristic E and part B size 6.2 ± 0.03)
23 Maximum correlation element characteristic (cause candidate) automatic search result report message diagram 24 Correlation index R-squared value 25 observed in linear correlation 26 Correlation index R-squared value observed in polynomial correlation 26 Linear correlation regression line equation 27 Polynomial correlation regression curve equation

確認対象外要素の相互作用を有り得る量産変動の中心で固定して、確認対象外要素の変動や偏り影響をオフセットし、層別統計の精度を上げて、確認要素トレーサビリティの影響対照を際立たせるため、前項記載のランダムな要素トレーサビリティで構成した製品の品質記録をデータベースへ入力し、部品、材料、工程の要素トレーサビリティの識別を目(キーワード)に層別グループ分けし、分析対象の製品検査や運転出力評価特性のグループ平均を求め、全ての要素ごと、トレーサビリティ層別を繰り返し、問題の特性平均のグループ間変動が最も有ったグループ目に相当する主要因要素である部品、材料、工程を特定する。To fix the influence of non-confirmable elements at the center of possible mass production fluctuations, offset fluctuations and bias effects of non-confirmable elements, improve the accuracy of stratified statistics, and highlight the contrast of confirmation element traceability effects The product quality records composed of the random element traceability described in the previous section are input to the database, and the element traceability identification of parts, materials, and processes is divided into groups (keywords), and the product inspection and operation to be analyzed are performed. Obtain the group average of the output evaluation characteristics, repeat the traceability stratification for every element, and identify the parts, materials, and processes that are the main factor elements corresponding to the group with the most variation of the characteristic average of the problem between groups To do.

そのあと、主要因要素の特定時と同じトレーサビリティ層別で、主要因要素を構成する部品寸法、材料成分率、工程条件パラメータなどの各要素特性のグループ平均とその分析対象特性のグループ平均間の相関確認を行い、最も相関を示す原因候補の要素特性を特定し、そして、その要素特性平均とその問題の特性平均間の回帰評価を行ない、その分析対象特性の不良発生やバラツキを是正する為の要素特性の許容規格とオフセット量の見直し対策へ繋げる。After that, with the same traceability layer as when the main factor element was specified, the group average of each element characteristic such as part dimensions, material composition ratio, process condition parameter, etc. constituting the main factor element and the group average of the analysis target characteristic To confirm the correlation, identify the element characteristic of the cause candidate that shows the most correlation, and perform regression evaluation between the element characteristic average and the characteristic average of the problem, and correct the occurrence and variation of the analysis target characteristic This leads to a review of the tolerance standards for element characteristics and the offset amount.

0007項と0009項間の処理をコンピュータに行なわせ、ランダム要素トレーサビリティな構成記録から主要因要素特性である原因候補を特定し、自動回答させ、それを更に検証確認し、そして原因対策のため回帰評価をするため、データベース機能部、2次データベース機能部、統計比較表機能部、ヒストグラム機能部、X−R管理図機能部、散布図機能部の6つの機能部を以下にプログラムへ構成する。Causes the computer to perform processing between 0007 and 0009 , identifies a cause candidate that is a main factor element characteristic from a configuration record with random element traceability, automatically answers it, further verifies and confirms it, and returns to cause countermeasure In order to make an evaluation, the following six functions are configured into a program: a database function unit, a secondary database function unit, a statistical comparison table function unit, a histogram function unit, an X-R control chart function unit, and a scatter diagram function unit.

X−R管理図上で、時間軸と限らず、確認したいトレーサビリティを軸として、問題とする製品性能特性や運転出力特性などの変動をモニターできるようにし、最も問題特性へ影響するトレーサビリティの要素を見極めできるようにして、
製品性能特性や運転出力特性などの一特性平均の推移のみであらず、部品寸法、材料や燃料成分率、工程や機器運転設定条件パラメータなどの要素特性の平均推移とを同一グラフ上へ表わし、従来の一特性監視機能へ合わせて、その要素特性推移との相乗関係をモニター出来るようにし、要素特性と問題特性との層別平均間で最も相関を示す原因候補の主要因要素特性名と相関指数をモニター表示とメッセージダイヤグラムそして音声で回答するようにさせたX−R管理図機能部、
回帰線式と回帰線を含む散布図から要因要素特性の許容規格とオフセット量を見直し是正するためX−R管理図機能部で相関確認した分析対象特性と要素特性の層別平均間の回帰評価を行ないモニター表示する散布図機能部を設ける。
On the X-R control chart, not only the time axis but also the traceability that you want to check can be monitored around the traceability you want to check, and the fluctuations in the product performance characteristics and operation output characteristics in question can be monitored. To be able to identify
Not only the transition of one characteristic average such as product performance characteristics and operation output characteristics, but also the average transition of element characteristics such as part dimensions, materials and fuel component ratios, process and equipment operation setting condition parameters on the same graph, Along with the conventional one-characteristic monitoring function, it is possible to monitor the synergistic relationship with the transition of element characteristics, correlating with the main factor element characteristic name of the cause candidate that shows the most correlation between the averages of element characteristics and problem characteristics X-R control chart function unit that makes the index respond with a monitor display, a message diagram, and voice,
Regression evaluation between stratified averages of analysis target characteristics and element characteristics confirmed by the X-R control chart function unit to review and correct the tolerance standard and offset amount of the factor element characteristics from the regression line formula and the scatter chart including the regression line A scatter diagram function unit is provided for performing monitor display.

フロー図1の、トレーサビリティ混合生産とは、製品の構成要素である部品、材料、生産工程のトレーサビリティ違いを、型影響を調査するためにデータを取り寄せた図3の表中の例(2)部品毎のCV(生産使用型番号)の様にランダムに組み合わせた生産記録、また、生産帰歴に有する要素トレーサビリティをランダムに組み込む製品組立指示表を本プログラム内で作り、蓄積データから、その要素トレーサビリティの組み合せが一致する製品の記録を採取し、不足時は現存する要素で同様にして本プラグラムが作成した製品組立指示表に従い追加生産する。The traceability mixed production in the flow diagram 1 is an example in the table of FIG. 3 in which data is collected in order to investigate the mold effects of the traceability differences in the components, materials, and production processes that are components of the product (2) Parts A production record that is randomly combined, such as CV (production use model number) for each product, and a product assembly instruction table that randomly incorporates element traceability in the production return history is created in this program, and the element traceability from the accumulated data A record of products with the same combination is collected, and when there is a shortage , additional production is performed in accordance with the product assembly instruction table created in the same way by using the existing elements.

Claims (3)

製品性能や機器運転出力の分析対象特性の変動要素である評価環境、機器部品、燃料などの有り得る(要素)トレーサビリティ違いがランダム均等に混じる生産や運転記録を作為的に採取し、その集団記録を、一要素のトレーサビリティの識別を目(キーワード)にソートして層別グループ分けし、分析対象特性とその一要素の部品であれば寸法など要素特性の各グループ平均を出し、グループ目の要素の要素特性の影響対照を際立て、その平均間の相関及び回帰評価を行なうランダムトレーサビリティ層別平均対照分析方法に依り原因分析を行なうため、対象の製品また運転のトレーサビリティ記録と、それらを構成した要素のトレーサビリティ記録と、分析対象特性の実測記録、そして、要素トレーサビリティにリンクした要素特性の実測記録の4種類の記録を保管するデータベース機能部、データベースの記録を要素トレーサビリティ識別でソートし層別を一時、保管するための2次データベース機能部、データベースと2次データベース双方の全特性の統計値の特異比較するための統計比較表機能部、統計比較表機能部と伴に原因や要因の検証をするため、データベースと特定した原因候補要素のトレーサビリティでソートした2次データベース双方の分析対象特性の問題特性の度数分布を比較モニターするヒストグラム機能部、2次データベース機能部を働かせ要素トレーサビリティで層別グループ化した記録の、問題特性と原因や要因を含む要素特性の両特性の層別グループ平均推移を、従来と違い、一特性から二つの特性の層別平均推移を同一グラフ上へ表わし、そして、それら二つの特性の層別平均間の相関確認を行ない原因候補を自動で検索する機能を付加したX−R管理図機能部、そして原因要因の要素特性の許容確認や是正対策値を読むための回帰評価を行なう散布図機能部の、六つの機能部を、パソコンなどのコンピュータ上で、各機能部処理結果をモニターしながら連係駆動させ、分析対象特性のバラツキや変動問題などの最大影響、最大相関、主要因の要素特性である原因候補を自動判別回答する、ランダムトレーサビリティ層別平均対照原因分析プログラム  Collecting production records and operation records with random (even) traceability differences (evaluation environment, device parts, fuel, etc.) that are fluctuation factors of product performance and device operation output analysis target characteristics The traceability identification of one element is sorted into eyes (keywords) and divided into groups. If the analysis target characteristic and its one element part, the average of each element characteristic such as dimensions is calculated, and the group element Traceability records of the target product or operation, and the elements that comprise them, in order to perform cause analysis according to the average control analysis method by random traceability stratification that distinguishes the influence contrast of element characteristics, and performs correlation and regression evaluation between the averages Traceability records, actual measurement records of characteristics to be analyzed, and element characteristics linked to element traceability Database function section for storing four types of records, secondary database function section for temporarily storing database records by element traceability identification, and statistic values for all characteristics of both database and secondary database In order to verify the causes and factors together with the statistical comparison table function unit for statistical comparison, and the statistical comparison table function unit, the analysis target characteristics of both the database and the secondary database sorted by the traceability of the specified cause candidate elements Histogram function section that compares and monitors the frequency distribution of problem characteristics, and the secondary database function section makes it possible to use group traceability by element traceability to record group average transitions for both problem characteristics and element characteristics including causes and factors Unlike the conventional case, the average transition from one characteristic to two characteristics is displayed on the same graph. The X-R control chart function unit with the function to automatically search for the cause candidates by checking the correlation between the averages of the two characteristics and reading the permissible confirmation and corrective measure values of the element characteristics of the cause factors The scatter diagram function section that performs regression evaluation for the purpose is linked and driven on a computer such as a personal computer while monitoring the processing results of each function section, to maximize the influence of variations in analysis target characteristics and fluctuation problems. , Random correlation traceable average control cause analysis program that automatically identifies and answers to cause candidates that are element characteristics of maximum correlation and main factors 製品などの物や事象の評価や出力の特性推移の管理をするためのX−R管理図の推移軸を、時系列年月日時と限らず確認したいトレーサビリティ項目に置き換えられるようにし、要素トレーサビリティ違いに依る製品特性などの管理特性の変動をモニター確認できるようにし、従来の製品性能特性などの一特性平均推移だけでなく、更に、一軸追加し要素特性の平均推移とを伴に同一グラフ上へ表し、双方の相乗関係をモニター観察できるようにし、そして、双方特性平均間の相関確認をする機能を付加しグラフ下方へ相関指数を表し、製品などの問題特性が最も変動する要素のトレーサビリティでソート層別させた2次データベース内の同要素の要素特性項目を指定した範囲で自動巡回し、製品などの問題特性と各要素特性との相関を明らかにし、製品などの問題特性のバラツキや変動への最大影響、最大相関な要素特性である原因候補と、その相関指数を、モニター表示とメッセージダイヤグラムそして音声で報告する機能を備えた、請求項1記載のX−R管理図機能部  The trace axis of the X-R control chart for managing product and event evaluations and output characteristic transitions can be replaced with traceability items that you want to check, not limited to time-series year / month / date / time. It is possible to monitor and check changes in management characteristics such as product characteristics depending on the same graph, not only with the one-character average transition of conventional product performance characteristics, but also with the addition of one axis to the same graph with the average transition of element characteristics It is possible to monitor the synergistic relationship between the two, and add a function to confirm the correlation between the averages of the two characteristics, and display the correlation index at the bottom of the graph, sorting by the traceability of the element where the problem characteristics such as products vary most The element characteristic item of the same element in the stratified secondary database is automatically circulated within the specified range, and the correlation between the problem characteristic of the product and each element characteristic is revealed. And a function for reporting the maximum influence on variations and fluctuations of problem characteristics of products and the like, the cause candidate which is the maximum correlation element characteristic, and its correlation index by a monitor display, a message diagram and voice. X-R control chart function part of description 製品性能や機器運転出力の分析対象特性への、外気温などの評価環境や燃料供給量などの機器運転条件、機器の部品形状寸法、機器内デバイス設定、供給燃料成分率など要素特性の偏ったバラツキや相互作用による影響で、分析対象特性への一要素特性の統計的な影響評価を妨げないように、評価年月日時や機器番号、機器生産年月日時、機器生産工程番号、部品生産工場名、部品生産年月日時、部品生産機械や型番号など、品質工程全てに渡る生い立ちトレーサビリティとそれぞれの要素特性を記録し、全品質工程の有り得るトレーサビリティ違いがランダム均等に混じる生産や運転記録を作為的に採取し、その記録を、一要素のトレーサビリティの識別を目(キーワード)に層別グループ分けし、分析対象特性のグループごと平均を出し、グループ目に相当しないグループ内の要素トレーサビリティはそれぞれランダム均等なことから、常に各グループ内の其の要素の要素特性の平均は有り得る変動範囲の中央で同一なため、分析対象特性の各グループ平均へ其の要素特性が与える平均的影響も同一であり、分析対象特性の各グループ平均が受ける影響の違いはグループ目の要素の要素特性のグループ平均の差のみとなり、その結果、一要素特性ごとの分析対象特性への影響対照(コントラスト)を明瞭にすることができたので、その分析対象特性と要素特性のグループ平均値を使い、従来の無作為情報を単に層別統計する方法では不可能であった精度域の分析対象特性と要素特性間の相関そして回帰の統計評価を行なう、請求項1記載の、ランダムトレーサビリティ層別平均対照分析方法  Product characteristics and device operation output analysis target characteristics are biased in element characteristics such as evaluation environment such as outside air temperature, equipment operating conditions such as fuel supply, equipment part shape dimensions, device settings within equipment, and fuel component ratio Evaluation date / time, equipment number, equipment production date / time, equipment production process number, parts production plant, so as not to interfere with the statistical impact assessment of the single element characteristics on the characteristics to be analyzed due to the effects of variation and interaction Record history traceability and element characteristics of all quality processes, such as name, parts production date and time, parts production machine and model number, and create production and operation records in which the possible traceability differences of all quality processes are mixed evenly and randomly The records are categorized into stratified groups with the identification of traceability of one element as an eye (keyword), and the average for each group of characteristics to be analyzed is calculated. Since element traceability within a group that is not equivalent to a group is randomly equal to each other, the average of the element characteristics of each element within each group is always the same in the middle of the range of possible fluctuations. The average effect of the element characteristics is also the same, and the difference in the influence of each group average of the analysis target characteristics is only the difference of the group average of the element characteristics of the element in the group. Since it was possible to clarify the influence contrast (contrast) on the analysis target characteristics, it was not possible to simply use the group average of the analysis target characteristics and element characteristics, and simply perform the stratified statistical analysis of random information. 2. Random traceability stratified average according to claim 1, wherein the correlation between the analysis target characteristic and the element characteristic within a certain accuracy range and the statistical evaluation of regression are performed. Irradiation analytical methods
JP2005199396A 2005-06-10 2005-06-10 Random traceability stratified mean contrast cause analysis system and program Expired - Fee Related JP4172042B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005199396A JP4172042B2 (en) 2005-06-10 2005-06-10 Random traceability stratified mean contrast cause analysis system and program
PCT/JP2005/018990 WO2006132000A1 (en) 2005-06-10 2005-10-11 Random traceability layer-based average contrastive analysis method and x-r control chart function unit program and random traceability layer-based average contrastive cause analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199396A JP4172042B2 (en) 2005-06-10 2005-06-10 Random traceability stratified mean contrast cause analysis system and program

Publications (2)

Publication Number Publication Date
JP2006344193A true JP2006344193A (en) 2006-12-21
JP4172042B2 JP4172042B2 (en) 2008-10-29

Family

ID=37498211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199396A Expired - Fee Related JP4172042B2 (en) 2005-06-10 2005-06-10 Random traceability stratified mean contrast cause analysis system and program

Country Status (2)

Country Link
JP (1) JP4172042B2 (en)
WO (1) WO2006132000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144620A (en) * 2018-02-16 2019-08-29 カシオ計算機株式会社 Information processing device and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116822998B (en) * 2023-08-30 2023-11-14 山东太祥阀门有限公司 All-welded ball valve production data analysis method based on big data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354396A (en) * 1998-06-05 1999-12-24 Matsushita Electric Ind Co Ltd Method and device for controlling semiconductor process
JP3665215B2 (en) * 1999-01-28 2005-06-29 株式会社日立製作所 Abnormal cause identification system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144620A (en) * 2018-02-16 2019-08-29 カシオ計算機株式会社 Information processing device and program
JP7000905B2 (en) 2018-02-16 2022-01-19 カシオ計算機株式会社 Information processing equipment, personnel analysis support methods and programs

Also Published As

Publication number Publication date
JP4172042B2 (en) 2008-10-29
WO2006132000A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
Iannone et al. Managing OEE to optimize factory performance
US9454855B2 (en) Monitoring and planning for failures of vehicular components
US8285414B2 (en) Method and system for evaluating a machine tool operating characteristics
CN109906467B (en) Information management system
US20090030752A1 (en) Fleet anomaly detection method
US9069352B2 (en) Automated fault analysis and response system
CN112327780A (en) Digital twin system construction method and architecture of electronic equipment test production line
Yusof et al. The study on the application of business intelligence in manufacturing: A review
Oberoi et al. An empirical examination of advanced manufacturing technology and sourcing practices in developing manufacturing flexibilities
JP4172042B2 (en) Random traceability stratified mean contrast cause analysis system and program
CN117114412A (en) Safety pre-control method and device for dangerous chemical production enterprises
Bhoyar et al. Total Productive Maintenance: The Evolution in Maintenance and Efficiency
JP2007323623A (en) Random traceability layer-based average contrast cause analysis program
Li et al. Real-time OEE visualisation for downtime detection
Wang et al. Quantitative analysis of requirements evolution across multiple versions of an industrial software product
Staron et al. Milestone-Oriented Usage of Key Performance Indicators–An Industrial Case Study
CN114169698A (en) Method and system for managing compliance data and monitoring state of airworthiness evidence-obtaining project
Rusko et al. Application of six sigma method to EMS design
Wang et al. Do suppliers benefit from supply chain sustainability programs? The case of Wal-Mart
Arnason et al. Analysis of Production Disturbances with the Use of Big Data: Identifying Quality Issues Through a Case Study at an Electronics Manufacturer
Rooney IEC61508: an opportunity for reliability
Kralikova et al. Framework for applying six sigma methods within environmental management
Schwenke et al. Analysis of maintenance histories of industrial equipment with frequent maintenance demand
Welsch Integrating production machines in a Manufacturing Execution System (MES)
Marshall et al. Reframing PSMS in the Context of Operational Risk Management and ESG Sustainability

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060824

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071112

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees