JP2006332360A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2006332360A
JP2006332360A JP2005154277A JP2005154277A JP2006332360A JP 2006332360 A JP2006332360 A JP 2006332360A JP 2005154277 A JP2005154277 A JP 2005154277A JP 2005154277 A JP2005154277 A JP 2005154277A JP 2006332360 A JP2006332360 A JP 2006332360A
Authority
JP
Japan
Prior art keywords
defective
elements
semiconductor device
semiconductor
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154277A
Other languages
Japanese (ja)
Other versions
JP4597771B2 (en
Inventor
Masao Kikuchi
正雄 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005154277A priority Critical patent/JP4597771B2/en
Publication of JP2006332360A publication Critical patent/JP2006332360A/en
Application granted granted Critical
Publication of JP4597771B2 publication Critical patent/JP4597771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and its manufacturing method wherein it is attempted to simplify a process to reliably exclude a malfunction with a wafer process. <P>SOLUTION: An insulating board 5 is mounted on a base plate 3 made of metal by soldering, and a semiconductor chip 7 containing a plurality of diode chips 7a and transistor chips 7b is mounted on the insulating board 5. The semiconductor chip 7 is extracted by dividing a plurality of diodes formed as elements as a matrix-like element group of 1 row × 4 columns. Of the elements formed on the semiconductor chip 7, the elements which are determined as acceptable products are electrically connected to each other by a bonding wire 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は半導体装置およびその製造方法に関し、特に、SiCウェハを適用した電力用の半導体装置と、その製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power semiconductor device to which a SiC wafer is applied and a manufacturing method thereof.

近年、半導体装置は、ますます高性能化されるとともに多様化されて、さまざまな分野でその半導体装置を応用した製品が実用化されている。半導体装置のメインパーツである半導体チップでは、Si、GaAsをはじめとする半導体材料に微細な加工を施すことにより機能が具体化されている。その半導体装置の高性能化を達成するために、高度な加工技術がますます求められている。   In recent years, semiconductor devices have become increasingly sophisticated and diversified, and products using the semiconductor devices have been put into practical use in various fields. The function of a semiconductor chip, which is the main part of a semiconductor device, is realized by performing fine processing on a semiconductor material such as Si or GaAs. In order to achieve high performance of the semiconductor device, advanced processing technology is increasingly required.

そのような状況のもとで、半導体装置の材料の一つとして、最近、SiCからなる新しい電力半導体用の材料が開発されつつあり、これまでにない高耐圧、高耐熱、低損失な電力用の半導体装置の実現が期待されている。   Under such circumstances, a new power semiconductor material made of SiC has recently been developed as one of the materials for semiconductor devices, and it has been used for power with unprecedented high breakdown voltage, high heat resistance, and low loss. Realization of a semiconductor device is expected.

半導体チップの製造に求められる高度な加工技術は、半導体チップの製造をより困難なものにしており、ウェハから良品チップが得られる歩留まりの悪化を伴う。さらに、ウェハとして適用されるSiCなどの素材では欠陥密度が高いために、加工に投入される前にすでに潜在的に不良箇所を含んでいる。そのため、このようなSiC等の素材では、潜在的に不良箇所を有していることに加えて加工の困難さが伴って、半導体チップの歩留まりがますます悪化してしまい、半導体チップのコストが上昇するという問題があった。   The advanced processing technology required for the production of semiconductor chips makes the production of semiconductor chips more difficult, and is accompanied by a deterioration in yield in which good chips can be obtained from a wafer. Furthermore, since materials such as SiC applied as a wafer have a high defect density, they already contain potentially defective portions before being put into processing. Therefore, in such materials as SiC, the yield of the semiconductor chip is further deteriorated due to the difficulty of processing in addition to potentially having a defective portion, and the cost of the semiconductor chip is reduced. There was a problem of rising.

このような問題点を解消する技術の一つとして、たとえば特許文献1に記載の半導体装置がある。この半導体装置では、ウェハに複数の電力用のユニットが形成されて、そのユニットのそれぞれには、たとえばダイオードなどの所定の素子の電極層が形成され、さらに、その電極層を外部と接続するためのアルミニウム配線層が形成されている。   As one of techniques for solving such problems, there is a semiconductor device described in Patent Document 1, for example. In this semiconductor device, a plurality of power units are formed on a wafer, and an electrode layer of a predetermined element such as a diode is formed in each of the units. Further, the electrode layer is connected to the outside. An aluminum wiring layer is formed.

複数のユニットのうち、不良ユニットに位置する電極層においては、その電極層の上には絶縁層が形成されて、アルミニウム配線層とは電気的に接続されないようにされる。この絶縁層は、次のようにして形成される。まず、電力用のユニットのウェハプロセスが完了したウェハ上にレジストが塗布される。次に、あらかじめ記憶された不良ユニットのデータに基づいて露光装置により露光処理を施すことによって、不良ユニットに位置するレジスト部分が絶縁層として残される。   Among the plurality of units, in the electrode layer located in the defective unit, an insulating layer is formed on the electrode layer so as not to be electrically connected to the aluminum wiring layer. This insulating layer is formed as follows. First, a resist is applied on a wafer on which the wafer process of the power unit has been completed. Next, exposure processing is performed by the exposure apparatus based on the data of the defective unit stored in advance, so that the resist portion located in the defective unit is left as an insulating layer.

こうして、この半導体装置では、本来電極層の貫通孔を形成するためのレジストマスクを絶縁層として用いることで、絶縁層を別途形成することなく、不良ユニットの電極層とアルミニウム配線層との電気的な絶縁が図られている。
特開2004−111759号公報
In this manner, in this semiconductor device, the resist mask for originally forming the through hole of the electrode layer is used as the insulating layer, so that the electrical connection between the electrode layer of the defective unit and the aluminum wiring layer can be performed without forming the insulating layer separately. Insulative insulation.
JP 2004-111759 A

しかしながら、従来の半導体装置では次のような問題点があった。すなわち、不良ユニットに位置する電極層を絶縁層にて覆うために、ウェハ上にレジストを塗布して露光処理を行い、そして、現像処理を施すといった一連のウェハプロセスを施さなければならず、工程が煩雑になるという問題があった。   However, the conventional semiconductor device has the following problems. That is, in order to cover the electrode layer located in the defective unit with the insulating layer, a series of wafer processes such as applying a resist on the wafer, performing an exposure process, and performing a development process must be performed. There was a problem that became complicated.

そして、アルミニウム配線層を形成するためのウェハプロセスも必要とされて、このような絶縁層やアルミニウム配線層を形成するためのウェハプロセスに起因して、当初良品と判断されたユニットが不良ユニットになってしま、良品の半導体チップの採れ数が少なくなるおそれがあった。   A wafer process for forming an aluminum wiring layer is also required, and a unit that was initially determined to be a good product due to such a wafer process for forming an insulating layer or an aluminum wiring layer becomes a defective unit. As a result, there was a risk that the number of non-defective semiconductor chips could be reduced.

本発明は、上記問題点を解決するためになされたものであり、その目的は工程の簡略化を図りウェハプロセスに伴う不具合が確実に排除される半導体装置を提供することであり、他の目的は、そのような半導体装置の製造方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a semiconductor device that simplifies the process and reliably eliminates defects associated with the wafer process. Is to provide a method of manufacturing such a semiconductor device.

本発明に係る半導体装置は、複数の半導体チップと導電部材とを有している。複数の半導体チップは絶縁性基板の主表面に配設されている。導電部材は複数の半導体チップを互いに電気的に接続する。複数の半導体チップのそれぞれは、連続する所定の基板部分にそれぞれ同一機能を有してマトリクス状に形成された複数の素子からなる素子群を含んでいる。導電部材は、素子群のうち良品と判定された素子を互いに電気的に接続する導電性ワイヤとされる。   The semiconductor device according to the present invention includes a plurality of semiconductor chips and a conductive member. The plurality of semiconductor chips are disposed on the main surface of the insulating substrate. The conductive member electrically connects the plurality of semiconductor chips to each other. Each of the plurality of semiconductor chips includes an element group including a plurality of elements having the same function on a predetermined predetermined substrate portion and formed in a matrix. The conductive member is a conductive wire that electrically connects elements determined to be non-defective in the element group.

本発明に係る半導体装置の製造方法は以下の工程を備えている。炭化珪素を主成分とするウェハ上に、それぞれ同一機能を有する複数の素子を形成する。複数の素子のそれぞれの機能をテストして、良品素子と不良品素子とに選別する。ウェハを、それぞれ所定の数の素子からなる素子群を含む半導体チップとして分割する。分割された半導体チップのそれぞれを所定の絶縁性基板の表面に配設する。半導体チップにおける良品素子同士を導電性ワイヤにて電気的に接続する。   A manufacturing method of a semiconductor device according to the present invention includes the following steps. A plurality of elements having the same function are formed on a wafer containing silicon carbide as a main component. The function of each of a plurality of elements is tested to select a non-defective element and a defective element. The wafer is divided into semiconductor chips each including a group of elements each having a predetermined number of elements. Each of the divided semiconductor chips is disposed on the surface of a predetermined insulating substrate. Non-defective elements in the semiconductor chip are electrically connected by a conductive wire.

本発明に係る半導体装置によれば、所定の基板に形成された同一機能を有する複数の素子において、不良品と判定された素子も含めて所定数の素子からなる素子群としてその基板から取り出された半導体チップが絶縁性基板の上に配設されている。これにより、複数の素子の中から良品と判定された半導体チップだけを個々に取り出して、これらを絶縁性基板の上に配設する場合と比べて、アセンブリ時における半導体チップ同士の位置ずれが生じにくく、半導体チップ同士の位置ずれに伴う不具合を低減することができる。さらに、従来の半導体装置と比較すると、良品と判定された素子同士をワイヤボンディングによって電気的に接続することで、ウェハプロセスに伴う不具合を排除することができる。その結果、素子として良品と判定された素子が、そのようなウェハプロセスに起因する不具合によって不良品となってしまうのを確実に防止することができる。   According to the semiconductor device of the present invention, a plurality of elements having the same function formed on a predetermined substrate are taken out from the substrate as an element group including a predetermined number of elements including elements determined to be defective. A semiconductor chip is disposed on the insulating substrate. As a result, compared with the case where only the semiconductor chips determined as non-defective products are individually taken out from the plurality of elements and disposed on the insulating substrate, the positional deviation between the semiconductor chips during assembly occurs. It is difficult to reduce problems associated with the positional deviation between the semiconductor chips. Further, as compared with the conventional semiconductor device, the defects determined in the wafer process can be eliminated by electrically connecting the elements determined to be non-defective products by wire bonding. As a result, it is possible to reliably prevent an element determined as a non-defective element from becoming a defective product due to such a defect caused by the wafer process.

本発明に係る半導体装置の製造方法によれば、所定の基板に形成された同一機能を有する複数の素子において、不良品と判定された素子も含めて所定数の素子からなる素子群としてその基板から取り出し、これを半導体チップとして絶縁性基板の上に配設している。これにより、従来の場合と比べて、アセンブリ時における半導体チップ同士の位置ずれが生じにくく、半導体チップ同士の位置ずれに伴う不具合を低減することができる。そして、ワイヤボンディングによって良品と判定された素子同士を電気的に接続することで、ウェハプロセスによって電気的に接続する場合と比べると、ウェハプロセスに伴う不具合を排除することができて、素子として良品と判定された素子が、そのようなウェハプロセスに起因する不具合によって不良品となってしまうのを防止することができる。   According to the method of manufacturing a semiconductor device according to the present invention, a plurality of elements having the same function formed on a predetermined substrate, as an element group including a predetermined number of elements including elements determined to be defective. The semiconductor chip is disposed on an insulating substrate as a semiconductor chip. Thereby, compared with the conventional case, it is hard to produce the position shift of semiconductor chips at the time of an assembly, and the malfunction accompanying the position shift of semiconductor chips can be reduced. In addition, by electrically connecting elements determined to be non-defective by wire bonding, defects associated with the wafer process can be eliminated as compared with the case of electrically connecting by a wafer process. It is possible to prevent the element determined to be a defective product due to a defect caused by such a wafer process.

実施の形態1
本発明の実施の形態1に係る半導体装置として、電力変換用の電力用半導体装置について説明する。図1に示すように、金属からなるベース板3上にはんだ付けによって絶縁性基板5が載置され、その絶縁性基板5上にはんだ付けによって、複数のダイオードチップ7aとトランジスタチップ7bを含む半導体チップ7がマウントされている。後述するように、その半導体チップ7に形成された素子のうち、良品と判定された素子がボンディングワイヤ13によって互いに電気的に接続されている。
Embodiment 1
A power semiconductor device for power conversion will be described as the semiconductor device according to the first embodiment of the present invention. As shown in FIG. 1, an insulating substrate 5 is mounted on a base plate 3 made of metal by soldering, and a semiconductor including a plurality of diode chips 7a and transistor chips 7b by soldering on the insulating substrate 5. Chip 7 is mounted. As will be described later, among the elements formed on the semiconductor chip 7, elements determined to be non-defective are electrically connected to each other by bonding wires 13.

また、ベース板3には金属バスバー9が配設され、その金属バスバー9の一部分はボンディングワイヤ13によって半導体チップ7および絶縁性基板5と接続されている。絶縁性基板5にマウントされた半導体チップ7や金属バスバー9は、樹脂ケース11に収容されている。樹脂ケース11の内部はゲル15が充填されて、そのゲル15を覆うように蓋17が装着されている。   A metal bus bar 9 is disposed on the base plate 3, and a part of the metal bus bar 9 is connected to the semiconductor chip 7 and the insulating substrate 5 by bonding wires 13. The semiconductor chip 7 and the metal bus bar 9 mounted on the insulating substrate 5 are accommodated in a resin case 11. The resin case 11 is filled with a gel 15 and a lid 17 is attached so as to cover the gel 15.

次に、本半導体装置1に適用される半導体チップ7について詳しく説明する。一般に、電力用半導体装置では大電流を制御するために、半導体チップとしてはその占有面積が比較的大きい半導体チップが必要とされる。ところが、前述したように、SiCウェハは潜在的な不良箇所を含んでいるため、図2に示すように、SiCウェハに形成される半導体チップ一つあたりのサイズ、すなわち、占有面積が大きいほど、一つの半導体チップの領域内に不良箇所が存在する確率が高くなってしまい、半導体チップとしての歩留まりが下がってしまう。   Next, the semiconductor chip 7 applied to the semiconductor device 1 will be described in detail. Generally, in order to control a large current in a power semiconductor device, a semiconductor chip having a relatively large occupied area is required as a semiconductor chip. However, as described above, since the SiC wafer includes a potential defective portion, as shown in FIG. 2, the size per semiconductor chip formed on the SiC wafer, that is, the larger the occupied area, The probability that a defective part exists in the region of one semiconductor chip increases, and the yield as a semiconductor chip decreases.

一方、半導体チップ一つあたりの面積を小さくすることによって、一つの半導体チップの領域内に不良箇所が存在する確率は小さくなり、半導体チップとしての歩留まりは向上することになる。つまり、SiCウェハに含まれる不良箇所の数が同じあるとすると、一つあたりの半導体チップの面積が小さいほど、半導体チップとしての歩留まりは相対的に高くなる。   On the other hand, by reducing the area per semiconductor chip, the probability that a defective portion exists in the region of one semiconductor chip is reduced, and the yield as a semiconductor chip is improved. That is, assuming that the number of defective portions included in the SiC wafer is the same, the smaller the area of one semiconductor chip, the higher the yield as a semiconductor chip.

このような比較的占有面積の小さい半導体チップを適用して大電流を制御しようとすれば、大電流を制御するのに足りる所定の面積に相当する数の分だけ、良品と判定された半導体チップを絶縁性基板の上に配設する必要がある。   If such a semiconductor chip with a relatively small area is applied to control a large current, the number of semiconductor chips determined to be non-defective products by the number corresponding to a predetermined area sufficient to control the large current. Must be disposed on the insulating substrate.

ところが、多くの半導体チップを一つの絶縁性基板に配設するには、半導体チップの位置精度を個々に確保することが困難になる。また、個々の半導体チップの位置精度を確保してはんだ付けしようとすると、隣接する半導体チップ同士の間隔を所定の間隔に保持する必要があり、半導体チップを配設する領域の面積が増大することになる。さらに、多くの半導体チップを個々に絶縁性基板に配設しようとすると、工数が増えてアセンブリコストが増加してしまうことになる。   However, in order to dispose many semiconductor chips on one insulating substrate, it is difficult to individually secure the positional accuracy of the semiconductor chips. In addition, if soldering is performed while ensuring the positional accuracy of individual semiconductor chips, it is necessary to maintain the interval between adjacent semiconductor chips at a predetermined interval, which increases the area of the region where the semiconductor chips are disposed. become. Furthermore, if many semiconductor chips are individually arranged on the insulating substrate, the number of steps increases and the assembly cost increases.

そこで、このような問題点を解消するために、SiCウェハに形成された同一機能を有する複数の素子の中から良品と判定された半導体チップだけを個々に取り出す手法ではなく、本半導体装置1では、不良品と判定された素子も含めて所定数の素子からなる素子群として取り出された半導体チップが適用されている。より具体的には、図3および図4に示すように、素子として形成された複数のダイオードを1行×4列のマトリクス状の素子群8として分割されて取り出された半導体チップ7が適用されている。   Therefore, in order to solve such a problem, this semiconductor device 1 is not a method of individually taking out only semiconductor chips determined to be non-defective from a plurality of elements having the same function formed on the SiC wafer. A semiconductor chip taken out as an element group consisting of a predetermined number of elements including elements determined to be defective is applied. More specifically, as shown in FIG. 3 and FIG. 4, a semiconductor chip 7 in which a plurality of diodes formed as elements are divided and taken out as a matrix element group 8 of 1 row × 4 columns is applied. ing.

一つの半導体チップ7を構成する4つの素子のうち、不良品の素子の数を1とすると、素子群8の中でその不良品の素子88bが位置するモード(パターン)は、図3および図4における×印に示すように、2通りある。一方、4つの素子のうち不良品の素子の数が2以上の半導体チップについては、発生確率が非常に低いことと、他の半導体チップとの組合わせが煩雑になることから、この半導体装置では適用されていない。   When the number of defective elements among the four elements constituting one semiconductor chip 7 is 1, the mode (pattern) in which the defective element 88b is located in the element group 8 is shown in FIGS. As indicated by the crosses in 4, there are two ways. On the other hand, in the semiconductor device in which the number of defective elements among the four elements is 2 or more, the probability of occurrence is very low and the combination with other semiconductor chips becomes complicated. Not applied.

なお、半導体チップにおける各素子の良不良の判定は、ウェハテストあるいはチップテストの際に行なわれ、不良品と判定された素子88bには所定のバッドマーク(×印)が付され、良品と判定された素子88aには特に目印は付されない。また、バッドマークは認識できるものであれば、×印に限られない。   Whether each element in the semiconductor chip is good or bad is determined at the time of a wafer test or a chip test, and a predetermined bad mark (x mark) is given to the element 88b that is determined as a defective product. The element 88a is not marked. Moreover, if a bad mark can be recognized, it will not be restricted to x mark.

本半導体装置1では、図5および図6に示すように、4つの素子のうち一つの素子が不良品と判定された素子群8が一つの半導体チップ7とされて、そのような半導体チップ7が大電流を制御するのに必要とされる所定の面積を確保できるように絶縁性基板5上に複数配設されている。このとき、半導体チップとして、図3に示されるように向かって左端に不良品の素子88bが位置する半導体チップ7と、その半導体チップを180°反転させて不良品の素子が右端に位置する半導体チップと、図4に示されるように左端から2番目に不良品の素子88bが位置する半導体チップ7と、その半導体チップを180°反転させて不良品の素子が右端から2番目に位置する半導体チップとが絶縁性基板5上に配設されている。   In the present semiconductor device 1, as shown in FIGS. 5 and 6, an element group 8 in which one of the four elements is determined as a defective product is defined as one semiconductor chip 7, and such semiconductor chip 7 Are provided on the insulating substrate 5 so as to secure a predetermined area required for controlling a large current. At this time, as the semiconductor chip, as shown in FIG. 3, the semiconductor chip 7 in which the defective element 88b is located at the left end as shown in FIG. 3, and the semiconductor in which the defective element is inverted by 180 ° and the defective element is located in the right end. As shown in FIG. 4, the semiconductor chip 7 in which the defective element 88b is located second from the left end as shown in FIG. 4, and the semiconductor in which the defective element is located second from the right end by reversing the semiconductor chip by 180 ° The chip is disposed on the insulating substrate 5.

すなわち、図5に示すように、半導体チップ7は、図3および図4に示される状態で絶縁性基板5に配設されるとともに、図3および図4に示される状態をそれぞれ180°反転させた状態で配設されている。特に、この場合には、不良品の素子88bが対角線上に位置するように配置されている。   That is, as shown in FIG. 5, the semiconductor chip 7 is disposed on the insulating substrate 5 in the state shown in FIG. 3 and FIG. 4, and the state shown in FIG. 3 and FIG. It is arranged in the state. In particular, in this case, the defective element 88b is arranged on a diagonal line.

このように、半導体装置1では不良品と判定された素子の素子群における位置に基づいて、良品と判定された素子の位置関係が半導体装置ごとで同じになるように絶縁性基板5に半導体チップ7が配設されている。   As described above, in the semiconductor device 1, based on the positions of the elements determined to be defective in the element group, the semiconductor chip is formed on the insulating substrate 5 so that the positional relationship of the elements determined as non-defective is the same for each semiconductor device. 7 is disposed.

その半導体チップ7では、素子としてダイオードが形成され、構造的には、図6に示すように、SiC基板(n型半導体)上にエピタキシャル層22が形成されている。エピタキシャル層22の表面にp型層23が形成され、隣り合う素子同士が電気的に絶縁されている。そのエピタキシャル層22上にバリアメタル24を介在させて電極層25が形成されている。電極層25の表面を露出するように保護膜26が形成されている。配設された各半導体チップ7を構成する素子群のうち、良品と判定された素子88aに対してボンディングワイヤ13がボンディングされている。   In the semiconductor chip 7, a diode is formed as an element. Structurally, as shown in FIG. 6, an epitaxial layer 22 is formed on a SiC substrate (n-type semiconductor). A p-type layer 23 is formed on the surface of the epitaxial layer 22, and adjacent elements are electrically insulated. An electrode layer 25 is formed on the epitaxial layer 22 with a barrier metal 24 interposed. A protective film 26 is formed so as to expose the surface of the electrode layer 25. The bonding wire 13 is bonded to the element 88a determined to be non-defective among the element group constituting each semiconductor chip 7 provided.

このとき、図5に示すように、第1列目に位置する良品と判定された素子88a同士がボンディングワイヤ13aによって、第2列目に位置する良品と判定された素子88a同士がボンディングワイヤ13bによって、第3列目に位置する良品と判定された素子88a同士がボンディングワイヤ13cによって、第4列目に位置する良品と判定された素子88a同士がボンディングワイヤ13dによって、それぞれ互いに電気的に接続される。   At this time, as shown in FIG. 5, the elements 88a determined to be non-defective products positioned in the first row are bonded to each other by the bonding wires 13a, and the elements 88a determined to be non-defective products positioned to the second row are bonded to the bonding wires 13b. Therefore, the elements 88a determined to be non-defective products located in the third row are electrically connected to each other by the bonding wire 13c, and the elements 88a determined to be non-defective products located in the fourth row are electrically connected to each other by the bonding wire 13d. Is done.

こうして、半導体装置1では、各半導体チップ7において不良品と判定された素子88bを外して良品と判定された素子88aが電気的に並列に接続されて、大電流を制御するための素子として所定の面積が確保されることになる。   In this way, in the semiconductor device 1, the element 88b determined to be defective in each semiconductor chip 7 is removed, and the element 88a determined to be non-defective is electrically connected in parallel to be predetermined as an element for controlling a large current. Area is secured.

上述した半導体装置では、SiCウェハに形成された同一機能を有する複数の素子において、不良品と判定された素子も含めて所定数の素子からなる素子群としてそのSiCウェハから取り出された半導体チップが絶縁性基板の上に配設されている。これにより、SiCウェハに形成された複数の素子の中から良品と判定された半導体チップだけを個々に取り出して、これらを絶縁性基板の上に配設する場合と比べて、アセンブリ時における半導体チップ同士の位置ずれが生じにくく、半導体チップ同士の位置ずれに伴う不具合を低減することができる。   In the semiconductor device described above, in a plurality of elements having the same function formed on the SiC wafer, a semiconductor chip taken out from the SiC wafer as an element group including a predetermined number of elements including elements determined to be defective is included. It is disposed on an insulating substrate. Thereby, only the semiconductor chips determined to be non-defective from the plurality of elements formed on the SiC wafer are individually taken out, and compared with the case where these are arranged on the insulating substrate, the semiconductor chip at the time of assembly Misalignment between each other is unlikely to occur, and problems associated with misalignment between semiconductor chips can be reduced.

また、半導体チップを構成する素子群のうち良品と判定された素子の位置が半導体装置ごとで所定の位置になるように、個々の半導体チップが配設されることで、一般的なワイヤボンディング装置を用いて良品と判定された素子同士を容易に電気的に接続することができる。   Further, a general wire bonding apparatus is provided by disposing individual semiconductor chips so that the positions of elements determined as non-defective elements among the element groups constituting the semiconductor chips are predetermined positions for each semiconductor device. It is possible to easily electrically connect elements determined to be non-defective using

そして、ウェハプロセスにより不良品と判定された素子の上に絶縁膜を形成し、良品と判定された素子同士をアルミニウム配線により電気的に接続する従来の半導体装置と比較すると、良品と判定された素子同士をワイヤボンディングによって電気的に接続することで、ウェハプロセスに伴う不具合を排除することができる。その結果、素子として良品と判定された素子が、そのようなウェハプロセスに起因する不具合によって不良品となってしまうのを確実に防止することができる。   Then, an insulating film is formed on the element determined to be defective by the wafer process, and compared to a conventional semiconductor device in which elements determined to be non-defective are electrically connected to each other by aluminum wiring, it is determined to be non-defective. By electrically connecting the elements to each other by wire bonding, it is possible to eliminate problems associated with the wafer process. As a result, it is possible to reliably prevent an element determined as a non-defective element from becoming a defective product due to such a defect caused by the wafer process.

特に、SiCウェハを適用した素子としてのダイオードでは、Siウェハを適用したダイオードの場合と比較すると、高い耐圧が得られ、また、損失も低くより高い耐熱性が得られる。   In particular, in a diode as an element to which an SiC wafer is applied, a higher withstand voltage is obtained and a loss is higher and higher heat resistance is obtained as compared with a diode to which an Si wafer is applied.

なお、上述した半導体装置では、半導体チップを構成する素子群として、1行×4列のマトリクス状の素子群を例に挙げたが、この行数や列数はこれに制限されるものではない。また、その素子群として、不良と判定された素子を1つ含む場合を例に挙げて説明したが、すべて良品の素子からなる素子群によて構成される半導体チップや、2つ以上の不良品を含む素子群からなる半導体チップを適用してもよい。この場合にも、良品と判定された素子の位置が半導体装置ごとで同じになるように半導体チップをそれぞれ配設することで、その良品と判定された素子を容易にワイヤボンディングによって電気的に接続することができる。   In the semiconductor device described above, a 1 × 4 matrix element group has been described as an example of an element group constituting a semiconductor chip. However, the number of rows and the number of columns are not limited thereto. . In addition, as an example of the element group, the case where one element determined to be defective is included has been described as an example. You may apply the semiconductor chip which consists of an element group containing a good product. Even in this case, by arranging the semiconductor chips so that the positions of the elements determined to be non-defective are the same for each semiconductor device, the elements determined to be non-defective are easily electrically connected by wire bonding. can do.

実施の形態2
前述した半導体装置では、半導体チップを構成する素子群として、1行×4列のマトリクス状の素子群を例に挙げて説明した。ここでは、4行×4列のマトリクス状の素子群を例に挙げて説明する。
Embodiment 2
In the above-described semiconductor device, the element group constituting the semiconductor chip has been described by taking a matrix element group of 1 row × 4 columns as an example. Here, a description will be given by taking a matrix element group of 4 rows × 4 columns as an example.

本半導体装置では、図7および図8に示すように、SiCウェハに形成された素子を4行×4列のマトリクス状の素子群8として分割されて取り出された半導体チップ7が適用されている。その半導体チップ7では、不良と判定された素子88bは素子群においてランダムに位置している。良品と判定された素子88aがボンディングワイヤ13(13a,13b,13c,13d)によって列ごとに電気的に接続されている。特に、この半導体チップ7では、不良と判定された素子88bにはバッドマーク(×印)が付されていることが好ましい。なお、これ以外の構造については、前述した半導体装置の構造と同様なので、同一部材には同一符号を付しその説明を省略する。   In this semiconductor device, as shown in FIG. 7 and FIG. 8, a semiconductor chip 7 is used in which the elements formed on the SiC wafer are divided and taken out as a matrix element group 8 of 4 rows × 4 columns. . In the semiconductor chip 7, the element 88b determined to be defective is randomly located in the element group. Elements 88a determined to be non-defective products are electrically connected to each column by bonding wires 13 (13a, 13b, 13c, 13d). In particular, in this semiconductor chip 7, it is preferable that a bad mark (x mark) is attached to the element 88b determined to be defective. Since the structure other than this is the same as the structure of the semiconductor device described above, the same members are denoted by the same reference numerals and the description thereof is omitted.

ワイヤをボンディングする際には、半導体チップにおいて不良品と判定された素子の位置に関する情報とその半導体チップの絶縁性基板における位置に関する情報に基づいて、不良品と判定された素子を外して良品と判定された素子だけにワイヤをボンディングすることができる。   When bonding wires, information on the position of the element determined to be defective in the semiconductor chip and information on the position of the semiconductor chip on the insulating substrate are removed and the non-defective element is removed. A wire can be bonded only to the determined element.

また、ワイヤボンディングを行なう際に、素子に付されたバッドマークを画像認識することによって、不良品と判定された素子を外して良品と判定された素子だけにワイヤをボンディングすることもできる。   Further, when wire bonding is performed, a bad mark attached to an element is recognized as an image, so that an element determined to be defective can be removed and a wire can be bonded only to an element determined to be good.

上述した半導体装置では、前述した半導体装置における効果に加えて次のような効果が得られる。すなわち、半導体チップの素子群を構成する素子の数(マトリクスの行数および列数)を増やすことにより、半導体チップを絶縁性基板に配設する際の位置ずれをさらに抑制することができる。また、絶縁性基板に配設する半導体チップの数も低減することができて、アセンブリ工数を削減することができる。   In the semiconductor device described above, the following effects can be obtained in addition to the effects of the semiconductor device described above. That is, by increasing the number of elements (the number of rows and columns of the matrix) constituting the element group of the semiconductor chip, it is possible to further suppress the positional deviation when the semiconductor chip is disposed on the insulating substrate. In addition, the number of semiconductor chips provided on the insulating substrate can be reduced, and the number of assembly steps can be reduced.

さらに、半導体チップとして廃棄される分がほとんどなくなるため、実質的な歩留まりが向上する。また、電力用途における制御電流量などの半導体装置の使用に応じて、複数の半導体チップを配設してワイヤをボンディングする場合もあり、この場合には、半導体チップにおける良品と判定された素子の位置が異なることを許容するものである。   In addition, since the semiconductor chip is hardly discarded, the substantial yield is improved. In addition, depending on the use of a semiconductor device such as a control current amount in power applications, a plurality of semiconductor chips may be disposed and wires may be bonded. In this case, the elements determined as non-defective products in the semiconductor chip may be used. The position is allowed to be different.

実施の形態3
ここでは、半導体装置の製造方法の一例について説明する。まず、SiCウェハにそれぞれ同一機能を有する、たとえばダイオードなどの複数の素子が形成される。その複数の素子に対して、図9に示すように、素子が良品であるか否かのウェハテストが行なわれる(ステップS1)。次に、SiCウェハを所定数の素子を含む素子群を構成するようにダイシングすることにより、半導体チップが取り出される(ステップS2)。その後、必要に応じて半導体チップ内の素子の良不良が判定される(ステップS3)。こうして、不良品と判定された素子の位置に関する情報が電子データとして取得されることになる(ステップS5)。
Embodiment 3
Here, an example of a method for manufacturing a semiconductor device will be described. First, a plurality of elements such as diodes having the same function are formed on the SiC wafer. As shown in FIG. 9, a wafer test is performed on the plurality of elements to determine whether the elements are non-defective (step S1). Next, the semiconductor chip is taken out by dicing the SiC wafer so as to form an element group including a predetermined number of elements (step S2). Thereafter, whether the element in the semiconductor chip is good or bad is determined as necessary (step S3). Thus, information regarding the position of the element determined to be defective is acquired as electronic data (step S5).

次に、半導体チップが絶縁性基板の上に配設(ダイボンド)される(ステップS4)。次に、不良品と判定された素子の位置に関する電子データに基づいて良品と判定された素子の位置が求められ(ステップS6)、その求められた位置に基づいて良品と判定された素子同士がワイヤボンディングによって電気的に接続される(ステップS7)。その後、ワイヤボンディングされた半導体チップを配設した絶縁性基板をベース板に配設し所定のパッケージを行なうことによって、図1に示される半導体装置が完成する。   Next, the semiconductor chip is disposed (die-bonded) on the insulating substrate (step S4). Next, the position of the element determined to be non-defective is determined based on the electronic data regarding the position of the element determined to be defective (step S6), and the elements determined to be non-defective based on the determined position are determined. Electrical connection is made by wire bonding (step S7). Thereafter, an insulating substrate on which wire-bonded semiconductor chips are disposed is disposed on a base plate and a predetermined package is formed, whereby the semiconductor device shown in FIG. 1 is completed.

上述した半導体装置の製造方法によれば、SiCウェハに形成された同一機能を有する複数の素子において、不良品と判定された素子も含めて所定数の素子からなる素子群としてそのSiCウェハから取り出し、これを半導体チップとして絶縁性基板の上に配設している。これにより、SiCウェハに形成された複数の素子の中から良品と判定された半導体チップだけを個々に取り出して、これらを絶縁性基板の上に配設する場合と比べて、アセンブリ時における半導体チップ同士の位置ずれが生じにくく、半導体チップ同士の位置ずれに伴う不具合を低減することができる。   According to the semiconductor device manufacturing method described above, a plurality of elements having the same function formed on a SiC wafer are taken out from the SiC wafer as an element group including a predetermined number of elements including elements determined to be defective. This is disposed on an insulating substrate as a semiconductor chip. Thereby, only the semiconductor chips determined to be non-defective from the plurality of elements formed on the SiC wafer are individually taken out, and compared with the case where these are arranged on the insulating substrate, the semiconductor chip at the time of assembly Misalignment between each other is unlikely to occur, and problems associated with misalignment between semiconductor chips can be reduced.

また、電子データにより良品と判定された素子の位置を把握することで、ワイヤボンディングを容易に行なうことができる。さらに、ワイヤボンディングによって良品と判定された素子同士を電気的に接続することで、ウェハプロセスによって電気的に接続する場合と比べると、ウェハプロセスに伴う不具合を排除することができて、素子として良品と判定された素子が、そのようなウェハプロセスに起因する不具合によって不良品となってしまうのを確実に防止することができる。   Also, wire bonding can be easily performed by grasping the position of an element determined to be a non-defective product based on electronic data. Furthermore, by electrically connecting elements determined to be non-defective by wire bonding, defects associated with the wafer process can be eliminated compared to the case of electrically connecting by wafer process. It can be reliably prevented that the element determined to be a defective product due to such a defect caused by the wafer process.

変形例
ここでは、不良品と判定された素子を画像により認識する場合を例に挙げて説明する。まず、SiCウェハにそれぞれ同一機能を有する複数の素子が形成され、その複数の素子に対して、図10に示すように、素子が良品であるか否かのウェハテストが行なわれる(ステップT1)。次に、不良品と判定された素子にバッドマークが付される(ステップT2)。バッドマークとして、たとえば所定のインク等が素子の上に塗布される。
Modified Example Here, a case where an element determined to be defective is recognized from an image will be described as an example. First, a plurality of elements each having the same function are formed on a SiC wafer, and a wafer test is performed on the plurality of elements to determine whether or not the elements are non-defective as shown in FIG. 10 (step T1). . Next, a bad mark is given to the element determined to be defective (step T2). As a bad mark, for example, predetermined ink or the like is applied on the element.

次に、SiCウェハを所定数の素子を含む素子群を構成するようにダイシングすることにより、半導体チップが取り出される(ステップT3)。その後、必要に応じて半導体チップ内の素子の良不良が判定される(ステップT4)。不良品と判定された素子には、先ほどと同様にバッドマークが付される(ステップT5)。   Next, the semiconductor chip is taken out by dicing the SiC wafer so as to form an element group including a predetermined number of elements (step T3). Thereafter, whether the element in the semiconductor chip is good or bad is determined as necessary (step T4). A bad mark is given to the element determined to be defective as before (step T5).

次に、半導体チップが絶縁性基板の上に配設(ダイボンド)される(ステップT6)。次に、ワイヤボンディングが行なわれる(ステップT7)。このとき、不良品と判定された素子にワイヤがボンディングされないように、一つ一つの素子を画像にて認識(ステップT8)してバッドマークが付された不良品の素子を検出(ステップT9)しながら、良品と判定された素子同士だけにワイヤがボンディングされることになる。その後、ワイヤボンディングされた半導体チップを配設した絶縁性基板をベース板に配設し所定のパッケージを行なうことによって、図1に示される半導体装置が完成する。   Next, the semiconductor chip is disposed (die-bonded) on the insulating substrate (step T6). Next, wire bonding is performed (step T7). At this time, each element is recognized by an image so that a wire is not bonded to the element determined to be defective (step T8), and a defective element with a bad mark is detected (step T9). However, a wire is bonded only to elements determined to be non-defective. Thereafter, an insulating substrate on which wire-bonded semiconductor chips are disposed is disposed on a base plate and a predetermined package is formed, whereby the semiconductor device shown in FIG. 1 is completed.

特に、この製造方法では、半導体チップの素子群を構成する素子の数が比較的多く、不良品と判定される素子の位置が半導体チップにおいてランダムになるような場合に、そのような不良と判定された素子を外して良品と判定された素子同士を電気的に接続するのに適している。   In particular, in this manufacturing method, when the number of elements constituting the element group of the semiconductor chip is relatively large and the position of the element determined to be defective is random on the semiconductor chip, such a defect is determined. It is suitable for electrically connecting elements determined to be non-defective by removing the formed elements.

なお、今回開示された実施の形態は例示であって、これに制限されるものではない。本発明は上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is an example, and the present invention is not limited to this. The present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態1に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on Embodiment 1 of this invention. 同実施の形態において、半導体チップのサイズと歩留まりとの関係を示すグラフである。4 is a graph showing the relationship between the size of a semiconductor chip and the yield in the same embodiment. 同実施の形態において、半導体チップを構成する素子群を示す第1の平面図である。FIG. 3 is a first plan view showing an element group constituting a semiconductor chip in the embodiment. 同実施の形態において、半導体チップを構成する素子群を示す第2の平面図である。In the same embodiment, it is the 2nd top view showing the element group which constitutes a semiconductor chip. 同実施の形態において、絶縁性基板に配設された半導体チップを示す部分平面図である。FIG. 4 is a partial plan view showing a semiconductor chip disposed on an insulating substrate in the same embodiment. 同実施の形態において、図5に示す断面線VI−VIにおける断面図である。FIG. 6 is a cross-sectional view taken along a cross-sectional line VI-VI shown in FIG. 5 in the same embodiment. 本発明の実施の形態2に係る半導体装置における半導体チップを示す部分平面図である。It is a fragmentary top view which shows the semiconductor chip in the semiconductor device which concerns on Embodiment 2 of this invention. 同実施の形態において、図7に示す断面線VIII−VIIIにおける断面図である。FIG. 8 is a cross-sectional view taken along a cross-sectional line VIII-VIII shown in FIG. 7 in the same embodiment. 本発明の実施の形態3に係る半導体装置の製造方法の主なフローを示す図である。It is a figure which shows the main flows of the manufacturing method of the semiconductor device which concerns on Embodiment 3 of this invention. 同実施の形態において、変形例に係る半導体装置の製造方法の主なフローを示す図である。In the same embodiment, it is a figure which shows the main flows of the manufacturing method of the semiconductor device which concerns on a modification.

符号の説明Explanation of symbols

1 半導体装置、3 ベース板、5 絶縁性基板、7a ダイオードチップ、7b トランジスタチップ、8 素子群、88 素子、9 金属バスバー、11 樹脂ケース、13,13a,13b,13c,13d ボンディングワイヤ、15 ゲル、17 蓋、21 SiC基板、22 エピタキシャル層 23 p層、24 バリアメタル、25 電極層、26 保護膜。   DESCRIPTION OF SYMBOLS 1 Semiconductor device, 3 base board, 5 insulating board, 7a diode chip, 7b transistor chip, 8 element group, 88 element, 9 metal bus bar, 11 resin case, 13, 13a, 13b, 13c, 13d bonding wire, 15 gel , 17 lid, 21 SiC substrate, 22 epitaxial layer, 23 p layer, 24 barrier metal, 25 electrode layer, 26 protective film.

Claims (9)

絶縁性基板の主表面に配設された複数の半導体チップと
複数の前記半導体チップを互いに電気的に接続する導電部材と
を有し、
複数の前記半導体チップのそれぞれは、連続する所定の基板部分にそれぞれ同一機能を有してマトリクス状に形成された複数の素子からなる素子群を含み、
前記導電部材は、前記素子群のうち良品と判定された素子を互いに電気的に接続する導電性ワイヤとされた、半導体装置。
A plurality of semiconductor chips disposed on the main surface of the insulating substrate; and a conductive member that electrically connects the plurality of semiconductor chips to each other;
Each of the plurality of semiconductor chips includes an element group consisting of a plurality of elements formed in a matrix shape having the same function on a predetermined predetermined substrate portion,
The semiconductor device, wherein the conductive member is a conductive wire that electrically connects elements determined to be non-defective in the element group.
前記所定の基板部分は炭化珪素を主成分とするウェハからなる、請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the predetermined substrate portion is made of a wafer containing silicon carbide as a main component. 前記絶縁性基板には、不良品と判定された素子が特定の位置に配置されるように複数の前記半導体チップのそれぞれが配設された、請求項1または2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein each of the plurality of semiconductor chips is disposed on the insulating substrate such that an element determined to be defective is disposed at a specific position. 前記半導体チップにおける不良品と判定された素子には所定の目印が付された、請求項1〜3のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein a predetermined mark is attached to an element determined to be a defective product in the semiconductor chip. 炭化珪素を主成分とするウェハ上に、それぞれ同一機能を有する複数の素子を形成する工程と、
前記複数の素子のそれぞれの機能をテストして、良品素子と不良品素子とに選別する選別工程と、
前記ウェハを、それぞれ所定の数の前記素子からなる素子群を含む半導体チップとして分割する工程と、
分割された前記半導体チップのそれぞれを所定の絶縁性基板の表面に配設する配設工程と、
前記半導体チップにおける良品素子同士を導電性ワイヤにて電気的に接続する接続工程と
を備えた、半導体装置の製造方法。
Forming a plurality of elements each having the same function on a wafer mainly composed of silicon carbide;
A screening step of testing each function of the plurality of elements and selecting a non-defective element and a defective element,
Dividing the wafer into semiconductor chips each including a group of elements each including a predetermined number of the elements;
A disposing step of disposing each of the divided semiconductor chips on a surface of a predetermined insulating substrate;
A method of manufacturing a semiconductor device, comprising: a connection step of electrically connecting non-defective elements in the semiconductor chip with conductive wires.
前記配設工程では、前記不良品素子が特定の位置に配置されるように前記半導体チップのそれぞれがマトリクス状に配設される、請求項5記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein in the arranging step, each of the semiconductor chips is arranged in a matrix so that the defective device is arranged at a specific position. 前記接続工程では、前記不良品素子の位置に関するデータに基づいて前記導電性ワイヤによる接続が行なわれる、請求項6記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 6, wherein in the connection step, the connection by the conductive wire is performed based on data regarding the position of the defective element. 前記選別工程では不良品の素子に識別マークが付される、請求項5〜7のいずれかに記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 5, wherein an identification mark is attached to a defective element in the sorting step. 前記接続工程では、前記識別マークを画像認識することにより前記導電性ワイヤによる接続が行なわれる、請求項8記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 8, wherein in the connecting step, the conductive wire is connected by recognizing an image of the identification mark.
JP2005154277A 2005-05-26 2005-05-26 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4597771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154277A JP4597771B2 (en) 2005-05-26 2005-05-26 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154277A JP4597771B2 (en) 2005-05-26 2005-05-26 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006332360A true JP2006332360A (en) 2006-12-07
JP4597771B2 JP4597771B2 (en) 2010-12-15

Family

ID=37553728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154277A Expired - Fee Related JP4597771B2 (en) 2005-05-26 2005-05-26 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4597771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300627A (en) * 2007-05-31 2008-12-11 Denso Corp Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116958A (en) * 1996-10-09 1998-05-06 Niigata Seimitsu Kk Memory system
JPH11281325A (en) * 1998-03-27 1999-10-15 Toshiba Corp Image recognition system and image recognition method using the same
JP2000156094A (en) * 1998-11-19 2000-06-06 Hitachi Ltd Memory module
JP2001291727A (en) * 2000-04-10 2001-10-19 Matsushita Electric Ind Co Ltd Die bonding method
JP2002016212A (en) * 2000-06-27 2002-01-18 Seiko Epson Corp Semiconductor device and its manufacturing method
JP2004247587A (en) * 2003-02-14 2004-09-02 Sumitomo Electric Ind Ltd Semiconductor device
JP2005005356A (en) * 2003-06-10 2005-01-06 Hitachi Ltd Power semiconductor module and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116958A (en) * 1996-10-09 1998-05-06 Niigata Seimitsu Kk Memory system
JPH11281325A (en) * 1998-03-27 1999-10-15 Toshiba Corp Image recognition system and image recognition method using the same
JP2000156094A (en) * 1998-11-19 2000-06-06 Hitachi Ltd Memory module
JP2001291727A (en) * 2000-04-10 2001-10-19 Matsushita Electric Ind Co Ltd Die bonding method
JP2002016212A (en) * 2000-06-27 2002-01-18 Seiko Epson Corp Semiconductor device and its manufacturing method
JP2004247587A (en) * 2003-02-14 2004-09-02 Sumitomo Electric Ind Ltd Semiconductor device
JP2005005356A (en) * 2003-06-10 2005-01-06 Hitachi Ltd Power semiconductor module and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300627A (en) * 2007-05-31 2008-12-11 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JP4597771B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
CN109698175B (en) Semiconductor structure and manufacturing method thereof
US8927987B2 (en) Semiconductor device including external connection pads and test pads
KR19980080371A (en) Semiconductor wafer inspection method with improved probe pin contact
KR20090034081A (en) Stack-type semiconductor package apparatus and manufacturing method the same
CN101796612B (en) Subassembly that includes a power semiconductor die and a heat sink and method of forming same
TW200929411A (en) Method and apparatus for monitoring vias in a semiconductor fab
JPH11265916A (en) Structure for semiconductor wafer and producing method for semiconductor chip
JP2008085342A (en) Method for identifying and/or programming integrated circuit
JP2008016720A (en) Method for manufacturing semiconductor device
US8247845B2 (en) Electrostatic discharge (ESD) protection circuit placement in semiconductor devices
US8115325B2 (en) Semiconductor integrated circuit including plurality of bonding pads
US7791191B2 (en) Semiconductor device having multiple die redistribution layer
JP4597771B2 (en) Semiconductor device and manufacturing method thereof
US9048150B1 (en) Testing of semiconductor components and circuit layouts therefor
TWI808292B (en) Package structure of semiconductor device
US6479306B1 (en) Method for manufacturing semiconductor device
US9117880B2 (en) Method for manufacturing semiconductor device
US11043622B2 (en) Encoded driver chip for light emitting pixel array
TWI303476B (en)
JP2001156172A (en) Semiconductor device
WO1999060618A1 (en) Semiconductor device and method of manufacture thereof
JP2004296464A (en) Semiconductor device
US10892254B2 (en) Defect-tolerant layout and packaging for GaN power devices
KR20000008137A (en) Teg pattern formation method of semiconductor devices
WO1999060619A1 (en) Semiconductor device and method of manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

R150 Certificate of patent or registration of utility model

Ref document number: 4597771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees