JP2006339431A - Method of processing nitride semiconductor substrate - Google Patents

Method of processing nitride semiconductor substrate Download PDF

Info

Publication number
JP2006339431A
JP2006339431A JP2005162681A JP2005162681A JP2006339431A JP 2006339431 A JP2006339431 A JP 2006339431A JP 2005162681 A JP2005162681 A JP 2005162681A JP 2005162681 A JP2005162681 A JP 2005162681A JP 2006339431 A JP2006339431 A JP 2006339431A
Authority
JP
Japan
Prior art keywords
processing
substrate
nitride semiconductor
semiconductor substrate
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162681A
Other languages
Japanese (ja)
Inventor
Takeshi Ikeda
健 池田
Shoji Masuyama
尚司 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005162681A priority Critical patent/JP2006339431A/en
Publication of JP2006339431A publication Critical patent/JP2006339431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of processing a nitride semiconductor substrate capable of drastically shortening a contour processing time of an independent type nitride semiconductor substrate. <P>SOLUTION: First, a substrate 1 of a circular independent type GaN grown by an HVPE method, etc. is prepared. A mark-off line 2 is provided to the substrate 1 in parallel to a crystal azimuth for performing an OF process by use of an X-ray diffraction instrument. Next, after the substrate 1 is set so as to make the mark-off line 2 of the substrate 1 parallel with a straight part of an OF 3a of a tool 3 for performing ultrasonic process, the ultrasonic process is performed. Thus, the substrate 1 is precisely hollowed out in a circle having a flat OF and IF complying with a shape of the tool 3. Thus, the OF process, the IF process and an outer diameter process can be simultaneously performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、HVPE(Hydride Vapor Phase Epitaxy)法等で成長された自立型の窒化物半導体基板の外形を加工する窒化物半導体基板の加工方法に関するものである。   The present invention relates to a nitride semiconductor substrate processing method for processing the external shape of a free-standing nitride semiconductor substrate grown by HVPE (Hydride Vapor Phase Epitaxy) method or the like.

近年、高寿命青色レーザーや高輝度青色LED、高特性電子デバイス向けに使用されるGaN基板として、HVPE法等により成長された低転位の自立型GaN基板が製造されている。このGaN基板は、成長直後は通常円形で、厚さ・外径のバラツキがあり、基板外周部には結晶欠陥が生じやすい。   In recent years, low dislocation free-standing GaN substrates grown by the HVPE method or the like have been manufactured as GaN substrates used for high-lifetime blue lasers, high-intensity blue LEDs, and high-performance electronic devices. This GaN substrate is usually circular immediately after growth and has variations in thickness and outer diameter, and crystal defects are likely to occur on the outer periphery of the substrate.

また、通常基板は、エピタキシャル・デバイス工程では、精度向上のため平坦な面とされ、サセプタにセットするために均一な外径とされ、主にワレ防止として面取加工が施され、更に、結晶方位の位置決めとして劈開やOF(オリエンテーションフラット)加工がなされ、表面・裏面を見分けるためのIF(インデックスフラット)加工や梨地状の裏面加工がなされる。   In addition, the normal substrate is a flat surface for improving accuracy in the epitaxial device process, has a uniform outer diameter for setting on the susceptor, is mainly chamfered to prevent cracking, and is further crystallized. Cleavage and OF (orientation flat) processing are performed as orientation positioning, and IF (index flat) processing for distinguishing the front and back surfaces and a satin-like back surface processing are performed.

そこで、従来、基板形状を整えるため、NC加工機や倣い式の加工機を用いて、外径加工、OF・IF加工、面取加工が行われ、また平坦な面を得るために研削・ラップ・研磨加工が行われている。   Therefore, conventionally, in order to adjust the substrate shape, an outside diameter processing, OF / IF processing, and chamfering processing are performed using an NC processing machine or a copying type processing machine, and grinding / lapping is performed to obtain a flat surface.・ Polishing is performed.

なお、従来、シリコン基板やシリコン基板を貼り合わせた基板などに対する微細加工として、超音波加工により、基板表面に溝や窪みを形成したり、基板に穴をあけたり、あるいは基板上のエピタキシャル層に対し超音波振動により開裂を行ったりする方法が知られている(例えば、特許文献1参照)。
特開平6−37404号公報
Conventionally, as a microfabrication for a silicon substrate or a substrate bonded with a silicon substrate, a groove or a depression is formed on the surface of the substrate by ultrasonic processing, a hole is formed in the substrate, or an epitaxial layer on the substrate is formed. On the other hand, a method of performing cleavage by ultrasonic vibration is known (for example, see Patent Document 1).
JP-A-6-37404

しかしながら、上記従来のNC加工機や倣い式の加工機を用いた機械加工による基板の加工では、次のような問題点があった。   However, substrate processing by machining using the above-described conventional NC processing machine or copying type processing machine has the following problems.

HVPE法等により成長された自立型GaN基板の形状は円形であり且つGaN基板は透明であるため、円形のまま基板の表裏面を研磨すると、表裏の区別が目視では判断できなくなる。このため、例えば、片面を研磨する際には、研磨する面とは反対面にOF加工を施す結晶方位位置にケガキをし、次にその反対面の研磨の際には、今研磨された面の同位置にケガキを行うことによって、表裏を区別させるといった手順をとる必要があり、手間がかかる。   Since the shape of the self-standing GaN substrate grown by the HVPE method is circular and the GaN substrate is transparent, if the front and back surfaces of the substrate are polished in a circular shape, the distinction between the front and back surfaces cannot be visually determined. For this reason, for example, when polishing one surface, the crystal orientation position where OF processing is performed on the surface opposite to the surface to be polished is marked, and then when the opposite surface is polished, the surface polished now It is necessary to take a procedure such as making the front and back different by marking the same position.

また、円形の基板を、NC外形加工機や倣い式外形加工機により一回の加工で決められた結晶方位に対して精度良くOF加工を行うことは難しいため、一度仮OF付け加工を行うが、GaN基板は硬脆材料であるため、加工速度を上げることができず、加工時間が非常に長くなる。   In addition, since it is difficult to perform an OF processing with high accuracy on a crystal orientation determined by a single processing by a NC outer shape processing machine or a copying type outer shape processing machine, a temporary OF processing is performed once. Since the GaN substrate is a hard and brittle material, the processing speed cannot be increased and the processing time becomes very long.

更に、HVPE法等により成長された自立型GaN基板の外周部は、結晶欠陥が生じやすく、またGaN基板は硬脆材料であるため、取り代が多くなると、外径加工の時間が非常に長くなってしまう。   Furthermore, the outer peripheral portion of the free-standing GaN substrate grown by the HVPE method or the like is prone to crystal defects, and the GaN substrate is a hard and brittle material. turn into.

本発明は、上記課題を解決し、窒化物半導体基板の外形加工時間を大幅に短縮することができる窒化物半導体基板の加工方法を提供することにある。   An object of the present invention is to provide a method for processing a nitride semiconductor substrate that solves the above-described problems and can significantly reduce the outer shape processing time of the nitride semiconductor substrate.

第1の発明は、自立型の窒化物半導体の基板を、超音波加工により、円形に、一個以上のフラットな辺を含む円形に、または一個以上のノッチを含む円形に、くり抜くようにしたことを特徴とする窒化物半導体基板の加工方法である。   In the first invention, a self-standing nitride semiconductor substrate is hollowed out into a circle, a circle including one or more flat sides, or a circle including one or more notches by ultrasonic processing. A method for processing a nitride semiconductor substrate characterized by the following.

超音波加工により基板を円形にくり抜くことにより、基板外周部の結晶欠陥を除去する等のために、所要の外径に基板を加工でき、しかもNC外形加工機などの一般的な機械加工に比べて、迅速に且つクラックや加工変質層・加工歪みを生じさせることなく加工でき、GaN基板などの硬脆材料の半導体基板の加工に最適である。
また、一個以上のフラットな辺またはノッチを含む円形にくり抜けば、外径加工だけでなく、オリエンテーションフラット加工やノッチ加工も同時に行え、加工時間を大幅に短縮できる。
The substrate can be processed to the required outer diameter by removing the crystal defects on the outer periphery of the substrate by hollowing out the substrate in a circular shape by ultrasonic processing, and compared with general machining such as NC contour processing machines. Therefore, it can be processed quickly and without causing cracks, work-affected layers, or work distortion, and is optimal for processing a semiconductor substrate of a hard and brittle material such as a GaN substrate.
In addition, if one or more flat sides or a circular shape including a notch is cut out, not only the outer diameter processing but also the orientation flat processing and notch processing can be performed simultaneously, and the processing time can be greatly reduced.

自立型の窒化物半導体の基板は、HVPE(Hydride Vapor Phase Epitaxy)法等で成長された基板を使用する。HVPE法以外にも、MOC(Metal Organic Chloride)法、MOVPE(Metal Organic Chemical Vapor Deposition)法などを用いて作成された自立型の窒化物半導体基板でも勿論よい。
超音波加工は、例えば、超音波振動する工具と工作物である基板との間に、水などの液体に砥粒を混ぜた加工液を供給しながら、適当な加圧力で基板に工具を押しつけて、工具と基板との間の砥粒の衝撃エネルギーにより、基板を破砕・除去する加工方法である。超音波加工を用いれば、一回の加工で、工具の断面形状に対応した所望の形(フラットな辺またはノッチを含む形など)に、精密に基板をくり抜くことができる。
As the self-standing nitride semiconductor substrate, a substrate grown by the HVPE (Hydride Vapor Phase Epitaxy) method or the like is used. In addition to the HVPE method, it is of course possible to use a self-supporting nitride semiconductor substrate formed by using a MOVPE (Metal Organic Chloride) method, a MOVPE (Metal Organic Chemical Vapor Deposition) method, or the like.
Ultrasonic machining, for example, presses the tool against the substrate with an appropriate pressure while supplying a machining fluid in which abrasive grains are mixed into a liquid such as water between the tool that vibrates ultrasonically and the workpiece substrate. Thus, the substrate is crushed and removed by the impact energy of the abrasive grains between the tool and the substrate. If ultrasonic processing is used, the substrate can be precisely cut into a desired shape (a shape including a flat side or a notch) corresponding to the cross-sectional shape of the tool in one processing.

第2の発明は、第1の発明において、上記窒化物半導体は、GaN、AlN、またはInNのいずれかであることを特徴とする窒化物半導体基板の加工方法である。   A second invention is a method for processing a nitride semiconductor substrate according to the first invention, wherein the nitride semiconductor is any one of GaN, AlN, and InN.

第3の発明は、第1または第2の発明において、上記フラットな辺が、上記基板の結晶方位を示すオリエンテーションフラット(OF)及び/又は基板の表面・裏面を見分けるためのインデックスフラット(IF)であり、また、上記ノッチが、上記基板の結晶方位を示すノッチ及び/又は基板の表面・裏面を見分けるためのサブノッチであることを特徴とする窒化物半導体基板の加工方法である。   According to a third invention, in the first or second invention, the flat side has an orientation flat (OF) indicating the crystal orientation of the substrate and / or an index flat (IF) for distinguishing the front and back surfaces of the substrate. And the notch is a notch indicating the crystal orientation of the substrate and / or a sub-notch for distinguishing the front and back surfaces of the substrate.

OF及びIF、OF及びサブノッチ、ノッチ及びIF、またはノッチ及びサブノッチを含む円形に、基板をくり抜けば、基板の両面を研磨した後も、基板の表裏を目視で判別することができる。   If the substrate is cut into a circular shape including OF and IF, OF and sub-notch, notch and IF, or notch and sub-notch, both sides of the substrate can be visually discriminated after both surfaces are polished.

第4の発明は、第1乃至第3の発明において、上記超音波加工を行う、一個以上のフラット部を有する円筒状または一個以上のノッチ部を有する円筒状の超音波振動工具のフラット部またはノッチ部を、X線回折により測定された上記基板の結晶方位に基づいて位置決めして超音波加工を行うようにしたことを特徴とする窒化物半導体基板の加工方法である。   A fourth aspect of the invention is the flat part of a cylindrical ultrasonic vibration tool having one or more flat parts or a cylindrical ultrasonic vibration tool having one or more notch parts for performing the ultrasonic processing in the first to third aspects. The method for processing a nitride semiconductor substrate is characterized in that ultrasonic processing is performed by positioning the notch portion based on the crystal orientation of the substrate measured by X-ray diffraction.

X線回折により得られた基板の結晶方位に基づき、超音波振動工具のフラット部またはノッチ部を位置合わせして超音波加工を行っているので、精度よくOF加工やノッチ加工ができる。   Since ultrasonic processing is performed by aligning the flat portion or notch portion of the ultrasonic vibration tool based on the crystal orientation of the substrate obtained by X-ray diffraction, OF processing and notching processing can be performed with high accuracy.

第5の発明は、第1乃至第3の発明において、上記超音波加工を行う、一個以上のフラット部を有する円筒状または一個以上のノッチ部を有する円筒状の超音波振動工具のフラット部またはノッチ部を、X線回折により測定され上記基板に付された基板の結晶方位を示すケガキ線に基づいて位置決めして超音波加工を行うようにしたことを特徴とする窒化物半導体基板の加工方法である。   According to a fifth invention, in the first to third inventions, a flat part of a cylindrical ultrasonic vibration tool having one or more flat parts or a cylindrical ultrasonic tool having one or more notch parts for performing the ultrasonic processing or A method for processing a nitride semiconductor substrate, wherein the notch portion is positioned based on a marking line measured by X-ray diffraction and indicating the crystal orientation of the substrate attached to the substrate to perform ultrasonic processing. It is.

X線回折から求められた結晶方位を示すケガキ線を用いて位置合わせしているので、目視により位置合わせができ、簡易に且つ精度よくOF加工やノッチ加工ができる。   Since alignment is performed using a marking line indicating the crystal orientation obtained from X-ray diffraction, alignment can be performed by visual observation, and OF processing and notch processing can be performed easily and accurately.

本発明によれば、超音波加工により基板を所望の形状にくり抜くことにより、基板の外径加工やオリエンテーションフラット加工などを行えるので、基板の外形加工時間を大幅に短縮することができる。   According to the present invention, the outer diameter processing time of the substrate can be significantly shortened because the outer diameter processing or orientation flat processing of the substrate can be performed by hollowing out the substrate into a desired shape by ultrasonic processing.

以下に、本発明に係る窒化物半導体基板の加工方法の一実施形態を図面を用いて説明する。図1(a)〜(d)は、本発明の一実施形態における加工工程を示す図である。   An embodiment of a method for processing a nitride semiconductor substrate according to the present invention will be described below with reference to the drawings. FIGS. 1A to 1D are diagrams showing processing steps in one embodiment of the present invention.

まず、HVPE法等で成長された円形自立型GaNの基板1を用意する(図1(a))。HVPE法等で成長された円形の基板1の外周部1aには、結晶欠陥が生じている場合が多く、通常、外周部1aの結晶欠陥を除去する外径加工が必要になる。   First, a circular self-standing GaN substrate 1 grown by HVPE or the like is prepared (FIG. 1A). In many cases, crystal defects are generated in the outer peripheral portion 1a of the circular substrate 1 grown by the HVPE method or the like, and it is usually necessary to perform outer diameter processing for removing the crystal defects in the outer peripheral portion 1a.

この基板1に対し、X線回折装置を用いてOF加工を施す結晶方位の印として、結晶方位に平行なケガキ線2をダイヤモンドペンで付ける(図1(b))。   A marking line 2 parallel to the crystal orientation is attached to the substrate 1 with a diamond pen as a mark of crystal orientation to be subjected to OF processing using an X-ray diffractometer (FIG. 1 (b)).

このケガキ線2が付けられた基板1を固形ワックスを用いてガラス板に貼り付けると共に、超音波加工機のホーンの先端部に工具3を取り付ける。この工具3は、図1(c)にその横断面を示すように、基板1よりも小径の円筒状であってフラットなOF(オリエンテーションフラット)部3a及びIF(インデックスフラット)部3bを有する。工具3のIF部3bは、OF部3aから90度をなす位置にある。   The substrate 1 with the marking line 2 is attached to a glass plate using solid wax, and a tool 3 is attached to the tip of the horn of an ultrasonic processing machine. As shown in the cross section of FIG. 1C, the tool 3 has a cylindrical and flat OF (orientation flat) portion 3a and an IF (index flat) portion 3b smaller in diameter than the substrate 1. The IF unit 3b of the tool 3 is at a position that forms 90 degrees from the OF unit 3a.

次いで、基板1が貼り付けられたガラス板を超音波振動機の作業台上に置き、基板1のケガキ線2と工具3のOF部3aの直線部とが平行になるように、目視にて基板1をセットする(図1(c))。その後、工具3と基板1を所定の加圧力で接触させ、基板1上に液体と砥粒を混ぜたスラリ状の加工液を流した後、超音波加工機を作動させる。超音波加工機の振動子で発生した超音波振動は、ホーンを介して工具3に拡大して伝達され、超音波振動で弾かれた砥粒の衝撃によって基板1は破砕加工される。
具体的な加工条件を述べる。
加工液:純水に砥粒を混ぜたもの。砥粒はボロンカーバイト(B4C)で、その粒径は#280、加工液は16リットル/minで供給した。
工具:材料はS45C(H=40°調質)、肉厚1mmのものを用い、工具の加圧力は2Kg/cm2とした。
振動:共振周波数16KHz、出力(500)〜1000W、振幅30μm以上
固形ワックス:日化精工製アルコワックス(商品名)
Next, the glass plate to which the substrate 1 is attached is placed on the work table of the ultrasonic vibrator, and visually, the marking line 2 of the substrate 1 and the straight portion of the OF portion 3a of the tool 3 are in parallel. The substrate 1 is set (FIG. 1 (c)). Thereafter, the tool 3 and the substrate 1 are brought into contact with each other with a predetermined pressing force, and after a slurry-like processing liquid in which a liquid and abrasive grains are mixed is poured onto the substrate 1, the ultrasonic processing machine is operated. The ultrasonic vibration generated by the vibrator of the ultrasonic processing machine is enlarged and transmitted to the tool 3 through the horn, and the substrate 1 is crushed by the impact of the abrasive grains repelled by the ultrasonic vibration.
Specific processing conditions will be described.
Processing fluid: Pure water mixed with abrasive grains. The abrasive grains were boron carbide (B 4 C), the particle size was # 280, and the working fluid was supplied at 16 liters / min.
Tool: The material used was S45C (H S = 40 ° tempered), 1 mm thick, and the pressing force of the tool was 2 kg / cm 2 .
Vibration: Resonance frequency 16KHz, output (500) ~ 1000W, amplitude 30μm or more Solid wax: Alco wax (product name) made by Nikka Seiko

こうして、基板1は、工具3の形状に対応したフラットなOF及びIFを有する円形に、精密にくり抜かれる(図1(d))。これにより、従来、外形加工機で行っていた仮OF付け加工、IF加工、基板外周部の結晶欠陥を除去する外径加工を同時に行うことができるので、外形加工機の占有時間を大幅に短縮できる。また、OF及びIFを有する基板1なので、表裏研磨後における基板の表裏管理を目視にて行うことが可能となる。   In this way, the substrate 1 is precisely cut into a circular shape having a flat OF and IF corresponding to the shape of the tool 3 (FIG. 1 (d)). This makes it possible to simultaneously perform temporary OF attachment processing, IF processing, and outer diameter processing that removes crystal defects on the outer periphery of the substrate, which have been conventionally performed with an external shape processing machine, greatly reducing the occupation time of the external shape processing machine. it can. Further, since the substrate 1 has the OF and IF, the front and back of the substrate after the front and back polishing can be visually observed.

超音波振動によりくり抜かれた基板1は、ガラス板から取り外され、ワックス除去の洗浄がなされる。その後、基板1の裏面をラップし、場合に応じて研磨して平坦にする。更に、仕様形状に応じて、外径加工、高精度OF加工、面取加工を行う。ここで、高精度OF加工は、超音波加工した基板1のOF方位をX線回折装置で測定し、外形加工機にて、OF方位のズレ分を修正して最終的なOF加工を行うものである。次いで、基板1の表面をラップし、研磨する。   The substrate 1 hollowed out by ultrasonic vibration is removed from the glass plate and cleaned for wax removal. Thereafter, the back surface of the substrate 1 is lapped and polished and flattened according to circumstances. Furthermore, outer diameter machining, high-precision OF machining, and chamfering are performed according to the specification shape. Here, in the high-precision OF processing, the OF orientation of the ultrasonically processed substrate 1 is measured with an X-ray diffractometer, and the final orientation processing is performed by correcting the deviation of the OF orientation with an outline processing machine. It is. Next, the surface of the substrate 1 is lapped and polished.

このように、超音波加工とX線回折を組み合わせることにより、精度よくOF加工することが可能となり、得られた基板を用いた素子製造プロセスにおいて、素子歩留まりを大幅に向上できる。なお、上記実施形態では、X線回折装置を用いてOF方位のケガキ線2を基板1に付け、ケガキ線2と工具3のOF部3aの直線部とを目視にて合わせて超音波加工を行っているが、X線回折機構を備えた超音波加工装置を製造すれば、この装置を用いて、結晶方位を測定し基板を精度良く位置決めした状態で、超音波OF加工を行うことができるため、劈開と同等の非常に精度の良いOF加工が行える。   In this way, by combining ultrasonic processing and X-ray diffraction, it is possible to perform OF processing with high accuracy, and in the device manufacturing process using the obtained substrate, the device yield can be greatly improved. In the above-described embodiment, an OF orientation marking line 2 is attached to the substrate 1 using an X-ray diffractometer, and the marking line 2 and the straight portion of the OF section 3a of the tool 3 are visually aligned to perform ultrasonic processing. However, if an ultrasonic processing apparatus having an X-ray diffraction mechanism is manufactured, ultrasonic OF processing can be performed with the crystal orientation measured and the substrate positioned with high accuracy. Therefore, an extremely accurate OF processing equivalent to cleavage can be performed.

なお、上記実施形態において、超音波加工でくり抜かれた基板1に対し、その裏面を平坦にした後、表面も平坦にし、その後、仕様形状に応じて、外径加工、高精度OF方位加工、面取加工を行うようにしてもよい。この場合、基板1の表裏面が鏡面になるため、見た目の面状態では表裏の区別ができなくなるが、表裏面の平坦加工前に超音波加工機によりOF、IF加工が施されているので、OFとIFとの位置関係により表裏を判別することができる。   In the above-described embodiment, the back surface of the substrate 1 cut out by ultrasonic processing is flattened, and then the surface is flattened. Thereafter, according to the specification shape, outer diameter processing, high-precision OF orientation processing, A chamfering process may be performed. In this case, since the front and back surfaces of the substrate 1 are mirror surfaces, the front and back surfaces cannot be distinguished in the apparent surface state, but since OF and IF processing are performed by an ultrasonic processing machine before flat processing of the front and back surfaces, The front and back can be discriminated by the positional relationship between OF and IF.

本発明に係る窒化物半導体基板の加工方法の一実施形態における加工工程を示す図である。It is a figure which shows the manufacturing process in one Embodiment of the processing method of the nitride semiconductor substrate which concerns on this invention.

符号の説明Explanation of symbols

1 基板
1a 外周部
2 ケガキ線
3 工具
3a OF部
3b IF部

DESCRIPTION OF SYMBOLS 1 Substrate 1a Outer peripheral part 2 Marking wire 3 Tool 3a OF part 3b IF part

Claims (5)

自立型の窒化物半導体の基板を、超音波加工により、円形に、一個以上のフラットな辺を含む円形に、または一個以上のノッチを含む円形に、くり抜くようにしたことを特徴とする窒化物半導体基板の加工方法。   Nitride characterized by hollowing a self-standing nitride semiconductor substrate into a circle, a circle containing one or more flat sides, or a circle containing one or more notches by ultrasonic processing A method for processing a semiconductor substrate. 請求項1記載の窒化物半導体基板の加工方法において、上記窒化物半導体は、GaN、AlN、またはInNのいずれかであることを特徴とする窒化物半導体基板の加工方法。   2. The method for processing a nitride semiconductor substrate according to claim 1, wherein the nitride semiconductor is any one of GaN, AlN, and InN. 請求項1または2記載の窒化物半導体基板の加工方法において、上記フラットな辺が、上記基板の結晶方位を示すオリエンテーションフラット及び/又は基板の表面・裏面を見分けるためのインデックスフラットであり、また、上記ノッチが、上記基板の結晶方位を示すノッチ及び/又は基板の表面・裏面を見分けるためのサブノッチであることを特徴とする窒化物半導体基板の加工方法。   The method for processing a nitride semiconductor substrate according to claim 1 or 2, wherein the flat side is an orientation flat indicating a crystal orientation of the substrate and / or an index flat for distinguishing the front and back surfaces of the substrate, A method for processing a nitride semiconductor substrate, wherein the notch is a notch indicating a crystal orientation of the substrate and / or a sub-notch for distinguishing the front and back surfaces of the substrate. 請求項1乃至3のいずれかに記載の窒化物半導体基板の加工方法において、上記超音波加工を行う、一個以上のフラット部を有する円筒状または一個以上のノッチ部を有する円筒状の超音波振動工具のフラット部またはノッチ部を、X線回折により測定された上記基板の結晶方位に基づいて位置決めして超音波加工を行うようにしたことを特徴とする窒化物半導体基板の加工方法。   4. The method of processing a nitride semiconductor substrate according to claim 1, wherein the ultrasonic processing is performed in a cylindrical shape having one or more flat portions or a cylindrical shape having one or more notches. A method for processing a nitride semiconductor substrate, characterized in that ultrasonic processing is performed by positioning a flat portion or notch portion of a tool based on the crystal orientation of the substrate measured by X-ray diffraction. 請求項1乃至3のいずれかに記載の窒化物半導体基板の加工方法において、上記超音波加工を行う、一個以上のフラット部を有する円筒状または一個以上のノッチ部を有する円筒状の超音波振動工具のフラット部またはノッチ部を、X線回折により測定され上記基板に付された基板の結晶方位を示すケガキ線に基づいて位置決めして超音波加工を行うようにしたことを特徴とする窒化物半導体基板の加工方法。   4. The method of processing a nitride semiconductor substrate according to claim 1, wherein the ultrasonic processing is performed in a cylindrical shape having one or more flat portions or a cylindrical shape having one or more notches. Nitride characterized in that ultrasonic processing is performed by positioning a flat portion or notch portion of a tool based on a marking line measured by X-ray diffraction and indicating a crystal orientation of the substrate. A method for processing a semiconductor substrate.
JP2005162681A 2005-06-02 2005-06-02 Method of processing nitride semiconductor substrate Pending JP2006339431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162681A JP2006339431A (en) 2005-06-02 2005-06-02 Method of processing nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162681A JP2006339431A (en) 2005-06-02 2005-06-02 Method of processing nitride semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2006339431A true JP2006339431A (en) 2006-12-14

Family

ID=37559717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162681A Pending JP2006339431A (en) 2005-06-02 2005-06-02 Method of processing nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2006339431A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175580A (en) * 2012-02-24 2013-09-05 Mitsubishi Chemicals Corp Nitride single crystal with through hole, and method of manufacturing the same
JP2014110411A (en) * 2012-12-04 2014-06-12 Fujikoshi Mach Corp Semiconductor wafer manufacturing method
CN110391585A (en) * 2018-04-18 2019-10-29 松下知识产权经营株式会社 III nitride semiconductor substrate and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175580A (en) * 2012-02-24 2013-09-05 Mitsubishi Chemicals Corp Nitride single crystal with through hole, and method of manufacturing the same
JP2014110411A (en) * 2012-12-04 2014-06-12 Fujikoshi Mach Corp Semiconductor wafer manufacturing method
CN110391585A (en) * 2018-04-18 2019-10-29 松下知识产权经营株式会社 III nitride semiconductor substrate and its manufacturing method

Similar Documents

Publication Publication Date Title
TWI564948B (en) Hard and brittle materials for grinding, grinding processing systems and grinding, grinding methods
EP0699504B1 (en) Method and apparatus for surface-grinding of workpiece
CN110349837B (en) Wafer generating method
KR20180094798A (en) METHOD FOR PRODUCING SiC WAFER
KR20180119481A (en) METHOD FOR PRODUCING SiC WAFER
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
WO2007141990A1 (en) Method for producing wafer
JP2004296912A (en) Wafer supporting substrate
JP2006339431A (en) Method of processing nitride semiconductor substrate
JP2007030095A (en) Method for manufacturing diamond tool
JP2003025118A (en) Diamond tool for cutting
JP6422009B2 (en) Scribing wheel and manufacturing method thereof
JP2024014982A (en) SiC CRYSTAL SUBSTRATE HAVING LATTICE PLANE ORIENTATION OPTIMAL FOR CRACK REDUCTION AND METHOD FOR MANUFACTURING THE SAME
JP2006203071A (en) Group iii-v compound semiconductor single crystal substrate
WO2004114387A1 (en) Method for producing semiconductor single crystal wafer and laser processing device used therefor
JP5034634B2 (en) Method for producing pattern forming body
JP2008177287A (en) Compound semiconductor wafer
JP2019034391A (en) Processing method
GB2541289A (en) Single crystal synthetic diamond
JP4076046B2 (en) Multistage chamfering method of wafer
JP2020029377A (en) Method for cutting cover glass
CN111778561A (en) Sapphire substrate, processing method and preparation method of light-emitting diode
JP2001196333A (en) Semiconductor wafer with off-angle
CN109926885A (en) A kind of device and method for silicon ring chamfering
CN115706003A (en) Wafer generation method