JP2006344004A - 運転支援装置および運転支援方法 - Google Patents

運転支援装置および運転支援方法 Download PDF

Info

Publication number
JP2006344004A
JP2006344004A JP2005169070A JP2005169070A JP2006344004A JP 2006344004 A JP2006344004 A JP 2006344004A JP 2005169070 A JP2005169070 A JP 2005169070A JP 2005169070 A JP2005169070 A JP 2005169070A JP 2006344004 A JP2006344004 A JP 2006344004A
Authority
JP
Japan
Prior art keywords
plant
value
control parameter
amount
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005169070A
Other languages
English (en)
Other versions
JP4546332B2 (ja
Inventor
Takao Sekiai
孝朗 関合
Satoru Shimizu
悟 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005169070A priority Critical patent/JP4546332B2/ja
Publication of JP2006344004A publication Critical patent/JP2006344004A/ja
Application granted granted Critical
Publication of JP4546332B2 publication Critical patent/JP4546332B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

【課題】
エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できる運転支援装置および運転支援方法を提供することにある。
【解決手段】
エージェント600は、プラントシミュレータを用いて計算したプロセス値を入力とし、所定の対象プロセス値とその目標値との偏差を評価指標として制御回路の制御パラメータ値を修正する。エージェント600は、制御パラメータの修正結果に対する評価指標値の変化量に基づいて制御パラメータの増加または減少の方向性と修正量を学習する評価・学習部630と、実プラントのプロセス値の計測値情報を用いてプラントとプラントモデルのプロセス値の応答特性を一致させるモデル調整部450と、制御パラメータ設定部650によって、制御パラメータ値の増加量または減少量をガイダンスとしてCRT710に表示する。
【選択図】 図1

Description

本発明は、プラント向け制御装置における制御パラメータの調整を支援する運転支援装置および運転支援方法に関する。
制御装置を用いて制御するプラントの例として、火力発電プラントがあげられる。火力発電プラントには、電力需要に応じた負荷変化運転が求められており、この負荷変化運転時にも蒸気温度などのプロセス値の変動は厳しく制限されている。特に、タービン入口の蒸気温度,蒸気圧力の変動はタービンの性能を劣化する要因となる可能性があり、これらのプロセス値変動の制限値は、特に厳しくなっている。
火力発電プラントの制御装置には、このような負荷変化運転時にもプロセス値を制限範囲内に抑制することが求められており、各種操作量を適切に設定することが求められている。操作量の値は、制御装置に実装されている制御ロジックの制御パラメータの値に依存するので、プロセス値の変動を抑制するには、制御パラメータの値を適切に設定する必要がある。
この制御パラメータは、プラントからの計測値を用いて、運転員が自分の知識と経験に基づいて調整するのが一般的である。しかし、近年熟練運転員の不足等の問題が起きており、制御パラメータ調整を支援する技術が求められている。
火力発電プラントの制御では、主としてフィードバック制御とフィードフォワード制御により、プロセス値の変動を抑制している。特に火力発電プラントでは応答遅れが大きく、負荷変化に伴うプロセス値変動を抑制するにはフィードフォワード制御が有効な制御方法である。フィードフォワード制御における適切な制御パラメータ値を自動的に算出する方法として、例えば、特開平11−242503号公報に記載のように、プラントプロセス値の応答波形の特徴量に基づいて制御パラメータ値を算出するものであり、プラントの挙動推定にニューラルネットワークを用いているものが知られている。
特開平11−242503号公報
火力発電プラント制御のように、安全運転が重視される制御対象物を制御する場合、自動算出した制御パラメータ値の全てをそのまま用いてプラントを運転することは、安全上望ましくない。安全を期するために、自動算出した制御パラメータ値の妥当性を運転員が確認し、運転員の考えていた制御パラメータ値とかけ離れたものでない場合に限り、自動算出した制御パラメータ値を制御装置に適用する、という手順を踏むことが有効である。この場合、運転員の制御系調整に関する方針と、自動算出の方針が異なる場合、自動算出した制御パラメータ値が運転員の想定範囲外のものとなり、自動算出された制御パラメータ値を制御装置に反映できない。これを回避するには、運転員の制御パラメータ調整の方針と、予め自動算出の方針を一致させる必要がある。
近年、コンピュータによる自律学習手段として、”強化学習(Reinforcement Learning),三上貞芳・皆川雅章共訳,森北出版株式会社,2000年12月20日出版”に述べられている強化学習理論が注目されている。強化学習とは、報酬という特別な情報を手がかりに、エージェントが環境との相互作用を通してあらかじめ定められた明確なゴールを達成するための行動決定戦略を自律的に獲得する学習システムである。本手法では、自由に報酬を設定できる特徴があるため、熟練運転員の制御パラメータ調整の方針と合致する報酬を与えることが容易である。そのため、本手法を用いることにより、運転員の想定に近い制御パラメータ値を自動算出できる可能性が高まる。
前述のように、エージェントは、環境に対して試行錯誤的に行動を試み、その行動により得られた報酬を手がかりに学習する。エージェントが火力発電プラントを対象に、直接試行錯誤的に制御パラメータ調整を施すことは安全上望ましくない。そのため、プラントの特性を模擬したシミュレータを対象にエージェントが事前に学習し、この学習結果を用いてプラント制御装置の制御パラメータ調整をガイダンスする。しかし、シミュレータ特性とプラント特性が異なる場合に、エージェントは適切な制御系調整ガイダンスを提供できない可能性がある。
本発明の目的は、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できる運転支援装置および運転支援方法を提供することにある。
(1)上記目的を達成するために、本発明は、プラントの運転特性を模擬したプラントモデルと、前記プラントの制御回路を模擬した制御モデルとからなるプラントシミュレータを用いて計算したプロセス値またはそのプロセス値の特徴量を入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を調整するパラメータ調整手段とを有する運転支援装置であって、実プラントのプロセス値の計測値情報を用いて前記プラントと前記プラントモデルのプロセス値の応答特性を一致させるために調整するモデル調整手段を有し、前記パラメータ調整手段は、前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習するパラメータ修正方法学習手段と、前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するガイダンス手段とを備えるようにしたものである。
かかる構成により、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できるものとなる。
(2)上記(1)において、好ましくは、前記プラントは火力発電プラントであり、前記パラメータ調整手段は、発電出力,蒸気温度,蒸気圧力,配管メタル温度とそれぞれに対応する目標値との偏差のうち少なくとも1つを評価指標として制御回路の制御パラメータ値を修正するものである。
(3)また、上記目的を達成するために、本発明は、プラントデータとプラントシュミレータを用いて計算したシュミレータデータを入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を修正するパラメータ修正手段とを有する運転支援装置であって、前記パラメータ修正手段は、前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習するパラメータ修正方法学習手段と、シミュレータと実プラントとの操作量の変化に対するプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更する修正手段と、前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するガイダンス手段とを備えるようにしたものである。
かかる構成により、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できるものとなる。
(4)上記(3)において、好ましくは、前記修正手段は、シミュレータと実プラントとで、操作量をステップ変化させた場合のプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更するようにしたものである。
(5)上記(3)において、好ましくは、前記プラントは火力発電プラントであり、前記パラメータ修正手段は、発電出力,蒸気温度,蒸気圧力,配管メタル温度とそれぞれに対応する目標値との偏差のうち少なくとも1つを評価指標として制御回路の制御パラメータ値を修正するようにしたものである。
(6)さらに、上記目的を達成するために、本発明は、プラントの運転特性を模擬したプラントモデルと、前記プラントの制御回路を模擬した制御モデルとからなるプラントシミュレータを用いて計算したプロセス値またはそのプロセス値の特徴量を入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を調整する運転支援方法であって、実プラントのプロセス値の計測値情報を用いて前記プラントと前記プラントモデルのプロセス値の応答特性を一致させるために調整し、前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習し、前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するようにしたものである。
かかる方法により、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できるものとなる。
(7)また、上記目的を達成するために、本発明は、プラントデータとプラントシュミレータを用いて計算したシュミレータデータを入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を修正する運転支援方法であって、前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習し、シミュレータと実プラントとの操作量の変化に対するプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更し、前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するようにしたものである。
かかる方法により、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できるものとなる。
本発明によれば、エージェントが事前学習に用いたシミュレータの特性とプラントの特性に誤差があった場合においても、適切な制御パラメータ調整ガイダンスを提供できるものとなる。
以下、図1〜図11を用いて、本発明の一実施形態による運転支援装置の構成及び動作について説明する。ここでは、本発明を火力発電プラントに適用した場合を例にして説明するが、対象を原子力発電プラントなど、その他のプラントに適用することも可能である。
最初に、図1を用いて、本実施形態による運転支援装置をプラントに適用した場合の制御システムの構成及び動作について説明する。
図1は、本発明の一実施形態による運転支援装置をプラントに適用した場合の制御システムの構成を示すシステムブロック図である。
プラント100を制御する制御システムは、制御装置200と、保守ツール300と、運転支援装置400と、入力装置700とで構成される。
制御装置200は、プラント100からの計測信号を外部入力インターフェイス210で取り込み、受信した信号を必要に応じて記憶部230に記憶しながら、演算部220によって各種制御指令信号を演算・生成する。この制御指令信号を外部出力インターフェイス240を介してプラント100に伝送することにより、プラント100を所望の性能が得られるように運転する。また、制御装置200には、キーボードとマウスとからなる外部入力装置700と、画像表示装置710が接続されており、運転者とのインターフェイスとして機能する。
保守ツール300は、演算部220でプラント100からの計測値から制御指令値を演算するのに使われる制御ロジックを生成する機能を有している。制御系設計者は、画像表示装置710に表示された制御ロジック作成画面を参照しながら、外部入力装置700を用いて制御ロジックの図面を作成する。制御ロジック生成部320では、外部入力装置700から入力された設計情報を用いて制御ロジックプログラムを生成し、このプログラムは制御ロジックデータ330に保存される。演算部220は、制御ロジックデータ330を参照し、制御指令値を生成する。
制御系自動学習システム400は、外部入力インターフェイス410と、動作判断部420と、磁気ディスク430,440と、モデル調整部450と、外部出力インターフェイス460と、シミュレータ500と、エージェント600とで構成されている。エージェント600は、制御パラメータ調整手段である。
動作判断部420は、運転支援装置400のモードに合わせて、モデル調整部450と、シミュレータ500と、エージェント600のON/OFFと、切替えスイッチ510,530,610,620,630の接続箇所(aあるいはb)を設定する。モードの内容,接続関係,磁気ディスク430、440に保存されるデータの内容、及びモデル調整部450,シミュレータ500,エージェント600の動作については、後述する。
なお、図1では、制御装置200と、保守ツール300と、運転支援装置400とが直接ケーブルで接続されているように記載しているが、光通信,インターネットを介してデータを送受信する構成の場合もある。また、制御装置,保守ツール,運転支援装置の一部の機能を分離し、別の場所に配置し、インターネット等を介してデータを送受信する場合もある。
次に、図2を用いて、本実施形態による運転支援装置によって支援されるプラントの構成について説明する。ここでは、火力発電プラントの構成を示している。
図2は、本発明の一実施形態による運転支援装置によって支援されるプラントの構成を示すシステムブロック図である。なお、図1と同一符号は、同一部分を示している。
図2に示した火力発電プラント100においては、供給水を加熱して蒸気を発生させるボイラ130の熱源としての火炉部に、石炭やバイオマス等の燃料と、燃料搬送や燃焼調整に用いる空気をバーナ140から供給し、燃料、及び空気を火炉で燃焼し高温のガスを発生させる。ボイラ130を通過したガスは、排ガス処理装置170に送られ、含有する有害物質を除去した後、煙突180により大気に放出される。
また、ボイラ130には、給水ポンプ124によって水を循環供給する。火炉水壁131にて加熱され、蒸発した蒸気は過熱器132を通過する間にボイラ130の煙道部を通過するガスによりさらに加熱され、昇温・昇圧される。この高温・高圧の主蒸気は、タービン加減弁123を介してタービン150に導かれ、タービン150を駆動する。タービン150の軸動力は発電機160に伝達され、発電機160において電機エネルギーに変換される。タービン150を通過した蒸気は再びボイラ130に導かれ、再熱器133にて再加熱する。この再熱蒸気もタービン150に導かれ、タービン150を駆動し、発電する。タービン150を通過した蒸気は、復水器190を通過する際に冷却水で冷却されて腹水され、復水器190を通過した密は給水ポンプ124を通過し、再度ボイラ130に供給される。
なお、図2には図示していないが、過熱器、及び再熱器を複数ボイラ内に配置する場合もある。また、蒸気の通過する経路に減温器を配置する場合もある。
プラント100の運転状態は、圧力計測器111や、温度計測器112,113や、出力計測器114や、流量計測器115等のデータ測定装置で計測される。また、図示していないが、プラント100にはこの他にも種種のプロセスチを計測するためのデータ計測装置が取り付けられており、これらのデータ計測装置で計測されたデータは、外部出力インターフェイス110を介して、制御装置200、及び運転支援装置400に入力される。
また、制御装置200からの制御指令値は、外部入力インターフェース120を介して入力され、バルブ121の開度を制御して、バーナ140に供給する空気量を制御し、また、バルブ122の開度を制御して、バーナ140に供給する燃料量を制御し、さらに、給水ポンプ124によって供給される水量を制御する。
次に、図3〜図11を用いて、本実施形態による運転支援装置の構成及び動作について説明する。
最初に、図3を用いて、本実施形態による運転支援装置の中の磁気ディスク430に記憶されるデータの様態について説明する。
図3は、本発明の一実施形態による運転支援装置の中の磁気ディスクに記憶されるデータの様態を示す説明図である。
図3に示すように、磁気ディスク430にはプラント100からの計測データが、計測器番号毎に、各計測時刻と共に保存される。例えば、図2における蒸気圧力計111,蒸気温度計112,113,出力計測器114,流量計測器115で計測した、圧力値P111,温度値T112,T113,出力値E114,流量値F115が、それぞれ、時刻のデータとともに、保存される。また、磁気ディスク440には、シミュレータ500で計算した結果が保存されている。
次に、図4及び図5を用いて、本実施形態による運転支援装置の4つのモードについて説明する。
図4は、本発明の一実施形態による運転支援装置のモード説明図である。図5は、本発明の一実施形態による運転支援装置の各モードにおけるモデル調整部、シミュレータ、エージェントのON/OFF、及びスイッチの接続関係の説明図である。
運転支援装置400は、4つの機能(モード)を有している。運転支援装置400のモードは、画像表示装置710に表示される図4の画面711を参照し、運転者が選択する。運転支援装置400には、A)制御系検証モード、B)プラントモデル調整モード、C)制御系調整ガイダンス表示モード、D)実機学習モードの4つのモードがある。運転者が、画面711上に表示されているボタン712,713,714,715を選択することにより、運転支援装置400のモードが切り替わる。
図5は、4つの各モードと、モデル調整部450、シミュレータ500、エージェント600のON/OFF、及びスイッチ510、530、610、620、660の接続関係を示すテーブルである。例えば、モードAを選択した場合は、モデル調整部450はOFF、シミュレータ500はON、エージェント600はONとなる。スイッチ510,530,610,620,660は、それぞれb,b,a,a,aに接続する。動作判断部420では、このテーブルに従って、モデル調整部450、シミュレータ500、エージェント600のON/OFF、及びスイッチ510、530、610、620、660の接続関係を切り替える信号を生成し、各装置へ伝送する。なお、シミュレータ500のOFFの状態とは、スイッチ510,530のいずれもが接点a,bのいずれにも接続されていない状態である。また、エージェント600のOFFの状態とは、スイッチ610,620,630のいずれもが接点a,bのいずれにも接続されていない状態である。
次に、4つのモードそれぞれの機能について説明する。
最初に、Aモード(制御系検証モード)について説明する。図1におけるプラントモデル520はプラント100を模擬したモデルであり、制御指令値を入力として与えると、各種プロセス値が計算されるモデルである。また、制御モデル540はプロセス値を入力として与えると、制御指令値を出力するモデルである。制御モデル540は、制御ロジックデータ330に保存されている制御ロジックを元にモデルを構築しており、制御パラメータはエージェント600からの信号で変更することができる構成である。制御パラメータAモードでは、スイッチ510、530がそれぞれb,bに接続されており、プラントモデルと制御モデルとで閉ループが構成される。
エージェント600は、評価学習部630,学習データ640,制御パラメータ設定部650で構成される。エージェント600の機能を説明するために、まず「状態s」,「行動a」,「報酬r」を定義する。
ここで、図6を用いて、本発明の一実施形態による運転支援装置で用いる「状態s」の一例を説明する。
図6は、本発明の一実施形態による運転支援装置で用いる「状態s」の説明図である。
図6(H)に示すように、「状態s」は、図6(B)に示す出力偏差と、図6(C)に示す主蒸気温度偏差と、図6(D)に示す再熱蒸気温度偏差と、図6(E)に示す主蒸気圧力偏差などの制御目標値とプロセス値の差の極大値,極小値,及び極大値,極小値を取る時間(図6(A)の負荷変化の開始時刻t0を基準とした時間)である。例えば、図6(B)に示す出力偏差の場合、極大値がΔMW,極小値がΔMW,極大値を取る時間がt11,極小値を取る時間がt12となる。なお、図6では、1つ目の極大値と極小値を状態sとして選択しているが、2つ目以降の値を状態stに含めることも可能である。また、図6(F)に示す給水BIRや、図6(G)に示す燃料BIR(BIR:先行指令信号)などの制御指令値に関するパラメータ(KFW,t51,t52,KFU,t61,t62)を状態sに含めることもできる。また比例ゲイン、積分時間などの制御パラメータも含めてもよい。
「行動a」は、KFW,t51,t52,KFU,t61,t62の制御パラメータの値を一定量増減する調整と定義する。制御系の比例ゲイン、積分時間の制御パラメータを増減する調整を行動aに含める場合もある。また、複数の制御パラメータ値を同時に変更するする調整を行動aに含めてもよい。
「報酬r」は、行動aによる制御パラメータ調整を実施する前と後の制御性能改善度合に応じて与える値であり、以下の式(1)を用いて計算する。
Figure 2006344004
ここで、α,α,α,αは、重み係数であり、δMW,δMW,δMST,δMST,δRST,δRST,δMSP,δMSPは、それぞれ制御パラメータ調整を実施する前と後の出力偏差の最大値、主蒸気温度偏差の最大値、再熱蒸気温度偏差の最大値、主蒸気圧力偏差の最大値である(添え字のbはbefore、aはafterを意味する)。なお、報酬に、それぞれ偏差を時間で積分した値や、他のプロセス値(燃料流量消費量,NOx濃度等)の偏差を含める場合もある。
次に、図7を用いて、本発明の一実施形態による運転支援装置における制御パラメータ調整の学習方法について説明する。
図7は、本発明の一実施形態による運転支援装置における制御パラメータ調整の学習方法の内容を示すフローチャートである。
図7は、エージェントがQ学習理論を適用する場合を例にしている。この他にも、学習方法として、Sarsa,アクター・クリティック手法,R学習などを適用する場合もある。ここで、フローチャートにおけるQ(s,a)は、状態sにおいて、行動aを実行することの価値を推定する値であり、この値は学習データ640に保存される値である。
最初に、ステップs10において、評価・学習部630は、Q(s,a)の値を任意に初期化する。
次に、ステップs20において、評価・学習部630は、状態sを初期化する。例えば、各々のBIR設定値を0とした場合を初期状態に設定する。
次に、ステップs30において、制御パラメータ設定部650は、Q(s,a)から導かれる方策を用いて、状態sでの行動aを選択する。Q(s,a)から導かれる方策の例として、ε‐グリーディー方策がある。これは、以下の式(2)で示す確率で、Q(s,a)が最大となる行動aを選択し、以下の式(3)の確率でその他の行動aを選択する方策である。
Figure 2006344004
Figure 2006344004
ここで、|A(s)|は、状態sにおける行動aの総数である。
制御パラメータ設定部650は、状態sを観測すると、学習データ640に保存されているQ(s,a)の値を用いて、ε‐グリーディー方策から導かれる行動aを取る。
次に、ステップs40において、評価・学習部630は、ステップs30で選択した行動a(制御パラメータ調整)を制御モデル540に施し、シミュレーションを実行し、その解析結果から上述の式(1)に基づいた報酬rと、図6で示した状態s’を観測する。
次に、ステップs50において、評価・学習部630は、以下の式(5)に従ってQ(s,a)の値を更新する。
Figure 2006344004
ここで、式(4)にて計算されるQ(s,a)は、学習データ640に保存されており、ステップs50の実行時には適時データの読み込み、書き込みを実行する。
次に、ステップs60において、評価・学習部630は、状態s’を状態sに更新する。
次に、ステップs70において、評価・学習部630は、制御要求仕様を達成した場合、あるいは予め定めた回数の行動を実行した場合には、ステップs80に進み、そうでない場合は、ステップs30に戻り、終端判定条件が満たされるまでステップs30〜s70を繰り返す。
次に、ステップs80において、評価・学習部630は、運転者が予め定めた回数の繰り返し試行が終了すると、学習を終了する。
なお、本実施形態では、学習データ640には更新された最終のの値のみが保存されることになるが、必要に応じての更新履歴、それに対応する状態、行動の履歴をそれぞれ保存する場合もある。
このようにして、Aモード(制御系検証モード)においては、エージェント600は、図7の学習アルゴリズムシミュレータ500を対象に制御パラメータ調整を学習する。
ここで、図8を用いて、本発明の一実施形態による運転支援装置におけるAモード(制御系検証モード)適用時に画像表示装置710に表示される画面の一例について説明する。
図8は、本発明の一実施形態による運転支援装置におけるAモード(制御系検証モード)適用時の画面の表示例の説明図である。
図4の画面711において、運転者がボタン712を選択すると、図8(A)の画面720が表示される。
最初に、制御仕様を入力する。次に、図8(B)の画面721で、図7のステップs40で実行するシミュレーションの負荷変化条件を設定し、図8(C)の画面722で、終端判定637で参照する制御要求仕様を設定する。
次に、解析条件を入力する。まず、ステップs70の終了判定時に参照するステップの繰り返し回数、ステップs80の試行終了判定で参照する試行回数を、図8(D)の画面723で設定する。次に、式(1)の重み係数を、図8(E)の画面724を用いて設定する。最後に、エージェントを識別する名前を、図8(F)の画面725から入力する。
次に、図8(A)の画面720に戻り、画面720で計算開始を選択すると、図7のフローチャートに従ってエージェントが制御パラメータを調整し、シミュレーションを自動で実行する。
この試行の結果、制御要求仕様を達成した試行が存在した場合は、図8(G)の画面726が表示され、運転者は試行回数と制御要求仕様を達成した回数を確認できる。また、制御要求仕様を達成できなかった場合には、図8(H)の画面727が表示され、Aモードが終了する。
運転支援装置400のAモード(制御系検証モード)を用いることで、プラントを運転する前に、シミュレータを用いた制御系の妥当性検証を自動的に実施することができる。すなわち、エージェントが制御要求仕様を達成する制御パラメータを発見できなかった場合は、制御ロジックデータ330に保存されている制御ロジックに不具合がある可能性が高いと考えられる。このため、運転者は自ら制御パラメータを調整し、シミュレーションを実行することなく、制御系の妥当性を検証できる。
次に、Bモード(プラントモデル調整モード)について説明する。
Bモード(プラントモデル調整モード)では、図5に示したように、スイッチ510,520がそれぞれa,aに接続されており、従ってシミュレータ500とモデル調整部450とが接続される。モデル調整部450は、実機に与えられた制御指令をプラントモデル520に入力して計算されたプロセス値と、プラント100の計測値を比較し、プラントモデルと実機の特性が同じになるようにプラントモデル450を調整する。モデル調整部450の動作の詳細については、例えば、特開10−214112号公報や、特開2001−154705号公報に記載されているものを適用する。
ここで、図9を用いて、本発明の一実施形態による運転支援装置におけるBモード(プラントモデル調整モード)適用時に画像表示装置710に表示される画面の一例について説明する。
図9は、本発明の一実施形態による運転支援装置におけるBモード(プラントモデル調整モード)適用時の画面の表示例の説明図である。
図4において、ボタン713を選択すると、図9(A)に示す画面730が表示される。ここで、データ入力を選択すると、モデル調整に使用するプラント100のデータ範囲を設定する、図9(B)の画面731が表示される。運転者によりデータ取得の開始・終了時間を設定し、次へボタンを選択すると、図9(C)の画面732が表示され、設定した範囲のトレンドグラフが表示される。
データ入力完了後、図9(A)の画面730において調整開始を選択すると、モデル調整部450によるプラントモデル520の調整が開始され、その調整結果が、図9(D)の画面733のように表示され、Bモードが終了する。
次に、Cモード(制御系調整ガイダンスモード)について説明する。
Cモード(制御系調整ガイダンスモード)では、プラントの運転状態sと、学習データ640に保存されているQ(s,a)を用いて、制御パラメータ調整ガイダンスを表示する。本モードにおける制御パラメータ設定部650では、Aモード(制御系検証モード)で適用したε‐グリーディー方策に基づいた行動ではなく、Q(s,a)が最大となる行動aを選択する。この行動aは、実機の運転状態における最適な制御パラメータ調整であると解釈できる。この制御パラメータ調整の内容を、外部出力インターフェイス460を介して画像表示装置710に伝送し、画像表示装置710に制御パラメータ調整ガイダンスを表示し、運転者に制御パラメータ調整ガイダンスとして提供する。
このガイダンスは、シミュレータでの試行結果に基づいているものであり、プラント100とプラントモデル520の特性が異なる場合には最適なガイダンスでない場合もある。この場合には、Bモード(プラントモデル調整モード)を用いてプラントモデル520を調整し、次にこのシミュレータを対象にAモード(制御系検証モード)を用いてを求め、最後にCモード(制御系調整ガイダンスモード)を用いて制御系調整ガイダンスを運転者に提供すればよい。
ここで、図10を用いて、本発明の一実施形態による運転支援装置におけるCモード(制御系調整ガイダンス表示モード)適用時に画像表示装置710に表示される画面の一例について説明する。
図10は、本発明の一実施形態による運転支援装置におけるCモード(制御系調整ガイダンス表示モード)適用時の画面の表示例の説明図である。
図10(A)に示す画面740から、エージェント選択を選択すると、エージェント600は、Aモード(制御系検証モード)で学習したエージェントを、図10(B)の画面741から選択する。Aモード(制御系検証モード)において報酬rの重み等を変更して学習したエージェントを複数種類用意しておくことができ、Cモード(制御系調整ガイダンス表示モード)で使用するエージェントを画面741で選択することができる。エージェントを画面で選択する際には、エージェントと対応して重み係数を表示してもよいものである。運転者は、運転者が重視する制御偏差に対する重み係数の大きいエージェントを選択することにより、運転者の感覚に近い制御パラメータ調整ガイダンスを提供できる。
図10(A)に示す画面740から、実機データ入力を選択すると、実機の状態を取得する区間を、図10(C)の画面742で設定する。
図10(A)に示す画面740においてガイダンス表示を選択すると、制御パラメータ調整のガイダンスが、図10(D)の画面743のように表示される。画面743において、運転者が「実行する」を選択すると、変更後の制御パラメータ値が保守ツール300に伝送され、制御装置200で実行する制御ロジックにおける制御パラメータ値が更新される。
最後に、Dモード(実機学習モード)について説明する。
Aモード(制御系検証モード)ではエージェントがシミュレータを対象に試行錯誤を実行し、制御パラメータ調整を学習するのに対し、Dモード(実機学習モード)では、実機プラントを対象に学習する構成になる。また、Cモード(制御系調整ガイダンス表示モード)では制御パラメータ調整後の実機状態sと報酬rを観測しないのに対して、Dモード(実機学習モード)では制御パラメータ調整後の実機運転状態sと報酬rを観測し、式(4)を用いて学習データ640内のQ(s,a)を更新する。従って、Dモード(実機学習モード)におけるエージェントは、プラント100を対象に制御パラメータを設定し、学習する。
ここで、図11を用いて、本発明の一実施形態による運転支援装置におけるDモード(実機学習モード)適用時に画像表示装置710に表示される画面の一例について説明する。
図11は、本発明の一実施形態による運転支援装置におけるDモード(実機学習モード)適用時の画面の表示例の説明図である。
図11(A)に示す画面750から、条件入力を選択すると、式(1)における報酬rの重みを、図11(B)の画面751で設定し、エージェントの名前を、図11(C)の画面752で設定する。
本実施例では、プラント100を対象としてQ(s,a)を更新し、学習する方法について述べたが、プラント100で学習したQ(s,a)を、別のプラントに適用することも可能である。
以上説明した運転支援装置400を用いることにより、プラントの制御特性を改善するのに適した制御調整ガイダンスを運転者に提供することができる。その結果、運転員の制御パラメータ調整に対する負担を軽減できる。すなわち、運転支援装置400を用いると、実プラントのプロセス値の計測値情報を用いてプラントとプラントモデルのプロセス値の応答特性が一致するので、プラントシミュレータを対象に学習したパラメータ修正方法が、実プラントに対しても有効なパラメータ修正となる。
次に、図12及び図13を用いて、本発明の他の実施形態による運転支援装置の構成及び動作について説明する。ここでは、本発明を火力発電プラントに適用した場合を例にして説明するが、対象を原子力発電プラントなど、その他のプラントに適用することも可能である。
最初に、図12を用いて、本実施形態による運転支援装置をプラントに適用した場合の制御システムの構成及び動作について説明する。
図12は、本発明の他の実施形態による運転支援装置をプラントに適用した場合の制御システムの構成を示すシステムブロック図である。なお、図1と同一符号は、同一部分を示している。
本実施形態では、図1におけるシミュレータ500を除外し、パラメータ修正装置800を導入している。このパラメータ修正装置800は、シミュレータの特性データとプラントの特性データを比較し、エージェントがガイダンスする制御パラメータの定量的な部分を修正する機能を有している。
図1の構成では、運転支援装置400にシミュレータを搭載するため、制御系自動学習システムの構成が複雑になる場合がある。そこで、本実施形態では、予めエージェントはシミュレータで学習しておき、この学習データ640のみを制御系自動調整システムに搭載する構成とする。シミュレータと実機プラント特性の違いを考慮して、制御パラメータを修正する機構として、パラメータ修正装置800を搭載する。これにより、運転支援装置400にシミュレータを搭載することなく適切な制御パラメータガイダンスを提供することが可能となる。
以下、パラメータ修正装置800の動作について説明する。パラメータ修正装置800は、データ処理部810においてプラントの特徴を示すデータとして、例えばステップ応答試運転の結果を抽出し、そのデータをプラント特性データ820に保存する。シミュレータ特性データ830には、ステップ応答解析結果などの、シミュレータの特徴を示すデータが保存されている。
次に、図13を用いて、本実施形態による運転支援装置に用いる特性比較部840の動作について説明する。
図13は、本発明の他の実施形態による運転支援装置に用いる特性比較部の動作説明図である。
図13(A)に示すように、燃料流量のステップ状に変化させた時、実機における主蒸気温度は、図13(B)に示す変化幅MSTとなり、再熱蒸気温度は、図13(D)に示す変化幅RSTとなる。また、シミュレータにおける主蒸気温度は、図13(C)に示す変化幅MSTとなり、再熱蒸気温度は、図13(E)に示す変化幅RSTとなる。このような変化幅となるとき、以下の式(5)、式(6)で計算したφ1,φ2を制御パラメータ修正部850に伝送する。
Figure 2006344004
Figure 2006344004
また、図13(A)に示したような燃料ステップ時における、その他のプロセス値への影響を比較した結果も、制御パラメータ修正部850に伝送される。また、給水ステップ時の実機、及びシミュレータのプロセス値へ与える影響を比較した結果も、制御パラメータ修正部850に伝送される。このような、操作量の変化が、各プロセス値に与える影響について実機特性とシミュレータ特性を比較した結果を、制御パラメータ修正部850に伝送する。
制御パラメータ修正部850は、エージェントが提示した制御パラメータ設定値の変更幅を、φ1,φ2を用いて修正する。例えば、エージェントが提示した制御パラメータ調整が、主蒸気温度を改善することを期待して燃料流量を調整するものである場合に、この燃料流量の調整幅にφ1を乗じた値を制御パラメータ修正部850において計算し、計算結果を画像表示装置710に表示する。これにより、実機特性にあわせた制御パラメータ調整ガイダンスを、例えば、図10(D)に示すような形で、運転者に提供することができる。
以上説明したように、本実施形態によれば、プラントの制御特性を改善するのに適した制御調整ガイダンスを運転者に提供することができる。その結果、運転員の制御パラメータ調整に対する負担を軽減できる。
すなわち、例えば、燃料流量の制御パラメータ値を増加し、火力発電プラントに投入する燃料流量を一定量増加する場合、実プラント、及びシミュレータの蒸気温度は両者とも上昇する。このように、プラントとシミュレータの定性的な特性は一致するため、燃料流量を増加するという操作がシミュレータに対して有効である場合は、同様の操作が実プラントに対しても有効となる。しかし、プラントの特性は経年変化により時々刻々と変化していることもあり、プラントとシミュレータの蒸気温度の上昇幅は一致しない可能性がある。そのため、燃料流量を一定量増加した場合、シミュレータとプラントにおける定量的な蒸気温度の改善効果は異なる。このため、シミュレータに対して有効であった制御パラメータ調整であっても、プラントに対しては有効な調整とならない可能性がある。そこで、シミュレータに対して有効な制御パラメータ調整に関する情報を、制御パラメータ値の増減の方向に関する情報と、制御パラメータ値の変更幅に関する情報に分割し、制御パラメータ値の変更幅に関する情報をプラント特性とシミュレータ特性を比較した結果に基づいて修正することにより、プラントに対しても有効な制御パラメータ調整の情報を得る。プラント特性とシミュレータ特性とは、以下に述べる方法を用いて比較する。火力発電プラントの試運転では例えば燃料流量をステップ状に変化させた時の蒸気温度の変動幅を計測し、プラント特性を評価している。シミュレータに同様の試験条件を入力した場合における蒸気温度の変動幅と計測結果を比較し、燃料流量変化時における蒸気温度への感度の違いを計算する。この計算結果に基づいて制御パラメータ値の変更幅を修正する。これによって、プラントに適した制御系調整のガイダンスをプラントの運転員に提供する。
本発明の一実施形態による運転支援装置をプラントに適用した場合の制御システムの構成を示すシステムブロック図である。 本発明の一実施形態による運転支援装置によって支援されるプラントの構成を示すシステムブロック図である。 本発明の一実施形態による運転支援装置の中の磁気ディスクに記憶されるデータの様態を示す説明図である。 本発明の一実施形態による運転支援装置のモード説明図である。 本発明の一実施形態による運転支援装置の各モードにおけるモデル調整部、シミュレータ、エージェントのON/OFF、及びスイッチの接続関係の説明図である。 本発明の一実施形態による運転支援装置で用いる「状態s」の説明図である。 本発明の一実施形態による運転支援装置における制御パラメータ調整の学習方法の内容を示すフローチャートである。 本発明の一実施形態による運転支援装置におけるAモード(制御系検証モード)適用時の画面の表示例の説明図である。 本発明の一実施形態による運転支援装置におけるBモード(プラントモデル調整モード)適用時の画面の表示例の説明図である。 本発明の一実施形態による運転支援装置におけるCモード(制御系調整ガイダンス表示モード)適用時の画面の表示例の説明図である。 本発明の一実施形態による運転支援装置におけるDモード(実機学習モード)適用時の画面の表示例の説明図である。 本発明の他の実施形態による運転支援装置をプラントに適用した場合の制御システムの構成を示すシステムブロック図である。 本発明の他の実施形態による運転支援装置に用いる特性比較部の動作説明図である。
符号の説明
100…プラント
200…制御装置
300…保守ツール
400…運転支援装置
500…シミュレータ
600…エージェント
510,530,610,620,660…スイッチ
520…プラントモデル
540…制御モデル
630…評価学習部
640…学習データ
650…制御パラメータ設定部

Claims (7)

  1. プラントの運転特性を模擬したプラントモデルと、
    前記プラントの制御回路を模擬した制御モデルとからなるプラントシミュレータを用いて計算したプロセス値またはそのプロセス値の特徴量を入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を調整するパラメータ調整手段とを有する運転支援装置であって、
    実プラントのプロセス値の計測値情報を用いて前記プラントと前記プラントモデルのプロセス値の応答特性を一致させるために調整するモデル調整手段を有し、
    前記パラメータ調整手段は、
    前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習するパラメータ修正方法学習手段と、
    前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するガイダンス手段とを備えたことを特徴とする運転支援装置。
  2. 請求項1記載の運転支援装置において、
    前記プラントは火力発電プラントであり、
    前記パラメータ調整手段は、発電出力,蒸気温度,蒸気圧力,配管メタル温度とそれぞれに対応する目標値との偏差のうち少なくとも1つを評価指標として制御回路の制御パラメータ値を修正することを特徴とする運転支援装置。
  3. プラントデータとプラントシュミレータを用いて計算したシュミレータデータを入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を修正するパラメータ修正手段とを有する運転支援装置であって、
    前記パラメータ修正手段は、
    前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習するパラメータ修正方法学習手段と、
    シミュレータと実プラントとの操作量の変化に対するプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更する修正手段と、
    前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示するガイダンス手段とを備えたことを特徴とする運転支援装置。
  4. 請求項3記載の運転支援装置において、
    前記修正手段は、シミュレータと実プラントとで、操作量をステップ変化させた場合のプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更することを特徴とする運転支援装置。
  5. 請求項3記載の運転支援装置において、
    前記プラントは火力発電プラントであり、
    前記パラメータ修正手段は、発電出力,蒸気温度,蒸気圧力,配管メタル温度とそれぞれに対応する目標値との偏差のうち少なくとも1つを評価指標として制御回路の制御パラメータ値を修正することを特徴とする運転支援装置。
  6. プラントの運転特性を模擬したプラントモデルと、前記プラントの制御回路を模擬した制御モデルとからなるプラントシミュレータを用いて計算したプロセス値またはそのプロセス値の特徴量を入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を調整する運転支援方法であって、
    実プラントのプロセス値の計測値情報を用いて前記プラントと前記プラントモデルのプロセス値の応答特性を一致させるために調整し、
    前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習し、
    前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示することを特徴とする運転支援方法。
  7. プラントデータとプラントシュミレータを用いて計算したシュミレータデータを入力とし、所定の対象プロセス値とその目標値との偏差を少なくとも1つの評価指標として制御回路の制御パラメータ値を修正する運転支援方法であって、
    前記制御パラメータの修正結果に対する評価指標値の変化量に基づいて前記制御パラメータの増加または減少の方向性と修正量を学習し、
    シミュレータと実プラントとの操作量の変化に対するプロセス値の応答特性の相違に基づいて前記制御パラメータの修正量を変更し、
    前記プラントのプロセス値またはその特徴量、若しくは制御パラメータ値の増加量または減少量を表示画面に表示することを特徴とする運転支援方法。
JP2005169070A 2005-06-09 2005-06-09 運転支援装置および運転支援方法 Expired - Fee Related JP4546332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169070A JP4546332B2 (ja) 2005-06-09 2005-06-09 運転支援装置および運転支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169070A JP4546332B2 (ja) 2005-06-09 2005-06-09 運転支援装置および運転支援方法

Publications (2)

Publication Number Publication Date
JP2006344004A true JP2006344004A (ja) 2006-12-21
JP4546332B2 JP4546332B2 (ja) 2010-09-15

Family

ID=37640931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169070A Expired - Fee Related JP4546332B2 (ja) 2005-06-09 2005-06-09 運転支援装置および運転支援方法

Country Status (1)

Country Link
JP (1) JP4546332B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133390A (zh) * 2017-11-14 2020-05-08 千代田化工建设株式会社 工厂管理系统和管理装置
JP2021006996A (ja) * 2019-06-27 2021-01-21 国立大学法人広島大学 制御系の設計方法
WO2022224364A1 (ja) * 2021-04-20 2022-10-27 日本電気株式会社 設定装置、設定方法および記録媒体
WO2023190457A1 (ja) * 2022-03-29 2023-10-05 住友重機械工業株式会社 支援装置、統計モデル生成装置、支援方法及び支援プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154705A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 火力プラントの運転制御方法及び運転制御装置
JP2004178492A (ja) * 2002-11-29 2004-06-24 Mitsubishi Heavy Ind Ltd 強化学習法を用いたプラントシミュレーション方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154705A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 火力プラントの運転制御方法及び運転制御装置
JP2004178492A (ja) * 2002-11-29 2004-06-24 Mitsubishi Heavy Ind Ltd 強化学習法を用いたプラントシミュレーション方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133390A (zh) * 2017-11-14 2020-05-08 千代田化工建设株式会社 工厂管理系统和管理装置
US11531326B2 (en) 2017-11-14 2022-12-20 Chiyoda Corporation Plant management system and management device
JP2021006996A (ja) * 2019-06-27 2021-01-21 国立大学法人広島大学 制御系の設計方法
JP7329845B2 (ja) 2019-06-27 2023-08-21 国立大学法人広島大学 制御系の設計方法
WO2022224364A1 (ja) * 2021-04-20 2022-10-27 日本電気株式会社 設定装置、設定方法および記録媒体
WO2023190457A1 (ja) * 2022-03-29 2023-10-05 住友重機械工業株式会社 支援装置、統計モデル生成装置、支援方法及び支援プログラム

Also Published As

Publication number Publication date
JP4546332B2 (ja) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4627553B2 (ja) プラントの制御装置および火力発電プラントの制御装置
US8185216B2 (en) Plant controlling device and method, thermal power plant, and its control method
US7219040B2 (en) Method and system for model based control of heavy duty gas turbine
US8355996B2 (en) Plant control apparatus that uses a model to simulate the plant and a pattern base containing state information
KR920003499B1 (ko) 지식처리를 응용한 계산기 제어 시스템
JP4974330B2 (ja) 制御装置
JP5503563B2 (ja) プラントの制御装置及び火力発電プラントの制御装置
JP4546332B2 (ja) 運転支援装置および運転支援方法
JP4741968B2 (ja) プラントの制御装置
WO2007116590A1 (ja) 運転制御方法,運転制御装置及び運転制御システム
US7610252B2 (en) Method for developing a process model
US20090182441A1 (en) Control loop and method of creating a process model therefor
JP2004178492A (ja) 強化学習法を用いたプラントシミュレーション方法
JP4627509B2 (ja) プラントの制御装置及びプラントの制御方法
CN106368745B (zh) 发电成套设备的启动控制装置和启动控制方法
JP4989421B2 (ja) プラントの制御装置および火力発電プラントの制御装置
JP5117232B2 (ja) ボイラを備えたプラントの制御装置、及びボイラを備えたプラントの制御方法
KR20220148951A (ko) 디지털 트윈 시뮬레이터 및 그 디지털 트윈 시뮬레이터의 제어 방법
CN112215387A (zh) 最佳锅炉燃烧模型选择装置及方法
JP2010146068A (ja) プラントの制御装置及び火力発電プラントの制御装置
JPH11242503A (ja) プラント運転制御支援システム
JP3965615B2 (ja) プロセス制御装置
JP4524683B2 (ja) プラントモデルのパラメータ調整装置
JPH11182209A (ja) プラントの運転制御装置
JP2019191687A (ja) プラントの制御装置、プラント、プラントの制御方法及びプラントの制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees