CN112327780A - Digital twin system construction method and architecture of electronic equipment test production line - Google Patents

Digital twin system construction method and architecture of electronic equipment test production line Download PDF

Info

Publication number
CN112327780A
CN112327780A CN202011277036.6A CN202011277036A CN112327780A CN 112327780 A CN112327780 A CN 112327780A CN 202011277036 A CN202011277036 A CN 202011277036A CN 112327780 A CN112327780 A CN 112327780A
Authority
CN
China
Prior art keywords
production line
data
digital twin
physical
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011277036.6A
Other languages
Chinese (zh)
Inventor
史建成
杜小东
林晨阳
周杰文
缪方雷
李明贵
张锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 29 Research Institute
Southwest China Research Institute Electronic Equipment
Original Assignee
CETC 29 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 29 Research Institute filed Critical CETC 29 Research Institute
Priority to CN202011277036.6A priority Critical patent/CN112327780A/en
Publication of CN112327780A publication Critical patent/CN112327780A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

The invention relates to a digital twinning system construction method of an electronic equipment test production line, which comprises the steps of carrying out multi-scale digital twinning modeling on a physical production line, carrying out data acquisition on the physical production line, completing construction of a production line digital twinning system through virtual-real interconnection and data updating, and driving the production line digital twinning system to carry out synchronous mapping and interactive control on the physical production line; the physical production line includes instrumentation, facilities, logistics, and physical plant environments. The method can construct a digital twin system of an electronic equipment test production line, and realize transparent monitoring of the production process, accurate positioning of production resources, quick response of production abnormity and analysis and optimization of the production process.

Description

Digital twin system construction method and architecture of electronic equipment test production line
Technical Field
The invention relates to the field of mechanical product processing and assembling production lines, in particular to a digital twinning system construction method and a digital twinning system framework of an electronic equipment testing production line
Background
The production line digital twin system is a system for synchronously mapping the digital space and the physical space of the production line, and full-factor monitoring and optimized feedback control of the production line are performed by synchronously mapping the states of the production line, equipment facilities, logistics and the like in the physical space in the digital space. At present, research aiming at a production line digital twin system is mostly concentrated in the fields of mechanical product processing assembly production lines and the like, and no research aiming at an electronic equipment system test production line exists.
The document ' construction and application of a digital twin system in a workshop production process ' (Liulin Yan, Duhongxiang, Wanghenfen, and the like) ' construction and application of a digital twin system in a workshop production process [ J ]. a computer integrated manufacturing system, 2019,25(6): 1536-. The equipment of the mechanical product processing assembly production line is mainly a machine tool, and the involved digital twin modeling, data acquisition and management application is greatly different from the electronic equipment testing production line, so that the digital twin system of the production line cannot be directly applied to construction. Chinese patent publication No. CN109857078A describes a digital twin simulation system for a shipyard production workshop, which uses a communication module to receive instructions and accesses a three-dimensional display module to display a processing procedure, so as to display and verify the complete processing procedure. However, the same application object of the patent technology is a machining process, and the main application purpose is to verify the automatic control logic, so that the application requirements of the production line operation are difficult to meet. Chinese patent publication No. CN110333698A describes a plant management system and method based on a digital twin platform, which is used for modeling the layout of the whole industrial park on the digital twin platform, guiding customers to know the distribution of the whole workshop from a first person perspective, and viewing the operation status of the equipment in the plant. The technology of the patent is mainly used for workshop monitoring, and the modeling and application method of the patent is lack of deepening and can not be used for an electronic equipment test production line. Therefore, aiming at the requirement of continuously improving the operation efficiency of the production line of the electronic equipment test production line, the self-perception of the production line, the transparentization of the production process, the optimization of resource allocation and the improvement of the production efficiency are realized according to the virtual-real fusion through the construction of the production line digital twin system.
Disclosure of Invention
The invention aims to solve the problems that an electronic assembly test production line has opaque process, difficult resource balance, difficult process control and the like, and provides a method for constructing a digital twin system of an electronic equipment test production line.
The technical scheme adopted by the invention is as follows: a digital twin system construction method of an electronic equipment test production line comprises the steps of carrying out multi-scale digital twin modeling on a physical production line, carrying out data acquisition on the physical production line, completing construction of a production line digital twin system through virtual-real interconnection and data updating, and driving the production line digital twin system to carry out synchronous mapping and interactive control on the physical production line; the physical production line comprises workshop environment, production lines, stations and manufacturing elements, and the manufacturing comprises personnel, logistics, instrument and equipment, facilities and electronic equipment products.
Further, the digital twin modeling process is as follows: the method comprises the steps of carrying out digital twin modeling on four scales of a workshop, a production line, a station and elements by adopting a multi-scale modeling framework, carrying out equal-proportion lightweight modeling on a model of each scale, carrying out geometrical model post-processing, and simultaneously and respectively setting physical attributes, behavior attributes and rule attributes on each model through rendering, veneering and light source setting.
Furthermore, the data acquisition adopts an information system integration mode, a lower computer system acquisition mode and a sensor acquisition mode to acquire production line data.
Further, the information system integration mode is as follows: data is collected from the MES system by means of a development interface.
Further, the sensor acquisition mode specifically is as follows: for the acquisition target with a data interface, acquiring facility related information through an open data interface, for the acquisition target without the data interface, acquiring data by adding a sensor, and acquiring temperature and humidity respectively by adopting a temperature sensor and a humidity sensor.
Further, the lower computer system has the following acquisition mode: and integrating the automatic test system with the equipment, and directly acquiring the equipment state from the automatic test system.
Furthermore, equipment with a network card can be directly integrated with an automatic test system; for some older devices or devices without open protocols, an acquisition card needs to be additionally arranged on the device, and then data is transmitted to an automatic test system.
Further, the virtual-real interconnection method specifically comprises the following steps: and establishing a path between the physical production line data and the virtual model, establishing a virtual label, accurately finding specific data in the database by the virtual model through data addressing, and controlling a data access strategy through data interconnection access.
Further, the specific method for updating data is as follows: and the virtual-real interconnected data realize the change and control of the virtual model or the physical production line according to the change of the data related to the virtual-real interconnected data, the virtual model data is updated in a mode of refreshing a data increment table at a fixed frequency, and the control instruction data of the virtual model to the physical production line is updated in an event-driven mode. The invention also provides a digital twin system architecture of the production line digital twin system constructed by the method, which is characterized by comprising the production line digital twin system, an MES system, a data acquisition system, an automatic test system, a physical production line, a small-distance LED display screen and an interactive console;
the production line digital twin system comprises a workshop, a production line, stations, an element digital twin model and a manufacturing execution system thereof;
the MES system is used for providing plan, quality and material information for the production line digital twin system and executing the optimization result of the production line digital twin system;
the data acquisition system is used for acquiring temperature, humidity, air supply quantity, liquid supply quantity and power supply conditions;
the automatic test system is used for acquiring state information, fault information and frequency spectrum information of the instrument equipment;
a physical production line comprising a workshop environment, a production line, stations, manufacturing elements;
the small-spacing LED display screen is used for comprehensively displaying production line monitoring information and production line states;
and the interactive console is used for performing production line browsing and interactive control in a token mode.
Compared with the prior art, the beneficial effects of adopting the technical scheme are as follows: (1) by constructing the digital twin system of the electronic equipment test production line, the invention not only can realize the synchronous mapping of the digital twin model to the physical production line, but also can realize the feedback control of the physical production process based on the digital twin model, thereby achieving the effects of transparent monitoring of the production process, accurate positioning of production resources, quick response to production abnormity and analysis and optimization of the production process.
(2) Temperature and humidity sensors are additionally arranged on stations to acquire and map temperature and humidity values, so that the temperature and humidity monitoring of a workshop is supported, and the environmental requirements of electrostatic protection and the like in the manufacturing process of electronic equipment are met;
(3) data acquisition and feedback control of test instrument equipment are performed based on an automatic test system, and safety and robustness of virtual control and real control are improved.
Drawings
FIG. 1 is a flow chart of a method for constructing a production line digital twin system for an electronic equipment system.
FIG. 2 is a diagram of a digital twinning system architecture for an electronic equipment testing production line as set forth in the present invention.
Detailed Description
The invention is further described below with reference to the accompanying drawings.
As shown in fig. 1, the invention provides a digital twin system construction method for an electronic equipment test production line, which comprises the steps of performing multi-scale digital twin modeling on a physical production line, acquiring data of the physical production line, completing construction of a production line digital twin system through virtual-real interconnection and data updating, and driving the production line digital twin system to perform synchronous mapping and interactive control on the physical production line; the physical production line comprises workshop environment, production lines, stations and manufacturing elements, and the manufacturing comprises personnel, logistics, instrument and equipment, facilities and electronic equipment products.
The modeling process includes: the method comprises the following steps:
geometric modeling: and carrying out equal-proportion lightweight modeling on the model of each scale, and ensuring that the key scale corresponds to the real scale. And after the geometric model is processed, the loading and running speeds of the whole system are higher through rendering, veneering and light source setting, and the display effect of the model is improved.
Physical modeling: and setting physical properties including collision detection, temperature and humidity and the like for the model established in the step.
And (3) behavior modeling: and setting behavior attributes including actions, behaviors, reaction mechanisms and the like for the model built in the step.
Modeling a rule: and setting rule attributes of the model built in the step, wherein the rule attributes comprise association rules, workshop production operation and evolution rules and the like.
The virtual-real interconnection method comprises the following specific steps: and establishing a path between the physical production line data and the virtual model, establishing a virtual label, accurately finding specific data in the database by the virtual model through data addressing, and controlling a data access strategy through data interconnection access.
The specific data updating method comprises the following steps: the virtual-real interconnected data realizes the change and control of a virtual model or a physical production line according to the change of the data related to the virtual-real interconnected data, the virtual model data is updated in a mode of refreshing a data increment table at a fixed frequency, the mode comprises the temperature and humidity change of a workshop, the change of logistics and instrument equipment and the like, and the control instruction data of the virtual model to the physical production line is updated in an event-driven mode.
The modeling scale covers four scales of a workshop, a production line, a station, elements and the like. The modeling key points of different scales are as follows: the scale of the workshop focuses on modeling in supply chain, warehouse logistics and environment. Based on the workshop model, environmental monitoring and analysis, supply chain management, warehousing management and logistics management can be performed. The production line scale is mainly a production line, and models in aspects of production line layout, logistics, scheduling, tasks and the like are emphasized. And the station scale takes the station as an object and carries out unified management on station capacity, input and output, equipment composition, used materials, used tools and matched technical personnel. The element scale is mainly the basic elements of the production line, including equipment, facilities, products, tool fixtures and the like. In the element scale, for the elements such as equipment facilities and the like, the functional performance, the use state, the maintenance window, the interface and the comprehensive performance are included; for product materials, the process route, the procedure level bill of materials, the technical state and the like of the product are included; the tool clamp includes functional performance, use state, stock state and the like.
And the information system integration mode is used for acquiring data from the MES in a development interface mode, such as production progress data, real-time data, production personnel data, production logistics data and the like.
And the lower computer collects the mode, integrates the automatic test system with the equipment and directly collects the equipment state from the automatic test system. The automatic test system is operated in the operation process, the individual instrument is identified by acquiring the description field of the instrument, and information such as control parameters, use time, output waveforms, equipment faults and the like in the use process is recorded and uploaded. The device with the network card can be directly integrated with an automatic test system. For some older devices or devices without open protocols, an acquisition card needs to be additionally arranged on the device, and then data is transmitted to an automatic test system.
The sensor acquisition mode is suitable for physical quantities needing direct acquisition, such as temperature and humidity of a production environment. And for the device with the data interface, acquiring the facility related information through the open data interface. For a power supply without a data interface, data acquisition is carried out by adding a sensor, and temperature and humidity are respectively acquired by adopting a temperature sensor and a humidity sensor.
The method comprises the following specific steps:
s1: establishing an equal-proportion geometric model according to four scales of a workshop, a production line, stations, elements and the like;
s2: setting physical attributes including temperature, humidity, speed, working range, collision detection and the like of the model established by the S1;
s3: setting behavior attributes including process behaviors, business cooperation behaviors and fault behaviors of the model established by the S1;
s4: and setting rule attributes of the model established by the S1, including a test item matching rule, temperature and humidity threshold value constraint, material composition relation, resource matching relation and the like, wherein the temperature threshold value is 5-30 ℃, and the humidity threshold value is 30-70%.
S5: modifying a physical production line, additionally installing a sensor, and acquiring data such as temperature, humidity, air supply amount, liquid supply amount, power supply and the like; and data acquisition cards and the like are additionally arranged on some older equipment or equipment without an open protocol, so that data acquisition of the equipment is realized.
S6: and uploading the data acquired by the S5 to a background server database after protocol conversion, wherein the background server mainly analyzes and stores the uploaded data and provides an external interface for other programs to call.
S7: interface development is carried out on the MES, the automatic test system and the data acquisition system, and the architecture shown in figure 2 is adopted to integrate the systems with the digital twin system of the production line.
S8: based on the digital twin model established in S1-S4 and the data acquired in S5-S7, carrying out production line virtual-real data association and establishing one-to-one corresponding association relationship between the data and the twin model;
s9: and updating the virtual model data by adopting a mode of refreshing a data increment table at a fixed frequency through data updating, wherein the mode comprises workshop temperature and humidity change, logistics and instrument and equipment change and the like, and updating the control instruction data of the virtual model to the physical production line by adopting an event-driven mode so as to synchronize virtual and real states of the production line.
S10: a small-space LED display screen is adopted to comprehensively display production line monitoring information and production line states;
s11: and an interactive console is adopted, a response interactive instruction is developed, and the production line browsing and interactive control are carried out in a token mode.
The invention also provides a digital twinning system architecture of the electronic equipment test production line, which is used for the production line digital twinning and the integration and application of related systems, and comprises the following steps:
the production line digital twin system comprises a workshop, a production line, stations, elements and other digital twin models and a manufacturing execution system thereof;
and the MES system is used for providing information such as plan, quality, materials and the like for the production line digital twin system and executing an optimization result of the production line digital twin system.
The data acquisition system is used for acquiring temperature, humidity, air supply quantity, liquid supply quantity, power supply conditions and the like;
the automatic test system is used for acquiring state information, fault information, frequency spectrum information and the like of the instrument equipment;
a physical production line comprising a workshop environment, a production line, stations, manufacturing elements;
preferably, the system also comprises a small-space LED display screen which is used for comprehensively displaying production line monitoring information and production line states;
preferably, the system also comprises an interactive console used for performing production line browsing and interactive control in a token mode.
By adopting the scheme provided by the invention, the digital twin system of the electronic equipment test production line can be constructed, and the transparent monitoring of the production process, the accurate positioning of production resources, the quick response of production abnormity and the analysis and optimization of the production process are realized.
The invention is not limited to the foregoing embodiments. The invention extends to any novel feature or any novel combination of features disclosed in this specification and any novel method or process steps or any novel combination of features disclosed. Those skilled in the art to which the invention pertains will appreciate that insubstantial changes or modifications can be made without departing from the spirit of the invention as defined by the appended claims.
All of the features disclosed in this specification, or all of the steps in any method or process so disclosed, may be combined in any combination, except combinations of features and/or steps that are mutually exclusive.
Any feature disclosed in this specification may be replaced by alternative features serving equivalent or similar purposes, unless expressly stated otherwise. That is, unless expressly stated otherwise, each feature is only an example of a generic series of equivalent or similar features.

Claims (10)

1. A digital twin system construction method of an electronic equipment test production line is characterized in that multi-scale digital twin modeling is carried out on a physical production line, data acquisition of the physical production line is carried out, construction of the production line digital twin system is completed through virtual-real interconnection and data updating, and the production line digital twin system is driven to carry out synchronous mapping and interactive control on the physical production line; the physical production line comprises a workshop environment, a production line, stations and manufacturing elements.
2. The digital twinning system construction method of a sub-equipment test production line according to claim 1, wherein the digital twinning modeling process is: the method comprises the steps of carrying out digital twin modeling on four scales of a workshop environment, a production line, a station and elements by adopting a multi-scale modeling framework, carrying out equal-proportion lightweight modeling on a model of each scale, carrying out geometrical model post-processing, and simultaneously and respectively setting physical attributes, behavior attributes and rule attributes on each model through rendering, veneering and light source setting.
3. The method as claimed in claim 2, wherein the data acquisition is performed by an information system integration method, a lower computer system acquisition method, and a sensor acquisition method.
4. The method for constructing a digital twin system of a sub-equipment test production line according to claim 3, wherein the information system is integrated in a manner that: data is collected from the MES system by means of a development interface.
5. The method for constructing the digital twin system of the sub-equipment test production line according to claim 4, wherein the sensor acquisition mode is specifically as follows: for the acquisition target with a data interface, acquiring facility related information through an open data interface, for the acquisition target without the data interface, acquiring data by adding a sensor, and acquiring temperature and humidity respectively by adopting a temperature sensor and a humidity sensor.
6. The method for constructing the digital twin system of the sub-equipment test production line according to claim 5, wherein the lower computer system is collected in a manner that: and integrating the automatic test system with the equipment, and directly acquiring the equipment state from the automatic test system.
7. The method for constructing a digital twin system of a sub-equipment test production line according to claim 6, wherein the device with the network card can be directly integrated with an automatic test system; for some older devices or devices without open protocols, an acquisition card needs to be additionally arranged on the device, and then data is transmitted to an automatic test system.
8. The method for constructing a digital twin system of a sub-equipment test production line according to claim 7, wherein the virtual-real interconnection is implemented by the following specific methods: and establishing a path between the physical production line data and the virtual model, establishing a virtual label, accurately finding specific data in the database by the virtual model through data addressing, and controlling a data access strategy through data interconnection access.
9. The digital twinning system construction method of sub-equipment test production line according to claim 8, wherein the data updating method comprises: and the virtual-real interconnected data realize the change and control of the virtual model or the physical production line according to the change of the data related to the virtual-real interconnected data, the virtual model data is updated in a mode of refreshing a data increment table at a fixed frequency, and the control instruction data of the virtual model to the physical production line is updated in an event-driven mode.
10. A digital twin system architecture of a production line digital twin system constructed by the method of any one of claims 1 to 9, comprising a production line digital twin system, an MES system, a data acquisition system, an automatic test system, a physical production line, a small-distance LED display screen, an interactive console;
the production line digital twin system comprises a workshop, a production line, stations, an element digital twin model and a manufacturing execution system thereof;
the MES system is used for providing plan, quality and material information for the production line digital twin system and executing the optimization result of the production line digital twin system;
the data acquisition system is used for acquiring temperature, humidity, air supply quantity, liquid supply quantity and power supply conditions;
the automatic test system is used for acquiring state information, fault information and frequency spectrum information of the instrument equipment;
a physical production line comprising a workshop environment, a production line, stations, manufacturing elements;
the small-spacing LED display screen is used for comprehensively displaying production line monitoring information and production line states;
and the interactive console is used for performing production line browsing and interactive control in a token mode.
CN202011277036.6A 2020-11-16 2020-11-16 Digital twin system construction method and architecture of electronic equipment test production line Pending CN112327780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011277036.6A CN112327780A (en) 2020-11-16 2020-11-16 Digital twin system construction method and architecture of electronic equipment test production line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011277036.6A CN112327780A (en) 2020-11-16 2020-11-16 Digital twin system construction method and architecture of electronic equipment test production line

Publications (1)

Publication Number Publication Date
CN112327780A true CN112327780A (en) 2021-02-05

Family

ID=74318309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011277036.6A Pending CN112327780A (en) 2020-11-16 2020-11-16 Digital twin system construction method and architecture of electronic equipment test production line

Country Status (1)

Country Link
CN (1) CN112327780A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113022813A (en) * 2021-05-31 2021-06-25 天津大学 Ship section building method based on digital twinning
CN113093680A (en) * 2021-04-07 2021-07-09 上海电机学院 FIMS system architecture design method based on digital twin technology
CN113268804A (en) * 2021-06-17 2021-08-17 江南造船(集团)有限责任公司 Ship building method, system, medium and terminal based on digital twinning
CN113313395A (en) * 2021-06-03 2021-08-27 中国电子科技集团公司第二十九研究所 Quantitative evaluation method for manufacturing maturity of electronic equipment
CN113420448A (en) * 2021-06-25 2021-09-21 中国兵器装备集团自动化研究所有限公司 Digital twinning system and method for ammunition fusion casting charging forming process
CN113688039A (en) * 2021-08-20 2021-11-23 成都天奥测控技术有限公司 Automatic test system simulation verification method based on digital twinning
CN114239247A (en) * 2021-12-01 2022-03-25 中国电子科技集团公司第二十九研究所 PBOM-based associated material construction method, equipment and medium
CN116306473A (en) * 2023-02-06 2023-06-23 广州辰创科技发展有限公司 PCBA dynamic function detection method and device based on digital twin behavior model modeling
WO2023124103A1 (en) * 2021-12-30 2023-07-06 卡奥斯工业智能研究院(青岛)有限公司 Production line test method and apparatus, and device
CN117806600A (en) * 2024-02-28 2024-04-02 江苏信而泰智能装备有限公司 Method, system and equipment for constructing production line test platform of MES
CN116306473B (en) * 2023-02-06 2024-04-26 广州辰创科技发展有限公司 PCBA dynamic function detection method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109445305A (en) * 2018-10-26 2019-03-08 中国电子科技集团公司第三十八研究所 A kind of the assembly precision simulating analysis and system twin based on number
CN110008605A (en) * 2019-04-10 2019-07-12 广东工业大学 Monitoring method and application based on the twin model of number its hit a machine equipment
KR20190123895A (en) * 2018-04-25 2019-11-04 전자부품연구원 Real-Time Data Processing Method for Digital Twin based Construction Machine Intelligence
CN111176245A (en) * 2019-10-29 2020-05-19 中国电子科技集团公司第三十八研究所 Multi-terminal industrial equipment inspection monitoring system and method based on digital twin technology
CN111580478A (en) * 2020-05-13 2020-08-25 中国电子科技集团公司第十四研究所 Complex electronic equipment final assembly digital twin workshop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190123895A (en) * 2018-04-25 2019-11-04 전자부품연구원 Real-Time Data Processing Method for Digital Twin based Construction Machine Intelligence
CN109445305A (en) * 2018-10-26 2019-03-08 中国电子科技集团公司第三十八研究所 A kind of the assembly precision simulating analysis and system twin based on number
CN110008605A (en) * 2019-04-10 2019-07-12 广东工业大学 Monitoring method and application based on the twin model of number its hit a machine equipment
CN111176245A (en) * 2019-10-29 2020-05-19 中国电子科技集团公司第三十八研究所 Multi-terminal industrial equipment inspection monitoring system and method based on digital twin technology
CN111580478A (en) * 2020-05-13 2020-08-25 中国电子科技集团公司第十四研究所 Complex electronic equipment final assembly digital twin workshop

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林晨阳等: "面向数字孪生的数据采集系统设计", 《电子质量》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093680A (en) * 2021-04-07 2021-07-09 上海电机学院 FIMS system architecture design method based on digital twin technology
CN113022813A (en) * 2021-05-31 2021-06-25 天津大学 Ship section building method based on digital twinning
CN113022813B (en) * 2021-05-31 2021-08-06 天津大学 Ship section building method based on digital twinning
CN113313395A (en) * 2021-06-03 2021-08-27 中国电子科技集团公司第二十九研究所 Quantitative evaluation method for manufacturing maturity of electronic equipment
CN113268804A (en) * 2021-06-17 2021-08-17 江南造船(集团)有限责任公司 Ship building method, system, medium and terminal based on digital twinning
CN113420448B (en) * 2021-06-25 2023-05-23 中国兵器装备集团自动化研究所有限公司 Digital twin system and method for ammunition fusion casting charging forming process
CN113420448A (en) * 2021-06-25 2021-09-21 中国兵器装备集团自动化研究所有限公司 Digital twinning system and method for ammunition fusion casting charging forming process
CN113688039A (en) * 2021-08-20 2021-11-23 成都天奥测控技术有限公司 Automatic test system simulation verification method based on digital twinning
CN113688039B (en) * 2021-08-20 2023-10-31 成都天奥测控技术有限公司 Digital twinning-based simulation verification method for automatic test system
CN114239247A (en) * 2021-12-01 2022-03-25 中国电子科技集团公司第二十九研究所 PBOM-based associated material construction method, equipment and medium
CN114239247B (en) * 2021-12-01 2023-04-18 中国电子科技集团公司第二十九研究所 PBOM-based associated material construction method, equipment and medium
WO2023124103A1 (en) * 2021-12-30 2023-07-06 卡奥斯工业智能研究院(青岛)有限公司 Production line test method and apparatus, and device
CN116306473A (en) * 2023-02-06 2023-06-23 广州辰创科技发展有限公司 PCBA dynamic function detection method and device based on digital twin behavior model modeling
CN116306473B (en) * 2023-02-06 2024-04-26 广州辰创科技发展有限公司 PCBA dynamic function detection method and device
CN117806600A (en) * 2024-02-28 2024-04-02 江苏信而泰智能装备有限公司 Method, system and equipment for constructing production line test platform of MES

Similar Documents

Publication Publication Date Title
CN112327780A (en) Digital twin system construction method and architecture of electronic equipment test production line
Liu et al. A systematic review of digital twin about physical entities, virtual models, twin data, and applications
Huang et al. Manufacturing system modeling for productivity improvement
CN113887016A (en) Ship digital workshop simulation method and system based on digital twinning
CN106647336B (en) Simulation-based intelligent monitoring system for aircraft assembly process
CN102955882B (en) Automatic detection simulation analog system of ultra-large intelligent electric energy meter
CN101441467A (en) Targeted resource allocation
CN113805550A (en) Spacecraft assembly process control method and system based on digital twins
CN102934039A (en) Method and system for providing monitoring characteristics in an soa based industrial environment
Ćwikła et al. Problems of integration of a manufacturing system with the business area of a company on the example of the Integrated Manufacturing Systems Laboratory
CN115328068A (en) Digital twinning system applied to industrial production
NILSEN et al. The adoption of Industry 4.0-technologies in manufacturing: a multiple case study
Liu et al. Research on the framework of internet of things in manufacturing for aircraft large components assembly site
CN113496548A (en) Transparent factory oriented production field data mapping method
CN117270482A (en) Automobile factory control system based on digital twin
CN110909417B (en) Multi-BOM construction and conversion method for testing and refitting stages in civil aircraft test flight
CN112486131A (en) Method, system, equipment and medium for monitoring operation state of production line
Monek et al. DES and IIoT fusion approach towards real-time synchronization of physical and digital components in manufacturing processes
CN115292772A (en) Virtual die testing system and construction method of hot stamping forming die
Ares et al. Optimisation of a production line using simulation and lean techniques
CN114818361A (en) Digital twin model construction method based on application scene
CN114995302A (en) Intelligent control method and system
Ren et al. Research on digital twin framework for customized product manual assembly systems
KR20230032675A (en) System for collecting data using computerized numerical control mother machine
Paul et al. Simulation of reconfigurable assembly cells with Unity3D

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210205

WD01 Invention patent application deemed withdrawn after publication