JP2006337201A - Ultrasonic flaw detection method and apparatus - Google Patents

Ultrasonic flaw detection method and apparatus Download PDF

Info

Publication number
JP2006337201A
JP2006337201A JP2005162881A JP2005162881A JP2006337201A JP 2006337201 A JP2006337201 A JP 2006337201A JP 2005162881 A JP2005162881 A JP 2005162881A JP 2005162881 A JP2005162881 A JP 2005162881A JP 2006337201 A JP2006337201 A JP 2006337201A
Authority
JP
Japan
Prior art keywords
flaw detection
frequency
ultrasonic
ultrasonic probe
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005162881A
Other languages
Japanese (ja)
Other versions
JP4552230B2 (en
Inventor
Shigetoshi Hyodo
繁俊 兵藤
Giichi Takimoto
義一 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005162881A priority Critical patent/JP4552230B2/en
Publication of JP2006337201A publication Critical patent/JP2006337201A/en
Application granted granted Critical
Publication of JP4552230B2 publication Critical patent/JP4552230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method and an apparatus, capable of accurately detecting even defects present in the vicinity of the bottom surface of the object material of flaw detection. <P>SOLUTION: The ultrasonic flaw detection apparatus 100 is provided with a wide-band ultrasonic probe 1, arranged in such a way as to make the ultrasonic waves be incident perpendicularly on the surface of the object material of flaw detection; a high-pass filter 2 for cutting off a low-frequency components, by setting a prescribed cut-off frequency that is higher than the lower limit of the frequency band of ultrasonic waves oscillated by the wide-band ultrasonic probe 1 and is lower than its center frequency, from among frequency components of reflected echoes from the object material of flaw detection received by the wide-band ultrasonic probe 1; and a defect detection circuit 3 for detecting defects present in the object material of flaw detection, by comparing the amplitude of output signals of the high-pass filter 2 with a prescribed threshold. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、板材、管材、棒材等の被探傷材に存在する欠陥を超音波の垂直探傷によって検出する超音波探傷方法及び装置に関し、特に被探傷材底面近傍に存在する欠陥をも精度良く検出することが可能な超音波探傷方法及び装置に関する。   The present invention relates to an ultrasonic flaw detection method and apparatus for detecting a defect existing in a flaw detection material such as a plate material, a tube material, and a bar material by ultrasonic vertical flaw detection, and in particular, accurately detects a flaw present near the bottom surface of the flaw detection material. The present invention relates to an ultrasonic flaw detection method and apparatus capable of detection.

従来より、鋼管や鋼板等の各種被探傷材に存在する介在物等の欠陥を検出するため、超音波垂直探傷法が広く用いられている。超音波垂直探傷法は、超音波を被探傷材表面に対して垂直に入射させ、被探傷材に存在する欠陥等からの反射エコーを検出することにより、欠陥の存在有無や寸法を検知する探傷方法である。ここで、被探傷材に入射させる超音波は、その周波数が高いほど分解能が向上する点で好ましい一方、周波数が高すぎると被探傷材の内部を伝搬する過程で減衰し易くなるという欠点がある。従って、被探傷材における減衰と分解能の双方を考慮の上、通常は、2〜15MHzの広帯域周波数特性を有する超音波探触子が用いられている。   Conventionally, an ultrasonic vertical flaw detection method has been widely used to detect defects such as inclusions present in various flaw detection materials such as steel pipes and steel plates. In the ultrasonic vertical flaw detection method, flaw detection is performed by detecting the presence and size of defects by making ultrasonic waves incident perpendicular to the surface of the material to be inspected and detecting reflection echoes from the defects present in the material to be inspected. Is the method. Here, the ultrasonic wave incident on the flaw detection material is preferable in that the higher the frequency, the better the resolution. On the other hand, if the frequency is too high, the ultrasonic wave is easily attenuated in the process of propagating through the flaw detection material. . Therefore, in consideration of both attenuation and resolution in the material to be inspected, an ultrasonic probe having a wideband frequency characteristic of 2 to 15 MHz is usually used.

しかしながら、超音波を被探傷材に対して垂直に入射させ内部に伝搬させることにより、超音波探触子を配置した側の表面及び反対側の表面(底面)の双方で過大な反射エコーが生じるため、表面近傍に存在する微細な欠陥からの反射エコーは、分解能の点で検出が困難(被探傷材表面からの反射エコーと欠陥からの反射エコーとを識別できない)であり、表面近傍に不感帯が存在するという問題があった。   However, when ultrasonic waves are incident on the material to be inspected perpendicularly and propagated inside, excessive reflection echoes are generated on both the surface on which the ultrasonic probe is disposed and the opposite surface (bottom surface). Therefore, it is difficult to detect reflection echoes from minute defects near the surface in terms of resolution (the reflection echoes from the surface of the flaw detection material cannot be distinguished from the reflection echoes from the defect), and there is a dead zone near the surface. There was a problem that existed.

このような被探傷材表面近傍の不感帯を低減することを目的として、従来より種々の方法が提案されている(例えば、特許文献1、2参照)。   Various methods have been proposed in the past for the purpose of reducing the dead zone near the surface of the flaw detection material (see, for example, Patent Documents 1 and 2).

例えば、特許文献1には、周波数が15MHz〜50MHzで焦点距離が12.7〜38.1mmの超音波探触子を用いて、被探傷材の表面を含む皮下2mmの範囲で超音波ビームが収束するように水距離を設定し、点収束超音波を被探傷材表面に対して垂直に入射することで、表面から2mm以内の領域に存在する微小欠陥を検出する超音波探傷方法が提案されている。   For example, in Patent Document 1, an ultrasonic probe having a frequency of 15 MHz to 50 MHz and a focal length of 12.7 to 38.1 mm is used to transmit an ultrasonic beam in a range of 2 mm subcutaneously including the surface of the flaw detection material. An ultrasonic flaw detection method has been proposed in which a water distance is set so as to converge, and a point converging ultrasonic wave is incident perpendicularly to the surface of the material to be inspected to detect minute defects existing in an area within 2 mm from the surface. ing.

しかしながら、特許文献1に記載の方法は、被探傷材の表面から2mm以内の領域に存在する欠陥のみを検出対象としているため、より深い領域に存在する欠陥を検出することはできない。従って、被探傷材の厚み方向の全てを探傷するには、上記の超音波探触子とは異なる他の超音波探触子を用いる必要が生じ、超音波探触子の数が増加することによるコストの増加やメンテナンス性の低下を招くという問題がある。また、発振する超音波の周波数が15MHz〜50MHzと高周波である超音波探触子は、一般的に振動子の寸法が小さく探傷効率が低下するため、オンラインでの高効率な連続探傷への適用は困難である。   However, the method described in Patent Document 1 cannot detect a defect existing in a deeper region because only a defect existing in a region within 2 mm from the surface of the flaw detection material is targeted for detection. Therefore, in order to detect all of the material in the thickness direction of the flaw detection material, it is necessary to use another ultrasonic probe different from the above ultrasonic probe, and the number of ultrasonic probes increases. There is a problem that it causes an increase in cost and a decrease in maintainability. In addition, an ultrasonic probe having a high frequency of oscillating ultrasonic waves of 15 MHz to 50 MHz generally has a small transducer size and lowers flaw detection efficiency. Therefore, it can be applied to online high-efficiency continuous flaw detection. It is difficult.

また、特許文献2には、表面エコー(被探傷材の超音波入射側表面での反射エコー)が検出されてから一定の時間経過後に監視を開始し、底面エコー(被探傷材の超音波入射側と反対側の表面(底面)での反射エコー)が検出される予定時間より後に監視を終了するゲートを設定し、超音波探触子を被探傷材の入射面に沿って相対的に移動させながら超音波を送信し、前記ゲート内において最初にしきい値を越える第1エコーが検出されるまでの時間を計測して、前記表面エコーが検出されてから前記第1エコーが検出されるまでの時間を距離情報に換算し、前記距離情報の変化量から欠陥を検出する方法が提案されている。   In Patent Document 2, monitoring is started after a certain period of time has elapsed since the detection of a surface echo (a reflection echo on the ultrasonic incident surface of the flaw detection material), and a bottom echo (the incidence of ultrasonic waves on the flaw detection material is detected). Set the gate to stop monitoring after the scheduled time when the reflection echo on the surface (bottom surface) opposite to the side is detected, and move the ultrasonic probe relatively along the incident surface of the flaw detection material Until the first echo exceeding the threshold is first detected in the gate until the first echo is detected after the surface echo is detected. A method has been proposed in which the time is converted into distance information and a defect is detected from the amount of change in the distance information.

しかしながら、特許文献2に記載の方法は、しきい値を越える第1エコーの距離情報で欠陥の存在を判定するため、一般的に用いられる欠陥エコー(欠陥からの反射エコー)高さから欠陥の寸法を判定する方法と異なり、欠陥の寸法を評価できないという問題がある。また、管材等を水浸法で探傷する場合、特許文献2に記載の方法のように、表面エコーが検出されてから第1エコーが検出されるまでの距離情報の変化量から欠陥を検出する構成では、管材断面の楕円率、偏芯、偏肉や超音波探触子の追従性能不足等に応じて、底面エコーの高さが大きく変動するため、欠陥の誤検出が生じる可能性がある。より具体的に説明すれば、ゲート内のしきい値を一定にすると、前述したように底面エコーの高さが変動することにより、しきい値を超える底面エコーの位置が超音波の1波長分又は複数波長分手前に変動し、欠陥が存在しないにもかかわらずあたかも底面近傍に存在する微小欠陥からの反射エコーと誤認識して検出する可能性がある。
特開平4−259853号公報 特開2003−302381号公報
However, since the method described in Patent Document 2 determines the presence of a defect based on the distance information of the first echo exceeding the threshold value, the height of the defect is generally determined from the height of the defect echo (reflection echo from the defect). Unlike the method of determining the size, there is a problem that the size of the defect cannot be evaluated. Further, when flaw detection is performed on a pipe material or the like, a defect is detected from the amount of change in distance information from when the surface echo is detected until the first echo is detected, as in the method described in Patent Document 2. In the configuration, the height of the bottom surface echo varies greatly depending on the ellipticity of the cross section of the tube, eccentricity, thickness deviation, and insufficient follow-up performance of the ultrasonic probe, etc., which may cause false detection of defects. . More specifically, when the threshold value in the gate is made constant, the height of the bottom surface echo changes as described above, so that the position of the bottom surface echo exceeding the threshold value corresponds to one wavelength of the ultrasonic wave. Or, it may fluctuate before a plurality of wavelengths and may be erroneously recognized as a reflected echo from a minute defect present near the bottom surface even though no defect exists.
Japanese Patent Laid-Open No. 4-259853 JP 2003-302381 A

本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、被探傷材底面近傍に存在する欠陥をも精度良く検出することが可能な超音波探傷方法及び装置を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and provides an ultrasonic flaw detection method and apparatus capable of accurately detecting defects existing near the bottom surface of a flaw detection material. Is an issue.

前記課題を解決するべく、本発明は、特許請求の範囲の請求項1に記載の如く、広帯域型超音波探触子から発振した超音波を被探傷材表面に対して垂直に入射させ、被探傷材からの反射エコーを前記広帯域型超音波探触子で受信することにより被探傷材内部に存在する欠陥を検出する超音波探傷方法であって、前記広帯域型超音波探触子で受信した反射エコーの周波数成分のうち、前記広帯域型超音波探触子で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断し、当該遮断後の反射エコーに基づいて被探傷材に存在する欠陥を検出することを特徴とする超音波探傷方法を提供するものである。   In order to solve the above-mentioned problems, the present invention, as claimed in claim 1, makes the ultrasonic wave oscillated from the broadband ultrasonic probe incident perpendicularly to the surface of the material to be inspected. An ultrasonic flaw detection method for detecting a defect existing in a flaw detection material by receiving a reflected echo from a flaw detection material with the broadband ultrasonic probe, which is received by the broadband ultrasonic probe Of the frequency components of the reflected echo, a predetermined cut-off frequency that is higher than the lower limit value of the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe and lower than the center frequency is set to cut off the low frequency component. Then, the present invention provides an ultrasonic flaw detection method characterized by detecting a defect existing in a flaw detection material based on the reflected echo after the interruption.

斯かる発明によれば、広帯域型超音波探触子で受信した反射エコーの周波数成分のうち、広帯域型超音波探触子で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断する構成であるため、遮断しない場合と比べて(広帯域型超音波探触子で発振した超音波の周波数帯域と同じ周波数帯域の反射エコーを用いる場合に比べて)、反射エコーの分解能を高めることが可能である。従って、被探傷材底面からの反射エコーと底面近傍に存在する欠陥からの反射エコーとが識別し易くなるため、当該遮断後の反射エコーに基づいて被探傷材に存在する欠陥を検出すれば、被探傷材底面近傍に存在する欠陥をも精度良く検出することが可能である。   According to such invention, the frequency component of the reflected echo received by the broadband ultrasonic probe is higher than the lower limit value of the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe and is higher than the center frequency. The lower cutoff frequency is set by setting a lower cutoff frequency, so compared to the case where no cutoff is made (the reflection of the same frequency band as that of the ultrasonic wave oscillated by the broadband ultrasonic probe). It is possible to increase the resolution of the reflected echo (compared to using echo). Therefore, since it becomes easy to distinguish between the reflected echo from the bottom surface of the flaw detection material and the reflection echo from the defect existing in the vicinity of the bottom surface, if a defect present in the flaw detection material is detected based on the reflected echo after the interruption, It is possible to accurately detect defects existing near the bottom surface of the flaw detection material.

なお、本発明における「広帯域型超音波探触子」とは、発振する超音波の周波数帯域が広い超音波探触子であって、発振する超音波の周波数分布を周波数分析(FFT等)によって測定したときに、広い周波数帯域まで超音波エネルギーの低下が少ない超音波探触子を意味する。例えば、発振する超音波のエネルギーが最大値より−6dB(50%)以上となる周波数の範囲を周波数帯域としたとき、この周波数帯域が中心周波数±中心周波数×0.6程度の範囲となる周波数分布を有する超音波探触子である。   The “broadband ultrasonic probe” in the present invention is an ultrasonic probe having a wide frequency band of oscillating ultrasonic waves, and the frequency distribution of the oscillating ultrasonic waves is analyzed by frequency analysis (FFT or the like). It means an ultrasonic probe in which the ultrasonic energy decreases little over a wide frequency band when measured. For example, when a frequency range in which the energy of the oscillating ultrasonic wave is −6 dB (50%) or more from the maximum value is defined as a frequency band, the frequency band is in a range of about center frequency ± center frequency × 0.6. An ultrasonic probe having a distribution.

ここで、カットオフ周波数を高めれば高めるほど、反射エコーの分解能が高まる点で好ましい一方、高めすぎると反射エコーの振幅(高さ)が小さくなって感度が低下するため逆に好ましくない。このように、分解能及び感度の双方の観点より本発明の発明者らが鋭意検討したところによれば、広帯域型超音波探触子で発振した超音波の中心周波数の80%程度の値にカットオフ周波数を設定するのが好ましいことが分かった。従って、好ましくは、特許請求の範囲の請求項2に記載の如く、前記カットオフ周波数は、前記広帯域型超音波探触子で発振した超音波の中心周波数の80%の値に設定される。   Here, the higher the cutoff frequency, the better in terms of increasing the resolution of the reflected echo. On the other hand, when the cutoff frequency is increased too much, the amplitude (height) of the reflected echo is reduced and the sensitivity is lowered. As described above, the inventors of the present invention diligently studied from the viewpoints of both resolution and sensitivity, and cut to a value of about 80% of the center frequency of the ultrasonic wave oscillated by the broadband ultrasonic probe. It has been found that it is preferable to set the off frequency. Therefore, preferably, as described in claim 2 of the claims, the cut-off frequency is set to a value of 80% of the center frequency of the ultrasonic wave oscillated by the broadband ultrasonic probe.

なお、前記課題を解決するべく、本発明は、特許請求の範囲の請求項3に記載の如く、被探傷材表面に対して垂直に超音波を入射するように配置された広帯域型超音波探触子と、前記広帯域型超音波探触子で受信した被探傷材からの反射エコーの周波数成分のうち、前記広帯域型超音波探触子で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断するハイパスフィルタと、前記ハイパスフィルタの出力信号の振幅を所定のしきい値と比較することにより、被探傷材に存在する欠陥を検出する欠陥検出回路とを備えることを特徴とする超音波探傷装置としても提供される。   In order to solve the above-mentioned problem, the present invention provides a broadband ultrasonic probe arranged so that ultrasonic waves are incident perpendicularly to the surface of the material to be inspected, as claimed in claim 3. Of the frequency components of reflected echoes from the probe and the flaw detection material received by the broadband ultrasonic probe, higher than the lower limit value of the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe In addition, a high-pass filter that cuts off low-frequency components by setting a predetermined cut-off frequency lower than the center frequency, and the amplitude of the output signal of the high-pass filter is compared with a predetermined threshold value, so that it exists in the material to be detected The present invention is also provided as an ultrasonic flaw detector comprising a defect detection circuit for detecting a defect to be detected.

好ましくは、特許請求の範囲の請求項4に記載の如く、前記ハイパスフィルタのカットオフ周波数は、前記広帯域型超音波探触子で発振した超音波の中心周波数の80%の値に設定される。   Preferably, as described in claim 4 of the present invention, the cutoff frequency of the high-pass filter is set to a value that is 80% of the center frequency of the ultrasonic wave oscillated by the broadband ultrasonic probe. .

本発明に係る超音波探傷方法及び装置によれば、被探傷材からの反射エコーの分解能を高めることが可能であるため、被探傷材底面からの反射エコーと底面近傍に存在する欠陥からの反射エコーとが識別し易くなり、被探傷材底面近傍に存在する欠陥をも精度良く検出することが可能である。   According to the ultrasonic flaw detection method and apparatus according to the present invention, it is possible to increase the resolution of the reflected echo from the flaw detection material, so that the reflection echo from the bottom surface of the flaw detection material and the reflection from the defect existing in the vicinity of the bottom surface. Echoes can be easily identified, and defects existing near the bottom surface of the flaw detection material can be detected with high accuracy.

以下、添付図面を適宜参照しつつ、本発明に係る超音波探傷方法及び装置の一実施形態について説明する。   Hereinafter, an embodiment of an ultrasonic flaw detection method and apparatus according to the present invention will be described with reference to the accompanying drawings as appropriate.

図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示すブロック図である。図1に示すように、本実施形態に係る超音波探傷装置100は、被探傷材表面に対して垂直に超音波を入射するように配置された広帯域型超音波探触子(以下、適宜「探触子」と略称する)1と、探触子1で受信した被探傷材からの反射エコーについて所定のカットオフ周波数を設定して低周波数成分を遮断するハイパスフィルタ2と、ハイパスフィルタ2の出力信号の振幅を所定のしきい値と比較することにより、被探傷材に存在する欠陥を検出する欠陥検出回路3とを備えている。また、本実施形態に係る超音波探傷装置100は、探触子1から超音波を発振させるためのパルス信号を供給する発振器4と、探触子1で受信した被探傷材からの反射エコーを増幅してハイパスフィルタ2に出力する受信アンプ5とを備えている。   FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention. As shown in FIG. 1, an ultrasonic flaw detector 100 according to this embodiment includes a broadband ultrasonic probe (hereinafter referred to as “approx. (Abbreviated as “probe”) 1, a high-pass filter 2 that blocks a low-frequency component by setting a predetermined cut-off frequency for the reflected echo from the flaw detection material received by the probe 1, A defect detection circuit 3 is provided for detecting defects present in the material to be detected by comparing the amplitude of the output signal with a predetermined threshold value. Further, the ultrasonic flaw detection apparatus 100 according to this embodiment includes an oscillator 4 that supplies a pulse signal for oscillating ultrasonic waves from the probe 1, and a reflection echo received from the flaw detection material received by the probe 1. And a receiving amplifier 5 that amplifies and outputs to the high-pass filter 2.

本実施形態に係る探触子1は、発振する超音波が2〜15MHzの広帯域周波数特性を有するものとされている。より具体的に説明すれば、探触子1の実際の周波数帯域(中心周波数での超音波エネルギーを基準として−6dB以上の超音波エネルギーを有する帯域)は、探触子1の中心周波数±中心周波数×0.6程度の範囲内にあるため、中心周波数が10MHzの場合には、4〜16MHz程度の帯域となる。また、本実施形態に係る探触子1は、ダンパー材の選択と発振器4から供給されるパルス信号の波形調整によって、発振する超音波の波数を1〜1.5波に抑制し、これにより分解能が向上するように構成されている。   In the probe 1 according to this embodiment, the oscillating ultrasonic wave has a broadband frequency characteristic of 2 to 15 MHz. More specifically, the actual frequency band of the probe 1 (the band having ultrasonic energy of −6 dB or more with reference to the ultrasonic energy at the center frequency) is the center frequency ± center of the probe 1. Since the frequency is in the range of about 0.6, when the center frequency is 10 MHz, the band is about 4 to 16 MHz. In addition, the probe 1 according to the present embodiment suppresses the wave number of the oscillating ultrasonic wave to 1 to 1.5 waves by selecting the damper material and adjusting the waveform of the pulse signal supplied from the oscillator 4. The resolution is improved.

なお、被探傷材の表面が管のように円弧状である場合には、探触子1の端部付近から発振した超音波が被探傷材表面で反射してしまい被探傷材の内部に入射しない事態が生じる可能性がある。従って、被探傷材表面が円弧状である場合には、探触子1として収束型探触子を用い、探触子の端部付近から発振した超音波も被探傷材内部に入射されるようにすることが好ましい。特に、被探傷材が管である場合には、管軸方向に沿った焦点を有する所謂ラインフォーカス型の探触子を用いるのが好ましい。   When the surface of the flaw detection material has an arc shape like a tube, the ultrasonic wave oscillated from the vicinity of the end of the probe 1 is reflected from the surface of the flaw detection material and enters the flaw detection material. May happen. Therefore, when the surface of the flaw detection material has an arc shape, a convergent probe is used as the probe 1 so that ultrasonic waves oscillated from the vicinity of the end of the probe are also incident on the flaw detection material. It is preferable to make it. In particular, when the flaw detection material is a tube, it is preferable to use a so-called line focus type probe having a focal point along the tube axis direction.

ハイパスフィルタ2は、探触子1で受信した被探傷材からの反射エコー(より具体的には、受信アンプ5で増幅された後の反射エコー)の周波数成分のうち、探触子1で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断するように構成されている。   The high-pass filter 2 oscillates in the probe 1 out of the frequency components of the reflected echo (more specifically, the reflected echo after being amplified by the receiving amplifier 5) received from the flaw detection material received by the probe 1. A predetermined cutoff frequency that is higher than the lower limit value of the frequency band of the ultrasonic wave and lower than the center frequency is set to block low frequency components.

超音波の分解能は波長の1/2程度である。従って、例えば、従来のようにハイパスフィルタ2を設けない場合、探触子1で発振した超音波の周波数帯域の下限値を4MHzとすると、鉄鋼材料中を伝搬する縦波超音波の速度は5900m/secであるため、その波長λは、λ=5900m/sec/4MHz=1.48mmであり、その分解能は0.79mm程度と大きくなる。しかしながら、本実施形態に係る超音波探傷装置100のように、ハイパスフィルタ2を設け、そのカットオフ周波数を例えば8MHzに設定すれば、ハイパスフィルタ2を透過した出力信号に対応する縦波超音波の波長λは、λ=5900m/sec/8MHz=0.74mmであり、その分解能は0.37mm程度に小さくなる。このため、探触子1で発振した超音波のうち分解能の大きな低周波成分が欠陥に到達して反射エコーを生じた場合であっても、ハイパスフィルタ2で反射エコーの低周波成分が遮断されることにより、ハイパスフィルタ2を設けない場合に比べて分解能が向上する。   The resolution of ultrasonic waves is about ½ of the wavelength. Therefore, for example, when the high-pass filter 2 is not provided as in the prior art, if the lower limit value of the frequency band of the ultrasonic wave oscillated by the probe 1 is 4 MHz, the velocity of the longitudinal ultrasonic wave propagating in the steel material is 5900 m. Therefore, the wavelength λ is λ = 5900 m / sec / 4 MHz = 1.48 mm, and the resolution is as large as about 0.79 mm. However, if the high-pass filter 2 is provided and the cut-off frequency is set to 8 MHz, for example, as in the ultrasonic flaw detector 100 according to the present embodiment, the longitudinal wave ultrasonic wave corresponding to the output signal transmitted through the high-pass filter 2 can be obtained. The wavelength λ is λ = 5900 m / sec / 8 MHz = 0.74 mm, and the resolution is as small as 0.37 mm. For this reason, even if a low-frequency component with a large resolution of the ultrasonic wave oscillated by the probe 1 reaches a defect and a reflected echo is generated, the high-pass filter 2 blocks the low-frequency component of the reflected echo. As a result, the resolution is improved as compared with the case where the high-pass filter 2 is not provided.

図2は、本実施形態に係るハイパスフィルタ2の概略構成を模式的に示す図である。図2に示すように本実施形態に係るハイパスフィルタ2は、コンデンサCと抵抗Rとを具備するCR微分回路から構成されている。図3は、図2に示すハイパスフィルタ2のコンデンサCの容量を種々変更(400pF、800pF、10000pF)することによりハイパスフィルタ2のカットオフ周波数を変更すると共に、各条件のハイパスフィルタ2に1〜30MHzの範囲の所定の周波数をそれぞれ有する正弦波からなる各電気信号を入力して、入力電圧に対する出力電圧の比(出力比)を評価した結果を示す。なお、図3の縦軸は、各条件のハイパスフィルタ2毎に、出力比が最大値となった周波数における出力比を100%としてプロットした。また、図3の横軸は、ハイパスフィルタ2に入力した電気信号の周波数を示す。   FIG. 2 is a diagram schematically showing a schematic configuration of the high-pass filter 2 according to the present embodiment. As shown in FIG. 2, the high-pass filter 2 according to this embodiment includes a CR differentiating circuit including a capacitor C and a resistor R. 3 changes the cutoff frequency of the high-pass filter 2 by variously changing the capacitance of the capacitor C of the high-pass filter 2 shown in FIG. 2 (400 pF, 800 pF, 10000 pF), and the high-pass filter 2 of each condition has 1 to The result of having evaluated the ratio (output ratio) of the output voltage with respect to an input voltage by inputting each electric signal composed of a sine wave having a predetermined frequency in the range of 30 MHz. The vertical axis in FIG. 3 is plotted with the output ratio at the frequency at which the output ratio becomes the maximum value being 100% for each high-pass filter 2 under each condition. Also, the horizontal axis of FIG. 3 indicates the frequency of the electrical signal input to the high pass filter 2.

図3に示すように、コンデンサの容量を10000pFとした場合には、出力比が70%(−3dB)以上となる周波数帯域は約2.5〜30MHzであったが、800pFの場合には約5〜30MHz、400pFの場合には約8〜30MHzとなり、コンデンサの容量を小さくするに従って、ハイパスフィルタ2のカットオフ周波数を高められることが確認できた。なお、従来より広帯域型探触子を用いる場合には、受信アンプ5にも広帯域特性が要求されるため、発振器4から供給されるパルス信号が有する微小な直流成分やゼロ点の変動の他、大きな信号(反射エコー)が入力された直後の直流成分の変動が残存して、受信アンプ5から出力されることになる。これらノイズ要因となる直流成分や低周波成分(広帯域型超音波探触子1で発振した超音波の周波数帯域外の低周波成分)を遮断するため、受信アンプ6と欠陥検出回路3との間をコンデンサーを用いて交流結合することが通常行われており、上記のコンデンサ容量が10000pFの場合がこれに相当する。すなわち、コンデンサ容量が10000pFの場合には、ハイパスフィルタ2を設けない従来の構成と同等である。   As shown in FIG. 3, when the capacitance of the capacitor is 10,000 pF, the frequency band where the output ratio is 70% (−3 dB) or more is about 2.5 to 30 MHz, but in the case of 800 pF, the frequency band is about In the case of 5 to 30 MHz and 400 pF, the frequency is about 8 to 30 MHz, and it has been confirmed that the cutoff frequency of the high-pass filter 2 can be increased as the capacitance of the capacitor is reduced. Note that when a wideband type probe is used conventionally, the receiving amplifier 5 is also required to have a wideband characteristic. Therefore, in addition to a minute DC component and a zero point variation of the pulse signal supplied from the oscillator 4, The fluctuation of the DC component immediately after a large signal (reflection echo) is input remains and is output from the reception amplifier 5. In order to block these direct current components and low frequency components (low frequency components outside the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe 1), which are noise factors, between the receiving amplifier 6 and the defect detection circuit 3. Is normally performed using a capacitor, and this corresponds to the case where the capacitor capacity is 10,000 pF. That is, when the capacitor capacity is 10,000 pF, it is equivalent to the conventional configuration in which the high-pass filter 2 is not provided.

図4は、ハイパスフィルタ2のカットオフ周波数を2.5MHz、5MHz、8MHz、9MHz、10MHzにそれぞれ設定した場合において、水浸法によって厚み8mmの被探傷材(SUS304ステンレス鋼の板材)の底面からの深さが4mmで直径が1.6mmの平底穴の検出感度(反射エコーの高さ)を測定した結果を示す。図4の縦軸は、dB値が大きいほど反射エコーの高さが低いことを意味する。図4の横軸は、ハイパスフィルタ2のカットオフ周波数(前述した出力比が70%(−3dB)となる低周波側の周波数)を示す。なお、カットオフ周波数2.5MHz、5MHz、8MHz、9MHz、10MHzは、それぞれハイパスフィルタ2が具備するコンデンサの容量を10000pF(ハイパスフィルタ2を設けない場合に相当)、800pF、400pF、200pF、100pFと変更することにより調整した。   FIG. 4 shows a case where the cut-off frequency of the high-pass filter 2 is set to 2.5 MHz, 5 MHz, 8 MHz, 9 MHz, and 10 MHz, respectively, from the bottom surface of the flaw detection material (SUS304 stainless steel plate material) having a thickness of 8 mm by the water immersion method. The result of measuring the detection sensitivity (height of the reflected echo) of a flat bottom hole having a depth of 4 mm and a diameter of 1.6 mm is shown. The vertical axis in FIG. 4 means that the height of the reflected echo is lower as the dB value is larger. The horizontal axis of FIG. 4 shows the cut-off frequency of the high-pass filter 2 (the frequency on the low frequency side where the aforementioned output ratio is 70% (−3 dB)). The cutoff frequencies of 2.5 MHz, 5 MHz, 8 MHz, 9 MHz, and 10 MHz are 10000 pF (corresponding to the case where the high pass filter 2 is not provided), 800 pF, 400 pF, 200 pF, and 100 pF, respectively. Adjusted by changing.

図4に示すように、カットオフ周波数が2.5MHzの場合には、反射エコーの周波数成分のうち、広帯域型超音波探触子1で発振した超音波の低周波域に相当する周波数成分が遮断されないため、反射エコーの高さは67dBであったが、カットオフ周波数が高くなるにつれて、反射エコーの高さは低くなり(dB値が大きくなり)感度が低下した。   As shown in FIG. 4, when the cut-off frequency is 2.5 MHz, the frequency component corresponding to the low frequency region of the ultrasonic wave oscillated by the broadband ultrasonic probe 1 is included among the frequency components of the reflected echo. Since it was not blocked, the height of the reflected echo was 67 dB. However, as the cutoff frequency was increased, the height of the reflected echo was decreased (dB value was increased), and the sensitivity was lowered.

ハイパスフィルタ2のカットオフ周波数を高めれば高めるほど、前述のように反射エコーの分解能が高まる点で好ましい一方、高めすぎると図4に示すように反射エコーの高さが低くなって感度が低下するため逆に好ましくない。従って、分解能及び感度の双方を考慮すれば、ハイパスフィルタ2のカットオフ周波数は、広帯域型超音波探触子1で発振した超音波の中心周波数の80%程度の値に設定(中心周波数が10MHzの場合には8MHzに設定)するのが好ましい。   The higher the cutoff frequency of the high-pass filter 2 is, the higher the resolution of the reflected echo is as described above. On the other hand, when the cutoff frequency is too high, the height of the reflected echo is lowered and the sensitivity is lowered as shown in FIG. Therefore, it is not preferable. Therefore, in consideration of both resolution and sensitivity, the cutoff frequency of the high-pass filter 2 is set to a value that is about 80% of the center frequency of the ultrasonic wave oscillated by the broadband ultrasonic probe 1 (the center frequency is 10 MHz). In this case, it is preferably set to 8 MHz).

欠陥検出回路3では、以上に説明したハイパスフィルタ2の出力信号に、表面エコーと底面エコーとの間に位置し、所定の時間幅を有するゲートを設定し、当該ゲート内に存在する出力信号の振幅を所定のしきい値と比較して、しきい値を超える振幅の出力信号が存在する場合には、被探傷材に欠陥が存在するものとして、アラーム信号や、探傷結果を記録するための記録計(図示せず)へのアナログ信号を出力するように構成されている。   In the defect detection circuit 3, a gate having a predetermined time width is set in the output signal of the high-pass filter 2 described above and located between the surface echo and the bottom echo, and the output signal existing in the gate is set. If there is an output signal with an amplitude exceeding the threshold when the amplitude is compared with a predetermined threshold, it is assumed that there is a defect in the flaw detection material, and an alarm signal or flaw detection result is recorded. An analog signal is output to a recorder (not shown).

以上に説明したように、本実施形態に係る超音波探傷装置100は、ハイパスフィルタ2によって、探触子1で受信した反射エコーの周波数成分のうち、探触子1で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断する構成であるため、被探傷材からの反射エコーの分解能を高めることが可能である。従って、被探傷材底面からの反射エコーと底面近傍に存在する欠陥からの反射エコーとが識別し易くなるため、欠陥検出回路3で前記遮断後の反射エコーに基づいて被探傷材に存在する欠陥を検出すれば、被探傷材底面近傍に存在する欠陥をも精度良く検出することが可能である。   As described above, the ultrasonic flaw detection apparatus 100 according to the present embodiment uses the high-pass filter 2 to determine the frequency of the ultrasonic wave oscillated by the probe 1 among the frequency components of the reflected echo received by the probe 1. Since the predetermined cutoff frequency that is higher than the lower limit value of the band and lower than the center frequency is set to cut off the low frequency component, it is possible to increase the resolution of the reflected echo from the flaw detection material. Accordingly, since the reflected echo from the bottom surface of the flaw detection material and the reflection echo from the defect existing near the bottom surface can be easily identified, the defect detection circuit 3 can detect the defect present in the flaw detection material based on the reflected echo after the interruption. , It is possible to accurately detect defects existing near the bottom surface of the flaw detection material.

以下、実施例及び比較例を示すことにより、本発明の特徴をより一層明らかにする。   Hereinafter, the features of the present invention will be further clarified by showing examples and comparative examples.

<実施例1>
底面からの深さが0.25mmで、幅2mm、長さ5mmのスリットきずを設けたSUS304ステンレス鋼の板材(厚み10mm)を被探傷材として、その表面側に中心周波数が10MHzで4〜16MHz(実際の周波数帯域)の広帯域周波数特性を有する超音波探触子を配置し、水浸法によって被探傷材表面に対して垂直に超音波を入射させて探傷を行った。なお、ハイパスフィルタのカットオフ周波数は8MHzに設定した。
<Example 1>
SUS304 stainless steel plate material (thickness 10 mm) provided with slit flaws with a depth of 0.25 mm from the bottom and a width of 2 mm and a length of 5 mm was used as the material to be inspected, and the center frequency was 10 to 16 MHz on the surface side. An ultrasonic probe having a broadband frequency characteristic of (actual frequency band) was arranged, and flaw detection was performed by allowing ultrasonic waves to be incident perpendicularly to the surface of the material to be inspected by a water immersion method. The cut-off frequency of the high pass filter was set to 8 MHz.

<比較例1>
ハイパスフィルタを設けなかった点を除いて、実施例1と同様の条件で探傷を行った。
<Comparative Example 1>
Flaw detection was performed under the same conditions as in Example 1 except that the high-pass filter was not provided.

<評価結果1>
図5(a)は、実施例1におけるスリットきずの存在しない健全な底面からの反射エコー(底面エコー)の波形例を、図5(b)は、実施例1におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。図5に示すように、実施例1における欠陥エコーは、底面エコーと十分に分離されていると共に、十分な振幅(高さ)を有しており、精度良く検出することが可能であった。一方、図6(a)は、比較例におけるスリットきずの存在しない健全な底面からの反射エコー(底面エコー)の波形例を、図6(b)は、比較例におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。図6に示すように、比較例における欠陥エコーは、底面エコーと十分に分離されていない上、十分な振幅(高さ)も有しておらず、欠陥検出回路のゲートやしきい値の設定によっては検出することが困難であった。
<Evaluation result 1>
FIG. 5A shows a waveform example of a reflected echo (bottom echo) from a healthy bottom surface without slit flaws in the first embodiment, and FIG. 5B shows a reflected echo from a slit flaw in the first embodiment ( An example of a waveform of (defect echo) is shown. As shown in FIG. 5, the defect echo in Example 1 was sufficiently separated from the bottom echo and had a sufficient amplitude (height), and could be detected with high accuracy. On the other hand, FIG. 6A shows a waveform example of a reflected echo (bottom echo) from a healthy bottom surface without slit flaws in the comparative example, and FIG. 6B shows a reflected echo from a slit flaw in the comparative example (bottom echoes). An example of a waveform of (defect echo) is shown. As shown in FIG. 6, the defect echo in the comparative example is not sufficiently separated from the bottom echo and does not have a sufficient amplitude (height), and the defect detection circuit gate and threshold value are set. It was difficult to detect.

さらに、図6(a)に示す波形においては、底面エコーの直前に、広帯域型超音波探触子で発振した超音波の低周波成分に起因した大きな振幅を有する波形Aが生じているが、図5(a)に示す波形においては、ハイパスフィルタによって低周波成分が遮断されることにより、上記の波形Aのような大きな振幅を有する波形が生じていない。このように、ハイパスフィルタによって低周波成分を遮断することにより、表面エコーと底面エコーとの間に、欠陥エコー以外の大きな振幅を有する波形が生じないため、たとえ底面近傍に存在する欠陥であっても、欠陥検出回路のゲートやしきい値を適宜設定することにより、確実に検出することができる。   Furthermore, in the waveform shown in FIG. 6A, a waveform A having a large amplitude due to the low frequency component of the ultrasonic wave oscillated by the broadband ultrasonic probe is generated immediately before the bottom surface echo. In the waveform shown in FIG. 5A, a low-frequency component is blocked by the high-pass filter, so that a waveform having a large amplitude as in the waveform A is not generated. In this way, since the low-frequency component is blocked by the high-pass filter, a waveform having a large amplitude other than the defect echo does not occur between the surface echo and the bottom echo, so even if the defect exists near the bottom surface. However, it can be reliably detected by appropriately setting the gate and threshold value of the defect detection circuit.

<実施例2>
内面からの深さが0.25mmで、幅1mm、長さ5mmのスリットきずを設けた、外径140mmで肉厚が10.5mmの二相ステンレス鋼からなる管を被探傷材として、その外面側に中心周波数が10MHzで4〜16MHz(実際の周波数帯域)の広帯域周波数特性を有する焦点位置が2インチのラインフォーカス型超音波探触子を配置し、水浸法によって被探傷材外面に対して垂直に超音波を入射させて探傷を行った。なお、ハイパスフィルタのカットオフ周波数は8MHzに設定した。
<Example 2>
A pipe made of duplex stainless steel having an outer diameter of 140 mm and a wall thickness of 10.5 mm provided with slit flaws having a depth from the inner surface of 0.25 mm, a width of 1 mm, and a length of 5 mm is used as the flaw detection material. On the side, a line focus type ultrasonic probe having a center frequency of 10 MHz and a broadband frequency characteristic of 4 to 16 MHz (actual frequency band) and a focal position of 2 inches is disposed, and the outer surface of the material to be inspected is immersed by a water immersion method. Then, flaw detection was performed by vertically injecting ultrasonic waves. The cut-off frequency of the high pass filter was set to 8 MHz.

<評価結果2>
図7(a)は、実施例2におけるスリットきずの存在しない健全な内面からの反射エコー(底面エコー)の波形例を、図7(b)は、実施例2におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。図7に示すように、実施例1よりも小さな幅のスリットきずからの欠陥エコーであっても、底面エコーと十分に分離されていると共に、十分な振幅(高さ)を有しており、精度良く検出することが可能であった。
<Evaluation result 2>
FIG. 7A shows a waveform example of a reflected echo (bottom surface echo) from a sound inner surface without slit flaws in Example 2, and FIG. 7B shows a reflected echo from a slit flaw in Example 2 ( An example of a waveform of (defect echo) is shown. As shown in FIG. 7, even a defect echo from a slit flaw having a width smaller than that of Example 1 is sufficiently separated from the bottom echo and has a sufficient amplitude (height). It was possible to detect with high accuracy.

図1は、本発明の一実施形態に係る超音波探傷装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic flaw detector according to an embodiment of the present invention. 図2は、図1に示すハイパスフィルタの概略構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a schematic configuration of the high-pass filter shown in FIG. 図3は、図2に示すハイパスフィルタのコンデンサ容量を種々変更した場合において、入力電圧に対する出力電圧の比(出力比)を評価した結果を示す。FIG. 3 shows the results of evaluating the ratio of the output voltage to the input voltage (output ratio) when the capacitor capacity of the high-pass filter shown in FIG. 2 is variously changed. 図4は、図1に示すハイパスフィルタのカットオフ周波数を種々変更した場合において、欠陥からの反射エコーの高さを測定した結果を示す。FIG. 4 shows the result of measuring the height of the reflected echo from the defect when the cutoff frequency of the high-pass filter shown in FIG. 1 is variously changed. 図5(a)は、本発明の実施例1におけるスリットきずの存在しない健全な底面からの反射エコー(底面エコー)の波形例を、図5(b)は、実施例1におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。FIG. 5A shows an example of a waveform of a reflected echo (bottom echo) from a sound bottom surface without slit flaws in the first embodiment of the present invention, and FIG. 5B shows a waveform from a slit flaw in the first embodiment. The example of a waveform of a reflective echo (defect echo) is shown. 図6(a)は、比較例におけるスリットきずの存在しない健全な底面からの反射エコー(底面エコー)の波形例を、図6(b)は、比較例におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。FIG. 6A shows an example of a waveform of a reflected echo (bottom echo) from a sound bottom surface without a slit flaw in the comparative example, and FIG. 6B shows a reflected echo (defective echo) from a slit flaw in the comparative example. ) Shows an example waveform. 図7(a)は、本発明の実施例2におけるスリットきずの存在しない健全な内面からの反射エコー(底面エコー)の波形例を、図7(b)は、実施例2におけるスリットきずからの反射エコー(欠陥エコー)の波形例を示す。FIG. 7A shows an example of a waveform of a reflected echo (bottom echo) from a sound inner surface where no slit flaw exists in the second embodiment of the present invention, and FIG. 7B shows a waveform from a slit flaw in the second embodiment. The example of a waveform of a reflective echo (defect echo) is shown.

符号の説明Explanation of symbols

1・・・広帯域型超音波探触子
2・・・ハイパスフィルタ
3・・・欠陥検出回路
4・・・発振器
5・・・受信アンプ
100・・・超音波探傷装置
DESCRIPTION OF SYMBOLS 1 ... Broadband type ultrasonic probe 2 ... High pass filter 3 ... Defect detection circuit 4 ... Oscillator 5 ... Reception amplifier 100 ... Ultrasonic flaw detector

Claims (4)

広帯域型超音波探触子から発振した超音波を被探傷材表面に対して垂直に入射させ、被探傷材からの反射エコーを前記広帯域型超音波探触子で受信することにより被探傷材内部に存在する欠陥を検出する超音波探傷方法であって、
前記広帯域型超音波探触子で受信した反射エコーの周波数成分のうち、前記広帯域型超音波探触子で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断し、当該遮断後の反射エコーに基づいて被探傷材に存在する欠陥を検出することを特徴とする超音波探傷方法。
The ultrasonic wave oscillated from the broadband ultrasonic probe is vertically incident on the surface of the flaw detection material, and the reflected echo from the flaw detection material is received by the wide band ultrasonic probe, so that the inside of the flaw detection material An ultrasonic flaw detection method for detecting defects existing in
Of the frequency components of the reflected echo received by the broadband ultrasonic probe, a predetermined cut that is higher than the lower limit value of the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe and lower than the center frequency An ultrasonic flaw detection method characterized in that an off-frequency is set to cut off a low-frequency component, and a defect existing in the flaw detection material is detected based on the reflected echo after the cut-off.
前記カットオフ周波数を、前記広帯域型超音波探触子で発振した超音波の中心周波数の80%の値に設定することを特徴とする請求項1に記載の超音波探傷方法。   2. The ultrasonic flaw detection method according to claim 1, wherein the cutoff frequency is set to a value that is 80% of a center frequency of an ultrasonic wave oscillated by the broadband ultrasonic probe. 被探傷材表面に対して垂直に超音波を入射するように配置された広帯域型超音波探触子と、
前記広帯域型超音波探触子で受信した被探傷材からの反射エコーの周波数成分のうち、前記広帯域型超音波探触子で発振した超音波の周波数帯域の下限値よりも高く且つ中心周波数よりも低い所定のカットオフ周波数を設定して低周波数成分を遮断するハイパスフィルタと、
前記ハイパスフィルタの出力信号の振幅を所定のしきい値と比較することにより、被探傷材に存在する欠陥を検出する欠陥検出回路とを備えることを特徴とする超音波探傷装置。
A broadband ultrasonic probe arranged so that ultrasonic waves are incident perpendicularly to the surface of the flaw detection material;
Of the frequency components of the reflected echo from the flaw detection material received by the broadband ultrasonic probe, higher than the lower limit of the frequency band of the ultrasonic wave oscillated by the broadband ultrasonic probe and above the center frequency A high-pass filter that sets a predetermined low cutoff frequency and cuts off low-frequency components;
An ultrasonic flaw detection apparatus comprising: a defect detection circuit that detects a defect existing in a flaw detection material by comparing the amplitude of an output signal of the high-pass filter with a predetermined threshold value.
前記ハイパスフィルタのカットオフ周波数は、前記広帯域型超音波探触子で発振した超音波の中心周波数の80%の値に設定されることを特徴とする請求項3に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 3, wherein the cut-off frequency of the high-pass filter is set to a value that is 80% of the center frequency of the ultrasonic wave oscillated by the broadband ultrasonic probe.
JP2005162881A 2005-06-02 2005-06-02 Ultrasonic flaw detection method and apparatus Active JP4552230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162881A JP4552230B2 (en) 2005-06-02 2005-06-02 Ultrasonic flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162881A JP4552230B2 (en) 2005-06-02 2005-06-02 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2006337201A true JP2006337201A (en) 2006-12-14
JP4552230B2 JP4552230B2 (en) 2010-09-29

Family

ID=37557886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162881A Active JP4552230B2 (en) 2005-06-02 2005-06-02 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4552230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319916B (en) * 2019-06-06 2020-06-30 浙江大学 Limited pool low-frequency expanding method based on water area reflected wave interference measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254160A (en) * 1985-09-03 1987-03-09 Nippon Kokan Kk <Nkk> Ultrasonic test equipment
JPH07248317A (en) * 1994-03-11 1995-09-26 Nippon Steel Corp Ultrasonic flaw detecting method
JPH0830699B2 (en) * 1987-09-29 1996-03-27 日立建機株式会社 Ultrasonic measurement method
JP2863328B2 (en) * 1991-02-14 1999-03-03 新日本製鐵株式会社 Water immersion ultrasonic inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254160A (en) * 1985-09-03 1987-03-09 Nippon Kokan Kk <Nkk> Ultrasonic test equipment
JPH0830699B2 (en) * 1987-09-29 1996-03-27 日立建機株式会社 Ultrasonic measurement method
JP2863328B2 (en) * 1991-02-14 1999-03-03 新日本製鐵株式会社 Water immersion ultrasonic inspection method
JPH07248317A (en) * 1994-03-11 1995-09-26 Nippon Steel Corp Ultrasonic flaw detecting method

Also Published As

Publication number Publication date
JP4552230B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
CN101467035B (en) Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
US5085082A (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
US7779693B2 (en) Method for nondestructive testing of pipes for surface flaws
JPS6128863A (en) Nondestructive inspection method of processing member by ultrasonic wave and device thereof
EP1271097A2 (en) Method for inspecting clad pipe
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
KR101949875B1 (en) Apparatus and method for detecting defects of structures
JP4552230B2 (en) Ultrasonic flaw detection method and apparatus
JP6479478B2 (en) Ultrasonic flaw detection method
JP2009058238A (en) Method and device for defect inspection
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
US20200064309A1 (en) Inspection method
JP2006275945A (en) Ultrasonic flaw detector
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
JP4396169B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection program, and ultrasonic flaw detection method
RU2191376C2 (en) Method measuring sizes of defects in process of ultrasonic inspection of articles
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JPH0617898B2 (en) Judgment method of defect type in ultrasonic flaw detection
JP5430533B2 (en) Subsurface defect detection method and apparatus
JP3478178B2 (en) Ultrasonic flaw detection method and apparatus
JPH07325070A (en) Ultrasonic method for measuring depth of defect
EP4086620A1 (en) Method and device for checking the wall of a pipeline for flaws

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350