JP2006334767A - Manufacturing method of optical element and the optical element - Google Patents

Manufacturing method of optical element and the optical element Download PDF

Info

Publication number
JP2006334767A
JP2006334767A JP2005165979A JP2005165979A JP2006334767A JP 2006334767 A JP2006334767 A JP 2006334767A JP 2005165979 A JP2005165979 A JP 2005165979A JP 2005165979 A JP2005165979 A JP 2005165979A JP 2006334767 A JP2006334767 A JP 2006334767A
Authority
JP
Japan
Prior art keywords
optical element
manufacturing
axis
fly cutter
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165979A
Other languages
Japanese (ja)
Inventor
Masashi Hanaoka
正志 花岡
Kenichi Hayashi
賢一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2005165979A priority Critical patent/JP2006334767A/en
Priority to US11/916,147 priority patent/US20100035524A1/en
Priority to PCT/JP2006/310971 priority patent/WO2006132126A1/en
Priority to CNA2006800197051A priority patent/CN101189095A/en
Publication of JP2006334767A publication Critical patent/JP2006334767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical element and an optical element, forming a step in a boundary part 22 between two adjacent machined surfaces 21 in manufacturing an optical element or a mold by cutting. <P>SOLUTION: A machined surface 21 for forming an element surface is formed by relatively moving a milling cutter 10 and a base material 20 for forming the optical element in the cutting direction and in the feeding direction while the milling cutter 10 including a rotating shaft 11 and a blade part 12 projected in the direction intersecting the axial direction of the rotating shaft 11 is rotated around the axis of the rotating shaft 11. In the boundary part 22 of the machined surfaces 21, out of the two machined surfaces 21 adjacent to each other with the rotating shaft 11 pointing in the orthogonal direction to the boundary part 22, the lower machined surface 21 is cut. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子を構成する光学材料、あるいは光学素子を成形するための金型を構成する金型材料などの光学素子形成用の基材に切削加工あるいは研削加工を施して光学素子を製造する方法に関するものである。   The present invention manufactures an optical element by cutting or grinding an optical element forming base material such as an optical material constituting an optical element or a mold material constituting a mold for molding an optical element. It is about how to do.

フライカット方式の超精密加工機については、光学素子を構成する光学材料、あるいは光学素子を成形するための金型を構成する金型材料などの加工にも適用が検討されている(例えば、特許文献1参照)。   Application of fly-cut ultraprecision processing machines to optical materials that make up optical elements or mold materials that make up molds for molding optical elements is being considered (for example, patents) Reference 1).

このようなフライカット方式の超精密加工機では、図14に示すように、切削工具として、回転軸11から軸線方向に交差する方向に突出した刃部12を備えたフライカッター10が用いられ、回転軸11を軸線周りに回転させながら、軸線方向と交差する方向の切り込み方向および送り方向に切削工具と基材20とを相対移動させて加工面21を形成する。
特開2004−219494号公報
In such a fly-cut type ultra-precision processing machine, as shown in FIG. 14, a fly cutter 10 having a blade portion 12 protruding in a direction intersecting the axial direction from the rotary shaft 11 is used as a cutting tool, While rotating the rotating shaft 11 around the axis, the cutting tool and the base material 20 are moved relative to each other in the cutting direction and the feeding direction that intersect the axial direction to form the processing surface 21.
JP 2004-219494 A

しかしながら、近年、光学素子として、図15(a)に示すように、隣接する2つの加工面21の境界部22が段差になっている光学素子が求められており、このような光学素子をフライカット方式で製造すると、図15(a)において円Aで囲った領域を図15(b)に拡大して示すように、加工面21の境界部22に、フライカッター10の刃先の回転半径に相当する丸みをもった形状、すなわち、隅がだれた形状になってしまう。例えば、段差の高さを数10μmに形成したい場合、一般的なフライカッター10の回転半径は数mmであるため、数100μmのぼやけが生じてしまう。このような形状は、通常の機械部品であれば、大きな問題点とならない場合でも、光学素子の場合、境界部22に入射した光が損失となってしまうので好ましくない。このような問題は、回転軸から円盤状あるいは円柱状の砥石が刃部として突出した研削工具による加工でも同様に発生する。   However, in recent years, as an optical element, as shown in FIG. 15A, an optical element in which a boundary portion 22 between two adjacent processed surfaces 21 is stepped is required. When manufactured by the cutting method, the region surrounded by the circle A in FIG. 15A is enlarged and shown in FIG. 15B, and the turning radius of the cutting edge of the fly cutter 10 is set at the boundary 22 of the processing surface 21. The shape has a corresponding roundness, that is, a shape with a rounded corner. For example, when the height of the step is desired to be several tens of μm, the rotation radius of the general fly cutter 10 is several mm, and blurring of several hundreds of μm occurs. In the case of an optical element, such a shape is not preferable because light incident on the boundary portion 22 is lost even if it is an ordinary mechanical part, even if it is not a big problem. Such a problem also occurs in the processing with a grinding tool in which a disc-shaped or cylindrical grindstone protrudes from the rotating shaft as a blade portion.

以上の問題点に鑑みて、本発明の課題は、切削加工により光学素子あるいは金型を製作する際、隣接する2つの加工面の境界部に段差を形成可能な光学素子の製造方法、および光学素子を提供することにある。   In view of the above problems, an object of the present invention is to provide an optical element manufacturing method capable of forming a step at a boundary portion between two adjacent processing surfaces and an optical element when an optical element or a die is manufactured by cutting. It is to provide an element.

上記課題を解決するために、本発明では、隣接する素子面同士の境界部に段差が形成された光学素子の製造方法において、回転軸および該回転軸から側方に向けて突出した刃部を備えた工具を前記回転軸の軸線周りに回転させながら切り込み方向および送り方向に前記工具と光学素子形成用の基材とを相対移動させて、前記素子面を形成するための加工面を形成するとともに、前記境界部では、当該境界部に対して前記回転軸を直交する方向に向かせて隣接する2つの加工面のうち、低い方の加工面側を切削あるいは研削することを特徴とする。   In order to solve the above-mentioned problems, in the present invention, in a method of manufacturing an optical element in which a step is formed at a boundary part between adjacent element surfaces, a rotating shaft and a blade part projecting sideways from the rotating shaft are provided. While the provided tool is rotated around the axis of the rotary shaft, the tool and the base for forming the optical element are relatively moved in the cutting direction and the feeding direction to form a processing surface for forming the element surface. In addition, the boundary portion is characterized by cutting or grinding the lower processing surface side of two processing surfaces adjacent to each other with the rotation axis oriented in a direction orthogonal to the boundary portion.

本発明では、加工面を加工する際には、工具と基材とを相対移動させて基材を切削あるいは研削するが、境界部を形成する際には、工具の回転軸を境界部に対して直交する方向に向かせる。このため、境界部の形状を刃部の形状によって高い精度で制御でき、段差については側面壁が直立した形状に形成することができる。それ故、光学素子の場合、段差を形成でき、境界領域に入射した光が損失や迷光を発生することを回避できる。   In the present invention, when machining the machining surface, the tool and the substrate are moved relative to each other to cut or grind the substrate, but when forming the boundary portion, the rotation axis of the tool is set with respect to the boundary portion. To the direction orthogonal. For this reason, the shape of the boundary portion can be controlled with high accuracy by the shape of the blade portion, and the side wall can be formed in an upright shape for the step. Therefore, in the case of an optical element, it is possible to form a step, and it is possible to avoid the light incident on the boundary region from generating loss or stray light.

本発明において、前記工具は、フライカッターである。この場合、前記フライカッターは、例えば、前記刃部を送り方向からみたとき刃先が矩形の平フライカッターである。このように構成すると、刃部の直線的な側面で境界部を加工できるので、段部の側面壁をほぼ垂直に加工できる。また、本発明において、前記フライカッターとしては、前記刃部を送り方向からみたとき刃先が円形の外丸フライカッターを用いてもよい。   In the present invention, the tool is a fly cutter. In this case, the fly cutter is, for example, a flat fly cutter having a rectangular cutting edge when the blade portion is viewed from the feeding direction. If comprised in this way, since a boundary part can be processed by the linear side surface of a blade part, the side wall of a step part can be processed substantially perpendicularly. In the present invention, as the fly cutter, an outer round fly cutter having a circular cutting edge when the blade portion is viewed from the feeding direction may be used.

本発明は、前記工具としては、前記回転軸から円盤状あるいは円柱状の砥石が前記刃部として突出した研削工具を用いて加工する場合にも適用できる。   The present invention can also be applied to the case where the tool is machined using a grinding tool in which a disc-shaped or column-shaped grindstone protrudes from the rotating shaft as the blade portion.

本発明は、前記工具と前記基材との相対位置を前記切り込み方向で連続的に変化させて前記加工面を曲面に加工する場合にも適用することができる。   The present invention can also be applied to processing the processed surface into a curved surface by continuously changing the relative position between the tool and the base material in the cutting direction.

本発明において、前記加工面が周方向に複数、配列されている場合、当該複数の加工面を形成する際、前記送り方向を前記基材上の所定位置から放射状に設定することが好ましい。このように構成すると、加工面を切削加工する際には、境界部に対して回転軸が交差する方向に向き、境界部付近を切削する際には、境界部に対して回転軸が直交する方向に向き、かつ、送り方向は境界部と平行となる。従って、境界部の形状を刃部の形状によって高い精度で制御できる。また、中心領域は多重切削されることになるので、平滑面に仕上げることができ、かかる領域は、光学素子では光軸付近であるので、光学素子の特性を向上することができる。   In the present invention, when a plurality of the processed surfaces are arranged in the circumferential direction, it is preferable to set the feed direction radially from a predetermined position on the substrate when forming the plurality of processed surfaces. With this configuration, when cutting the machining surface, the rotation axis is oriented in a direction crossing the boundary, and when cutting near the boundary, the rotation axis is orthogonal to the boundary. The feed direction is parallel to the boundary portion. Therefore, the shape of the boundary portion can be controlled with high accuracy by the shape of the blade portion. In addition, since the central region is subjected to multiple cutting, it can be finished to a smooth surface, and since this region is near the optical axis in the optical element, the characteristics of the optical element can be improved.

本発明において、前記複数の加工面は周方向に配列され、前記複数の加工面を形成する際、前記送り方向を前記基材上の所定位置を中心とする円弧状に設定してもよい。   In the present invention, the plurality of machining surfaces may be arranged in a circumferential direction, and when forming the plurality of machining surfaces, the feeding direction may be set in an arc shape centered on a predetermined position on the substrate.

本発明において、前記工具による加工は、円柱座標系で表された条件により制御されることが好ましい。このように構成すると、直交座標系よりも加工の際のプログラミングが容易である。   In this invention, it is preferable that the process by the said tool is controlled by the conditions represented by the cylindrical coordinate system. If comprised in this way, the programming in the case of a process is easier than a rectangular coordinate system.

本発明において、前記基材は、前記光学素子を構成する光学材料、あるいは前記光学素子を成形するための金型材料である。但し、段差の形状などに対して高い精度が求められる場合には、光学素子を構成する光学材料を基材として切削し、光学素子を製造することが好ましい。   In the present invention, the substrate is an optical material constituting the optical element or a mold material for molding the optical element. However, when high accuracy is required for the shape of the step or the like, it is preferable to manufacture the optical element by cutting the optical material constituting the optical element as a base material.

本発明では、加工面を加工する際には、工具と基材とを相対移動させて基材を切削するが、境界部を形成する際には、工具の回転軸を境界部に対して直交する方向に向かせる。このため、境界部の形状を刃部の形状によって高い精度で制御でき、段差については側面壁が直立した形状に形成することができる。それ故、光学素子の場合、段差を形成でき、境界領域に入射した光が損失や迷光を発生することを回避できる。刃先が矩形の平フライカッターや同等形状の研削工具の場合、刃先幅を小さくするほど光の損失が少なくなり、刃先が円形の外丸フライカッターや同等形状の研削工具の場合、刃先Rを小さくするほど光の損失が少なくなる。刃先が矩形の工具の刃先幅は20μm以下が好ましく、10μm以下であればさらに好ましい。刃先が円形の工具の場合、刃先Rは0.2mm以下が好ましく、0.1mm以下であればさらに好ましい。   In the present invention, when machining the machining surface, the tool and the substrate are moved relative to each other to cut the substrate, but when forming the boundary portion, the rotation axis of the tool is orthogonal to the boundary portion. Turn in the direction you want. For this reason, the shape of the boundary portion can be controlled with high accuracy by the shape of the blade portion, and the side wall can be formed in an upright shape for the step. Therefore, in the case of an optical element, it is possible to form a step, and it is possible to avoid the light incident on the boundary region from generating loss or stray light. In the case of a flat fly cutter with a rectangular cutting edge or an equivalently shaped grinding tool, the loss of light decreases as the cutting edge width is reduced. The less light is lost. The cutting edge width of a tool having a rectangular cutting edge is preferably 20 μm or less, and more preferably 10 μm or less. When the cutting edge is a circular tool, the cutting edge R is preferably 0.2 mm or less, and more preferably 0.1 mm or less.

図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施の形態1]
図1(a)、(b)はそれぞれ、本発明が適用される光学素子の説明図およびこの光学素子の各加工面(素子面)同士の境界部域に形成された段差の断面図である。図2は平フライカッターの説明図である。図3は、本発明の実施の形態1に係る加工方法(光学素子の製造方法)を示す説明図である。図4は、本形態の加工方法で用いた円柱座標系の説明図である。図5は、本形態の加工方法において境界部を加工する際の説明図である。図6は、図5に示す方法で加工しているときの断面図である。
[Embodiment 1]
FIGS. 1A and 1B are an explanatory diagram of an optical element to which the present invention is applied and a cross-sectional view of a step formed in a boundary area between processing surfaces (element surfaces) of the optical element. . FIG. 2 is an explanatory view of a flat fly cutter. FIG. 3 is an explanatory view showing a processing method (a method for manufacturing an optical element) according to Embodiment 1 of the present invention. FIG. 4 is an explanatory diagram of a cylindrical coordinate system used in the processing method of this embodiment. FIG. 5 is an explanatory diagram when the boundary portion is processed in the processing method of the present embodiment. 6 is a cross-sectional view when processing is performed by the method shown in FIG.

本形態では、回転軸から側方に向けて刃部が突出して外周加工を行う工具としてフライカッターを用い、このフライカッターにより光学素子用の基材を切削して、図1(a)に示すように、円形の凹曲面内に4つの加工面21(素子面)が周方向に配列され、かつ、4つの加工面21の境界部22が1点に交差している光学素子(レンズ)を製造する例を説明する。   In this embodiment, a fly cutter is used as a tool for projecting the blade portion from the rotation axis to the side to perform the outer periphery processing, and the base material for the optical element is cut by this fly cutter, as shown in FIG. As described above, an optical element (lens) in which four machining surfaces 21 (element surfaces) are arranged in a circumferential direction in a circular concave surface, and a boundary 22 of the four machining surfaces 21 intersects at one point. An example of manufacturing will be described.

ここで、4つの加工面21(分割レンズ面/素子面)は、各々異なる曲面で形成され、図1(b)に示すように、境界部22は段差になっている。   Here, the four processed surfaces 21 (divided lens surfaces / element surfaces) are formed with different curved surfaces, and the boundary portion 22 is stepped as shown in FIG.

このような光学素子を製造するにあたって、本形態では、図2に示すフライカッター10(平フライカッター)で樹脂などの光学材料をレンズ形状に切削する。フライカッター10は、回転軸11からその軸線に直交する方向に矩形の刃部12が突出しており、高速回転させると円筒面の軌跡を描く。   In manufacturing such an optical element, in this embodiment, an optical material such as a resin is cut into a lens shape by a fly cutter 10 (flat fly cutter) shown in FIG. The fly cutter 10 has a rectangular blade portion 12 protruding from the rotary shaft 11 in a direction perpendicular to the axis, and draws a locus on a cylindrical surface when rotated at a high speed.

このようなフライカッター10を備えた加工機は、図3に矢印X、Y、Zで示す3軸の送り機構を備え、かつ、矢印A、B、Cで示す回転機構を有している。以下、矢印A、B、Cで示すX軸周り、Y軸周り、Z軸周りの回転機構をA軸、B軸、C軸と称する。なお、本形態の加工は、フライカッター10と基材20と相対移動させればよいので、矢印X、Y、Zで示す送り機構、および矢印A、B、Cで示す回転機構はそれぞれ、フライカッター10側あるいは基材20側のうちの最適な方に構成されている。   The processing machine provided with such a fly cutter 10 includes a three-axis feed mechanism indicated by arrows X, Y, and Z in FIG. 3 and a rotation mechanism indicated by arrows A, B, and C. Hereinafter, the rotation mechanisms around the X axis, the Y axis, and the Z axis indicated by arrows A, B, and C are referred to as an A axis, a B axis, and a C axis. In addition, since the process of this form should just carry out relative movement with the fly cutter 10 and the base material 20, the feed mechanism shown by the arrow X, Y, Z and the rotation mechanism shown by the arrow A, B, C are respectively fly. It is comprised in the optimal one of the cutter 10 side or the base material 20 side.

このような加工機で基材20に加工を行うには、まず、フライカッター10を矢印Aで示すように軸線周りに回転させながら、Y軸(切り込み方向)による基材20への切り込みを行う。また、Z軸(送り方向)による送りにより、加工面21を切削していく。その際、Y軸、Z軸を同時に動かすことで、所定の曲面を備えた各分割レンズ面を作成する。   In order to process the base material 20 with such a processing machine, first, while the fly cutter 10 is rotated around the axis as indicated by the arrow A, the Y-axis (cutting direction) is cut into the base material 20. . Further, the machining surface 21 is cut by feeding by the Z axis (feeding direction). At this time, each divided lens surface having a predetermined curved surface is created by simultaneously moving the Y axis and the Z axis.

本形態では、境界部22の交点を原点とし、送り方向を基材20上の放射状に設定して基材20を切削した後、送り方向の角度位置を順次、切り換えていく。   In this embodiment, the intersection point of the boundary portion 22 is set as the origin, the feed direction is set radially on the base material 20, the base material 20 is cut, and then the angular position in the feed direction is sequentially switched.

本形態の加工機の加工プログラムでは、座標系として、図4に示すように、境界部22の交点を原点とし、光学素子の中心(光軸)を基準軸とした円柱座標系(Rw、θw、Yw)を用いる。従って、加工点は、θw一定の条件でRwに対応するYwを考える。   In the processing program of the processing machine of the present embodiment, as shown in FIG. 4, the coordinate system is a cylindrical coordinate system (Rw, θw) with the intersection point of the boundary portion 22 as the origin and the center (optical axis) of the optical element as the reference axis. , Yw). Therefore, the processing point is Yw corresponding to Rw under the condition of constant θw.

このような制御の下、加工面21に対する1回の送りが終了した後、Y軸移動により、フライカッター10を基材20から逃がした後、B軸回転によるステップオーバを行い、上記の切削を繰り返す。   Under such control, after one feed to the processing surface 21 is completed, the fly cutter 10 is released from the base material 20 by Y-axis movement, and then the step is over by rotation of the B-axis to perform the above cutting. repeat.

ここで、面粗さの上限許容値をHmax、交点からの最大半径をrmax、θw方向の最大傾斜角をφmax(>0)とすると、B軸回転ピッチBp「rad」は以下の式
Bp<(Hmax)/((rmax)*Tan(φmax)) ・・式(a)
により定める。
Here, assuming that the upper limit allowable value of the surface roughness is Hmax, the maximum radius from the intersection is rmax, and the maximum inclination angle in the θw direction is φmax (> 0), the B-axis rotation pitch Bp “rad” is expressed by the following formula Bp < (Hmax) / ((rmax) * Tan (φmax)) Formula (a)
Determined by

このような加工方法では、加工面21を切削加工する際には、境界部22に対して回転軸11が交差する方向の向きとし、境界部22付近を切削する際には、図5に示すように、境界部22に対して回転軸11が直交する方向の向きとし、かつ、Z軸(送り方向)は境界部22と平行とする。この状態で、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。その際、段差とフライカッター10とが干渉しないように、すなわち、段差を形成すべき領域に切削が施されないように、図6に示すように、段差の隅とフライカッター10の角を合わせたB軸角度またはX軸位置の座標を設定する。   In such a machining method, when the machining surface 21 is cut, the direction in which the rotation axis 11 intersects the boundary portion 22 is set, and when the vicinity of the boundary portion 22 is cut, as shown in FIG. Thus, the direction of the rotation axis 11 is orthogonal to the boundary portion 22, and the Z axis (feeding direction) is parallel to the boundary portion 22. In this state, the lower processing surface 21 side of the two adjacent processing surfaces 21 is cut. At that time, as shown in FIG. 6, the corner of the step and the corner of the fly cutter 10 are aligned so that the step and the fly cutter 10 do not interfere with each other, that is, the region where the step is to be formed is not cut. Set the coordinates of the B-axis angle or X-axis position.

このように本形態では、加工面21を加工する際には、フライカッター10と基材20とを切り込み方向および送り方向に相対移動させて基材20を切削するが、境界部22を加工する際には、回転軸11を直交する方向に向かせ、かつ、Z軸(送り方向)を境界部22と平行に設定し、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。このため、境界部22の形状は、刃部12の形状と同一となり、高い精度で制御できるので、段差については側面壁が直立した形状に形成することができる。それ故、光学素子では、段差を、隅がだれていない、段差面がほぼ直立した鋭い形状をもって形成できるので、境界部22の幅が狭い。それ故、境界部22に入射した光が損失や迷光を発生することを回避できる。   Thus, in this embodiment, when the processing surface 21 is processed, the fly cutter 10 and the base material 20 are relatively moved in the cutting direction and the feeding direction to cut the base material 20, but the boundary portion 22 is processed. In this case, the rotating shaft 11 is directed in the direction orthogonal to each other, and the Z axis (feeding direction) is set in parallel with the boundary portion 22, and the lower processing surface 21 side of the two adjacent processing surfaces 21 is set. To cut. For this reason, the shape of the boundary portion 22 is the same as the shape of the blade portion 12 and can be controlled with high accuracy, so that the side wall can be formed upright with respect to the step. Therefore, in the optical element, the step can be formed with a sharp shape with no corners and the step surface almost upright, and therefore the width of the boundary portion 22 is narrow. Therefore, it is possible to prevent the light incident on the boundary portion 22 from generating loss or stray light.

また、本形態では、境界部22の交点を中心に送り方向を基材20上の放射状に設定して基材20を切削するため、光学素子の中心領域は何度も切削され、平滑面となる。ここで、境界部22の交点付近は、光学素子の光軸中心であり、この領域の面精度が高いので、光学特性の高い光学素子を製造することができる。   Further, in this embodiment, since the feed direction is set radially on the base material 20 around the intersection of the boundary portions 22 and the base material 20 is cut, the central region of the optical element is cut many times, Become. Here, the vicinity of the intersection of the boundary portion 22 is the optical axis center of the optical element, and since the surface accuracy of this region is high, an optical element with high optical characteristics can be manufactured.

[実施の形態2]
図7は、本発明の実施の形態2に係る加工方法(光学素子の製造方法)を示す説明図である。図8は、本形態の加工方法において回転軸11を傾けた様子を示す説明図である。
[Embodiment 2]
FIG. 7 is an explanatory view showing a processing method (optical element manufacturing method) according to Embodiment 2 of the present invention. FIG. 8 is an explanatory diagram showing a state in which the rotating shaft 11 is tilted in the processing method of the present embodiment.

実施の形態1に係る方法では、θw方向の傾斜角φmaxが大きくなると面粗さHmaxが大きくなる傾向にあるので、このような場合には、図7を参照して以下に説明する方法を採用すればよい。なお、本形態でも、実施の形態1と同様、図2に示すフライカッター10を使用する。また、本形態でも、実施の形態1と同様、図7に示すように、矢印X、Y、Zで示す3軸の送り機構を備え、かつ、矢印A、B、Cで示す回転機構を有している。   In the method according to the first embodiment, the surface roughness Hmax tends to increase as the inclination angle φmax in the θw direction increases. In such a case, the method described below with reference to FIG. 7 is adopted. do it. In this embodiment, the fly cutter 10 shown in FIG. 2 is used as in the first embodiment. Also in this embodiment, as in the first embodiment, as shown in FIG. 7, a three-axis feed mechanism indicated by arrows X, Y, and Z is provided, and a rotation mechanism indicated by arrows A, B, and C is provided. is doing.

本形態では、面粗さの許容上限値をHmax、θw方向の断面曲線の最小曲率半径ρmin(>0)としたとき、フライカッター10の刃幅Lとして以下の条件
L<2*√(2*(Hmax)*(ρmin)−(Hmax)2) ・・式(b)
を満たすものを選定する。また、本形態でも、実施の形態1と同様、境界部22の交点を原点とし、送り方向を基材20上の放射状に設定して基材20を研削した後、送り方向の角度位置を順次、切り換えておく。さらに、図7に示すように、基材20とフライカッター10とをX軸を斜めに傾けた状態で配置する。
In this embodiment, when the allowable upper limit value of the surface roughness is Hmax and the minimum curvature radius ρmin (> 0) of the sectional curve in the θw direction, the blade width L of the fly cutter 10 is as follows: L <2 * √ (2 * (Hmax) * (ρmin) − (Hmax) 2 ) Equation (b)
Select one that meets the requirements. Also in this embodiment, as in the first embodiment, the intersection point of the boundary portion 22 is set as the origin, the feed direction is set radially on the base material 20 and the base material 20 is ground, and then the angular position in the feed direction is sequentially set. Switch over. Further, as shown in FIG. 7, the base material 20 and the fly cutter 10 are arranged with the X axis inclined obliquely.

そして、Y軸移動による切り込みを行うとともに、Z軸移動による送りを行う。そのとき、X軸、Y軸、Z軸、C軸を同時に動かすことで、曲面からなる加工面21を作成する。   Then, cutting is performed by moving the Y axis, and feeding is performed by moving the Z axis. At that time, the machining surface 21 formed of a curved surface is created by simultaneously moving the X axis, the Y axis, the Z axis, and the C axis.

ここで、C軸は、図8に示すように、加工形状のθw方向の傾斜角に合わせ回転させる。X軸はC軸回転による刃先ズレΔXの補正に用いる。また、Y軸はC軸回転による刃先ズレΔYの補正も行う。   Here, as shown in FIG. 8, the C axis is rotated in accordance with the inclination angle of the processed shape in the θw direction. The X axis is used to correct the cutting edge deviation ΔX due to the C axis rotation. The Y axis also corrects the cutting edge deviation ΔY by rotating the C axis.

このようにして加工面21を形成した後、Y軸移動により、フライカッター10を基材20から逃がした後、B軸回転によるステップオーバを行う。   After forming the processed surface 21 in this manner, the fly cutter 10 is released from the base material 20 by Y-axis movement, and then step-over is performed by B-axis rotation.

また、境界部22付近では、境界部22に対して回転軸11を直交する方向に向かせ、かつ、Z軸(送り方向)を境界部22と平行に設定し、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。   Further, in the vicinity of the boundary portion 22, the rotating shaft 11 is oriented in a direction orthogonal to the boundary portion 22, and the Z axis (feeding direction) is set in parallel to the boundary portion 22, so that two adjacent machining surfaces 21 are provided. Of these, the lower processing surface 21 side is cut.

以上の繰り返しにより、放射状の4つの加工面21を形成するとともに、放射状に延びた4つの境界部22(段差)の形成を行う。   By repeating the above, four radial processed surfaces 21 are formed, and four boundary portions 22 (steps) extending radially are formed.

このように本形態でも、実施の形態1と同様、境界部22を加工する際には、回転軸11を直交する方向に向かせ、かつ、Z軸(送り方向)を境界部22と平行に設定し、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。このため、境界部22の形状は、刃部12の形状と同一となり、高い精度で制御できるので、段差については側面壁が直立した形状に形成することができる。   Thus, also in this embodiment, when machining the boundary portion 22 as in the first embodiment, the rotary shaft 11 is directed in the direction orthogonal to each other, and the Z axis (feeding direction) is parallel to the boundary portion 22. It sets and cuts the lower processing surface 21 side among two adjacent processing surfaces 21. For this reason, the shape of the boundary portion 22 is the same as the shape of the blade portion 12 and can be controlled with high accuracy, so that the side wall can be formed upright with respect to the step.

また、本形態によれば、B軸回転ピッチと面粗さの関与は小さく、面粗さは、前記した式(b)で表される。なお、B軸回転ピッチは刃幅Lを最大限活用できる値を取れば良い。   Further, according to this embodiment, the B-axis rotation pitch and the surface roughness are not significantly involved, and the surface roughness is represented by the above-described formula (b). Note that the B-axis rotation pitch may be a value that can utilize the blade width L to the maximum.

[実施の形態3]
境界部22付近の形状誤差が許容される場合、切削工具としては、図9に示すように、送り方向からみたとき刃部12の形状が円形のフライカッター10(外丸フライカッター)を用いてもよい。フライカッター10は円弧状の刃先を持ち、高速回転させると円環体の軌跡を描く。このような丸フライカッター10を用いる場合も、フライカッター10と基材20とは、図3に示すように配置する。
[Embodiment 3]
When a shape error in the vicinity of the boundary portion 22 is allowed, as a cutting tool, as shown in FIG. 9, a fly cutter 10 (outer round fly cutter) having a circular shape of the blade portion 12 when viewed from the feeding direction may be used. Good. The fly cutter 10 has an arcuate cutting edge and draws a locus of a torus when rotated at high speed. Also when using such a round fly cutter 10, the fly cutter 10 and the base material 20 are arrange | positioned as shown in FIG.

ここで、境界部22のぼやけの幅の許容限界値をdmax、段差の最大値をtmaxとすればフライカッター10の切れ刃曲率半径Rcとして下式
Rc<((dmax)2+(tmax)2)/(2*(tmax))・・・式(c)
を満たすものを選定すれば良い。
Here, if the allowable limit value of the blur width of the boundary portion 22 is dmax and the maximum value of the step is tmax, the cutting edge curvature radius Rc of the fly cutter 10 is expressed by the following formula: Rc <((dmax) 2 + (tmax) 2 ) / (2 * (tmax)) Formula (c)
It is sufficient to select one that satisfies the requirements.

このような加工機で基材20に加工を行うには、まず、フライカッター10を矢印Aで示すように回転させながら、Y軸(切り込み方向)への移動により切り込みを行う。また、Z軸(送り方向)への移動による送りにより、加工面21を切削していく。その際、Y軸、Z軸を同時に動かすことで、所定の曲面を備えた各分割レンズ面を作成する。   In order to process the base material 20 with such a processing machine, first, while the fly cutter 10 is rotated as indicated by an arrow A, cutting is performed by movement in the Y axis (cutting direction). Further, the machining surface 21 is cut by feeding by movement in the Z axis (feeding direction). At this time, each divided lens surface having a predetermined curved surface is created by simultaneously moving the Y axis and the Z axis.

また、加工点の法線とフライカッター10が描く円環体上の点の法線が一致するように図9に示すように、工作物座標系における工具基準点の座標(X、Y、Z)を指示する。その際、X軸は上記による刃先ズレΔXの補正に用いる。また、Y軸は刃先ズレΔYの補正も行う。   Further, as shown in FIG. 9, the coordinates of the tool reference point in the workpiece coordinate system (X, Y, Z) so that the normal of the machining point and the normal of the point on the torus drawn by the fly cutter 10 coincide with each other. ) At that time, the X-axis is used to correct the edge deviation ΔX as described above. The Y axis also corrects the cutting edge deviation ΔY.

このようにして加工面21を形成した後、Y軸移動により、フライカッター10を基材20から逃がした後、B軸回転によるステップオーバを行う。ここで、加工面21が球面のときは、B軸回転ピッチBp[Bp(rad)]は以下の式により定める。   After forming the processed surface 21 in this manner, the fly cutter 10 is released from the base material 20 by Y-axis movement, and then step-over is performed by B-axis rotation. Here, when the machining surface 21 is a spherical surface, the B-axis rotation pitch Bp [Bp (rad)] is determined by the following equation.

面粗さの上限許容値をHmax、交点からの最大半径をrmax、フライカッター10の切れ刃曲率半径をRc、球面半径をρとすると、B軸回転ピッチBpは、下式
Bp<(2/(rmax))*√(2*(Hmax)/(1/(ρ−Rc)+1/Rc))
・・・式(d)
で示す値に設定される。
When the upper limit allowable value of the surface roughness is Hmax, the maximum radius from the intersection is rmax, the cutting edge curvature radius of the fly cutter 10 is Rc, and the spherical radius is ρ, the B-axis rotation pitch Bp is expressed by the following formula Bp <(2 / (Rmax)) * √ (2 * (Hmax) / (1 / (ρ−Rc) + 1 / Rc))
... Formula (d)
Is set to the value indicated by.

また、本形態でも、実施の形態1、2と同様、境界部22付近では、境界部22に対して回転軸11を直交する方向に向かせ、かつ、Z軸(送り方向)を境界部22と平行に設定し、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。   Also in this embodiment, as in the first and second embodiments, in the vicinity of the boundary portion 22, the rotation axis 11 is directed in a direction orthogonal to the boundary portion 22, and the Z axis (feeding direction) is set to the boundary portion 22. The lower processing surface 21 side of the two adjacent processing surfaces 21 is cut.

以上の繰り返しにより、放射状の4つの加工面21を形成するとともに、放射状に延びた4つの境界部22(段差)の形成を行う。   By repeating the above, four radial processed surfaces 21 are formed, and four boundary portions 22 (steps) extending radially are formed.

このように本形態でも、実施の形態1と同様、境界部22を加工する際には、回転軸11を直交する方向に向かせ、かつ、Z軸(送り方向)を境界部22と平行に設定し、隣接する2つの加工面21のうち、低い方の加工面21側を切削する。このため、境界部22の形状は、刃部12の形状と同一となり、高い精度で制御できるので、段差につく円弧を無視できる程度の幅に形成することができる。それ故、光学素子の場合、境界部22に入射した光が損失や迷光を発生することを回避できる。   Thus, also in this embodiment, when machining the boundary portion 22 as in the first embodiment, the rotary shaft 11 is directed in the direction orthogonal to each other, and the Z axis (feeding direction) is parallel to the boundary portion 22. It sets and cuts the lower processing surface 21 side among two adjacent processing surfaces 21. For this reason, the shape of the boundary portion 22 is the same as the shape of the blade portion 12 and can be controlled with high accuracy, so that it can be formed with a width that can ignore the circular arc attached to the step. Therefore, in the case of an optical element, it can be avoided that light incident on the boundary portion 22 generates loss or stray light.

また、本形態ではC軸回転が不要であり、かつ、面粗さも実施の形態1より良好な面が得られる。   Further, in this embodiment, the C-axis rotation is unnecessary, and a surface having a surface roughness better than that of the first embodiment can be obtained.

[実施の形態4]
図10は、本発明の実施の形態4に係る加工方法(光学素子の製造方法)を示す説明図である。
[Embodiment 4]
FIG. 10 is an explanatory view showing a processing method (optical element manufacturing method) according to Embodiment 4 of the present invention.

実施の形態1に対して、以下の変更を行えば、図10に示すような、境界部22の交点を中心とした円弧状の切削が可能である。すなわち、B軸回転により始点におけるフライカッター10の刃部12を境界部22に合わせる。ここで、段差における低い面から加工面21に対する切削加工を始める場合には、境界部22に対して回転軸11を直交する方向に向かせ、段差の隅とフライカッター10の刃部12の角部とが合うようにB軸角度またはX軸位置の座標を指示する。   If the following changes are made to the first embodiment, arc-shaped cutting centering on the intersection of the boundary portions 22 as shown in FIG. 10 is possible. That is, the blade portion 12 of the fly cutter 10 at the starting point is aligned with the boundary portion 22 by the B-axis rotation. Here, when starting the cutting process on the machining surface 21 from a lower surface in the step, the rotation axis 11 is directed in a direction orthogonal to the boundary portion 22, and the corner of the step and the edge of the blade portion 12 of the fly cutter 10. The coordinates of the B-axis angle or the X-axis position are designated so that the part matches.

次に、Y軸移動による切込みを行うとともに、B軸回転による送りを行う。その結果、送り方向は、基材20上の所定位置を中心とする円弧状に設定されるので、ツールマークは円弧状に形成される。その際、Y軸、Z軸を同時に動かすことで加工面21を曲面とする。なお、本形態でも、座標系として境界部22の交点を原点、光学素子の中心位置を基準軸とした円柱座標系(Rw、θw、Yw)を考える。従って、加工点はRw一定の条件でθwに対応するYwを考える。   Next, cutting is performed by moving the Y axis, and feeding is performed by rotating the B axis. As a result, the feed direction is set in an arc shape centered on a predetermined position on the substrate 20, so that the tool mark is formed in an arc shape. At this time, the machining surface 21 is made a curved surface by simultaneously moving the Y axis and the Z axis. In this embodiment as well, a cylindrical coordinate system (Rw, θw, Yw) with the intersection point of the boundary portion 22 as the origin and the center position of the optical element as the reference axis is considered as the coordinate system. Therefore, Yw corresponding to θw is considered under the condition that Rw is constant.

次に、B軸回転により終点においては、フライカッター10の刃部12を境界部22に合わせる。ここで、連続した面形状が段差の低い方で終わる場合、段差の隅とフライカッター10の角を合わせたB軸角度またはX軸位置の座標を指示する。   Next, the blade portion 12 of the fly cutter 10 is aligned with the boundary portion 22 at the end point by B-axis rotation. Here, when the continuous surface shape ends with the lower step, the coordinate of the B-axis angle or the X-axis position obtained by combining the corner of the step and the corner of the fly cutter 10 is indicated.

このようにして1つの加工面21に対する加工が終了した後、Y軸移動により、フライカッター10を基材20から逃がした後、B軸回転によるステップオーバを行い、上記の切削を繰り返す。   After the processing on one processing surface 21 is completed in this way, the fly cutter 10 is released from the base material 20 by the Y-axis movement, and then the step cutting is performed by the B-axis rotation, and the above cutting is repeated.

このように本形態でも、加工面21を加工する際には、フライカッター10と基材20とを相対移動させて基材20を切削するが、境界部22を形成する際には、フライカッター10の回転軸11を境界部22に対して直交する方向に向かせる。このため、境界部22の形状を刃部12の形状によって高い精度で制御でき、段差については側面壁がほぼ直立した形状に形成することができる。それ故、光学素子の場合、段差を、隅がだれていない、段差面がほぼ直立した鋭い形状をもって形成でき、境界部22に入射した光が損失や迷光を発生することを回避できる。   Thus, also in this embodiment, when processing the processed surface 21, the fly cutter 10 and the base material 20 are relatively moved to cut the base material 20, but when the boundary portion 22 is formed, the fly cutter is used. The ten rotation shafts 11 are oriented in a direction orthogonal to the boundary portion 22. For this reason, the shape of the boundary part 22 can be controlled with high accuracy by the shape of the blade part 12, and the side wall can be formed in a shape in which the side walls are almost upright. Therefore, in the case of the optical element, the step can be formed with a sharp shape with no corners and the step surface being almost upright, and it is possible to prevent the light incident on the boundary portion 22 from generating loss or stray light.

[その他の加工方法]
なお、上記形態では、図1(a)に示すように、円形の凹曲面内に4つの加工面21(素子面)が周方向に配列され、かつ、4つの加工面21の境界部22が1点に交差している光学素子(レンズ)を製造する例を説明したが、図11(a)に示すように、円板の一方の面に、平坦な加工面21(素子面)が周方向に多数、配列され、かつ、多数の加工面21の境界部22が1点に交差している光学素子(透過屈折型偏向板)を製造する場合に本発明を適用してもよい。また、図11(a)において段差を設けているが、境界部となる段差をなくした傾斜面で形成しても良いし、さらには、図11(b)に示すように、加工面21が球面のように加工する場合に適用してもよい。また、図15を参照して説明したような形状した光学素子(レンズ)に適用してもよい。
[Other processing methods]
In the above embodiment, as shown in FIG. 1A, four machining surfaces 21 (element surfaces) are arranged in a circumferential direction in a circular concave curved surface, and a boundary portion 22 between the four machining surfaces 21 is formed. Although an example of manufacturing an optical element (lens) that intersects one point has been described, as shown in FIG. 11A, a flat processing surface 21 (element surface) is provided on one surface of a disk. The present invention may be applied to the case where an optical element (transmission / refraction type deflecting plate) in which a large number are arranged in the direction and the boundary portions 22 of the numerous processed surfaces 21 intersect at one point is manufactured. In addition, although a step is provided in FIG. 11 (a), it may be formed with an inclined surface without a step serving as a boundary portion. Further, as shown in FIG. You may apply when processing like a spherical surface. Further, the present invention may be applied to an optical element (lens) shaped as described with reference to FIG.

また、上記形態では、フライカッター10で樹脂などの光学材料をレンズ形状に切削する例を説明したが、フライカッター10で金型用の金属材料を切削して、光学素子を成形するための金型の製作に本発明を適用してもよい。   Moreover, although the example which cuts optical materials, such as resin, into a lens shape with the fly cutter 10 was demonstrated in the said form, the metal material for cutting a metal material for metal mold | dies with the fly cutter 10 and shape | molding an optical element is demonstrated. You may apply this invention to manufacture of a type | mold.

さらに、上記形態では、フライカッター10として、長方形の刃部12を備えたものを用いたが、求められる段差の形状によっては、図12に示すように、台形の刃部12を備えたフライカッター10を用いてもよい。   Furthermore, in the said form, although the thing provided with the rectangular blade part 12 was used as the fly cutter 10, depending on the shape of the level | step difference calculated | required, the fly cutter provided with the trapezoidal blade part 12 as shown in FIG. 10 may be used.

さらにまた、本発明は、フライカッター10に代えて、図13に示すように、回転軸11′から円盤状あるいは円柱状の砥石12′が刃部として突出した研削工具10′を用いた研削加工に適用してもよい。   Furthermore, in the present invention, instead of the fly cutter 10, as shown in FIG. 13, a grinding process using a grinding tool 10 'in which a disc-shaped or cylindrical grindstone 12' protrudes as a blade portion from a rotating shaft 11 '. You may apply to.

ここで、刃先が矩形の平フライカッターや同等形状の研削工具の場合、刃先幅を小さくするほど光の損失が少なくなり、刃先が円形の外丸フライカッターや同等形状の研削工具の場合、刃先Rを小さくするほど光の損失が少なくなる。刃先が矩形の工具の刃先幅は20μm以下が好ましく、10μm以下であればさらに好ましい。刃先が円形の工具の場合、刃先Rは0.2mm以下が好ましく、0.1mm以下であればさらに好ましい。   Here, in the case of a flat fly cutter with a rectangular cutting edge or an equivalently shaped grinding tool, the light loss decreases as the cutting edge width is reduced. The smaller the is, the less light loss. The cutting edge width of a tool having a rectangular cutting edge is preferably 20 μm or less, and more preferably 10 μm or less. When the cutting edge is a circular tool, the cutting edge R is preferably 0.2 mm or less, and more preferably 0.1 mm or less.

(a)、(b)はそれぞれ、本発明が適用される光学素子の説明図およびこの光学素子の各加工面(素子面)同士の境界部域に形成された段差の断面図である。(A), (b) is explanatory drawing of the optical element to which this invention is applied, respectively, and sectional drawing of the level | step difference formed in the boundary part area | region of each process surface (element surface) of this optical element. 平フライカッターの説明図である。It is explanatory drawing of a flat fly cutter. 本発明の実施の形態1に係る加工方法(光学素子の製造方法)を示す説明図である。It is explanatory drawing which shows the processing method (manufacturing method of an optical element) which concerns on Embodiment 1 of this invention. 円柱座標系の説明図である。It is explanatory drawing of a cylindrical coordinate system. 図3に示す加工方法において境界部を加工する際の説明図である。It is explanatory drawing at the time of processing a boundary part in the processing method shown in FIG. 図5に示す方法で加工しているときの断面図である。It is sectional drawing when processing by the method shown in FIG. 本発明の実施の形態2に係る加工方法(光学素子の製造方法)を示す説明図である。It is explanatory drawing which shows the processing method (manufacturing method of an optical element) which concerns on Embodiment 2 of this invention. 図7に示す加工方法において回転軸を傾けた様子を示す説明図である。It is explanatory drawing which shows a mode that the rotating shaft was inclined in the processing method shown in FIG. 本発明の実施の形態3に係る加工方法(光学素子の製造方法)を示す説明図である。It is explanatory drawing which shows the processing method (manufacturing method of an optical element) which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る加工方法(光学素子の製造方法)を示す説明図である。It is explanatory drawing which shows the processing method (manufacturing method of an optical element) which concerns on Embodiment 4 of this invention. 加工面の境界領域が段差になっている別の光学素子の説明図である。It is explanatory drawing of another optical element in which the boundary area | region of a process surface becomes a level | step difference. 別の平フライカッターの説明図である。It is explanatory drawing of another flat fly cutter. 本発明に係る光学素子の製造方法において、工具として研削工具を用いた場合の説明図である。It is explanatory drawing at the time of using a grinding tool as a tool in the manufacturing method of the optical element which concerns on this invention. フライカット方式の説明図である。It is explanatory drawing of a fly cut system. 従来の加工方法(光学素子の製造方法)の問題点を示す説明図である。It is explanatory drawing which shows the problem of the conventional processing method (manufacturing method of an optical element).

符号の説明Explanation of symbols

10 フライカッター
10′ 研削工具
11、11′ 回転軸
12 刃部
12′ 砥石(刃部)
20 基材
21 加工面
22 境界部
DESCRIPTION OF SYMBOLS 10 Fly cutter 10 'Grinding tool 11, 11' Rotating shaft 12 Blade part 12 'Grinding wheel (blade part)
20 Base material 21 Processing surface 22 Boundary part

Claims (12)

隣接する素子面同士の境界部に段差が形成された光学素子の製造方法において、
回転軸および該回転軸から側方に向けて突出した刃部を備えた工具を前記回転軸の軸線周りに回転させながら切り込み方向および送り方向に前記工具と光学素子形成用の基材とを相対移動させて、前記素子面を形成するための加工面を形成するとともに、
前記境界部では、当該境界部に対して前記回転軸を直交する方向に向かせて隣接する2つの加工面のうち、低い方の加工面側を切削あるいは研削することを特徴とする光学素子の製造方法。
In the method of manufacturing an optical element in which a step is formed at the boundary between adjacent element surfaces,
While rotating a tool provided with a rotary shaft and a blade projecting sideways from the rotary shaft about the axis of the rotary shaft, the tool and the substrate for forming an optical element are relatively moved in a cutting direction and a feeding direction. Moving to form a working surface for forming the element surface;
In the boundary portion, the lower processing surface side of two adjacent processing surfaces facing the boundary portion in a direction orthogonal to the rotation axis is cut or ground. Production method.
請求項1において、前記工具は、フライカッターであることを特徴とする光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the tool is a fly cutter. 請求項2において、前記フライカッターは、前記刃部を送り方向からみたとき刃先が矩形の平フライカッターであることを特徴とする光学素子の製造方法。   3. The method of manufacturing an optical element according to claim 2, wherein the fly cutter is a flat fly cutter having a rectangular cutting edge when the blade portion is viewed from the feeding direction. 請求項2において、前記フライカッターは、前記刃部を送り方向からみたとき刃先が円形の外丸フライカッターであることを特徴とする光学素子の製造方法。   3. The method of manufacturing an optical element according to claim 2, wherein the fly cutter is an outer round fly cutter having a circular cutting edge when the blade portion is viewed from a feeding direction. 請求項1において、前記工具は、前記回転軸から円盤状あるいは円柱状の砥石が前記刃部として突出した研削工具であることを特徴とする光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the tool is a grinding tool in which a disc-shaped or columnar grindstone protrudes from the rotating shaft as the blade portion. 請求項1ないし5のいずれかにおいて、前記工具と前記基材との相対位置を前記切り込み方向で連続的に変化させて前記加工面を曲面に加工することを特徴とする光学素子の製造方法。   6. The method of manufacturing an optical element according to claim 1, wherein the processing surface is processed into a curved surface by continuously changing a relative position between the tool and the base material in the cutting direction. 請求項1ないし6のいずれかにおいて、前記加工面が周方向に複数、配列され、当該複数の加工面を形成する際、前記送り方向を前記基材上の所定位置から放射状に設定することを特徴とする光学素子の製造方法。   In any one of Claim 1 thru | or 6, When the said process surface is arranged in multiple numbers in the circumferential direction and forms the said some process surface, setting the said feed direction radially from the predetermined position on the said base material. A method for manufacturing an optical element. 請求項1ないし6のいずれかにおいて、前記加工面が周方向に複数、配列され、当該複数の加工面を形成する際、前記送り方向を前記基材上の所定位置を中心とする円弧状に設定することを特徴とする光学素子の製造方法。   In any one of Claim 1 thru | or 6, when the said processed surface is arranged in multiple numbers by the circumferential direction and forms the said processed surface, the said feed direction is made into the circular arc shape centering on the predetermined position on the said base material. A method for manufacturing an optical element, characterized by comprising: setting. 請求項7または8において、前記工具による加工は、円柱座標系で表された条件により制御されることを特徴とする光学素子の製造方法。   9. The method of manufacturing an optical element according to claim 7, wherein the processing by the tool is controlled by a condition expressed in a cylindrical coordinate system. 請求項1ないし9のいずれかにおいて、前記基材は、前記光学素子を構成する光学材料であることを特徴とする光学素子の製造方法。   The method of manufacturing an optical element according to claim 1, wherein the base material is an optical material constituting the optical element. 請求項1ないし9のいずれかにおいて、前記基材は、前記光学素子を成形するための金型材料であることを特徴とする光学素子の製造方法。   10. The method of manufacturing an optical element according to claim 1, wherein the base material is a mold material for molding the optical element. 請求項1ないし11のいずれかに規定する方法を用いて製造されたことを特徴とする光学素子。   An optical element manufactured using the method defined in any one of claims 1 to 11.
JP2005165979A 2005-06-06 2005-06-06 Manufacturing method of optical element and the optical element Pending JP2006334767A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005165979A JP2006334767A (en) 2005-06-06 2005-06-06 Manufacturing method of optical element and the optical element
US11/916,147 US20100035524A1 (en) 2005-06-06 2006-06-01 Method of producing optical element, and optical element
PCT/JP2006/310971 WO2006132126A1 (en) 2005-06-06 2006-06-01 Method of producing optical element, and optical element
CNA2006800197051A CN101189095A (en) 2005-06-06 2006-06-01 Method of producing optical element, and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165979A JP2006334767A (en) 2005-06-06 2005-06-06 Manufacturing method of optical element and the optical element

Publications (1)

Publication Number Publication Date
JP2006334767A true JP2006334767A (en) 2006-12-14

Family

ID=37555733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165979A Pending JP2006334767A (en) 2005-06-06 2005-06-06 Manufacturing method of optical element and the optical element

Country Status (2)

Country Link
JP (1) JP2006334767A (en)
CN (1) CN101189095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286829A (en) * 2009-05-09 2010-12-24 Canon Inc Diffraction element, method for manufacturing the diffraction element, and spectrometer using the same
CN103949706A (en) * 2014-04-24 2014-07-30 侯如升 Fly cutter applied to large-power milling machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625238B (en) * 2015-01-14 2017-04-19 楚天科技股份有限公司 Panel grain machining method for bottle organizing tray
WO2016120985A1 (en) * 2015-01-27 2016-08-04 日立マクセル株式会社 Method for manufacturing rotationally asymmetric lens, method for manufacturing rotationally asymmetric lens molding die, method for manufacturing rotationally asymmetric mirror, and method for manufacturing rotationally asymmetric mirror molding die
CN106853598B (en) * 2015-12-08 2019-01-18 华南理工大学 A kind of cylinder emery wheel curve surface grinding method of virtual ball knife radius
CN107116707B (en) * 2017-05-19 2019-05-10 天津大学 A kind of processing method that fragile material is complex-curved
CN110280840B (en) * 2019-07-02 2020-09-04 天津科技大学 Cylindrical surface Fresnel lens one-step forming ultra-precision machining method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167806A (en) * 1987-12-10 1989-07-03 Lenin Inst Yadernoj Fiz Im Bp Konstantin An Sssr Radial diffraction grating recorder
JP2002283204A (en) * 2000-02-16 2002-10-03 Seiko Epson Corp Manufacturing method of spectacle lens
JP2004021474A (en) * 2002-06-14 2004-01-22 Incs Inc Manufacturing method of cylindrical part, die or the like, and software for executing method by computer
JP2004219494A (en) * 2003-01-10 2004-08-05 Sankyo Seiki Mfg Co Ltd Manufacturing method of optical element
JP2004349648A (en) * 2003-05-26 2004-12-09 Oki Electric Ind Co Ltd Self-cleaning method and transparent board for self-cleaning of semiconductor exposure meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167806A (en) * 1987-12-10 1989-07-03 Lenin Inst Yadernoj Fiz Im Bp Konstantin An Sssr Radial diffraction grating recorder
JP2002283204A (en) * 2000-02-16 2002-10-03 Seiko Epson Corp Manufacturing method of spectacle lens
JP2004021474A (en) * 2002-06-14 2004-01-22 Incs Inc Manufacturing method of cylindrical part, die or the like, and software for executing method by computer
JP2004219494A (en) * 2003-01-10 2004-08-05 Sankyo Seiki Mfg Co Ltd Manufacturing method of optical element
JP2004349648A (en) * 2003-05-26 2004-12-09 Oki Electric Ind Co Ltd Self-cleaning method and transparent board for self-cleaning of semiconductor exposure meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286829A (en) * 2009-05-09 2010-12-24 Canon Inc Diffraction element, method for manufacturing the diffraction element, and spectrometer using the same
CN103949706A (en) * 2014-04-24 2014-07-30 侯如升 Fly cutter applied to large-power milling machine

Also Published As

Publication number Publication date
CN101189095A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP2006334767A (en) Manufacturing method of optical element and the optical element
JP5355206B2 (en) Processing apparatus and processing method
JP5181703B2 (en) Processing method of concave Fresnel lens shaped member and concave Fresnel lens shaped member
JP2006297715A (en) Method for producing annular optical element and method for producing mold for annular optical element
JP5478296B2 (en) Fresnel lens, Fresnel lens mold, Fresnel lens manufacturing method, and Fresnel lens mold manufacturing method
JP2009184066A5 (en)
JP2006218554A (en) Method for creating shape of tool grinding wheel
JP2011123777A (en) Method for creating numerical control data
TWI406749B (en) A mold, an optical element, a mold for molding an optical element, and a method of manufacturing the same
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
WO2006132126A1 (en) Method of producing optical element, and optical element
JP2006334768A (en) Manufacturing method of optical element and optical the element
KR101670216B1 (en) Substrate grinding apparatus and substrate corner grinding method of the same
JP2008142799A (en) Working method for diffraction groove
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2018043444A (en) Production method of metal mold and production method of microlens array
JP4670249B2 (en) Processing apparatus, processing method, and diamond tool
JP2007175802A (en) Manufacturing method for optical part or its mold, and the mold
JP2007283433A (en) Grinding method
JP2006043805A (en) Cutting tool, a method of forming two or more cylindrical projection using the cutting tool and support having the cylindrical projections
JP4548550B2 (en) Optical element mold processing method
JP2015006713A (en) Gear processing device
JP2007000989A (en) Polishing method for curved surface
JP2016221907A (en) Method for producing optical element, die and lens array
JP3907522B2 (en) Processing method of axially asymmetric optical surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A131 Notification of reasons for refusal

Effective date: 20101110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308