JP2006329838A - Critical-current measuring method of superconducting cable - Google Patents

Critical-current measuring method of superconducting cable Download PDF

Info

Publication number
JP2006329838A
JP2006329838A JP2005154740A JP2005154740A JP2006329838A JP 2006329838 A JP2006329838 A JP 2006329838A JP 2005154740 A JP2005154740 A JP 2005154740A JP 2005154740 A JP2005154740 A JP 2005154740A JP 2006329838 A JP2006329838 A JP 2006329838A
Authority
JP
Japan
Prior art keywords
current
critical current
superconducting cable
cable
critical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154740A
Other languages
Japanese (ja)
Other versions
JP4697530B2 (en
Inventor
Hiroyasu Yumura
洋康 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005154740A priority Critical patent/JP4697530B2/en
Publication of JP2006329838A publication Critical patent/JP2006329838A/en
Application granted granted Critical
Publication of JP4697530B2 publication Critical patent/JP4697530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a critical-current measuring method and system of a superconducting cable, capable of easily measuring critical current of the long superconducting cable. <P>SOLUTION: The critical-current measuring method of the superconducting cable measures the critical current of the super-conducting cable having a plurality of power transmission paths. Reciprocating current-carrying is performed, by making one-directional current flow in one power transmission path (cable core 10A) to be measured of the plurality of power transmission paths and making reverse-directional current flow in another power transmission path (cable core 10B), and the critical current Ic in the power transmission path to be measured is determined. Due to this constitution, the power transmission path itself can serve as a function of a lead wire. Thus, it is not necessary to use a long lead wire, and can solve all the problems, such as a problem of pull of the lead wire accompanying it or a problem of requiring bulk direct current power supply. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は超電導ケーブルの臨界電流測定方法と臨界電流測定システムに関するものである。特に、長尺の超電導ケーブル線路を構成する超電導ケーブルの臨界電流を簡便に測定できる臨界電流測定方法に関するものである。   The present invention relates to a critical current measuring method and a critical current measuring system for a superconducting cable. In particular, the present invention relates to a critical current measuring method capable of easily measuring the critical current of a superconducting cable constituting a long superconducting cable line.

超電導線材の臨界電流を測定する方法として、特許文献1に記載のものがある。これは、2本の超電導線材を絶縁した状態で補強材に沿わせ、両超電導線材の一端側を電気的に接続し、この超電導線材をコイル状に巻回して、その超電導線材の他端側から通電して電圧を測定することで臨界電流を測定する方法である。このように、超電導ケーブルに構成する前段階の超電導線材であれば、コイル状に巻回することにより臨界電流の測定を比較的容易に行なうことができる。しかし、このような臨界電流の測定技術は、布設後の超電導ケーブルの臨界電流の測定に利用することができない。   As a method for measuring the critical current of a superconducting wire, there is one described in Patent Document 1. This is because the two superconducting wires are insulated along the reinforcing material, one end sides of both superconducting wires are electrically connected, the superconducting wires are wound in a coil shape, and the other end side of the superconducting wires This is a method for measuring the critical current by measuring the voltage by energizing from. Thus, if it is the superconducting wire of the previous stage comprised to a superconducting cable, a critical current can be measured comparatively easily by winding in a coil shape. However, such a critical current measurement technique cannot be used to measure the critical current of a superconducting cable after installation.

一方、超電導ケーブルを布設後に竣工試験などでケーブル特性をチェックする目的で超電導ケーブルの臨界電流を測定する必要もある。その場合、例えば図4に示すように、単長の3心一括型超電導ケーブルにおける一本のケーブルコア10Aの両端にリード線30をつないで直流電源40と接続し、この電源からケーブルに通電して臨界電流の測定を行うことが考えられる。   On the other hand, it is also necessary to measure the critical current of a superconducting cable in order to check the cable characteristics in a completion test after laying the superconducting cable. In that case, for example, as shown in FIG. 4, a lead wire 30 is connected to both ends of a single cable core 10A in a single length three-core superconducting cable and connected to a DC power source 40, and the cable is energized from this power source. It is conceivable to measure the critical current.

特開2004-28901号公報JP 2004-28901 A

しかし、リード線を用いる上記の臨界電流測定方法では、長尺の超電導ケーブルの臨界電流を測定する際に、次のような問題があった。   However, the above critical current measurement method using lead wires has the following problems when measuring the critical current of a long superconducting cable.

(1)長尺のリード線が必要になる。
超電導ケーブルを実線路で使用することを考えると、ケーブル単長は1〜5kmとなると想定される。このような長尺線路でリード線を用いた臨界電流の測定を行おうとすれば、ケーブル単長よりも長いリード線が必要になる。例えば、1kmのケーブルの片端側に直流電源を配置する場合、リード線も1km以上の長さが必要になり、ケーブルの中間部に直流電源を配置する場合でも、500m以上のリード線が2本必要になる。
(1) Long lead wires are required.
Considering the use of superconducting cables on actual lines, the cable length is expected to be 1-5km. If it is going to measure the critical current using a lead wire with such a long track, a lead wire longer than a single cable length is required. For example, if a DC power supply is placed on one end of a 1km cable, the lead wire must also be 1km or longer, and even if a DC power supply is placed in the middle of the cable, two lead wires of 500m or more are required. I need it.

(2)リード線を引き回すスペースが必要になる。
リード線が長尺になると、この長尺のリード線を引き回すスペースを確保しなければならず、その引き回し作業も煩雑である。例えば、超電導ケーブルを地下の管路に布設している場合、別途リード線を挿入するための専用管路が必要になり、管路活用上の制約になる。また、地上に超電導ケーブルを布設し、このケーブルに沿わせてリード線を配置することも考えられるが、一般に地上には道路や建造物が多数存在し、このようなリード線の配置によりケーブルの臨界電流を測定することは事実上不可能である。特に、このリード線は、臨界電流測定時にのみ必要であり、超電導ケーブルの運転後には取り外してもよいため、リード線の引き回しのための専用部材の使用やスペースの確保は極力避けたい。
(2) Space for routing the lead wire is required.
When the lead wire becomes long, a space for routing the long lead wire must be secured, and the routing operation is complicated. For example, when a superconducting cable is installed in an underground conduit, a dedicated conduit for inserting a lead wire is necessary, which is a restriction on the utilization of the conduit. In addition, it is conceivable to install a superconducting cable on the ground and arrange the lead wires along the cable. Generally, there are many roads and buildings on the ground, and the arrangement of the lead wires causes the cable to be arranged. It is virtually impossible to measure the critical current. In particular, this lead wire is necessary only at the time of critical current measurement, and may be removed after the superconducting cable is operated. Therefore, it is desirable to avoid the use of a dedicated member for the lead wire routing and securing the space as much as possible.

(3)大容量の直流電源が必要になる。
リード線が長尺になると、その抵抗値が大きくなる。抵抗値の大きなリード線に所望の電流を通電しようとすれば大きな電圧が発生するため、大容量の直流電源が必要になる。一般に、超電導ケーブルの臨界電流は数kAオーダーとなるため、このような大電流で高電圧を発生させることを考慮すると、非常に大容量の電源を使用せざるを得ず、およそ現実的ではない。例えば、1000mm2の断面積を有するリード線の1km当たりの抵抗は約0.02Ωであり、4kAの電流を通電するために必要な電圧は80Vとなる。実際の臨界電流測定では、電流値を徐々に増加させながら電流と電圧の特性を計測するため、インダクタンス成分による電圧も発生することを考慮すると、実質上100V以上の電圧を持つ直流電源が必要になる。
(3) A large capacity DC power supply is required.
When the lead wire becomes long, its resistance value increases. Since a large voltage is generated if a desired current is passed through a lead wire having a large resistance value, a large-capacity DC power supply is required. In general, the critical current of superconducting cables is on the order of several kA, so in consideration of generating a high voltage with such a large current, it is necessary to use a very large capacity power supply, which is not practical. . For example, the resistance per 1 km of a lead wire having a cross-sectional area of 1000 mm 2 is about 0.02Ω, and the voltage required to pass a current of 4 kA is 80V. In actual critical current measurement, since the current and voltage characteristics are measured while gradually increasing the current value, it is necessary to have a DC power supply with a voltage of 100V or higher in consideration of the fact that voltage due to inductance components is also generated. Become.

本発明は上記の事情に鑑みてなされたもので、その主目的は、長尺の超電導ケーブルの臨界電流を簡便に測定できる超電導ケーブルの臨界電流測定方法と測定システムを提供することにある。   The present invention has been made in view of the above circumstances, and a main object thereof is to provide a superconducting cable critical current measuring method and measuring system capable of easily measuring the critical current of a long superconducting cable.

本発明臨界電流測定方法の第一の態様は、複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定方法である。これら複数本の送電路のうち、測定対象となる一本の送電路に一方向の電流を、他の一本の送電路に逆方向の電流を流して往復通電を行い、測定対象の送電路の臨界電流Icを求めることを特徴とする。   The first aspect of the critical current measuring method of the present invention is a superconducting cable critical current measuring method for measuring the critical current of a superconducting cable having a plurality of transmission lines. Out of these multiple transmission paths, a one-way current is passed through one transmission path to be measured, and a reverse current is passed through the other transmission path for reciprocal energization. The critical current Ic is obtained.

複数本ある送電路のうち、一本の送電路に一方向の電流を、他の一本の送電路に逆方向の電流を流して往復通電を行うことで、送電路自体がリード線の機能を兼ねることができる。このとき、測定対象の送電路ではなく、リード線として機能する他の一本の送電路は、実質的に抵抗がない。このような送電路を利用することで、長尺のリード線を用いる必要がなく、それに伴うリード線の引き回しの問題や、大容量の直流電源を必要とするといった問題を全て解消することができる。   Among the multiple transmission paths, the transmission path itself functions as a lead wire by flowing current in one direction through one transmission path and reverse current through the other transmission path. Can also serve. At this time, the other transmission line functioning as a lead wire, not the transmission line to be measured, has substantially no resistance. By using such a power transmission path, it is not necessary to use a long lead wire, and it is possible to solve all of the problems such as the lead wire routing problem and the need for a large-capacity DC power supply. .

複数本ある送電路には、3心のコアを撚り合せて一つの断熱管内に収納した3心一括型超電導ケーブルにおける各コアや、単心コアを一つの断熱管内に収納した単心超電導ケーブルを3本布設した場合の各単心超電導ケーブルが利用できる。一般に、3心一括型超電導ケーブルの方がコンパクトな形状で大電流を通電できるメリットがある。この送電路の具体例は、後述する本発明の他の態様においても共通する。   Each transmission line has a single core superconducting cable in which three cores are twisted together and housed in a single heat insulation tube. Each single-core superconducting cable when three cables are installed can be used. In general, the 3-core batch type superconducting cable has the advantage that it can carry a large current with a compact shape. The specific example of this power transmission path is common also in the other aspect of this invention mentioned later.

臨界電流の測定を行う場合、各送電路の接続は、例えば、3心一括型超電導ケーブルにおける第一コアと第二コアとを一端側で接続し、両コアの他端側に直流電源を接続して、第一コアに往路電流を、第二コアに復路電流が流れるようにすればよい。   When measuring the critical current, for example, the connection of each transmission line is made by connecting the first core and the second core in one-core superconducting cable at one end and connecting the DC power supply to the other end of both cores. Then, the forward current may flow through the first core and the return current flow through the second core.

そして、この往復通電時の電気特性を利用して臨界電流Icを求める。代表的には、上記の往復通電を行い、その電流(I)を変化させて、その際に生じる電圧(V)を測定し、I-V特性から測定対象の送電路の臨界電流Icを求める。このI-V特性を求めて臨界電流を測定する手法も、本発明の他の態様において共通する。   Then, the critical current Ic is obtained using the electrical characteristics during the reciprocal energization. Typically, the above-described reciprocal energization is performed, the current (I) is changed, the voltage (V) generated at that time is measured, and the critical current Ic of the transmission line to be measured is obtained from the IV characteristics. The method of obtaining the IV characteristics and measuring the critical current is also common in other embodiments of the present invention.

この第一の態様において、他の一本の送電路に流れる電流の磁場の影響を考慮して、測定対象の送電路の臨界電流Icを補正することが好ましい。つまり、予め、二本のサンプル送電路のうち、一方に一方向の電流を、他方に逆方向の電流を流した往復通電時の臨界電流Ic-Rと、一本のサンプル送電路を用いた一方向通電時の臨界電流Ic-Oとの相関関係を求めておく。そして、この相関関係に基づいて、前記測定対象の送電路の臨界電流Icを、一本の送電路に一方向の通電を行った場合の臨界電流Ic-Cに補正すればよい。   In the first aspect, it is preferable to correct the critical current Ic of the transmission line to be measured in consideration of the influence of the magnetic field of the current flowing through the other transmission line. In other words, of the two sample transmission lines, the critical current Ic-R at the time of reciprocal energization in which one direction of current flows in one direction and the opposite direction of current flows in the other, and one sample transmission line were used. Find the correlation with the critical current Ic-O during unidirectional energization. Then, based on this correlation, the critical current Ic of the transmission line to be measured may be corrected to the critical current Ic-C when a single transmission line is energized in one direction.

この補正により、他の一本の送電路に流れる電流の磁場の影響を排除して、一本の送電路に一方向の通電を行った場合のより正確な臨界電流を求めることができる。   By this correction, it is possible to eliminate the influence of the magnetic field of the current flowing through the other single transmission line, and to obtain a more accurate critical current when a single transmission line is energized in one direction.

サンプル送電路は、例えば実線路に布設された超電導ケーブルと同様の構成を持つ短尺のケーブルを利用することができる。サンプル送電路の長さは、臨界電流Ic-Rと、臨界電流Ic-Oを求めるのに支障がない程度の長さを適宜選択すればよい。   For the sample power transmission path, for example, a short cable having the same configuration as the superconducting cable laid on the actual line can be used. The length of the sample transmission line may be appropriately selected so as not to hinder the critical current Ic-R and the critical current Ic-O.

次に、本発明臨界電流測定方法の第二の態様は、複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定方法である。これら複数本の送電路のうち、測定対象となる一本の送電路に一方向の電流を、他の二本の送電路に逆方向の電流を流して往復通電を行い、測定対象の送電路の臨界電流を求めることを特徴とする。   Next, a second aspect of the critical current measuring method of the present invention is a critical current measuring method for a superconducting cable that measures the critical current of a superconducting cable having a plurality of transmission lines. Among these multiple transmission paths, a current in one direction flows through one transmission path to be measured and a current in the opposite direction flows through the other two transmission paths to perform reciprocal energization. The critical current is obtained.

この方法においても、第一の態様と同様に、送電路自体がリード線の機能を兼ねることができる。そのため、長尺のリード線を用いる必要がなく、それに伴うリード線の引き回しの問題や、大容量の直流電源を必要とするといった問題を全て解消することができる。   Also in this method, as in the first aspect, the power transmission path itself can also function as a lead wire. Therefore, it is not necessary to use a long lead wire, and it is possible to solve all of the problems such as the lead wire routing problem and the need for a large-capacity DC power supply.

さらに、第二の態様では、測定対象でない他の二本の送電路に、測定対象の送電路とは逆方向の電流が分配して流される。この他の二本の送電路に流れる分配電流は、基本的に同等の大きさに分けられて分流するため、これら分配電流により、測定対象の送電路に印加される外部磁場が相当程度キャンセルされる。そのため、第二の態様で得られる臨界電流値は、単相(1本)の送電路に通電して測定した臨界電流値とほぼ同等の結果が得られ、補正する必要がない。   Furthermore, in the second aspect, a current in the direction opposite to the measurement target transmission path is distributed and passed to the other two transmission paths that are not the measurement target. The distribution currents that flow through the other two power transmission lines are basically divided into the same magnitudes and shunted, so that the external magnetic field applied to the transmission line to be measured is canceled to a considerable extent by these distribution currents. The For this reason, the critical current value obtained in the second mode is almost the same as the critical current value measured by energizing a single-phase (one) transmission line, and does not need to be corrected.

第二の態様のより具体的な代表例としては、3心一括型超電導ケーブルにおける第一コアの一端と、第二コアおよび第三コアの一端とを接続し、第一コアの他端と、第二コアおよび第三コアの他端との間に直流電源を接続して、第一コアに往路電流を、第二・第三コアに復路電流が流れるようにすればよい。   As a more specific representative example of the second embodiment, one end of the first core in the three-core collective superconducting cable, one end of the second core and the third core are connected, the other end of the first core, A direct current power source may be connected between the second core and the other end of the third core so that the forward current flows through the first core and the return current flows through the second and third cores.

また、本発明臨界電流測定システムの第一の態様は、複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定システムである。このシステムは、複数本の送電路のうち、一本の送電路における一端と、他の一本の送電路における一端とを電気的につなぐ接続部を有する。また、一本の送電路に一方向の電流を、他の一本の送電路に逆方向の電流を流すように、前記一本の送電路の他端と他の一本の送電路の他端とに接続される直流電源を具備する。   The first aspect of the critical current measurement system of the present invention is a critical current measurement system for a superconducting cable that measures the critical current of a superconducting cable having a plurality of transmission lines. This system has a connection part which electrically connects one end in one power transmission path and one end in another one power transmission path among a plurality of power transmission paths. In addition, the other end of the one power transmission path and the other one power transmission path so that a current in one direction flows in one power transmission path and a current in the reverse direction flows in the other power transmission path. A DC power supply connected to the end is provided.

このシステムによれば、一本の送電路における一端と、他の一本の送電路における一端とを電気的につなぐことで、両送電路を用いて往復送電を行うことができ、送電路自体がリード線の機能を兼ねることができる。そのため、長尺のリード線を用いる必要がなく、それに伴うリード線の引き回しの問題や、大容量の直流電源を必要とするといった問題を全て解消することができる。   According to this system, it is possible to perform round-trip power transmission using both transmission paths by electrically connecting one end of one transmission path and one end of the other transmission path. Can also function as a lead wire. Therefore, it is not necessary to use a long lead wire, and it is possible to solve all of the problems such as the lead wire routing problem and the need for a large-capacity DC power supply.

次に、本発明臨界電流測定システムの第二の態様は、複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定システムである。このシステムは、複数本の送電路のうち、一本の送電路における一端と、他の二本の送電路における一端とを電気的につなぐ接続部を有する。また、一本の送電路に一方向の電流を、他の二本の送電路に逆方向の電流を流すように、前記一本の送電路の他端と他の二本の送電路の他端とに接続される直流電源を具備する。   Next, a second aspect of the critical current measurement system of the present invention is a critical current measurement system for a superconducting cable that measures the critical current of a superconducting cable having a plurality of transmission lines. This system has a connection part which electrically connects one end in one power transmission path and the other two power transmission paths among a plurality of power transmission paths. In addition, the other end of the one transmission path and the other two transmission paths are arranged so that a current in one direction flows in one transmission path and a current in the reverse direction flows in the other two transmission paths. A DC power supply connected to the end is provided.

このシステムによれば、一本の送電路における一端と、他の二本の送電路における一端とを電気的につなぐことで、第一の態様と同様に往復通電を行うことができ、送電路自体がリード線の機能を兼ねることができる。さらに、このシステムでは、測定対象でない他の二本の送電路に流れる分配電流が分流することにより、測定対象の送電路に印加される外部磁場が実質的にキャンセルされる。そのため、本システムで得られる臨界電流値は、単相(1本)の送電路に通電して測定した臨界電流値とほぼ同等の結果が得られ、補正する必要がない。   According to this system, it is possible to perform reciprocal energization in the same manner as in the first aspect by electrically connecting one end of one power transmission path and one end of the other two power transmission paths. The device itself can also function as a lead wire. Further, in this system, the external magnetic field applied to the power transmission path to be measured is substantially canceled by dividing the distribution current flowing through the other two power transmission paths that are not the measurement target. For this reason, the critical current value obtained by this system is almost the same as the critical current value measured by energizing a single-phase (one) transmission line and does not need to be corrected.

上記本発明システムにおける接続部は、例えば超電導ケーブルの端部に短いリード線を接続することで形成すれば良い。このことは、第一・第二のいずれの態様のシステムであっても同様である。   The connection part in the system of the present invention may be formed, for example, by connecting a short lead wire to the end of the superconducting cable. The same applies to the system of either the first or second aspect.

本発明方法およびシステムによれば、次の効果を奏することができる。   According to the method and system of the present invention, the following effects can be obtained.

(1)超電導ケーブルを構成する複数の送電路を用いて往復送電を行うことで、送電路自体がリード線の機能を兼ねることができる。そのため、長尺のリード線を用いる必要がなく、それに伴うリード線の引き回しの問題や、大容量の直流電源を必要とするといった問題を解消することができる。特に、巻取り状態でない長尺の超電導ケーブル、例えば布設後の超電導ケーブルの臨界電流の測定を簡便に行なうことができる。   (1) By performing round-trip power transmission using a plurality of power transmission paths that constitute a superconducting cable, the power transmission path itself can also function as a lead wire. For this reason, it is not necessary to use a long lead wire, and it is possible to solve the problem of lead wire routing and the need for a large-capacity DC power supply. In particular, it is possible to easily measure the critical current of a long superconducting cable that is not wound up, for example, a superconducting cable after installation.

(2)二本のサンプル送電路のうち、一方に一方向の電流を、他方に逆方向の電流を流した往復通電時の臨界電流Ic-Rと、一本のサンプル送電路を用いた一方向通電時の臨界電流Ic-Oとの相関関係を求めておくことで、この相関関係に基づいて、測定対象の送電路の臨界電流Icを、一本の送電路に一方向の通電を行った場合の臨界電流Ic-Cに補正することができる。この補正により、他の一本の送電路に流れる電流の磁場の影響を排除して、一本の送電路に一方向の通電を行った場合のより正確な臨界電流を求めることができる。   (2) Of the two sample transmission lines, one using one sample transmission line and the critical current Ic-R during reciprocal energization with one direction current flowing in one and the other in the opposite direction. By obtaining the correlation with the critical current Ic-O during directional energization, based on this correlation, the critical current Ic of the transmission line to be measured is energized in one direction to one transmission line. The critical current Ic-C can be corrected. By this correction, it is possible to eliminate the influence of the magnetic field of the current flowing through the other single transmission line, and to obtain a more accurate critical current when a single transmission line is energized in one direction.

(3)複数本の送電路のうち、測定対象となる一本の送電路に一方向の電流を、他の二本の送電路に逆方向の電流を流して往復通電を行うことで、長尺のリード線を用いることなく超電導ケーブルの臨界電流を測定できる。その上、他の二本の送電路に流れる分配電流により、測定対象の送電路に印加される外部磁場がより多くキャンセルされることになる。それにより、得られる臨界電流値は、単相(1本)の送電路に通電して測定した臨界電流値とほぼ同等の結果となり、補正する必要がない。   (3) Among multiple transmission lines, long-term energization is performed by flowing a current in one direction through one transmission line to be measured and a current in the opposite direction through the other two transmission lines. The critical current of a superconducting cable can be measured without using a long lead wire. In addition, the distribution of current flowing through the other two power transmission paths cancels more external magnetic fields applied to the power transmission path to be measured. As a result, the obtained critical current value is almost the same as the critical current value measured by energizing a single-phase (one) transmission line, and does not need to be corrected.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(実施の形態1)
本例では、3心一括型超電導ケーブルの臨界電流を測定する場合を例として説明する。先に、この超電導ケーブルの構成を図1に基づいて説明する。この超電導ケーブル100は、3心のケーブルコア10を撚り合せて断熱管20内に収納した構成である。
(Embodiment 1)
In this example, a case where the critical current of a three-core superconducting cable is measured will be described as an example. First, the configuration of this superconducting cable will be described with reference to FIG. The superconducting cable 100 has a configuration in which three cable cores 10 are twisted and accommodated in a heat insulating tube 20.

各ケーブルコア10は、中心から順にフォーマ11、超電導導体層12、絶縁層13、超電導シールド層14、保護層15を具えている。通常、フォーマ11は、撚り線やパイプ材で構成される。導体層12は、フォーマ11上に超電導線材を多層に螺旋状に巻回して構成される。代表的には、超電導線材には、酸化物超電導材料からなる複数本のフィラメントが銀シースなどの安定化金属中に配されたテープ状のものが用いられる。絶縁層13は絶縁紙を巻回して構成される。シールド層14は、絶縁層13上に導体層12と同様の超電導線材を螺旋状に巻回して構成する。そして、保護層15には絶縁紙などが用いられる。   Each cable core 10 includes a former 11, a superconducting conductor layer 12, an insulating layer 13, a superconducting shield layer 14, and a protective layer 15 in order from the center. Usually, the former 11 is composed of a stranded wire or a pipe material. The conductor layer 12 is configured by spirally winding a superconducting wire on the former 11 in multiple layers. Typically, a tape-like material in which a plurality of filaments made of an oxide superconducting material are arranged in a stabilizing metal such as a silver sheath is used as the superconducting wire. The insulating layer 13 is configured by winding insulating paper. The shield layer 14 is formed by spirally winding a superconducting wire similar to the conductor layer 12 on the insulating layer 13. Insulating paper or the like is used for the protective layer 15.

また、断熱管20は、内管21と外管22とからなる二重管の間に断熱材(図示せず)が配置され、かつ二重管内が真空引きされた構成である。断熱管20の外側には、防食層23が形成されている。そして、中空のフォーマ11内や内管21とコア10の間に形成される空間に液体窒素などの冷媒を充填・循環し、絶縁層13に冷媒が含浸された状態で使用状態とされる。   The heat insulating tube 20 has a structure in which a heat insulating material (not shown) is disposed between the double tubes composed of the inner tube 21 and the outer tube 22, and the inside of the double tube is evacuated. An anticorrosion layer 23 is formed outside the heat insulating tube 20. The space formed between the hollow former 11 and between the inner tube 21 and the core 10 is filled and circulated with a refrigerant such as liquid nitrogen, and the insulating layer 13 is impregnated with the refrigerant to be used.

このような超電導ケーブルを布設して構成した超電導ケーブル線路において、臨界電流Icの測定を行う。その測定手順を図2に基づいて説明する。図2では、説明の便宜上、各ケーブルコア10A〜10Cを平行に配して直線状に示しているが、実際の各ケーブルコア10A〜10Cは互いに螺旋状に撚り合わされている。ここでは、3相のケーブルコアのうち、第一相のケーブルコア10Aを測定対象の送電路とし、第二相のケーブルコア10Bを往復通電を行うための送電路とし、残りの第三相のケーブルコア10Cは臨界電流の測定には何ら用いない。   In the superconducting cable line constructed by laying such a superconducting cable, the critical current Ic is measured. The measurement procedure will be described with reference to FIG. In FIG. 2, for convenience of explanation, the cable cores 10A to 10C are arranged in parallel and shown in a straight line, but the actual cable cores 10A to 10C are spirally twisted together. Here, among the three-phase cable cores, the first-phase cable core 10A is the transmission line to be measured, the second-phase cable core 10B is the transmission line for reciprocal energization, and the remaining third-phase cable cores The cable core 10C is not used for measuring the critical current.

臨界電流の測定を行うには、第一相のケーブルコア10Aの一端と、第二相のケーブルコア10Bの一端とを短いリード線を介して接続しておく。つまり、超電導導体層の端部をリード線31で接続しておく。一方、第一相のケーブルコア10Aの他端と、第二相のケーブルコア10Bの他端の各々には電流端子を設け、この端子に短いリード線32を介して直流電源40を接続する。この接続により、測定対象となる第一相のケーブルコア10Aには往路電流が、第二相のケーブルコア10Bには復路電流が流されることになる。   To measure the critical current, one end of the first-phase cable core 10A and one end of the second-phase cable core 10B are connected via a short lead wire. That is, the end portions of the superconducting conductor layers are connected by the lead wires 31. On the other hand, a current terminal is provided at each of the other end of the first-phase cable core 10A and the other end of the second-phase cable core 10B, and a DC power supply 40 is connected to this terminal via a short lead wire 32. With this connection, a forward current flows through the first-phase cable core 10A to be measured, and a return current flows through the second-phase cable core 10B.

この接続状態において、超電導ケーブルの臨界電流の測定は、例えば次のように行う。直流電源の電流を徐々に増加させながら第一相のケーブルコア10Aを往路、第二相のケーブルコア10Bを復路とする往復通電を行う。その際、電圧信号を測定し、電流-電圧特性を記録する。そして、この電流-電圧特性から、1μV/cmの電界が発生した電流を臨界電流Icとして求める。   In this connected state, the critical current of the superconducting cable is measured, for example, as follows. While gradually increasing the current of the DC power supply, reciprocal energization is performed using the first phase cable core 10A as the forward path and the second phase cable core 10B as the return path. At that time, the voltage signal is measured and the current-voltage characteristics are recorded. From this current-voltage characteristic, the current at which an electric field of 1 μV / cm is generated is obtained as the critical current Ic.

本例の方法によれば、3心あるケーブルコアのうち、第一相のケーブルコア10Aを測定対象とし、第二相のケーブルコア10Bを復路電流通電用の送電路として利用することで、両ケーブルコア10A、10B同士を接続する短いリード線31と、各ケーブルコアと直流電源40を接続する短いリード線32のみを用いれば臨界電流の測定を行なうことができる。そのため、必要なリード線の長さを格段に短かくでき、長尺のリード線を引き回すスペースや煩雑な作業を解消できる。さらに、短尺のリード線でよいため、リード線自体の抵抗値は低く、低電圧で所望の電流を流すことができるため、大容量の直流電源を用いる必要もない。   According to the method of this example, of the three cores, the first phase cable core 10A is the measurement target, and the second phase cable core 10B is used as the power transmission path for the return current conduction. If only the short lead wire 31 connecting the cable cores 10A and 10B and the short lead wire 32 connecting each cable core and the DC power source 40 are used, the critical current can be measured. Therefore, the length of the necessary lead wire can be remarkably shortened, and the space and complicated work for routing the long lead wire can be eliminated. Furthermore, since a short lead wire may be used, the resistance value of the lead wire itself is low, and a desired current can be passed at a low voltage, so there is no need to use a large-capacity DC power supply.

(実施の形態2)
次に、実施の形態1で求められた臨界電流Icを、外部磁場の影響を考慮して補正する本発明実施の形態を説明する(図2)。実施の形態1による測定方法では、測定対象となる第一相のケーブルコア10Aが、第二相のケーブルコア10Bに流れる電流の磁場の影響を受けるため、この磁場の影響を考慮して臨界電流Icを補正すれば、より正確な臨界電流値を求めることができる。
(Embodiment 2)
Next, an embodiment of the present invention for correcting the critical current Ic obtained in Embodiment 1 in consideration of the influence of an external magnetic field will be described (FIG. 2). In the measurement method according to the first embodiment, the first-phase cable core 10A to be measured is affected by the magnetic field of the current flowing through the second-phase cable core 10B. If Ic is corrected, a more accurate critical current value can be obtained.

この場合、臨界電流の測定に先立って、測定対象となる超電導ケーブルと同様の構成を持つ短尺(例えば5m)のサンプルケーブルを用意する。サンプルケーブルは測定対象の超電導ケーブルとは長さが異なる以外は同一の構成である。このサンプルケーブルの第一相の両端部にリード線を介して直流電源を接続して一方向通電を行い、電流を徐々に増加させて、その際の電流-電圧特性から臨界電流Ic-Oを求めておく。   In this case, prior to the measurement of the critical current, a short (for example, 5 m) sample cable having the same configuration as the superconducting cable to be measured is prepared. The sample cable has the same configuration as that of the superconducting cable to be measured except for the length. Connect a DC power supply to both ends of the first phase of this sample cable via a lead wire to conduct unidirectional energization, gradually increase the current, and calculate the critical current Ic-O from the current-voltage characteristics at that time. I ask for it.

次に、サンプルケーブルの第一相の一端と第二相の一端とをリード線で接続し、さらに第一相の他端と第二相の他端との間にリード線を介して直流電源を接続する。ここでのケーブルにおける接続箇所も実施の形態1と同様に各相の超電導導体層の端部である。その状態で、第一相に往路電流を、第二相に復路電流を流して往復通電を行い、電流を徐々に増加させて、その際の電流-電圧特性から臨界電流Ic-Rを求めておく。   Next, one end of the first phase of the sample cable and one end of the second phase are connected by a lead wire, and a DC power source is connected via a lead wire between the other end of the first phase and the other end of the second phase. Connect. The connection place in the cable here is also the end of the superconducting conductor layer of each phase, as in the first embodiment. In that state, the reciprocal energization is performed with the forward current in the first phase and the return current in the second phase, and the current is gradually increased. The critical current Ic-R is obtained from the current-voltage characteristics at that time. deep.

これら臨界電流Ic-Oと臨界電流Ic-Rを求めるに際して、サンプルケーブルは短尺であるため、その臨界電流測定時に必要なリード線が短くてよいことはいうまでもない。   When obtaining the critical current Ic-O and the critical current Ic-R, since the sample cable is short, it goes without saying that the lead wire required for the critical current measurement may be short.

続いて、これらの測定結果から、第一相のみに一方向通電した場合の臨界電流Ic-Oと、第一相と第二相を用いて往復通電した場合の臨界電流Ic-Rとの相関関係を求めておく。   Subsequently, from these measurement results, the correlation between the critical current Ic-O when the unidirectional current is applied only to the first phase and the critical current Ic-R when the reciprocal current is applied using the first and second phases. Ask for a relationship.

そして、この相関関係に基づいて、実施の形態1で求めた臨界電流Icを補正し、第二相の往路通電を利用することなく第一相のみで一方向通電により測定した場合の臨界電流Ic-Cを推定することができる。   Then, based on this correlation, the critical current Ic obtained in the first embodiment is corrected, and the critical current Ic measured by unidirectional energization using only the first phase without using the second-phase forward energization. -C can be estimated.

(実施の形態3)
次に、実施の形態1で説明した3心一括超電導ケーブルの全てのケーブルコアを用いて臨界電流の測定を行う実施の形態を図3に基づいて説明する。図3においても、図2と同様に、説明の便宜上、各ケーブルコアは直線状に並列して示している。
(Embodiment 3)
Next, an embodiment in which the critical current is measured using all the cable cores of the three-core batch superconducting cable described in the first embodiment will be described with reference to FIG. Also in FIG. 3, as in FIG. 2, for convenience of explanation, the cable cores are shown in parallel in a straight line.

本例では、測定対象ではない第二相と第三相のケーブルコア10B、10Cの一端をリード線33で接続し、さらにこの接続箇所を測定対象となる第一相のケーブルコア10Aの一端とリード線34で接続する。つまり、第一相のケーブルコア10Aに対して、第二相および第三相のケーブルコア10B、10Cが並列に接続されることになる。ここでのケーブルコアにおける接続箇所も実施の形態1と同様に各相の超電導導体層の端部である。   In this example, one end of the second-phase and third-phase cable cores 10B and 10C that are not the measurement target is connected by the lead wire 33, and this connection portion is connected to one end of the first-phase cable core 10A that is the measurement target. Connect with lead wire 34. That is, the second and third phase cable cores 10B and 10C are connected in parallel to the first phase cable core 10A. The connection place in the cable core here is also the end of the superconducting conductor layer of each phase as in the first embodiment.

一方、第一相の他端はリード線35を介して直流電源40の一方の極に接続される。また、第二相および第三相の他端同士は互いにリード線36で接続され、そのリード線36が直流電源40の他方の極に接続される。   On the other hand, the other end of the first phase is connected to one pole of the DC power supply 40 via the lead wire 35. The other ends of the second phase and the third phase are connected to each other by a lead wire 36, and the lead wire 36 is connected to the other pole of the DC power supply 40.

この状態で通電を行うと、第一相には往路電流が通電され、第二相および第三相の各々には復路電流が分流されて、往復通電が行われる。その際、この復路電流の第二相と第三相への分配は、同等の大きさの電流となり、第二相および第三相の各々から第一相に対して作用する各磁場は交差することになる。そのため、この第二相と第三相に流れる復路電流により生じる磁場がある程度相殺され、測定対象の第一相に対して作用する外部磁場を低減することができる。   When energization is performed in this state, the forward current is applied to the first phase, and the return current is shunted to each of the second phase and the third phase, so that reciprocation is performed. At that time, the distribution of the return current to the second phase and the third phase becomes an equal current, and the magnetic fields acting on the first phase from the second phase and the third phase intersect each other. It will be. Therefore, the magnetic field generated by the return current flowing in the second phase and the third phase is offset to some extent, and the external magnetic field acting on the first phase to be measured can be reduced.

臨界電流の測定は、実施の形態1と同様に、上記往復通電の際の電流-電圧特性を求め、その電流-電圧特性を元に臨界電流を求める。本例の方法によれば、測定対象の第一相に印加される外部磁場が相当程度キャンセルされた状態で臨界電流の測定が行えるため、得られる臨界電流値は、単相の送電路に通電して測定した臨界電流値とほぼ同等の結果で、補正する必要がない。   In the measurement of the critical current, as in the first embodiment, the current-voltage characteristic during the reciprocal energization is obtained, and the critical current is obtained based on the current-voltage characteristic. According to the method of this example, since the critical current can be measured in a state where the external magnetic field applied to the first phase to be measured is considerably canceled, the obtained critical current value is applied to the single-phase transmission line. The result is almost the same as the measured critical current value, and no correction is required.

本発明超電導ケーブルの臨界電流測定方法および臨界電流測定システムは、長尺の超電導ケーブル、特に既に布設された超電導ケーブル線路におけるケーブルの臨界電流を測定することに利用することができる。   The critical current measuring method and critical current measuring system for a superconducting cable according to the present invention can be used for measuring the critical current of a long superconducting cable, particularly a cable in a superconducting cable line already installed.

超電導ケーブルの断面図である。It is sectional drawing of a superconducting cable. 実施の形態1に係る超電導ケーブルの臨界電流測定方法の説明図ある。3 is an explanatory diagram of a method for measuring the critical current of a superconducting cable according to Embodiment 1. FIG. 実施の形態3に係る超電導ケーブルの臨界電流測定方法の説明図ある。6 is an explanatory diagram of a method for measuring a critical current of a superconducting cable according to Embodiment 3. FIG. 従来の超電導ケーブルの臨界電流測定方法の説明図である。It is explanatory drawing of the critical current measuring method of the conventional superconducting cable.

符号の説明Explanation of symbols

100 超電導ケーブル
10、10A、10B、10C ケーブルコア
11 フォーマ 12 超電導導体層 13 絶縁層 14 超電導シールド層
15 保護層
20 断熱管
21 内管 22 外管 23 防食層
30、31、32、33、34、35、36 リード線
40 直流電源
100 superconducting cable
10, 10A, 10B, 10C cable core
11 Former 12 Superconducting conductor layer 13 Insulating layer 14 Superconducting shield layer
15 Protective layer
20 Insulated pipe
21 Inner pipe 22 Outer pipe 23 Anticorrosion layer
30, 31, 32, 33, 34, 35, 36 Lead wire
40 DC power supply

Claims (5)

複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定方法であって、
前記複数本の送電路のうち、測定対象となる一本の送電路に一方向の電流を、他の一本の送電路に逆方向の電流を流して往復通電を行い、測定対象の送電路の臨界電流Icを求めることを特徴とする超電導ケーブルの臨界電流測定方法。
A method for measuring a critical current of a superconducting cable for measuring a critical current of a superconducting cable having a plurality of transmission lines,
Among the plurality of power transmission paths, a reciprocal energization is performed by passing a current in one direction through one power transmission path to be measured, and a current in the reverse direction through the other power transmission path. A method for measuring the critical current of a superconducting cable, characterized in that the critical current Ic of the superconducting cable is obtained.
予め、二本のサンプル送電路のうち、一方に一方向の電流を、他方に逆方向の電流を流した往復通電時の臨界電流Ic-Rと、一本のサンプル送電路を用いた一方向通電時の臨界電流Ic-Oとの相関関係を求めておき、
この相関関係に基づいて、前記測定対象の送電路の臨界電流Icを、一本の送電路に一方向の通電を行った場合の臨界電流Ic-Cに補正することを特徴とする請求項1に記載の超電導ケーブルの臨界電流測定方法。
Preliminary critical current Ic-R at the time of reciprocating energization in which one direction of current flows in one of the two sample transmission lines and the other direction in the other direction, and one direction using one sample transmission line Find the correlation with the critical current Ic-O during energization,
The critical current Ic of the transmission line to be measured is corrected based on this correlation to a critical current Ic-C when a single transmission line is energized in one direction. 4. A method for measuring a critical current of a superconducting cable according to 1.
複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定方法であって、
前記複数本の送電路のうち、測定対象となる一本の送電路に一方向の電流を、他の二本の送電路に逆方向の電流を流して往復通電を行い、測定対象の送電路の臨界電流を求めることを特徴とする超電導ケーブルの臨界電流測定方法。
A method for measuring a critical current of a superconducting cable for measuring a critical current of a superconducting cable having a plurality of transmission lines,
Among the plurality of transmission lines, a one-way current flows through one transmission line to be measured and a reverse current flows through the other two transmission lines to perform reciprocal energization, and the measurement target transmission line A method for measuring a critical current of a superconducting cable, characterized by obtaining a critical current of the superconducting cable.
複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定システムであって、
前記複数本の送電路のうち、一本の送電路における一端と、他の一本の送電路における一端とを電気的につなぐ接続部と、
一本の送電路に一方向の電流を、他の一本の送電路に逆方向の電流を流すように、前記一本の送電路の他端と他の一本の送電路の他端とに接続される直流電源とを有することを特徴とする超電導ケーブルの臨界電流測定システム。
A superconducting cable critical current measuring system for measuring a critical current of a superconducting cable having a plurality of transmission lines,
Among the plurality of power transmission paths, one end of one power transmission path and a connection portion that electrically connects one end of the other power transmission path;
The other end of the one transmission line and the other end of the other transmission line so that a current in one direction flows in one transmission line and a current in the reverse direction flows in the other transmission line. And a DC power supply connected to the superconducting cable.
複数本の送電路を有する超電導ケーブルの臨界電流を測定する超電導ケーブルの臨界電流測定システムであって、
前記複数本の送電路のうち、一本の送電路における一端と、他の二本の送電路における一端とを電気的につなぐ接続部と、
一本の送電路に一方向の電流を、他の二本の送電路に逆方向の電流を流すように、前記一本の送電路の他端と他の二本の送電路の他端とに接続される直流電源とを有することを特徴とする超電導ケーブルの臨界電流測定システム。
A superconducting cable critical current measuring system for measuring a critical current of a superconducting cable having a plurality of transmission lines,
Of the plurality of power transmission paths, one end of one power transmission path and a connection portion that electrically connects one end of the other two power transmission paths;
The other end of the one transmission line and the other two transmission lines, so that a one-way current flows in one transmission line and a reverse current flows in the other two transmission lines. And a DC power supply connected to the superconducting cable.
JP2005154740A 2005-05-26 2005-05-26 Critical current measuring method and critical current measuring system for superconducting cable Expired - Fee Related JP4697530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154740A JP4697530B2 (en) 2005-05-26 2005-05-26 Critical current measuring method and critical current measuring system for superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154740A JP4697530B2 (en) 2005-05-26 2005-05-26 Critical current measuring method and critical current measuring system for superconducting cable

Publications (2)

Publication Number Publication Date
JP2006329838A true JP2006329838A (en) 2006-12-07
JP4697530B2 JP4697530B2 (en) 2011-06-08

Family

ID=37551672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154740A Expired - Fee Related JP4697530B2 (en) 2005-05-26 2005-05-26 Critical current measuring method and critical current measuring system for superconducting cable

Country Status (1)

Country Link
JP (1) JP4697530B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025010B1 (en) 2008-09-18 2011-03-25 한국전기연구원 Apparatus for both critical current and defects measurement of HTS conductor
JP2011133259A (en) * 2009-12-22 2011-07-07 Sumitomo Electric Ind Ltd Method for measuring critical current of superconductive cable
JP2013036844A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Method for testing cable core
JP2013036843A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Method for testing cable core for superconductive cable
JP2013036840A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Critical current measuring method
JP2013044564A (en) * 2011-08-22 2013-03-04 Sumitomo Electric Ind Ltd Method for measuring critical current of superconductive cable
WO2013077128A1 (en) 2011-11-24 2013-05-30 住友電気工業株式会社 Method for measuring critical current of superconductive cable
KR101461318B1 (en) * 2013-05-21 2014-11-12 창원대학교 산학협력단 Superconducting Cable Test Apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197468A (en) * 1997-01-13 1998-07-31 Hitachi Cable Ltd Critical current measuring method of superconductor wire and measuring apparatus therefor
JPH10239260A (en) * 1997-02-25 1998-09-11 Sumitomo Electric Ind Ltd Method and device for measuring critical current value of superconductive wire
JP2001052545A (en) * 1999-08-11 2001-02-23 Furukawa Electric Co Ltd:The Superconducttve cable
JP2004028901A (en) * 2002-06-27 2004-01-29 Sumitomo Electric Ind Ltd Critical current measuring method of high-temperature superconducting wire material
JP2005093383A (en) * 2003-09-19 2005-04-07 Sumitomo Electric Ind Ltd Operation method of superconductive cable and superconductive cable system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197468A (en) * 1997-01-13 1998-07-31 Hitachi Cable Ltd Critical current measuring method of superconductor wire and measuring apparatus therefor
JPH10239260A (en) * 1997-02-25 1998-09-11 Sumitomo Electric Ind Ltd Method and device for measuring critical current value of superconductive wire
JP2001052545A (en) * 1999-08-11 2001-02-23 Furukawa Electric Co Ltd:The Superconducttve cable
JP2004028901A (en) * 2002-06-27 2004-01-29 Sumitomo Electric Ind Ltd Critical current measuring method of high-temperature superconducting wire material
JP2005093383A (en) * 2003-09-19 2005-04-07 Sumitomo Electric Ind Ltd Operation method of superconductive cable and superconductive cable system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101025010B1 (en) 2008-09-18 2011-03-25 한국전기연구원 Apparatus for both critical current and defects measurement of HTS conductor
JP2011133259A (en) * 2009-12-22 2011-07-07 Sumitomo Electric Ind Ltd Method for measuring critical current of superconductive cable
JP2013036844A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Method for testing cable core
JP2013036843A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Method for testing cable core for superconductive cable
JP2013036840A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Critical current measuring method
JP2013044564A (en) * 2011-08-22 2013-03-04 Sumitomo Electric Ind Ltd Method for measuring critical current of superconductive cable
KR20130021337A (en) * 2011-08-22 2013-03-05 스미토모 덴키 고교 가부시키가이샤 Method for measuring a critical current of a superconducing cable
KR101895623B1 (en) 2011-08-22 2018-09-05 스미토모 덴키 고교 가부시키가이샤 Method for measuring a critical current of a superconducing cable
WO2013077128A1 (en) 2011-11-24 2013-05-30 住友電気工業株式会社 Method for measuring critical current of superconductive cable
JP2013108935A (en) * 2011-11-24 2013-06-06 Sumitomo Electric Ind Ltd Method of measuring critical current of superconductor cable
CN103959050A (en) * 2011-11-24 2014-07-30 住友电气工业株式会社 Method for measuring critical current of superconductive cable
KR101461318B1 (en) * 2013-05-21 2014-11-12 창원대학교 산학협력단 Superconducting Cable Test Apparatus

Also Published As

Publication number Publication date
JP4697530B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US10943712B2 (en) Superconducting cables and methods of making the same
RU2491674C2 (en) Conductor system for resistive switching element with two conductor bundles made of superconductive tapes
KR970051480A (en) High power superconducting cable and current transmission method using the same
JP2000277322A (en) High-temperature superconducting coil, high-temperature superconducting magnet using the same, and high- temperature superconducting magnet system
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
JP2004265715A (en) Terminal structure of superconducting cable for dc
JP4697530B2 (en) Critical current measuring method and critical current measuring system for superconducting cable
US7463461B2 (en) Resistive superconducting fault current limiter
WO2007080794A1 (en) Superconducting cable
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP5246453B2 (en) Method for measuring critical current of superconducting cable
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP5680505B2 (en) Method for measuring critical current of superconducting cable
Mito et al. Development of superconducting conductors for Large Helical Device
JP5252324B2 (en) Superconducting power transmission system
JP5696941B2 (en) Measuring method of critical current
JP5273572B2 (en) Laying the superconducting cable
JP2012038476A (en) Superconducting apparatus
JP2015216735A (en) Superconducting cable and superconducting cable line
RU2390064C1 (en) Superconducting multiple-core wire for dc and ac
JP4191545B2 (en) Measuring method of shield current of superconducting cable
JPH06302233A (en) Oxide superconductive power cable
JP2018186037A (en) Superconductive cable line
JP2012174403A (en) Normal temperature insulating type superconducting cable and method for manufacturing the same
JP2010123622A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees