JP2006336216A - Ground improvement construction method - Google Patents

Ground improvement construction method Download PDF

Info

Publication number
JP2006336216A
JP2006336216A JP2005159309A JP2005159309A JP2006336216A JP 2006336216 A JP2006336216 A JP 2006336216A JP 2005159309 A JP2005159309 A JP 2005159309A JP 2005159309 A JP2005159309 A JP 2005159309A JP 2006336216 A JP2006336216 A JP 2006336216A
Authority
JP
Japan
Prior art keywords
injection
ground
cutting
diameter
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005159309A
Other languages
Japanese (ja)
Inventor
Hirotaka Kawasaki
廣貴 川崎
Katsuhiko Yokoyama
勝彦 横山
Koichi Yoshida
幸一 吉田
Juichi Ise
寿一 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005159309A priority Critical patent/JP2006336216A/en
Publication of JP2006336216A publication Critical patent/JP2006336216A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground improvement construction method capable of reducing cost, and capable of increasing efficiency in construction, by rationally preparing an improvement body having a large diameter. <P>SOLUTION: This ground improvement construction method prepares the columnar improvement body 14 in the ground G by filling a curing material in the ground G by injecting the curing material from a lower stage injection hole 3 while cutting the ground G by injecting cutting water from an upper stage injection hole 2 when pulling up while rotating an injection rod 1 inserted into the ground. Unset pw or qw is determined by setting any of ϕc and pw or qw from a correlation between cutting capacity pw×qw and a cutting diameter ϕc of the ground expressed by the product of injection pressure pw of the cutting water and a delivery quantity qw per unit time of the cutting water. Unset ps or Qs is determined by setting any of ϕ and ps or Qs from a correlation between improvement body preparing capacity ps×Qs and a diameter ϕ of the improvement body expressed by the product of injection pressure ps of the cutting material and an injection quantity Qs per the unit depth of the curing material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地盤改良工法に関し、特に、地盤中に硬化材を噴射して攪拌混合することにより当該地盤中に改良体を造成する高圧噴射攪拌工法に関する。   The present invention relates to a ground improvement method, and more particularly, to a high-pressure jet stirring method for creating an improved body in the ground by jetting a hardener into the ground and mixing with stirring.

軟弱な地盤を固結させる地盤改良工法のなかでも、地盤内にセメント系の硬化材を高圧噴射して固結改良体を造成する噴射攪拌工法は、CJG(コラムジェットグラウト)工法、R.J.P.工法(登録商標、「ロジンジェットパイル工法」とも呼ばれている。)、およびSuperjet−midi(スーパージェットミディ)工法(「SUPERJET工法」は登録商標)が代表的な工法とされている(特許文献1参照)。
CJG工法は、先端部に上下二段の噴射孔を有する3重管ロッドを回転させながら引き上げる際に、圧縮空気に包囲された超高圧水を上段噴射孔から吐出して地盤を切削するとともに、硬化材を下段噴射孔から吐出して地盤内に硬化材を充填することにより、地盤中に直径2m程度の円柱状の改良体を造成する工法である(特許文献2参照)。
R.J.P.工法も、CJG工法と同様に、先端部に上下二段の噴射孔を有する3重管ロッドを使用するものであるが、圧縮空気に包囲された超高圧水を上段噴射孔から吐出して下段に比べて小径範囲で地盤を切削し、圧縮空気に包囲された硬化材を下段噴射孔から吐出して地盤をさらに大きく切削することにより、地盤内に硬化材を充填する工法であり、地盤中に直径2.8m程度の円柱状の改良体を造成することができる。
一方、Superjet−midi工法では、水平対向する1段の噴射孔を先端部に有する2重管ロッドを使用し、最初に、地盤に直径20cm程度のガイドホールと呼ぶ孔を形成し、所定深度まで2重管ロッドを建て込んだ後、先端部に設けられた対向する噴射孔から、圧縮空気に包囲された超高圧且つ大吐出量の硬化材を噴射し、地盤を切削しながら地盤と硬化材とを混合攪拌する工法であり、地盤中に直径3.5m程度の円柱状の改良体を造成することができる。
特開2003−286717号公報 (第2頁、第7図) 特公昭58−27364号公報 (第1−2頁、第1−2図)
Among the ground improvement methods that consolidate the soft ground, the jet agitation method for creating a consolidated improvement body by high-pressure injection of cement-based hardener into the ground is the CJG (column jet grout) method, R.C. J. et al. P. Construction methods (registered trademark, also referred to as “rosin jet pile method”) and Superjet-midi (super jet midi) method (“SUPERJET method” is a registered trademark) are representative methods (Patent Documents) 1).
When the CJG method is pulled up while rotating a triple tube rod having two upper and lower injection holes at the tip, the super high pressure water surrounded by compressed air is discharged from the upper injection holes to cut the ground, This is a construction method of creating a cylindrical improvement body having a diameter of about 2 m in the ground by discharging the curing material from the lower injection holes and filling the ground with the curing material (see Patent Document 2).
R. J. et al. P. The construction method, like the CJG method, uses a triple tube rod with two upper and lower injection holes at the tip, but discharges ultra-high pressure water surrounded by compressed air from the upper injection hole. This is a method of filling the ground with hardened material by cutting the ground in a smaller diameter range and discharging the hardened material surrounded by compressed air from the lower injection holes to further cut the ground. In addition, a cylindrical improvement body having a diameter of about 2.8 m can be formed.
On the other hand, in the Superjet-midi construction method, a double tube rod having a horizontally opposed one-stage injection hole at the tip is used, and first, a hole called a guide hole having a diameter of about 20 cm is formed in the ground until a predetermined depth is reached. After the double tube rod is built, the ground and the hardened material are cut while the ground is being cut by spraying the super high pressure and large discharge amount of the hardened material surrounded by compressed air from the opposed injection holes provided at the tip. And a cylindrical improvement body having a diameter of about 3.5 m can be formed in the ground.
JP 2003-286717 A (2nd page, FIG. 7) Japanese Examined Patent Publication No. 58-27364 (page 1-2, Fig. 1-2)

表1は、上記三工法の硬化材および切削水の注入率を示したものである。ここで、注入率とは、改良体積に対する注入量の比率であり、注入率αは改良体積に対する硬化材の注入比率、総注入率αは改良体積に対する(硬化材+切削水)の注入比率である。 Table 1 shows the injection rate of the hardened material and cutting water of the above three methods. Here, the injection rate is the ratio of the injection amount to the improved volume, the injection rate α S is the injection ratio of the hardened material to the improved volume, and the total injection rate α is the injection ratio of (hardening material + cutting water) to the improved volume. It is.

Figure 2006336216
Figure 2006336216

同表より、R.J.P.工法およびSuperjet−midi工法は、CJG工法に比べて総注入率αが小さいことがわかる。切削された地盤の排泥量は上下段噴射の注入量に依存するため、総注入率αが小さいほど排泥処理(産廃)コストは小さくなる。しかも、直径3m以上の改良体を造成できる工法は、現時点では、R.J.P.工法(ロッドの引上げ時間を長くすれば、直径3m以上の改良体を造成することができる。)とSuperjet−midi工法のみである。
しかし、両工法は、硬化材を用いて地盤を切削しているため、硬化材が混入した排泥が地表面に排出され、所要の改良強度を得るための材料効率が悪いものとなっている。しかも、両工法は、粘着力50kN/m以上(N値3以上)の高粘着力の粘性土の場合、硬化材による切削の影響で排泥の粘性が高くなるため、排泥のエアリフトに支障が生じ、別途事前の先行水切削が必要となる。また、この影響で20m以上の大深度施工においても、先行水切削が必ず必要となる状況にある。このように、両工法は、高粘着力の粘性土や大深度施工では施工効率が悪くなるという問題を有している。
From the table, R.D. J. et al. P. It can be seen that the construction method and Superjet-midi construction method have a smaller total injection rate α than the CJG construction method. Since the amount of mud drained from the ground depends on the amount of injection of the upper and lower jets, the smaller the total injection rate α, the smaller the waste mud treatment (industrial waste) cost. Moreover, at present, the construction method that can produce an improved body having a diameter of 3 m or more is R.I. J. et al. P. Only the construction method (if the rod pull-up time is lengthened, an improved body having a diameter of 3 m or more can be created) and the Superjet-midi construction method.
However, since both methods are cutting the ground using a hardener, the waste mud mixed with the hardener is discharged to the ground surface, resulting in poor material efficiency to obtain the required improved strength. . Moreover, in both methods, in the case of viscous soil with a high adhesive strength of 50 kN / m 2 or higher (N value of 3 or higher), the viscosity of the waste mud increases due to the effect of cutting by the hardener. This will cause problems and will require prior advance water cutting. In addition, due to this influence, it is in a situation where prior water cutting is absolutely necessary even in deep construction of 20 m or more. As described above, both methods have a problem that the construction efficiency is deteriorated in viscous soil with high adhesive strength or in deep construction.

これを解決するには、排泥中に硬化材を混入しにくくするため、地盤切削を先行水によって行うCJG工法と、大径の改良体を造成できるSuperjet−midi工法を組み合わせればよいのであるが、その場合、大径になればなるほど排泥量の増加や工事の長期化を招くことになる。従来、これらの問題点を解決して、コスト縮減と施工の効率化が図れる地盤改良工法は存在しなかった。
本発明は、上述の問題点を解決し、コスト縮減と施工の効率化が図れる地盤改良工法を提供することを目的とする。
In order to solve this problem, in order to make it harder to mix the hardener in the mud, it is only necessary to combine the CJG method of performing ground cutting with preceding water and the Superjet-midi method of creating a large-diameter improved body. In that case, however, the larger the diameter, the greater the amount of mud and the longer the construction. Conventionally, there has been no ground improvement method that can solve these problems and reduce costs and increase the efficiency of construction.
An object of this invention is to provide the ground improvement construction method which solves the above-mentioned problem and can aim at cost reduction and construction efficiency improvement.

上記目的を達成するため、本発明は、先端部に 噴射孔 を備えた注入ロッドを地盤に挿入し、当該注入 ロッドを回転させ ながら引き上げる際に、前記噴射孔から硬化材を噴射して、地盤中に柱状の改良体を造成する地盤改良工法において、前記硬化材の噴射圧力psと前記硬化材の単位深さ当たりの注入量Qsとの積で表わされる改良体造成能力ps×Qsと前記改良体の径φとの相関関係から、前記改良体の径φに加えて、前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsのいずれか一方を設定することで、設定されていない前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsを決定し、これら設定もしくは決定された前記硬化材の噴射圧力psおよび前記硬化材の単位深さ当たりの注入量Qsを用いて、径φの改良体を造成することを特徴とする。   In order to achieve the above object, the present invention inserts an injection rod having an injection hole at the tip into the ground, and when the injection rod is pulled up while rotating, the curing material is injected from the injection hole, In the ground improvement method in which a columnar improvement body is formed, the improvement body generation capacity ps × Qs represented by the product of the injection pressure ps of the hardener and the injection amount Qs per unit depth of the hardener and the improvement From the correlation with the diameter φ of the body, in addition to the diameter φ of the improved body, by setting either the injection pressure ps of the curing material or the injection amount Qs per unit depth of the curing material, Determine the injection pressure ps of the curing material not set or the injection amount Qs per unit depth of the curing material, and set or determined the injection pressure ps of the curing material and the unit depth of the curing material Injection amount An improved body having a diameter φ is created using Qs.

また、本発明は、先端部に上下二段の 噴射孔 を備えた注入ロッドを地盤に挿入し、当該注入 ロッドを回転させ ながら引き上げる際に、上段噴射孔 から切削水 を噴射するとともに、下段噴射孔から硬化材を噴射して、地盤中に柱状の改良体を造成する地盤改良工法において、前記切削水の噴射圧力pwと前記切削水の単位時間当たりの吐出量qwとの積で表わされる切削能力pw×qwと地盤の切削径φcとの相関関係から、前記切削径φcに加えて、前記切削水の噴射圧力pwまたは前記切削水の単位時間当たりの吐出量qwのいずれか一方を設定することで、設定されていない前記切削水の噴射圧力pwまたは前記切削水の単位時間当たりの吐出量qwを決定し、前記硬化材の噴射圧力psと前記硬化材の単位深さ当たりの注入量Qsとの積で表わされる改良体造成能力ps×Qsと前記改良体の径φとの相関関係から、前記改良体の径φに加えて、前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsのいずれか一方を設定することで、設定されていない前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsを決定し、これら設定もしくは決定された前記切削径φc、前記切削水の噴射圧力pw、前記切削水の単位時間当たりの吐出量qw、前記硬化材の噴射圧力ps、および前記硬化材の単位深さ当たりの注入量Qsを用いて、径φの改良体を造成することを特徴とする。   Also, the present invention inserts an injection rod having two upper and lower injection holes at the tip into the ground, and when cutting the injection rod while rotating, injects cutting water from the upper injection hole and lower injection. In a ground improvement method in which a hardened material is injected from a hole to form a columnar improvement body in the ground, cutting represented by the product of the cutting water injection pressure pw and the cutting water discharge amount qw per unit time. From the correlation between the capacity pw × qw and the ground cutting diameter φc, in addition to the cutting diameter φc, either the cutting water injection pressure pw or the cutting water discharge amount qw per unit time is set. Thus, the injection pressure pw of the cutting water that is not set or the discharge amount qw per unit time of the cutting water is determined, and the injection pressure ps of the hardening material and the injection amount Qs per unit depth of the hardening material are determined. When From the correlation between the improved body creation capacity ps × Qs expressed by the product and the diameter φ of the improved body, in addition to the diameter φ of the improved body, the injection pressure ps of the hardened material or the unit depth of the hardened material By setting any one of the injection amount Qs, the injection pressure ps of the hardened material that is not set or the injection amount Qs per unit depth of the hardened material is determined, and the cutting or the cutting that has been set or determined is determined. Using the diameter φc, the cutting water injection pressure pw, the cutting water discharge amount qw per unit time, the hardening material injection pressure ps, and the hardening material injection depth Qs per unit depth, the diameter φ It is characterized by creating an improved body.

発明者らは、高圧噴射攪拌工法の現場実験を行い、切削能力pw×qwと地盤の切削径φcとの間、および改良体造成能力ps×Qsと改良体の径φとの間にそれぞれ高い相関関係が存在することを見出した。本発明は、これらの相関関係を改良体の造成に利用するものであり、これにより、大径の改良体を合理的に造成することが可能となり、コスト縮減と施工の効率化を図ることができる。   The inventors conducted a field experiment of the high-pressure jet agitation method, and the cutting power pw × qw is high between the ground cutting diameter φc, and the improved body creation capacity ps × Qs and the improved body diameter φ are high. We found that a correlation exists. The present invention utilizes these correlations for the creation of an improved body, which makes it possible to rationally create a large-diameter improved body, thereby reducing costs and increasing the efficiency of construction. it can.

本発明では、切削能力と地盤の切削径との相関関係、および改良体造成能力と改良体の径との相関関係を用いることにより、切削水の噴射圧力、切削水の単位時間当たりの吐出量、および硬化材の噴射圧力、硬化材の単位深さ当たりの注入量を決定することができる。これにより、大径の改良体を合理的に造成することが可能となり、コスト縮減と施工の効率化を図ることができる。   In the present invention, by using the correlation between the cutting ability and the cutting diameter of the ground, and the correlation between the improved body creation ability and the diameter of the improved body, the jetting pressure of the cutting water, the discharge amount per unit time of the cutting water , And the injection pressure of the curing material and the injection amount per unit depth of the curing material can be determined. Thereby, it is possible to rationally create a large-diameter improved body, and cost reduction and construction efficiency can be achieved.

本発明は、主に注入ロッドの引き上げ時に回転する(正逆回転する場合も含む。)注入ロッド先端部の上段噴射孔から切削水を噴射し、注入ロッドの下段噴射孔から硬化材を噴射する地盤改良工法であるが、切削水を使用せず硬化材のみ噴射する地盤改良工法、圧縮空気とともに硬化材を噴射する地盤改良工法、あるいは、硬化材の噴射孔に近接する別の噴射孔から、硬化材の硬化を促進させる反応材を硬化材の噴射に合わせて噴射する地盤改良工法などにも適用できるものである。   The present invention mainly rotates when the injection rod is pulled up (including the case of forward and reverse rotation). The cutting water is injected from the upper injection hole at the tip of the injection rod, and the hardening material is injected from the lower injection hole of the injection rod. Although it is a ground improvement method, the ground improvement method that sprays only the hardened material without using cutting water, the ground improvement method that jets the hardened material with compressed air, or another injection hole close to the injection hole of the hardened material, The present invention can also be applied to a ground improvement method in which a reactive material that promotes hardening of the hardened material is jetted in accordance with the jetting of the hardened material.

以下、本発明に係る地盤改良工法の一実施形態について図面に基づいて説明する。
図1は本発明において使用される注入ロッドの模式図、図2は注入ロッド先端部の縦断面図である。
注入ロッド1は外管4、中管5、および内管6から構成される三重管ロッドであり、その先端部1aの側面には上段噴射孔2と下段噴射孔3とを備え、上段噴射孔2は、超高圧の切削水を噴射するための第一噴射孔2aと、第一噴射孔2aの外周部に設けられた圧縮空気を噴射するための第二噴射孔2bとから構成されている。
第一噴射孔2a、第二噴射孔2b、下段噴射孔3は、それぞれ第一流路7、第二流路8、第三流路9と連通しており、注入ロッド1の後端部1bに取り付けられた三重管スイベル10を介して、第一流路7、第二流路8、第三流路9に超高圧の切削水、圧縮空気、硬化材がそれぞれ圧送される。
Hereinafter, an embodiment of a ground improvement method according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of an injection rod used in the present invention, and FIG. 2 is a longitudinal sectional view of the tip of the injection rod.
The injection rod 1 is a triple tube rod composed of an outer tube 4, an intermediate tube 5, and an inner tube 6, and is provided with an upper injection hole 2 and a lower injection hole 3 on the side surface of the distal end portion 1 a thereof. 2 is comprised from the 1st injection hole 2a for injecting the ultra high pressure cutting water, and the 2nd injection hole 2b for injecting the compressed air provided in the outer peripheral part of the 1st injection hole 2a. .
The first injection hole 2a, the second injection hole 2b, and the lower injection hole 3 communicate with the first flow path 7, the second flow path 8, and the third flow path 9, respectively, and are connected to the rear end portion 1b of the injection rod 1. Through the attached triple tube swivel 10, ultrahigh pressure cutting water, compressed air, and hardened material are respectively pumped to the first flow path 7, the second flow path 8, and the third flow path 9.

この注入ロッド1の場合、上段噴射孔2から圧縮空気に包囲された超高圧の切削水を噴出するので、飛距離の延長と、エアリフト効果による切削土排出の両効果を得ることができるとともに、下段噴射孔3からは硬化材のみ噴射するので、硬化材にエアリフト効果があまり発生せず、硬化材の無駄を防ぐことができる。   In the case of this injection rod 1, since the ultra-high pressure cutting water surrounded by compressed air is ejected from the upper injection hole 2, it is possible to obtain both effects of extending the flight distance and discharging the cutting soil by the air lift effect, Since only the hardened material is injected from the lower injection holes 3, the air lift effect is not so much generated in the hardened material, and waste of the hardened material can be prevented.

次に、本発明の施工手順について図3に基づいて説明する。
先ず、ボーリングマシン11を用いてケーシングチューブ12を回転させながら地盤G内に挿入して、所定深度までガイドホールを形成する(図3(a)参照)。ケーシングチューブ12の先端部には削孔ビッド12aが取り付けられており、ケーシングチューブ12の後端部12bから水を供給しながら削孔ビッド12aで地盤Gを削孔することにより、ガイドホールが形成される。
次いで、注入ロッド1をケーシングチューブ12内にクレーン13を用いて挿入し(図3(b)参照)、クレーン13を用いて、改良体14の造成に支障とならない高さまでケーシングチューブ12を地盤Gから引き上げる(図3(c)参照)。なお、地盤Gの状態によっては、ケーシングチューブ12を地盤Gから完全に引き抜く場合もある。
その後、コラムマシン15を用いて注入ロッド1を回転させながら徐々に引き上げていく(図3(d)参照)。この際、三重管スイベル10を介して超高圧の切削水、圧縮空気、硬化材をそれぞれ注入ロッド1に圧入し、上段噴射孔2から圧縮空気に包囲された超高圧の切削水を噴射して地盤Gを切削しながら、下段噴射孔3からセメントなどの自硬性材料からなる硬化材を噴射して下方から上方に向けて円柱状の改良体14を造成していく。改良体14の造成が完了すると、注入ロッド1および残ったケーシングチューブ12を地盤Gから引き抜き、ガイドホールの穴埋めをする(図3(e)参照)。
Next, the construction procedure of the present invention will be described with reference to FIG.
First, it inserts in the ground G, rotating the casing tube 12 using the boring machine 11, and forms a guide hole to predetermined depth (refer Fig.3 (a)). A drilling bid 12a is attached to the tip of the casing tube 12, and a guide hole is formed by drilling the ground G with the drilling bid 12a while supplying water from the rear end 12b of the casing tube 12. Is done.
Next, the injection rod 1 is inserted into the casing tube 12 using the crane 13 (see FIG. 3B), and the crane tube 13 is used to insert the casing tube 12 to a height that does not hinder the formation of the improved body 14. (See FIG. 3C). Depending on the state of the ground G, the casing tube 12 may be completely pulled out from the ground G.
Thereafter, the injection rod 1 is gradually pulled up using the column machine 15 (see FIG. 3D). At this time, ultrahigh-pressure cutting water, compressed air, and hardened material are respectively pressed into the injection rod 1 through the triple tube swivel 10, and ultrahigh-pressure cutting water surrounded by compressed air is injected from the upper injection holes 2. While cutting the ground G, a hardened material made of a self-hardening material such as cement is injected from the lower injection hole 3 to form a cylindrical improvement body 14 from below to above. When the creation of the improved body 14 is completed, the injection rod 1 and the remaining casing tube 12 are pulled out from the ground G and the guide holes are filled (see FIG. 3E).

なお、硬化材のみの噴射による地盤改良工法の場合は、図2で示した切削水を噴射する上段噴射孔2がなくなり、硬化材のみを噴射する。また、圧縮空気とともに硬化材を噴射する場合は、硬化材の噴射孔の周囲に圧縮空気噴射孔を設け、圧縮空気に包囲された硬化材を噴射する。さらに、硬化材の硬化を促進する反応材を付加する場合は、図2に示した三重管を四重管とし、新たに開通された流路に連通する反応材噴射孔を硬化材噴射孔に近接して別途設け、硬化材の噴射とともに反応材を噴射する。   In addition, in the case of the ground improvement method by injection | pouring of only a hardening material, the upper stage injection hole 2 which injects the cutting water shown in FIG. 2 is lose | eliminated, and only a hardening material is injected. Moreover, when injecting a hardening material with compressed air, a compressed air injection hole is provided around the injection hole of a hardening material, and the hardening material enclosed with compressed air is injected. Furthermore, when adding a reaction material that promotes curing of the hardened material, the triple tube shown in FIG. 2 is a quadruple tube, and the reaction material injection hole communicating with the newly opened flow path is used as the hardener injection hole. It is provided separately in the vicinity, and the reactive material is sprayed together with the curing material.

施工手順は以上であるが、ここで、所定の改良径を有する改良体の施工を如何に経済的に行うかが問題となる。従来、切削水や硬化材の注入率、切削水の吐出量や噴射圧力、硬化材の吐出量や噴射圧力の設定は、経験的もしくは試行錯誤的に行われていたため、それら設定値が経済的なものかどうか明確でなかった。そこで、本発明者らは、改良径と前記設定値との相関関係を実験によって確かめ、後述する知見を得た。以下、実験結果に基づいて説明する。   Although the construction procedure is as described above, the problem here is how to economically construct an improved body having a predetermined improved diameter. Conventionally, settings of cutting water and hardener injection rate, cutting water discharge amount and spray pressure, hardener discharge amount and spray pressure have been made empirically or by trial and error, so these settings are economical. It wasn't clear whether it was something. Therefore, the inventors of the present invention confirmed the correlation between the improved diameter and the set value through experiments, and obtained the knowledge described later. Hereinafter, description will be made based on experimental results.

図4は、切削水の噴射圧力pwと切削水の単位時間当たりの吐出量qwとの積で表わされる切削能力pw×qwと地盤の切削径(直径)φcとの相関関係を示したものである。なお、この時の実験条件としては、注入ロッド1の引上げ時間を10分/mと15分/mとし、注入ロッド1の回転速度は上昇ピッチ2.5cmで1回転するようにしている。従って、引上げ時間10分/mの場合は4回転/分、引上げ時間15分/mの場合は2.7回転/分となる。また、圧縮空気の圧力は1MPaとした。
図5は、硬化材の噴射圧力psと硬化材の単位深さ当たりの注入量Qsとの積で表わされる改良体造成能力ps×Qsと改良体の径(直径)φとの相関関係を示したものである。なお、この時の実験条件としては、前記切削水の時と同様に、注入ロッド1の引上げ時間を10分/mと15分/mとし、注入ロッド1の回転速度は上昇ピッチ2.5cmで1回転するようにした。
図中の曲線(1)および(2)は、実験値をもとに回帰分析により求めた相関関係式であり、次式で示されるものである。
φc=1.973・ln(pw×qw)+13.6 (1)
φ =1.985・ln(ps×Qs)+4.24 (2)
但し、各パラメータの単位は以下の通りである。
pw,ps:MPa、qw:リットル/分、Qs:m/m、φc,φ:m
FIG. 4 shows the correlation between the cutting ability pw × qw represented by the product of the cutting water injection pressure pw and the discharge amount qw per unit time of the cutting water and the ground cutting diameter (diameter) φc. is there. As experimental conditions at this time, the pulling time of the injection rod 1 is set to 10 minutes / m and 15 minutes / m, and the rotation speed of the injection rod 1 is set to rotate once at a rising pitch of 2.5 cm. Therefore, when the pulling time is 10 minutes / m, the rotation speed is 4 rotations / minute, and when the pulling time is 15 minutes / m, the rotation speed is 2.7 rotations / minute. The pressure of the compressed air was 1 MPa.
FIG. 5 shows the correlation between the improved body production capacity ps × Qs expressed by the product of the injection pressure ps of the hardened material and the injection amount Qs per unit depth of the hardened material and the diameter (diameter) φ of the improved body. It is a thing. As experimental conditions at this time, as in the case of the cutting water, the pulling time of the injection rod 1 was 10 minutes / m and 15 minutes / m, and the rotation speed of the injection rod 1 was 2.5 cm ascending pitch. It was made to rotate once.
Curves (1) and (2) in the figure are correlation equations obtained by regression analysis based on experimental values, and are represented by the following equations.
φc = 1.973 · ln (pw × qw) +13.6 (1)
φ = 1.985 · ln (ps × Qs) +4.24 (2)
However, the unit of each parameter is as follows.
pw, ps: MPa, qw: liter / min, Qs: m 3 / m, φc, φ: m

ここで、(1)式と(2)式をそれぞれ(3)式と(4)式のように変換する。
pw×qw=exp((φc+13.6)/1.973) (3)
ps×Qs=exp((φ +4.24)/1.985) (4)
また、硬化材の単位時間当たりの吐出量qsは(5)式によって与えられる。
qs=1000・Qs/t (5)
ここで、tは注入ロッドの単位長さ当たりの引上げ時間(分/m)であり、(5)式の係数1000は、qsの単位がリットル/分、Qsの単位がm/mであることによる。
Here, the equations (1) and (2) are converted into equations (3) and (4), respectively.
pw × qw = exp ((φc + 13.6) /1.973) (3)
ps × Qs = exp ((φ + 4.24) /1.985) (4)
Further, the discharge amount qs per unit time of the cured material is given by the equation (5).
qs = 1000 · Qs / t (5)
Here, t is the pulling-up time per unit length of the injection rod (min / m), and the coefficient 1000 in the equation (5) is that the unit of qs is liter / min and the unit of Qs is m 3 / m. It depends.

(3)式を用いて、地盤の切削径φcを3.0〜5.0mの範囲で変化させた際の切削水の噴射圧力pw(図では、切削水圧力と記す。)と切削水の単位時間当たりの吐出量qwとの相関関係を図6に示す。同図より、同一切削径φcを得るためには、切削水の噴射圧力pwが大きいほど、切削水の単位時間当たりの吐出量qwが少なくてよいことがわかる。また、切削径φcを大きくするためには、切削水の噴射圧力pwや切削水の単位時間当たりの吐出量qwを大きくしなければならないことがわかる。
同様に、(4)および(5)式を用いて、改良体の径φを3.0〜5.0mの範囲で変化させた際の硬化材の噴射圧力ps(図では、硬化材圧力と記す。)と硬化材の単位時間当たりの吐出量qsとの相関関係を図7に示す。ここで、図7(a)は注入ロッドの引上げ速度が10分/mの場合、図7(b)は15分/mの場合である。図6と同様に、改良体の径φを大きくするためには、硬化材の噴射圧力psや硬化材の単位深さ当たりの吐出量qsを大きくする必要があることがわかる。
Using the equation (3), the cutting water injection pressure pw (referred to as cutting water pressure in the figure) and the cutting water when the ground cutting diameter φc is changed in the range of 3.0 to 5.0 m. A correlation with the discharge amount qw per unit time is shown in FIG. It can be seen from the figure that in order to obtain the same cutting diameter φc, the discharge amount qw per unit time of the cutting water may be smaller as the cutting water injection pressure pw is larger. It can also be seen that in order to increase the cutting diameter φc, the cutting water injection pressure pw and the cutting water discharge amount qw per unit time must be increased.
Similarly, by using the equations (4) and (5), the injection pressure ps of the cured material when the diameter φ of the improved body is changed in the range of 3.0 to 5.0 m (in the figure, the cured material pressure and 7) and the discharge amount qs per unit time of the cured material are shown in FIG. Here, FIG. 7A shows the case where the pulling-up speed of the injection rod is 10 minutes / m, and FIG. 7B shows the case where it is 15 minutes / m. Similarly to FIG. 6, it can be seen that in order to increase the diameter φ of the improved body, it is necessary to increase the injection pressure ps of the curing material and the discharge amount qs per unit depth of the curing material.

図8は、切削水の噴射圧力pwと硬化材の噴射圧力psについて適宜の値を設定し、その値を図4および図5(関係式(1)、(2)を図化したもの)に当てはめて切削水注入率αwおよび硬化材注入率αsを算出し、注入ロッド1の引上げ時間10分/mおよび15分/mにおける切削水の噴射圧力pwと切削水注入率αwとの相関関係および硬化材の噴射圧力psと硬化材注入率αsとの相関関係を求めたものである。ここで、切削水注入率αwは、地盤の切削径φcによる単位深さ当たりの切削体積Vcに対する切削水の単位深さ当たりの注入量Qw(qw×t)であり、硬化材注入率αsは、改良体の径φによる単位深さ当たりの改良体積Vに対する硬化材の単位深さ当たりの注入量Qsである。
同図より、硬化材注入率αsを30%に設定する場合には、硬化材の噴射圧力psが約20MPaでよいことがわかる。切削水についても同様に仕様を設定することができる。
FIG. 8 sets appropriate values for the cutting water injection pressure pw and the hardening material injection pressure ps, and the values are shown in FIG. 4 and FIG. 5 (representation of relational expressions (1) and (2)). The cutting water injection rate αw and the hardening material injection rate αs are calculated by fitting, and the correlation between the cutting water injection pressure pw and the cutting water injection rate αw at the pulling-up times 10 minutes / m and 15 minutes / m of the injection rod 1 and The correlation between the curing material injection pressure ps and the curing material injection rate αs is obtained. Here, the cutting water injection rate αw is the injection amount Qw (qw × t) per unit depth of the cutting water with respect to the cutting volume Vc per unit depth by the ground cutting diameter φc, and the hardener injection rate αs is The injection amount Qs per unit depth of the hardened material with respect to the improved volume V per unit depth due to the diameter φ of the improved body.
From the figure, it can be seen that when the hardening material injection rate αs is set to 30%, the injection pressure ps of the hardening material may be about 20 MPa. The specifications can be set similarly for the cutting water.

次に、本発明に係る地盤改良工法においてコストに影響する硬化材注入率αsおよび切削水注入率αwについて図6〜8から考察する。
硬化材については、硬化材注入率αsが30%以上になると曲線が立ってくるが(図8参照)、これは、硬化材の噴射圧力psの変動に対して硬化材注入率αsの変動が非常に大きくなる、即ち、品質(改良体の強度や改良径)がバラツキ易くなることを意味している。一方、硬化材注入率αsが10%以下では、硬化材注入率αsを僅かに変動させるにしても硬化材の噴射圧力psを大きく変動させなければならない、即ち、硬化材注入率αsが10%以下では施工的にもコスト的にもあわなくなる。このことから、硬化材注入率αsは、10〜30%の範囲が好適な範囲であることがわかる。
切削水については、引上げ時間が速くても10分/m程度であることを考えれば、硬化材と同様に、切削水注入率αwが40%以上であると品質(改良径)がバラツキ易くなり、切削水注入率αwが10%以下では施工的にもコスト的にもあわなくなる。このことから、切削水注入率αwは、10〜40%の範囲が好適な範囲である。
この他の要素として、切削水注入率αwと硬化材注入率αsを足し合わせた総注入率α(=αw+αs)を考慮する必要がある。この上限については、従来工法よりも排泥量を少なくすることを念頭におけば、50%以下、さらに好ましくは45%以下とするのがよい。
以上から、硬化材注入率αsを10〜30%とする中で、総注入率αを20〜50%とするのが好適であり、さらに好ましくは20〜45%とするのがよい。
Next, the hardening material injection rate αs and the cutting water injection rate αw that affect the cost in the ground improvement method according to the present invention will be considered from FIGS.
For the hardened material, a curve appears when the hardener injection rate αs is 30% or more (see FIG. 8). This is because the change in the hardener injection rate αs with respect to the change in the injection pressure ps of the hardener. This means that it becomes very large, that is, the quality (strength and improved diameter of the improved body) tends to vary. On the other hand, when the curing material injection rate αs is 10% or less, the injection pressure ps of the curing material must be greatly varied even if the curing material injection rate αs is slightly varied, that is, the curing material injection rate αs is 10%. In the following, neither construction nor cost will be affected. From this, it can be seen that the curing material injection rate αs is preferably in the range of 10 to 30%.
For cutting water, considering that the pull-up time is about 10 minutes / m at the fastest, the quality (improved diameter) is likely to vary when the cutting water injection rate αw is 40% or more, as with the hardened material. When the cutting water injection rate αw is 10% or less, there is no need for construction and cost. Accordingly, the cutting water injection rate αw is preferably in the range of 10 to 40%.
As another factor, it is necessary to consider the total injection rate α (= αw + αs) obtained by adding the cutting water injection rate αw and the hardener injection rate αs. This upper limit should be 50% or less, more preferably 45% or less, with a view to reducing the amount of mud discharged from the conventional method.
From the above, it is preferable to set the total injection rate α to 20 to 50%, more preferably 20 to 45%, while setting the curing material injection rate αs to 10 to 30%.

以下に、具体的な実施例について説明する。
先ず、総注入率αが例えば40%となるように、切削水注入率αwおよび硬化材注入率αsを設定する。
ここでは、αw=20%、αs=20%、注入ロッドの単位長さ当たりの引上げ時間をt=10分/mとすると、図8より、切削水の噴射圧力pw=30MPa、硬化材の噴射圧力ps=25MPaとなる。
図6および図7(a)を用いて、改良体の径φに対する施工仕様は表2に示すように設定することができる。
Specific examples will be described below.
First, the cutting water injection rate αw and the hardener injection rate αs are set so that the total injection rate α is, for example, 40%.
Here, assuming that αw = 20%, αs = 20%, and the pulling-up time per unit length of the injection rod is t = 10 minutes / m, the cutting water injection pressure pw = 30 MPa and the hardening material injection are shown in FIG. The pressure ps = 25 MPa.
The construction specifications for the diameter φ of the improved body can be set as shown in Table 2 using FIG. 6 and FIG.

Figure 2006336216
Figure 2006336216

なお、ここで示した施工仕様にこだわる必要はなく、硬化材注入率αsが10〜30%、総注入率αが20〜50%、さらに好ましくは20〜45%以下であれば、(3)式および(4)式を用いて、改良体の径φに対する様々な施工仕様を設定することができる。例えば、改良体強度を大きく設定する場合には、硬化材注入率をαs=30%として、切削水注入率をαw=10〜20%、さらに好ましくは10〜15%となる施工仕様を選択すればよい。   In addition, it is not necessary to stick to the construction specifications shown here, and if the curing material injection rate αs is 10 to 30%, the total injection rate α is 20 to 50%, more preferably 20 to 45% or less, (3) Various construction specifications for the diameter φ of the improved body can be set using the formula and the formula (4). For example, in the case where the improved body strength is set to be large, the construction specification is selected so that the hardening material injection rate is αs = 30% and the cutting water injection rate is αw = 10-20%, more preferably 10-15%. That's fine.

ところで、前記では、図8において切削水注入率αwおよび硬化材注入率αsに着目して考察したが、切削水および硬化材の噴射圧力pw、psについて見てみると、コストに影響する注入率の下限である10%付近における実用的で効果的な噴射圧力pw、psは50〜60MPaであることがわかる。
そこで、切削水および硬化材の噴射圧力pw、psを設定する場合の実施例について説明する。
ここでは、切削水の噴射圧力pwを60MPa(圧縮空気の噴射圧力は1MPa程度)、硬化材の噴射圧力psを50MPaとする。このときの切削水注入率αwおよび硬化材注入率αsは、引上げ時間10分/mで各10%である。この設定値を図6、図7(a)に当てはめて計算すると、各改良径ごとの施工仕様は表3のようになる。
By the way, in the above description, the cutting water injection rate αw and the hardened material injection rate αs are considered in FIG. 8, but the injection rate that affects the cost is examined when the cutting water and the injection pressures pw and ps of the hardened material are examined. It can be seen that the practical and effective injection pressures pw and ps in the vicinity of 10% which is the lower limit of the pressure are 50 to 60 MPa.
Therefore, an embodiment in the case of setting the cutting water and the injection pressures pw and ps of the cured material will be described.
Here, the injection pressure pw of the cutting water is 60 MPa (the injection pressure of compressed air is about 1 MPa), and the injection pressure ps of the hardened material is 50 MPa. The cutting water injection rate αw and the hardened material injection rate αs at this time are 10% for each pulling time of 10 minutes / m. When this set value is calculated by applying it to FIGS. 6 and 7A, the construction specifications for each improved diameter are as shown in Table 3.

Figure 2006336216
Figure 2006336216

このように、任意の改良体の径φに対する施工仕様が合理的に設定されるので、最も工期の短い、且つコスト縮減効果のある施工法を選択することができる。なお、施工費のおもな内訳は、材料費、労務費、機械・設備費、排泥費からなるため、これらを組み合わせて最小コストを選択する。排泥費を安価にするには、排泥を減じるためにポンプを高吐出圧力にする必要があるが、この場合にポンプが特殊となるため、機械・設備費が高価なものとなる。実際には、この辺りの按分を考慮しながら最適な施工仕様が決定される。   Thus, since the construction specifications for the diameter φ of an arbitrary improved body are set rationally, it is possible to select a construction method having the shortest construction period and having a cost reduction effect. The main breakdown of construction costs consists of material costs, labor costs, machinery / equipment costs, and mud drainage costs, and these are combined to select the minimum cost. In order to reduce the waste mud cost, it is necessary to set the pump to a high discharge pressure in order to reduce the waste mud. However, in this case, the pump becomes special, so the cost of machinery and equipment becomes expensive. Actually, the optimum construction specification is determined in consideration of apportionment around this area.

本実施形態による地盤改良工法では、切削能力pw×qwと地盤の切削径φcとの相関関係式(1)、および改良体造成能力ps×Qsと改良体の径φとの相関関係式(2)を用いることにより、切削水の噴射圧力pw、切削水の単位時間当たりの吐出量qw、および硬化材の噴射圧力ps、硬化材の単位深さ当たりの注入量Qsを決定することができる。これにより、大径の改良体を合理的に造成することが可能となり、コスト縮減と施工の効率化を図ることができる。   In the ground improvement method according to the present embodiment, the correlation formula (1) between the cutting ability pw × qw and the ground cutting diameter φc, and the correlation formula (2) between the improved body creation ability ps × Qs and the diameter φ of the improved body (2). ) Can be used to determine the cutting water injection pressure pw, the discharge amount qw per unit time of the cutting water, the injection pressure ps of the hardener, and the injection amount Qs per unit depth of the hardener. Thereby, it is possible to rationally create a large-diameter improved body, and cost reduction and construction efficiency can be achieved.

以上、本発明に係る地盤改良工法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記の実施形態では、相関関係式(1)および(2)を対数近似しているが、直線近似や多項式近似など他の関数でもよいことは言うまでもない。要は、本発明において所期の機能が得られればよいのである。
また、本発明の知見は、硬化材のみの噴射による地盤改良工法にも適用することができ、前述の(2)式、(4)式、図5、図7を用いることができる。圧縮空気とともに硬化材を噴射する地盤改良工法の場合は、改良径に影響を与えるため、前述の圧縮空気が無い場合とはその相関関係が異なるものとなるが、その条件で相関をとればよく、いずれにしても本発明の思想は適用できるものである。その他、切削水と硬化材の噴射とともに、硬化材噴射孔に近接して設けた反応材噴射孔から、硬化材の噴射に合わせて反応材を噴射する地盤改良工法の場合でも、反応材は切削径等にあまり依存しないため、反応材の影響を無視して本発明を用いることができる。
また、本発明は、円柱状ではなく、例えば注入ロッドを正逆回転させて造成される扇形柱状の改良体にも適用できる。その場合、正逆回転角度が新たな因子として追加されることになるが、切削径、改良径を半径として相関を求めればよく、基本的には本発明の知見が応用できるものである。
As mentioned above, although embodiment of the ground improvement construction method concerning this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in the above embodiment, the correlation equations (1) and (2) are logarithmically approximated, but it goes without saying that other functions such as linear approximation and polynomial approximation may be used. In short, it is only necessary to obtain the desired function in the present invention.
The knowledge of the present invention can also be applied to the ground improvement method by injection of only the hardener, and the above-described equations (2), (4), FIG. 5 and FIG. 7 can be used. In the case of the ground improvement method in which the hardened material is injected together with the compressed air, since it affects the improved diameter, the correlation is different from the case where there is no compressed air as described above. In any case, the idea of the present invention can be applied. In addition, the reactive material is cut even in the ground improvement method in which the reactive material is injected in accordance with the injection of the hardened material from the reactive material injection hole provided close to the hardened material injection hole along with the injection of the cutting water and the hardened material. Since it does not depend much on the diameter or the like, the present invention can be used ignoring the influence of the reaction material.
Further, the present invention can be applied not only to a columnar shape but also to a fan-shaped columnar improved body formed by, for example, rotating an injection rod forward and backward. In this case, the forward / reverse rotation angle is added as a new factor, but the correlation may be obtained by using the cutting diameter and the improved diameter as the radius, and the knowledge of the present invention can be basically applied.

本発明において使用される注入ロッドの模式図である。It is a schematic diagram of the injection rod used in the present invention. 注入ロッド先端部の縦断面図である。It is a longitudinal cross-sectional view of the injection rod tip. 本発明の施工手順を示す概略図である。It is the schematic which shows the construction procedure of this invention. 切削能力pw×qwと地盤の切削径φcとの相関関係を示す図である。It is a figure which shows the correlation with cutting ability pwxqw and the cutting diameter (phi) c of a ground. 改良体造成能力ps×Qsと改良体の径φとの相関関係を示す図である。It is a figure which shows the correlation with improvement body formation capability psxQs and the diameter (phi) of an improvement body. 切削水の噴射圧力pwと切削水の単位時間当たりの吐出量qwとの相関関係を示す図である。It is a figure which shows the correlation with the injection pressure pw of cutting water, and the discharge amount qw per unit time of cutting water. 硬化材の噴射圧力psと硬化材の単位時間当たりの吐出量qsとの相関関係を示す図であり、(a)は注入ロッドの引上げ速度が10分/mの場合、(b)は注入ロッドの引上げ速度が15分/mの場合である。It is a figure which shows the correlation with the injection pressure ps of a hardening material, and the discharge amount qs per unit time of a hardening material, (a) is the case where the pulling-up speed of an injection rod is 10 minutes / m, (b) is an injection rod. This is the case where the pulling speed of 15 minutes / m. 切削水の噴射圧力pwと切削水注入率αwとの相関関係および硬化材の噴射圧力psと硬化材注入率αsとの相関関係を示す図である。It is a figure which shows the correlation of the injection pressure pw of cutting water, and the cutting water injection | pouring rate (alpha) w, and the correlation of the injection pressure ps of hardening material, and hardening | curing material injection | pouring rate (alpha) s.

符号の説明Explanation of symbols

1 注入ロッド
2 上段噴射孔
2a 第一噴射孔
2b 第二噴射孔
3 下段噴射孔
4 外管
5 中管
6 内管
7 第一流路
8 第二流路
9 第三流路
10 三重管スイベル
11 ボーリングマシン
12 ケーシングチューブ
13 クレーン
14 改良体
15 コラムマシン
G 地盤
DESCRIPTION OF SYMBOLS 1 Injection rod 2 Upper injection hole 2a First injection hole 2b Second injection hole 3 Lower injection hole 4 Outer pipe 5 Middle pipe 6 Inner pipe 7 First flow path 8 Second flow path 9 Third flow path 10 Triple pipe swivel 11 Boring Machine 12 Casing tube 13 Crane 14 Improved body 15 Column machine G Ground

Claims (2)

先端部に噴射孔を備えた注入ロッドを地盤に挿入し、当該注入ロッドを回転させながら引き上げる際に、前記噴射孔から硬化材を噴射して、地盤中に柱状の改良体を造成する地盤改良工法において、
前記硬化材の噴射圧力psと前記硬化材の単位深さ当たりの注入量Qsとの積で表わされる改良体造成能力ps×Qsと前記改良体の径φとの相関関係から、前記改良体の径φに加えて、前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsのいずれか一方を設定することで、設定されていない前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsを決定し、
これら設定もしくは決定された前記硬化材の噴射圧力psおよび前記硬化材の単位深さ当たりの注入量Qsを用いて、径φの改良体を造成することを特徴とする地盤改良工法。
Inserting an injection rod with an injection hole at the tip into the ground, and lifting the injection rod while rotating it, injecting a hardener from the injection hole to create a columnar improvement in the ground In the construction method,
From the correlation between the improved body formation ability ps × Qs expressed by the product of the injection pressure ps of the hardened material and the injection amount Qs per unit depth of the hardened material and the diameter φ of the improved body, In addition to the diameter φ, by setting either the injection pressure ps of the curing material or the injection amount Qs per unit depth of the curing material, the injection pressure ps of the curing material that has not been set or the curing Determine the injection quantity Qs per unit depth of the material,
A ground improvement method characterized in that an improved body having a diameter φ is formed using the set or determined injection pressure ps of the hardened material and the injection amount Qs per unit depth of the hardened material.
先端部に上下二段の噴射孔を備えた注入ロッドを地盤に挿入し、当該注入ロッドを回転させながら引き上げる際に、上段噴射孔から切削水 を噴射するとともに下段噴射孔から硬化材を噴射して、地盤中に柱状の改良体を造成する地盤改良工法において、
前記切削水の噴射圧力pwと前記切削水の単位時間当たりの吐出量qwとの積で表わされる切削能力pw×qwと地盤の切削径φcとの相関関係から、前記切削径φcに加えて、前記切削水の噴射圧力pwまたは前記切削水の単位時間当たりの吐出量qwのいずれか一方を設定することで、設定されていない前記切削水の噴射圧力pwまたは前記切削水の単位時間当たりの吐出量qwを決定し、
前記硬化材の噴射圧力psと前記硬化材の単位深さ当たりの注入量Qsとの積で表わされる改良体造成能力ps×Qsと前記改良体の径φとの相関関係から、前記改良体の径φに加えて、前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsのいずれか一方を設定することで、設定されていない前記硬化材の噴射圧力psまたは前記硬化材の単位深さ当たりの注入量Qsを決定し、
これら設定もしくは決定された前記切削径φc、前記切削水の噴射圧力pw、前記切削水の単位時間当たりの吐出量qw、前記硬化材の噴射圧力ps、および前記硬化材の単位深さ当たりの注入量Qsを用いて、径φの改良体を造成することを特徴とする地盤改良工法。
When an injection rod having two upper and lower injection holes at the tip is inserted into the ground and pulled up while rotating the injection rod, cutting water is injected from the upper injection hole and a hardening material is injected from the lower injection hole. In the ground improvement method to create a columnar improvement body in the ground,
From the correlation between the cutting ability pw × qw expressed by the product of the cutting water injection pressure pw and the discharge amount qw per unit time of the cutting water and the cutting diameter φc of the ground, in addition to the cutting diameter φc, By setting either one of the cutting water injection pressure pw or the discharge amount qw per unit time of the cutting water, the cutting water injection pressure pw or the cutting water discharge per unit time that is not set is set. Determine the quantity qw,
From the correlation between the improved body formation ability ps × Qs expressed by the product of the injection pressure ps of the hardened material and the injection amount Qs per unit depth of the hardened material and the diameter φ of the improved body, In addition to the diameter φ, by setting either the injection pressure ps of the curing material or the injection amount Qs per unit depth of the curing material, the injection pressure ps of the curing material that has not been set or the curing Determine the injection quantity Qs per unit depth of the material,
The cutting diameter φc, the cutting water injection pressure pw, the discharge amount qw per unit time of the cutting water, the injection pressure ps of the hardening material, and the injection per unit depth of the hardening material are set or determined. A ground improvement method characterized in that an improved body having a diameter φ is created using the amount Qs.
JP2005159309A 2005-05-31 2005-05-31 Ground improvement construction method Withdrawn JP2006336216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159309A JP2006336216A (en) 2005-05-31 2005-05-31 Ground improvement construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159309A JP2006336216A (en) 2005-05-31 2005-05-31 Ground improvement construction method

Publications (1)

Publication Number Publication Date
JP2006336216A true JP2006336216A (en) 2006-12-14

Family

ID=37557011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159309A Withdrawn JP2006336216A (en) 2005-05-31 2005-05-31 Ground improvement construction method

Country Status (1)

Country Link
JP (1) JP2006336216A (en)

Similar Documents

Publication Publication Date Title
JP4796477B2 (en) Steel pipe soil cement pile construction method and composite pile construction method
JP3750066B1 (en) Ground improvement method
JP3750065B1 (en) Ground improvement method
JP5717148B2 (en) Underground consolidated body construction method
JP2007077739A (en) Jet grout type ground improvement construction method
JP4887179B2 (en) Ground improvement method and ground improvement equipment
JP2006336216A (en) Ground improvement construction method
JP5875849B2 (en) Injection stirring ground improvement method
JP4197377B2 (en) Ground strengthening method
WO1992021825A1 (en) Construction method of improving or strengthening ground
JP3626972B1 (en) Jet stirring method and jet stirring device
JP2008081942A (en) Construction method for water passage portion of underground wall
CN105221150B (en) A kind of method of horizontal jet grouting stake reinforced stone door punching coal
JP6466101B2 (en) Soil cement underground continuous wall construction method
CN102900072A (en) Heavy-caliber high-pressure spraying stirring drill and drilling spraying integrated construction method
JP3317902B2 (en) High pressure injection ground improvement method
JP2002054132A (en) Soil improving method and soil improving apparatus
CN108978641A (en) The construction method of compound strength stake
JPH08144265A (en) Soil improvement method
JP2879386B2 (en) Ground improvement or reinforcement method
JP2013133630A (en) Excavation rod and construction method
JP3964904B2 (en) Jet stirring method and jet stirring device
JPH05255925A (en) Improving or reinforcing method for ground
JP2009249903A (en) Construction method for establishing subterranean solidified body and apparatus for establishing solidified body using the same
JP2879385B2 (en) Ground improvement or reinforcement method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805