JP5680505B2 - Method for measuring critical current of superconducting cable - Google Patents

Method for measuring critical current of superconducting cable Download PDF

Info

Publication number
JP5680505B2
JP5680505B2 JP2011180750A JP2011180750A JP5680505B2 JP 5680505 B2 JP5680505 B2 JP 5680505B2 JP 2011180750 A JP2011180750 A JP 2011180750A JP 2011180750 A JP2011180750 A JP 2011180750A JP 5680505 B2 JP5680505 B2 JP 5680505B2
Authority
JP
Japan
Prior art keywords
superconducting
cable
current
critical current
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011180750A
Other languages
Japanese (ja)
Other versions
JP2013044564A (en
Inventor
正義 大屋
正義 大屋
昇一 本庄
昇一 本庄
智男 三村
智男 三村
野口 裕
野口  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2011180750A priority Critical patent/JP5680505B2/en
Priority to KR1020120091224A priority patent/KR101895623B1/en
Publication of JP2013044564A publication Critical patent/JP2013044564A/en
Application granted granted Critical
Publication of JP5680505B2 publication Critical patent/JP5680505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1238Measuring superconductive properties
    • G01R33/1246Measuring critical current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、超電導ケーブルの臨界電流測定方法に関するものである。特に、小容量の電源を用いて臨界電流を精度よく測定可能な超電導ケーブルの臨界電流測定方法に関するものである。   The present invention relates to a method for measuring a critical current of a superconducting cable. In particular, the present invention relates to a method for measuring the critical current of a superconducting cable capable of accurately measuring the critical current using a small capacity power source.

電力供給路を構成する電力ケーブルとして、超電導ケーブルが開発されつつある。超電導ケーブルは、代表的には、超電導導体層を有するケーブルコアと、このケーブルコアを収納すると共に、液体窒素といった冷媒が満たされる断熱管とを具える。   Superconducting cables are being developed as power cables constituting power supply paths. A superconducting cable typically includes a cable core having a superconducting conductor layer, and a heat insulating tube that houses the cable core and is filled with a refrigerant such as liquid nitrogen.

上記超電導ケーブルを布設後、竣工試験などでケーブル特性を確認する目的で、超電導ケーブルの臨界電流を測定することがある。特許文献1では、測定対象となる1本のケーブルコアに、別のケーブルコアを接続して往復通電を行って、測定対象の臨界電流を測定することを開示している。この測定方法では、上記別のケーブルコアをリード部材として利用することで、布設後などで超電導ケーブルの両端が離れている場合などでも、銅などの常電導材料からなる長尺なリード部材を取り付け、このリード部材を介して電源に接続する必要が無い。また、このような長尺なリード部材の使用に伴う電気抵抗の増大が無く、当該電気抵抗を考慮した大容量の直流電源を使用しなくてよいため、上記測定方法は、臨界電流を簡便に測定可能である。   After laying the superconducting cable, the critical current of the superconducting cable may be measured for the purpose of confirming the cable characteristics in a completion test or the like. Patent Document 1 discloses that a critical current to be measured is measured by connecting another cable core to one cable core to be measured and performing reciprocal energization. In this measurement method, by using the other cable core as a lead member, a long lead member made of a normal conducting material such as copper can be attached even when both ends of the superconducting cable are separated after installation. There is no need to connect to the power supply via this lead member. In addition, since there is no increase in electrical resistance associated with the use of such a long lead member, and it is not necessary to use a large-capacity DC power source that takes into account the electrical resistance, the above measurement method can simplify the critical current. It can be measured.

特開2006-329838号公報JP 2006-329838

従来の超電導ケーブルは、定格電流が1kA程度の送電に対応するように設計されている。交流送電用途では、過負荷時などの尤度を考慮して、超電導導体層の臨界電流の設計値を3kA程度としていた。今後の電力需要の増加によっては、定格電流が2kA以上、更に5kA以上といった大容量の電力供給路の構築が期待される。このような要求に対して、臨界電流が4kA以上、更に5kA以上、とりわけ10kA以上といった超電導導体層を設計することが求められる。しかし、このような大容量の電力供給用途の超電導ケーブルでは、臨界電流を精度よく測定することが難しい。   Conventional superconducting cables are designed to handle power transmission with a rated current of about 1 kA. In the AC power transmission application, the critical current design value of the superconducting conductor layer was set to about 3 kA in consideration of the likelihood during overload. Depending on the future increase in power demand, it is expected to construct a large-capacity power supply path with a rated current of 2 kA or more, and further 5 kA or more. In response to such demands, it is required to design a superconducting conductor layer having a critical current of 4 kA or more, further 5 kA or more, and particularly 10 kA or more. However, it is difficult to accurately measure the critical current in such a superconducting cable for large-capacity power supply.

本発明者らは、特許文献1に記載される往復通電を利用し、上述のような大容量の電力供給用途の超電導ケーブルに大容量の電流を供給して臨界電流を測定した。すると、測定した臨界電流は、設計値よりも低く、精度よく測定することが困難であった。   The present inventors measured the critical current by using a reciprocating current described in Patent Document 1 and supplying a large-capacity current to the superconducting cable for large-capacity power supply as described above. Then, the measured critical current was lower than the design value, and it was difficult to measure accurately.

測定した臨界電流が低下した原因は、以下のように考えられる。超電導導体層に直流電流を通電した場合、超電導導体層の外周には、通電電流に比例した磁場が形成される。超電導導体層の外周に超電導シールド層が設けられたケーブルコアの場合、超電導導体層に流れる導体電流による磁場が、超電導シールド層に流れる誘導電流による磁場とほぼ同じ大きさであれば、当該ケーブルコアの外部に磁場が実質的に漏れない。従って、隣り合うケーブルコア間で相互に磁場が影響し難い。しかし、超電導導体層に直流電流を供給するときの電流の変化速度によっては、誘導電流が導体電流よりも小さくなることがある。誘導電流が小さいことで、導体電流と誘導電流との差に基づく磁場がケーブルコアの外部に漏れる(漏れ磁場が生じる)。従って、往復通電を行う2本のケーブルコアは互いに近接していることで相互の漏れ磁場を受けて、臨界電流が低下したと考えられる。特に、大電流を供給する場合、漏れ磁場も大きくなり易く、臨界電流が更に低下したと考えられる。   The cause of the decrease in the measured critical current is considered as follows. When a direct current is applied to the superconducting conductor layer, a magnetic field proportional to the applied current is formed on the outer periphery of the superconducting conductor layer. In the case of a cable core in which a superconducting shield layer is provided on the outer periphery of the superconducting conductor layer, if the magnetic field due to the conductor current flowing through the superconducting conductor layer is approximately the same magnitude as the magnetic field due to the induced current flowing through the superconducting shield layer, the cable core The magnetic field does not substantially leak outside. Therefore, it is difficult for magnetic fields to affect each other between adjacent cable cores. However, the induced current may be smaller than the conductor current depending on the rate of change of current when a direct current is supplied to the superconducting conductor layer. Since the induced current is small, a magnetic field based on the difference between the conductor current and the induced current leaks to the outside of the cable core (a leakage magnetic field is generated). Therefore, it can be considered that the two cable cores that perform reciprocal energization are close to each other, so that the critical current decreases due to the mutual leakage magnetic field. In particular, when a large current is supplied, it is considered that the leakage magnetic field tends to increase, and the critical current further decreases.

漏れ磁場による臨界電流の低下を低減するには、漏れ磁場を低減する必要がある。漏れ磁場の低減には、超電導導体層に供給した電流と同程度の大きさの誘導電流を当該超電導導体の外周に具える超電導シールド層に十分に流すことが考えられる。誘導電流の大きさは、供給する電流の変化速度に相関があり、変化速度を大きくする(速くする)ほど、誘導電流を大きくすることができ、漏れ磁場による臨界電流の低下を抑制することができる、との知見を得た。   In order to reduce the decrease in critical current due to the leakage magnetic field, it is necessary to reduce the leakage magnetic field. In order to reduce the leakage magnetic field, it is conceivable that an induced current having the same magnitude as the current supplied to the superconducting conductor layer is sufficiently passed through the superconducting shield layer provided on the outer periphery of the superconducting conductor. The magnitude of the induced current correlates with the rate of change of the supplied current, and the larger the rate of change (the faster), the larger the induced current, and the lowering of the critical current due to the leakage magnetic field can be suppressed. The knowledge that it was possible was acquired.

しかし、通電電流の変化速度の増大に伴い、往復通電を行うケーブルコアの両端に発生する電圧が大きくなる。   However, as the change rate of the energization current increases, the voltage generated at both ends of the cable core that performs reciprocal energization increases.

ここで、現在、試験線路では、1本の長さ(単位長)が数十m〜数百m程度の超電導ケーブルが利用されている。実際の超電導ケーブル線路の構築では、単位長ができるだけ長い、少なくともキロメートルオーダーのケーブルが望まれる。従って、ケーブルコアもキロメートルオーダーに長大化し得る。   Here, at present, a superconducting cable having a length (unit length) of about several tens of meters to several hundreds of meters is used in the test line. In the construction of an actual superconducting cable line, a cable of at least a kilometer order having a unit length as long as possible is desired. Therefore, the cable core can be lengthened to the kilometer order.

ケーブルコアが長大化すると、上記両端の電圧が非常に大きくなる。従って、大電流・大電圧に対応可能な大容量の電源が必要となる。   When the cable core becomes longer, the voltage at both ends becomes very large. Therefore, a large-capacity power supply that can handle a large current and a large voltage is required.

より具体的に説明する。例えば、10kmの線路(ケーブルコアの単位長:10km、往復で20km)の臨界電流を測定する場合を考える。このとき、使用する電源は、臨界電流の定義電圧を0.1mV/mとすると、0.1mV/m×20,000m=2Vの電圧(抵抗成分)を確保する必要がある。   This will be described more specifically. For example, consider the case of measuring the critical current of a 10 km line (unit length of cable core: 10 km, 20 km for round trip). At this time, it is necessary to secure a voltage (resistance component) of 0.1 mV / m × 20,000 m = 2 V, assuming that the critical current has a defined voltage of 0.1 mV / m.

上記抵抗成分の電圧以外にも誘導電圧が発生する。通電電流の変化速度をα(A/sec)とすると、誘導電圧は、L・(dI/dt)=Lαで定義される。従って、変化速度αを大きくするほど、発生する誘導電圧が大きくなる。図5は、10kmの線路(往復20km)にα=720A/secで直流電流を通電した場合に発生する電圧波形を示す。図5に示すように、通電電流が4kA以上、更に5kA以上になると、誘導に起因する電圧は、抵抗成分の電圧を超える3V近くになっており、5.5kA以上となると急激に大きくなることが分かる。従って、超電導ケーブルのケーブル長が長い場合には、大容量の電源が必要になる。また、超電導ケーブルのケーブル長が短い場合でも、上述のように通電電流の変化速度αを大きくすることで、大容量の電源が必要になる。   In addition to the voltage of the resistance component, an induced voltage is generated. When the change rate of the energization current is α (A / sec), the induced voltage is defined by L · (dI / dt) = Lα. Therefore, the greater the change rate α, the greater the induced voltage that is generated. FIG. 5 shows a voltage waveform generated when a DC current is applied to a 10 km line (20 km round-trip) at α = 720 A / sec. As shown in Fig. 5, when the energizing current is 4 kA or more, and further 5 kA or more, the voltage due to induction is close to 3 V exceeding the voltage of the resistance component, and when it becomes 5.5 kA or more, it may increase rapidly. I understand. Therefore, when the length of the superconducting cable is long, a large capacity power source is required. Even when the length of the superconducting cable is short, a large-capacity power source is required by increasing the change rate α of the conduction current as described above.

そこで、本発明の目的は、小容量の電源を用いて超電導ケーブルの臨界電流を精度よく測定可能な超電導ケーブルの臨界電流測定方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for measuring the critical current of a superconducting cable that can accurately measure the critical current of the superconducting cable using a small-capacity power source.

本発明は、漏れ磁場による臨界電流の低下分を補正することで、上記目的を達成する。   The present invention achieves the above object by correcting a decrease in critical current due to a leakage magnetic field.

本発明の超電導ケーブルの臨界電流測定方法は、少なくとも1本の超電導ケーブルに具える複数のケーブルコアを利用して、当該ケーブルコアに具える超電導導体層の臨界電流を測定する方法に係るものであり、上記各ケーブルコアは、上記超電導導体層の外周に超電導シールド層を具えるものとする。上記複数のケーブルコアのうち、2本のケーブルコアの一端側同士を電気的に接続し、各ケーブルコアの他端側を直流電源に接続し、各ケーブルコアの超電導導体層に往復通電を行えるようにする。この往復通電を行うケーブルコアに具える超電導導体層に一定の変化速度で直流電流を通電し、臨界電流を測定する。往復通電を行う一方のケーブルコアに具える超電導導体層への通電電流と、上記変化速度に基づいて、このケーブルコアに具える超電導シールド層に流れる誘導電流との差から、当該ケーブルコアの外部に漏れる漏れ磁場によって、往復通電を行う他方のケーブルコアに具える超電導導体層の臨界電流が低下する量を求める。そして、本発明方法では、上記測定した臨界電流を上記低下した量に基づいて補正する。   The method for measuring the critical current of a superconducting cable according to the present invention relates to a method for measuring the critical current of a superconducting conductor layer provided in a cable core using a plurality of cable cores provided in at least one superconducting cable. Each cable core includes a superconducting shield layer on the outer periphery of the superconducting conductor layer. Of the plurality of cable cores, one end sides of two cable cores are electrically connected to each other, the other end side of each cable core is connected to a DC power source, and the superconducting conductor layer of each cable core can be reciprocated. Like that. A direct current is passed through the superconducting conductor layer provided in the cable core that performs this reciprocating current at a constant rate of change, and the critical current is measured. Based on the difference between the conduction current to the superconducting conductor layer provided in one cable core that performs reciprocal energization and the induced current flowing in the superconducting shield layer provided to this cable core based on the above change rate, the outside of the cable core The amount by which the critical current of the superconducting conductor layer included in the other cable core that performs reciprocal energization decreases due to the leakage magnetic field leaking to the surface is obtained. In the method of the present invention, the measured critical current is corrected based on the reduced amount.

本発明方法は、臨界電流を測定するにあたり、測定値に対して、往復通電を行うケーブルコア間における相互の漏れ磁場による低下分を補正する構成とする。つまり、漏れ磁場によって測定値が低下することを許容する。そのため、本発明方法の実施にあたり、通電電流の変化速度αを比較的小さく設定して、発生する誘導電圧を小さくすることができることから、比較的低容量の小型な電源を利用できる。例えば、往復通電を行う2本のケーブルコアの長さに応じた抵抗成分の電圧を確保した電源を利用すればよい。このように本発明方法は、容易に、かつ精度よく臨界電流を測定することができる。   In measuring the critical current, the method of the present invention is configured to correct the decrease due to the mutual leakage magnetic field between the cable cores performing reciprocal energization with respect to the measured value. In other words, the measurement value is allowed to decrease due to the leakage magnetic field. Therefore, in carrying out the method of the present invention, it is possible to reduce the induced voltage generated by setting the change rate α of the energization current to be relatively small, so that a small power source having a relatively low capacity can be used. For example, a power source that secures a voltage of a resistance component corresponding to the length of two cable cores that perform reciprocal energization may be used. Thus, the method of the present invention can easily and accurately measure the critical current.

本発明の一形態として、上記2本のケーブルコアに具える超電導シールド層は、短絡接続部によって電気的に接続された形態が挙げられる。   As an embodiment of the present invention, the superconducting shield layer provided in the two cable cores may be electrically connected by a short-circuit connection portion.

本発明方法では、超電導シールド層に誘導電流が流れるようにするための通電ループを形成する必要がある。例えば、超電導シールド層の二箇所(例えば、両端)を接地して、大地を介した通電ループを形成することが挙げられる。或いは、上記形態のように超電導シールド層を短絡させて通電ループを形成した場合、短絡接続部の抵抗があるものの、上記大地を介した場合よりも抵抗が小さくなり易く、誘導電流を大きくし易い。   In the method of the present invention, it is necessary to form an energization loop for allowing an induced current to flow through the superconducting shield layer. For example, two places (for example, both ends) of the superconducting shield layer are grounded to form an energization loop through the ground. Or, when the superconducting shield layer is short-circuited as in the above embodiment to form a current-carrying loop, although there is a resistance of the short-circuit connection portion, the resistance is likely to be smaller than that through the ground, and the induced current is likely to be increased. .

上記短絡接続部を具える形態として、上記短絡接続部にロゴスキーコイルを取り付けて、上記超電導シールド層に流れる電流を実測し、上記誘導電流にこの実測値を用いる形態が挙げられる。   As a form having the short-circuit connection part, there is a form in which a Rogowski coil is attached to the short-circuit connection part, a current flowing through the superconducting shield layer is measured, and this actually measured value is used as the induced current.

短絡接続部の抵抗は、その構成材料や断面積などによって、ある程度決定される。しかし、使用時の冷媒温度、ケーブルコアや短絡接続部の製造誤差、短絡接続部の施工誤差などによって、短絡接続部の抵抗は、変化し得る。また、ある程度線路を使用した後、メンテナンス時などで臨界電流を測定する場合には、ケーブルコアや短絡接続部の経年変化などによって、短絡接続部の抵抗が変化する可能性がある。上記形態は、漏れ磁場を求めるにあたり、誘導電流の実測値を利用するため、上述のような短絡接続部の抵抗の変化に依らず、正確な漏れ磁場を求められ、ひいては漏れ磁場による臨界電流の低下量を正確に求められる。従って、上記形態は、臨界電流を高精度に求められる。また、上記形態は、ロゴスキーコイルを利用することで、短絡接続部に容易に取り付けられて、作業性に優れる上に、使用後も簡単に取り外すことができる。   The resistance of the short-circuit connection portion is determined to some extent by the constituent material, cross-sectional area, and the like. However, the resistance of the short-circuited connection portion may change depending on the refrigerant temperature during use, the manufacturing error of the cable core and the short-circuited connection portion, the construction error of the short-circuited connection portion, and the like. In addition, when the critical current is measured during maintenance after using the line to some extent, the resistance of the short-circuited connection portion may change due to aging of the cable core or the short-circuited connection portion. In the above embodiment, the actual value of the induced current is used to determine the leakage magnetic field. Therefore, an accurate leakage magnetic field can be obtained regardless of the change in the resistance of the short-circuited connection as described above. The amount of decrease can be obtained accurately. Therefore, the said form requires a critical current with high precision. Moreover, the said form is easily attached to a short circuit connection part by using a Rogowski coil, and it is excellent in workability | operativity and can also be removed easily after use.

上記短絡接続部を具える形態として、上記短絡接続部に取り付けられたシャント抵抗によって、上記超電導シールド層に流れる電流を実測し、上記誘導電流にこの実測値を用いる形態が挙げられる。   As a form having the short-circuit connection part, a form in which the current flowing through the superconducting shield layer is measured by a shunt resistor attached to the short-circuit connection part, and this actually measured value is used as the induced current can be cited.

上記形態も、誘導電流の実測値を用いて誘導電流を求めるため、結果として、臨界電流を高精度に求められる。また、上記形態は、シャント抵抗を利用することで誘導電流を高精度に求められることから、臨界電流をより高精度に測定できる。   In the above embodiment, the induced current is obtained using the measured value of the induced current, and as a result, the critical current can be obtained with high accuracy. Moreover, since the said form calculates | requires an induced current with high precision using shunt resistance, it can measure a critical current with high precision.

本発明の一形態として、上記超電導ケーブルは、上記超電導導体層の臨界電流の設定値が4kA以上である形態が挙げられる。   As an embodiment of the present invention, the superconducting cable may include an embodiment in which a set value of the critical current of the superconducting conductor layer is 4 kA or more.

超電導導体層の臨界電流が4kA以上に設計されるような大容量の電力供給用途では、臨界電流の測定にあたり、超電導導体層に供給する電流も大きく、漏れ磁場による臨界電流の低下が生じ易い。従って、このような大容量の電力供給用途の超電導ケーブルに対して臨界電流を測定する場合に本発明方法は、好適に利用することができる。   In large-capacity power supply applications in which the critical current of the superconducting conductor layer is designed to be 4 kA or higher, the current supplied to the superconducting conductor layer is large when measuring the critical current, and the critical current is likely to decrease due to the leakage magnetic field. Therefore, the method of the present invention can be suitably used when the critical current is measured for such a superconducting cable for large-capacity power supply.

本発明超電導ケーブルの臨界電流測定方法は、小容量の電源を用いて臨界電流を精度よく測定できる。   The method for measuring the critical current of the superconducting cable of the present invention can accurately measure the critical current using a small capacity power source.

実施形態に係る超電導ケーブルの臨界電流測定方法を説明するための説明図であり、(A)は、多心超電導ケーブルの例、(B)は、単心超電導ケーブルの例を示す。It is explanatory drawing for demonstrating the critical current measuring method of the superconducting cable which concerns on embodiment, (A) shows the example of a multi-core superconducting cable, (B) shows the example of a single core superconducting cable. 通電電流の変化速度を種々の値としたときの臨界電流の実測値と解析値とを示すグラフである。It is a graph which shows the actual value and analytical value of a critical current when the change rate of an energization current is made into various values. 通電電流の変化速度を種々の値としたときの誘導電流の実測値と解析値とを示すグラフである。It is a graph which shows the actual measurement value and analysis value of an induced current when the change rate of an energization current is made into various values. 通電電流の変化速度を種々の値としたときのケーブル長と、臨界電流との関係を示すグラフである。It is a graph which shows the relationship between a cable length when a change rate of an energization current is various values, and a critical current. 通電電流の変化速度を720A/secとして、線路に通電したときの通電電流と電圧(抵抗成分)との関係を示すグラフである。It is a graph which shows the relationship between an energization current and a voltage (resistance component) when energizing a track with an energization current change rate of 720 A / sec.

以下、適宜図面を参照して、本発明をより詳細に説明する。図において同一符号は、同一名称物を示す。まず、測定対象となる超電導ケーブルを説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate. In the figure, the same reference numeral indicates the same name object. First, the superconducting cable to be measured will be described.

本発明方法の測定対象となる超電導ケーブルは、例えば、往復通電を行う2本のケーブルコアが、1つの断熱管に収納された形態が挙げられる。   The superconducting cable to be measured by the method of the present invention includes, for example, a form in which two cable cores that perform reciprocal energization are accommodated in one heat insulating tube.

ここで、並列させた2本のケーブルコアのうち、1本のケーブルコアに電流Iを通電したときにもう1本のケーブルコアの中心に発生する磁場は、両ケーブルコア間の中心間距離をrとするとき、(I/(2πr))で表される。同じ一つの断熱管に収納されたケーブルコア同士は近接されていることから、上記ケーブルコア間の距離rが小さくなり易い。従って、電流Iの増大に加えて、発生磁場も大きく、漏れ磁場も大きくなり易い。しかし、本発明では、漏れ磁場による臨界電流の低下分を補正することで、発生磁場が大きい場合でも、臨界電流を精度よく測定できる。   Here, of the two cable cores in parallel, when the current I is applied to one cable core, the magnetic field generated at the center of the other cable core is the distance between the centers of the two cable cores. When r, it is represented by (I / (2πr)). Since the cable cores housed in the same heat insulating tube are close to each other, the distance r between the cable cores tends to be small. Therefore, in addition to the increase in current I, the generated magnetic field is large and the leakage magnetic field tends to be large. However, in the present invention, the critical current can be accurately measured even when the generated magnetic field is large by correcting the decrease in the critical current due to the leakage magnetic field.

超電導ケーブルのより具体的な形態として、1条の3心一括型超電導ケーブルを説明する。   As a more specific form of superconducting cable, we will explain the one-core three-core superconducting cable.

図1(A)に示す超電導ケーブル1Aは、3心のケーブルコア10a,10b,10cが撚り合わされて1つの断熱管13Aに収納された構成である。各コア10a,10b,10cは、例えば、中心から順にフォーマ(図示せず)、超電導導体層11、電気絶縁層(図示せず)、超電導シールド層12、常電導シールド層(図示せず)、保護層(図示せず)を具える。超電導導体層11や超電導シールド層12は、断熱管13A内に充填される液体窒素といった冷媒によって超電導状態に維持される。   A superconducting cable 1A shown in FIG. 1 (A) has a configuration in which three cable cores 10a, 10b, and 10c are twisted together and accommodated in one heat insulating tube 13A. Each core 10a, 10b, 10c is, for example, in order from the center former (not shown), superconducting conductor layer 11, electrical insulation layer (not shown), superconducting shield layer 12, normal conduction shield layer (not shown), Provide a protective layer (not shown). The superconducting conductor layer 11 and the superconducting shield layer 12 are maintained in a superconducting state by a refrigerant such as liquid nitrogen filled in the heat insulating tube 13A.

フォーマは、超電導導体層11を支持する他、短絡や地絡などの事故時に事故電流を分流する通電路に利用されることから、銅やアルミニウムなどの常電導材料からなる中実体や中空体(管体)が挙げられる。例えば、ポリビニルホルマール(PVF)やエナメルなどの絶縁被覆を具える銅線を複数本撚り合わせた撚り線材が利用できる。フォーマの外周にクラフト紙やPPLP(住友電気工業株式会社 登録商標)といった絶縁性テープを巻回してクッション層を設けてもよい。   In addition to supporting the superconducting conductor layer 11, the former is used as a current path that shunts the accident current in the event of an accident such as a short circuit or ground fault, so a solid or hollow body made of a normal conducting material such as copper or aluminum ( Tube). For example, a stranded wire obtained by twisting a plurality of copper wires having an insulation coating such as polyvinyl formal (PVF) or enamel can be used. A cushion layer may be provided by winding an insulating tape such as kraft paper or PPLP (registered trademark of Sumitomo Electric Industries, Ltd.) on the outer periphery of the former.

超電導導体層11及び超電導シールド層12は、超電導線材を螺旋状に巻回した線材層を単層又は多層に具える形態が挙げられる。超電導線材は、酸化物超電導相を具える線材が挙げられる。具体的には、REBa2Cu3Ox(RE123:REは希土類元素)、例えばYBCO,HoBCO,GdBCOといった希土類系酸化物超電導相を具える薄膜線材や、Bi2Sr2Ca2Cu3O10+δ(Bi2223)といったBi系酸化物超電導相を具え、Agやその合金を金属マトリクスとする線材がある。多層構造とする場合、各線材層の層間にクラフト紙などの絶縁紙を巻回した層間絶縁層を形成することができる。超電導導体層11の直上にカーボン紙などを巻回して内側半導電層を設けることができる。なお、薄膜線材及びBi系酸化物超電導線材はいずれも、その表面に対して垂直に磁場が印加されると(超電導線材の厚さ方向に磁場が印加されると)、その表面に平行に磁場が印加される場合に比べて、臨界電流が低下する傾向にある。 Examples of the superconducting conductor layer 11 and the superconducting shield layer 12 include a single layer or a multilayer including a wire layer in which a superconducting wire is spirally wound. Examples of the superconducting wire include a wire having an oxide superconducting phase. Specifically, REBa 2 Cu 3 O x (RE123: RE is a rare earth element), for example, a thin film wire having a rare earth oxide superconducting phase such as YBCO, HoBCO, GdBCO, Bi 2 Sr 2 Ca 2 Cu 3 O 10 There is a wire rod having a Bi-based oxide superconducting phase such as + δ (Bi2223) and using Ag or an alloy thereof as a metal matrix. In the case of a multilayer structure, an interlayer insulating layer in which insulating paper such as kraft paper is wound can be formed between the layers of the wire layers. An inner semiconductive layer can be provided by winding carbon paper or the like directly on the superconducting conductor layer 11. Note that when a magnetic field is applied perpendicularly to the surface of each of the thin film wire and the Bi-based oxide superconducting wire (when a magnetic field is applied in the thickness direction of the superconducting wire), the magnetic field is parallel to the surface. As compared with the case where is applied, the critical current tends to decrease.

超電導導体層11及び超電導シールド層12を構成する超電導線材の数や線材層の数は、所望の電力供給容量に応じて設計される。一般に、超電導線材の数や線材層の数を多くすることで、超電導導体層や超電導シールド層の臨界電流を4kA以上にすることができ、ケーブルの定格電流が2kA以上、更に5kA以上といった大容量の電力供給が可能な超電導ケーブルとすることができる。なお、超電導シールド層12は、直流送電の場合、帰路導体や中性線に利用することができる。   The number of superconducting wires constituting the superconducting conductor layer 11 and the superconducting shield layer 12 and the number of wire layers are designed according to the desired power supply capacity. In general, by increasing the number of superconducting wires and the number of wire layers, the critical current of the superconducting conductor layer and superconducting shield layer can be increased to 4 kA or higher, and the rated current of the cable is 2 kA or higher, and a large capacity such as 5 kA or higher. It is possible to provide a superconducting cable capable of supplying a large amount of power. The superconducting shield layer 12 can be used as a return conductor or a neutral wire in the case of direct current power transmission.

電気絶縁層は、超電導導体層11(或いは内側半導電層)の上に、クラフト紙やPPLP(登録商標)といった半合成絶縁紙などの絶縁性テープを巻回することで形成することができる。電気絶縁層の直上に、カーボン紙などを巻回して外側半導電層を設けることができる。   The electric insulating layer can be formed by winding an insulating tape such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark) on the superconducting conductor layer 11 (or the inner semiconductive layer). An outer semiconductive layer can be provided by winding carbon paper or the like directly on the electrical insulating layer.

常電導シールド層は、上述した事故電流の誘導電流を分流する通電路に利用されることから、銅といった常電導材料からなる金属テープを巻回して形成した構成が挙げられる。   Since the normal conductive shield layer is used in the current path for diverting the above-described induced current of the accident current, there is a configuration formed by winding a metal tape made of a normal conductive material such as copper.

超電導シールド層12(或いは常電導シールド層)の外周に、クラフト紙やPPLP(登録商標)といった半合成絶縁紙などの絶縁性テープを巻回して、シールド層を機械的に保護するための保護層を設けることができる。   A protective layer for mechanically protecting the shield layer by winding an insulating tape such as kraft paper or semi-synthetic insulation paper such as PPLP (registered trademark) around the outer periphery of the superconducting shield layer 12 (or normal conducting shield layer) Can be provided.

断熱管13Aは、内管と外管との二重管からなり、内管と外管との間が真空引きされた真空断熱構造のものが代表的である。内管と外管との間にスーパーインシュレーションといった断熱材や、両管の間隔を保持するスペーサを配置させた構成が利用できる。外管の外周には、ポリ塩化ビニル(PVC)といった防食層を具えると、耐食性を高められる。   The heat insulating tube 13A is typically a vacuum heat insulating structure having a double tube of an inner tube and an outer tube, in which a vacuum is drawn between the inner tube and the outer tube. A configuration in which a heat insulating material such as a super insulation and a spacer for keeping a space between the two pipes are arranged between the inner pipe and the outer pipe can be used. Corrosion resistance can be improved by providing a corrosion protection layer such as polyvinyl chloride (PVC) on the outer circumference of the outer tube.

或いは、往復通電を行う2本のケーブルコアがそれぞれ、別々の断熱管に収納された形態が挙げられる。   Alternatively, a form in which two cable cores that perform reciprocal energization are housed in separate heat insulating pipes can be mentioned.

本発明方法は、異なる2本の超電導ケーブルの断熱管にそれぞれ収納されたケーブルコアを往復通電できるように接続することで、臨界電流を精度よく測定できる。上記形態では、上述のケーブルコア間の距離rが大きくなり易いものの、電流Iが10kA、20kAと増大すれば、漏れ磁場が大きくなる。しかし、本発明では、上述のように漏れ磁場による臨界電流の低下分を補正することで、漏れ磁場が大きい場合でも、臨界電流を精度よく測定できる。   In the method of the present invention, the critical current can be measured with high accuracy by connecting the cable cores respectively housed in the heat insulation pipes of two different superconducting cables so as to be able to reciprocate. In the above embodiment, the distance r between the cable cores is likely to increase, but if the current I increases to 10 kA and 20 kA, the leakage magnetic field increases. However, in the present invention, the critical current can be accurately measured even when the leakage magnetic field is large by correcting the decrease in the critical current due to the leakage magnetic field as described above.

より具体的な形態としては、図1(B)に示すような3条の単心超電導ケーブルが挙げられる。超電導ケーブル1B,1C,1Dはそれぞれ、断熱管13B,13C,13Dにそれぞれ1条のケーブルコア10d,10e,10fが収納されている。各コア10d,10e,10fの基本構成、断熱管13B,13C,13Dの基本構成は、上述した超電導ケーブル1Aのケーブルコア10a,断熱管13Aと同様である。   As a more specific form, there is a three-core single-conductor superconducting cable as shown in FIG. 1 (B). Superconducting cables 1B, 1C, and 1D have one cable core 10d, 10e, and 10f accommodated in heat insulating tubes 13B, 13C, and 13D, respectively. The basic configuration of each of the cores 10d, 10e, and 10f and the basic configuration of the heat insulating tubes 13B, 13C, and 13D are the same as those of the cable core 10a and the heat insulating tube 13A of the superconducting cable 1A described above.

<実施形態1>
図1(A)に示す多心の超電導ケーブル1Aを布設して、超電導ケーブル1Aの両端に適宜端末構造を形成して超電導ケーブル線路を構築し、本発明方法を利用して、ケーブルコア10aと、別の1本のケーブルコア(ここではケーブルコア10b)を利用し、これら2本のコア10a,10bの超電導導体層11の臨界電流を測定する場合を説明する。
<Embodiment 1>
A multiconductor superconducting cable 1A shown in FIG. 1 (A) is laid, and a superconducting cable line is constructed by appropriately forming terminal structures at both ends of the superconducting cable 1A, and using the method of the present invention, the cable core 10a and A case where the critical current of the superconducting conductor layer 11 of these two cores 10a and 10b is measured using another cable core (here, the cable core 10b) will be described.

《誘導電流の通電ループの形成》
ケーブルコア10aの超電導シールド層12の端部とケーブルコア10bの超電導シールド層12の端部とを短絡接続部120によって電気的に接続し、両コア10a,10bの超電導シールド層12と短絡接続部120とで誘導電流が流れる通電ループを形成する。通電ループは、超電導シールド層12をアース電位とするために片端を接地している。短絡接続部120には、銅や銅合金などの導電性に優れる常電導材料、その他、上述の超電導線材を適宜組み合せて形成することができる。なお、線路を構築する場合、超電導ケーブル1Aに具える複数のコア10a,10b,10cの超電導シールド層12を全て電気的に接続して短絡し、誘導電流の通電ループを形成する。この通電ループを利用することができる。
《Formation of energization loop of induced current》
The end of the superconducting shield layer 12 of the cable core 10a and the end of the superconducting shield layer 12 of the cable core 10b are electrically connected by the short-circuit connecting part 120, and the superconducting shield layer 12 of both cores 10a and 10b and the short-circuiting connecting part 120 forms an energization loop through which an induced current flows. The energization loop is grounded at one end in order to set the superconducting shield layer 12 to the ground potential. The short-circuit connection portion 120 can be formed by appropriately combining a normal conductive material such as copper or a copper alloy having excellent conductivity and the above-described superconducting wire. When constructing a line, all of the superconducting shield layers 12 of the plurality of cores 10a, 10b, 10c included in the superconducting cable 1A are electrically connected and short-circuited to form an induction current energization loop. This energization loop can be used.

《ケーブルコア同士の接続》
両ケーブルコア10a,10bの一端側において超電導導体層11同士を電気的に接続して、後述する直流電源3からの直流電流の通電路を形成する。この接続には、リード部材2が利用できる。リード部材2は、銅や銅合金などの常電導材料、その他、上述の超電導線材を適宜組み合わせて形成することができる。リード部材2は、例えば、線路に具える終端接続箱などに収納させることができるが、当該接続箱などの外部に設けると、接続作業が行い易い。
<Connection between cable cores>
Superconducting conductor layers 11 are electrically connected to each other at one end side of both cable cores 10a, 10b to form a current path for a direct current from a direct current power source 3 described later. The lead member 2 can be used for this connection. The lead member 2 can be formed by appropriately combining normal conducting materials such as copper and copper alloys, and other superconducting wires described above. The lead member 2 can be housed in, for example, a terminal connection box provided on the track, but if it is provided outside the connection box or the like, connection work can be easily performed.

《直流電源の接続》
両ケーブルコア10a,10bの他端側の超電導導体層11に直流電源3を接続する。直流電源3は、上述の抵抗電圧、及び通電電流の変化速度に応じた誘導電圧分の出力電圧を確保した適宜なものが利用でき、市販品を利用することができる。直流電源3として、変化速度の制御が可能な機構を具えるものを利用したり、変化速度を制御可能な市販のスイーパ装置(図示せず)を直流電源3に併設させたりすることができる。直流電源3を取り付けることで、リード部材2によって接続された両コア10a,10bの超電導導体層11に直流電流を供給して、往復通電を行うことができる。
<DC power supply connection>
A DC power source 3 is connected to the superconducting conductor layer 11 on the other end side of both cable cores 10a, 10b. As the DC power source 3, an appropriate one that secures an output voltage corresponding to the above-described resistance voltage and an induced voltage corresponding to the change rate of the energization current can be used, and a commercially available product can be used. As the DC power source 3, one having a mechanism capable of controlling the change rate can be used, or a commercially available sweeper device (not shown) capable of controlling the change rate can be provided along with the DC power source 3. By attaching the DC power source 3, a DC current can be supplied to the superconducting conductor layers 11 of both the cores 10a and 10b connected by the lead member 2 to perform reciprocal energization.

更に、直流電源3やケーブルコア10a,10bなどからの種々の測定データ(通電電流、コア10a,10b間の両端の電圧などの信号)を記録する記録装置4を直流電源3や両コア10a,10bの一端側に接続すると、作業者が測定結果を把握し易い。記録装置4は、測定データを記憶する記憶手段を具えていればよいが、更に、記憶手段から呼び出したデータを用いて、漏れ磁場によって低下した臨界電流の低下分を補正するための補正量を演算する補正量演算手段と、求めた補正量を用いて測定値を補正し、適切な臨界電流(理想的には、漏れ磁場による低下が無いときの本来の臨界電流)を演算する臨界電流演算手段とを具えるものを利用できる。或いは、上記演算手段を具える演算装置を別途用意して利用することができる。   Further, the recording device 4 for recording various measurement data (signals such as energized current and voltages at both ends of the cores 10a and 10b) from the DC power source 3 and the cable cores 10a and 10b is connected to the DC power source 3 and both cores 10a, When connected to one end of 10b, the operator can easily grasp the measurement result. The recording device 4 only needs to have storage means for storing the measurement data, but further, using the data called from the storage means, a correction amount for correcting the decrease in the critical current reduced by the leakage magnetic field is obtained. Critical current calculation that corrects the measured value using the correction amount calculation means to calculate and calculates the appropriate critical current (ideally, the original critical current when there is no decrease due to the leakage magnetic field). Anything with means can be used. Alternatively, a calculation device including the calculation means can be separately prepared and used.

《臨界電流の測定》
(1) 実測値を利用する場合
上述のように2本のケーブルコア10a,10bと、両コア10a,10bの一端側同士を電気的に接続するリード部材2と、各コア10a,10bの他端側に接続される直流電源3とを具え、各コア10a,10bの超電導導体層11に往復通電が可能なシステムを構成したら、直流電源3によって一定の変化速度αで直流電流を超電導導体層11に供給して、超電導導体層11の臨界電流Icrealを測定する。臨界電流Icrealは、記録装置4の記憶手段に記憶しておくと、測定データを利用し易い。
<Measurement of critical current>
(1) When using measured values As described above, the two cable cores 10a, 10b, the lead member 2 that electrically connects one end sides of both the cores 10a, 10b, and the other cores 10a, 10b Once the DC power supply 3 connected to the end side and a system capable of reciprocating energization are provided to the superconducting conductor layers 11 of the cores 10a and 10b, the DC power supply 3 generates a DC current at a constant change rate α. 11 and the critical current I real of the superconducting conductor layer 11 is measured. If the critical current I real is stored in the storage means of the recording device 4, the measurement data can be easily used.

なお、臨界電流Icrealは、両ケーブルコア10a,10bにおける直流電源3側の端部の電圧信号(電位差)を測定して、電流と電圧との関係を記録装置4に記録し、得られた電流-電圧特性から、1μV/cm(=0.1mV/m)の電界が生じた電流とする。 The critical current Ic real was obtained by measuring the voltage signal (potential difference) at the end of the DC power supply 3 side in both cable cores 10a and 10b and recording the relationship between the current and voltage in the recording device 4. Based on the current-voltage characteristics, the current is an electric field of 1 μV / cm (= 0.1 mV / m).

短絡接続部120にロゴスキーコイル5を取り付けて、ロゴスキーコイル5からの測定情報を用いて超電導シールド層12に流れる誘導電流Isrealを測定する。具体的には、ロゴスキーコイル5の発生電圧を積分し、この積分値に校正係数をかけることで、誘導電流Isrealを求める。測定データは、記録装置4の記憶手段に記憶しておくと、測定データを利用し易い。ロゴスキーコイル5は、着脱が容易であり、測定時の作業性に優れる。ロゴスキーコイル5に代えて、短絡接続部120を構築する際にシャント抵抗(図示せず)を設けておき、シャント抵抗を利用して誘導電流Isrealを測定することができる。シャント抵抗は短絡接続部120の構成要素に直接、直列接続されるため、測定誤差が小さく、誘導電流Isrealの測定精度が高い。 The Rogowski coil 5 is attached to the short-circuit connection part 120, and the induced current Is real flowing through the superconducting shield layer 12 is measured using measurement information from the Rogowski coil 5. Specifically, the induced current Is real is obtained by integrating the voltage generated by the Rogowski coil 5 and multiplying the integrated value by a calibration coefficient. If the measurement data is stored in the storage means of the recording device 4, the measurement data can be easily used. The Rogowski coil 5 is easy to attach and detach, and has excellent workability during measurement. In place of the Rogowski coil 5, a shunt resistor (not shown) is provided when the short-circuit connecting portion 120 is constructed, and the induced current Is real can be measured using the shunt resistor. Since the shunt resistor is directly connected in series to the components of the short-circuit connection unit 120, the measurement error is small and the measurement accuracy of the induced current Is real is high.

測定した臨界電流Icrealと誘導電流Isrealとの差:ΔIc=Icreal−Isrealを求め、両電流の差ΔIcに基づく漏れ磁場による臨界電流の低下量を求める。通電電流の変化速度αを大きくするほど誘導電流Isrealが大きくなることでΔIcが小さくなる。つまり、漏れ磁場が少なくなり、臨界電流の低下量も少なくなり、補正による誤差が小さくなる。臨界電流の低下量は、種々の大きさの磁場と、各磁場を印加したときの臨界電流の低下量との相関データを予め求めておき、この相関データを参照して求めるようにすると、容易に求められる。この相関データも、上述した記録装置4などの記憶手段に記憶させておくと、臨界電流の低下量をより簡単に、自動的に求められる。 The difference between the measured critical current Ic real and the induced current Is real : ΔIc = Ic real −Is real is obtained, and the amount of decrease in the critical current due to the leakage magnetic field based on the difference ΔIc between the two currents is obtained. As the change rate α of the energization current is increased, the induced current Is real is increased, so that ΔIc is decreased. That is, the leakage magnetic field is reduced, the amount of decrease in critical current is reduced, and the error due to correction is reduced. The amount of decrease in critical current can be easily obtained by obtaining in advance correlation data between various magnitudes of magnetic fields and the amount of decrease in critical current when each magnetic field is applied, and referring to this correlation data. Is required. If this correlation data is also stored in storage means such as the recording device 4 described above, the amount of decrease in critical current can be determined more easily and automatically.

或いは、臨界電流の低下量は、上記漏れ磁場分布を解析し、超電導導体層を構成する線材に磁場が印加された場合の臨界電流の低下率を演算によって求めておき、この演算値を利用することができる。具体的には、1本のケーブルコアの通電電流と誘導電流との差によって発生する磁場分布を(二次元或いは三次元の)電磁場解析によって計算し、もう1本のケーブルコアに具える超電導導体層を形成する各超電導線材に印加する磁場を算出する。また、予め、超電導線材に磁場が印加されたときの臨界電流の維持率を実験的に求めておき、上記磁場による各超電導線材の臨界電流の低下を求め、この低下量を用いて、超電導導体層の臨界電流の低下率を求める。上記電磁場解析には、市販の解析ソフトを利用することができる。   Alternatively, the critical current decrease amount is obtained by analyzing the leakage magnetic field distribution, calculating the critical current decrease rate when a magnetic field is applied to the wire constituting the superconducting conductor layer, and using this calculated value. be able to. Specifically, the distribution of the magnetic field generated by the difference between the conduction current and the induced current of one cable core is calculated by electromagnetic field analysis (two-dimensional or three-dimensional), and the superconducting conductor provided in the other cable core. The magnetic field applied to each superconducting wire forming the layer is calculated. Also, in advance, experimentally determined the critical current maintenance rate when a magnetic field is applied to the superconducting wire, and determined the reduction of the critical current of each superconducting wire due to the magnetic field, and using this decrease amount, the superconducting conductor Determine the critical current reduction rate of the layer. Commercially available analysis software can be used for the electromagnetic field analysis.

そして、測定した臨界電流Icrealに求めた低下量を加えて補正し、臨界電流Icを求める。この演算も、記録装置4などに具える演算手段に行わせるようにすると、臨界電流Icをより簡単に、自動的に求められる。 Then, added to correct the measured drop amount determined in the critical current Ic real and obtains the critical current Ic. If this calculation is also performed by calculation means provided in the recording device 4 or the like, the critical current Ic can be obtained more easily and automatically.

この形態は、実測値の誘導電流Isrealを利用することで短絡接続部120の抵抗が設計値と相違する場合でも、臨界電流Icを精度よく求められ、信頼性が高い。 In this embodiment, even when the resistance of the short-circuit connection unit 120 is different from the design value by using the actually measured induced current Is real , the critical current Ic can be obtained with high accuracy and high reliability.

(2) 数値解析を利用する場合
或いは、上述した往復通電のシステムを構築した場合における誘導電流を以下に説明する数値解析コードを用いて演算により求め、この演算値を用いて、臨界電流Icを演算により求めることができる。
(2) When numerical analysis is used, or when the above-described reciprocating system is constructed, the induced current is obtained by calculation using the numerical analysis code described below, and the critical current Ic is calculated using this calculated value. It can be obtained by calculation.

超電導導体層及び超電導シールド層が上述した超電導線材からなる多層構造であり、合計でN層の線材層を具えるケーブルコアについて(超電導導体層の線材層の数:Nc)、各線材層を同軸円筒モデルで近似し、各線材層に、当該線材層のスパイラル方向(線材の巻回方向)と平行に電流が流れる場合を考える。 Superconducting conductor layer and superconducting shield layer is a multilayer structure composed of the above-mentioned superconducting wire, and for a cable core having a total of N wire layers (number of superconducting conductor layers: N c ), each wire layer is Approximation is performed using a coaxial cylindrical model, and a case is considered in which a current flows in each wire layer in parallel to the spiral direction of the wire layer (winding direction of the wire).

超電導導体層を構成するi層目(1≦i≦NC)の線材層、及び超電導シールド層を構成するi層目((NC+1)≦i≦N)の線材層に対する回路方程式はそれぞれ、式(1)及び式(2)で表される。VCは、往復通電する2本のケーブルコアに具える超電導導体層の両端の電圧、Iiは、i層目に流れる電流、ISは、誘導電流の総和、rSは短絡接続部の抵抗(ここでは三相短絡抵抗)である。 The circuit equations for the wire layer of the i-th layer (1 ≦ i ≦ N C ) constituting the superconducting conductor layer and the wire layer of the i-th layer ((N C +1) ≦ i ≦ N) constituting the superconducting shield layer are respectively Are represented by formula (1) and formula (2). V C is the voltage across the superconducting conductor layer in the two cable cores carrying reciprocating current, I i is the current flowing in the i layer, I S is the sum of the induced currents, and r S is the short-circuit connection Resistance (here, three-phase short-circuit resistance).

Figure 0005680505
Figure 0005680505

Liはi層目の自己インダクタンス、Mi,jはi層目とj層目との相互インダクタンスであり、それぞれ式(3)及び式(4)で表される。dは、ケーブルコアの長さ、aiはi層目の半径、piはi層目のスパイラルピッチ、siはi層目の撚り方向係数(線材がS撚りの場合では「1」、Z撚りの場合では「-1」)、Rは積分半径である。Viは直流通電時にi層目に発生する抵抗成分の電圧であり、式(5)で表される。IC,iはi層目の線材の臨界電流の総和、niはi層目の線材のn値、E0は、基準電界:0.1mV/mである。 L i is the self-inductance of the i- th layer, M i, j is the mutual inductance of the i-th layer and the j-th layer, and is expressed by the equations (3) and (4), respectively. d is the length of the cable core, a i is the radius of the i- th layer, p i is the spiral pitch of the i- th layer, s i is the twist direction factor of the i- th layer (`` 1 '' when the wire is S-twisted, In the case of Z twist, "-1"), R is the integral radius. V i is the voltage of the resistance component generated in the i-th layer during direct current energization, and is expressed by equation (5). I C, i is the sum of critical currents of the i- th layer wire, n i is the n value of the i- th layer wire, and E 0 is the reference electric field: 0.1 mV / m.

Figure 0005680505
Figure 0005680505

往復通電に用いる2本のケーブルコアにおいて、一方のケーブルコアの超電導導体層に流れる導体電流It=αtと、同じケーブルコアに具える超電導シールド層に流れる誘導電流ISとの差に起因する漏れ磁場の分布について、上述のように解析しておく。また、各線材層を構成する超電導線材に印加される磁場による臨界電流の低下率も上述のように求めておく。そして、各層の臨界電流IC,iには、この低下率を考慮したものとする。 In the two cable cores to be used for reciprocating energized, due to the difference in the conductor current I t = [alpha] t flowing through the superconducting conductor layer of one of the cable core, the induced current I S flowing through the superconducting shield layer comprising the same cable core The distribution of the leakage magnetic field is analyzed as described above. Further, the reduction rate of the critical current due to the magnetic field applied to the superconducting wire constituting each wire layer is also obtained as described above. The critical current I C, i of each layer is assumed to take this reduction rate into consideration.

設定した変化速度α及び抵抗rSに対して、上記の非線形過渡現象を示す連立方程式を解くことで、各時刻tにおいて2本のケーブルコアに具える超電導導体層の両端に発生する電圧Vcや超電導シールド層に誘導する誘導電流Isを求められる。Vcが、臨界電流の定義電圧0.1mV/mに達した時刻における通電電流値が臨界電流Icrealであり、このときのISとの差に基づく漏れ磁場による臨界電流の低下量によってIcrealを補正して、臨界電流Icを演算により求めることができる。 The voltage V c generated at both ends of the superconducting conductor layers included in the two cable cores at each time t is solved by solving the simultaneous equations showing the nonlinear transient phenomenon with respect to the set change rate α and resistance r S. obtained an induced current I s to divert to and superconducting shield layer. The conduction current value at the time when V c reaches the critical current definition voltage of 0.1 mV / m is the critical current I c real , and I c real depends on the amount of decrease in the critical current due to the leakage magnetic field based on the difference from I S at this time. And the critical current Ic can be obtained by calculation.

[試験例]
超電導導体層の臨界電流の設計値が6.1kA(6100A)の3心一括型超電導ケーブル(長さ:30m)を作製して布設し、上述した往復通電のシステム(図1(A)参照)を構築して、臨界電流を測定した。
[Test example]
A superconducting conductor layer with a critical current design value of 6.1 kA (6100 A) is manufactured and installed, and the above-mentioned reciprocating system (see Fig. 1 (A)) is installed. Constructed and measured critical current.

ケーブルコアの構成部材、及び仕様を表1に示す。超電導線材は、厚さ:0.35mmのBi系酸化物超電導線材を用いた。n値:15〜18、スパイラルピッチ:100mm〜500mm、各線材層の撚り方向はフォーマ側から順にSSZZSSとした。   Table 1 shows the components and specifications of the cable core. As the superconducting wire, a Bi-based oxide superconducting wire having a thickness of 0.35 mm was used. n value: 15 to 18, spiral pitch: 100 mm to 500 mm, and the twist direction of each wire layer was SSZZSS in order from the former side.

Figure 0005680505
Figure 0005680505

超電導導体層に供給する直流電流の変化速度αを種々の値として通電し、超電導シールド層に流れる誘導電流Isが異なった状態で臨界電流Icrealを測定した。また、ロゴスキーコイルを用いて、各変化速度αにおける誘導電流Isrealを測定した。 The critical current Ic real was measured in a state where the induction current Is flowing through the superconducting shield layer was varied by supplying various values of the change rate α of the direct current supplied to the superconducting conductor layer. In addition, the induced current Is real at each change rate α was measured using a Rogowski coil.

実際に測定した臨界電流Icreal(実測値)と、上述の数値解析コードを用いて求めた臨界電流Icreal(解析値)とを図2に示す。ここでは、印加磁場を垂直磁場として解析した。図2に示すように、変化速度αが大きいほど、臨界電流Icrealが大きいことが分かる(ここでは、α=720A/secのとき、Icreal=5635A(設計Ic値:6100Aの90%以上))。これは、誘導電流Isが十分に流れたことで漏れ磁場が低減され、漏れ磁場に基づく臨界電流の低下量が小さくなることで、測定した臨界電流Icrealが設計値に近くなった、と考えられる。変化速度αが小さい場合では、誘導電流Isが十分に流れないために漏れ磁場が大きくなり、図2に示すように変化速度αが大きい場合に比較して、臨界電流が低下している(ここでは、α=240A/secのとき、Icreal=5433A(設計Ic値:6100Aの約89%)。しかしながら、いずれの場合においても、実測値と解析値とはよく一致している。従って、変化速度αの増大に伴う誘導電圧に対応した大容量の電源を用いなくても、上述の実測値や解析値を利用して上述の補正を行うことで、臨界電流Icを精度よく求められる、と言える。 Actually measured critical current Ic real (measured value), showing the critical current Ic real obtained using numerical analysis code above (analysis value) in FIG. Here, the applied magnetic field was analyzed as a vertical magnetic field. As shown in FIG. 2, it can be seen that the larger the change rate α, the larger the critical current Ic real (here, when α = 720 A / sec, Ic real = 5635 A (designed Ic value: 90% or more of 6100 A)) ). This is because the leakage magnetic field is reduced by sufficiently flowing the induced current Is, and the amount of decrease in the critical current based on the leakage magnetic field is reduced, so that the measured critical current Ic real is close to the design value. It is done. When the rate of change α is small, the induced current Is does not flow sufficiently and the leakage magnetic field becomes large, and the critical current is reduced compared to the case where the rate of change α is large as shown in FIG. 2 (here Then, when α = 240 A / sec, Ic real = 5433 A (design Ic value: about 89% of 6100 A) However, in any case, the measured value and the analytical value agree well. Even without using a large-capacity power supply corresponding to the induced voltage accompanying the increase in the speed α, the critical current Ic can be obtained with high accuracy by performing the above-described correction using the above-described measured values and analytical values. I can say that.

上述のように実測値と解析値との整合が高く、図2に示すように、実測値と解析値との差は20A〜40A程度である。従って、臨界電流Icを演算するにあたり、上述した数値解析コードは、妥当性があると言える。   As described above, there is a high match between the actual measurement value and the analysis value. As shown in FIG. 2, the difference between the actual measurement value and the analysis value is about 20A to 40A. Therefore, it can be said that the above-described numerical analysis code is valid in calculating the critical current Ic.

図3は、上述の数値解析コードを用いて、誘導電流Isを演算により求めたグラフ(解析値)と、実測値:誘導電流Isrealのグラフである。誘導電流Isの演算では、rs=6.3μΩ、d=30mとした。図3に示すように、解析値と実測値とが整合していることが分かる。従って、上述の数値解析コードは、誘導電流Isの演算にも妥当性があり、臨界電流の低下率も精度よく求められる、と言える。 3, using a numerical analysis code described above, the graph of the induced current I s was obtained by calculation and (analysis value), Found: is a graph of the induced current Is real. In the calculation of the induced current I s , r s = 6.3 μΩ and d = 30 m. As shown in FIG. 3, it can be seen that the analysis value and the actual measurement value are consistent. Therefore, numerical analysis code described above, there is a validity to operation of the induction current I s, rate of decrease in the critical current is also required accurately, and it can be said.

上述の数値解析コードを用いて、ケーブルコアの長さ:ケーブル長を変えた場合の臨界電流Icrealを演算により求めた。その結果を図4に示す。図4に示すようにケーブル長が大きくなる(ケーブルコアの長さが長くなる)と、臨界電流Icrealは、設計値(ここでは6100A)に近づくことが分かる。また、ケーブル長が大きくなると変化速度αの大小の差による臨界電流Icrealの差が小さくなることが分かる。 Using the above numerical analysis code, the cable core length: the critical current Ic real when the cable length was changed was obtained by calculation. The results are shown in FIG. As shown in FIG. 4, it can be seen that as the cable length increases (the cable core length increases), the critical current Ic real approaches the design value (here, 6100 A). Further, it can be seen that the difference in the critical current Ic real due to a difference in the magnitude of the change rate α cable length increases is reduced.

以上から、超電導ケーブル線路に対して臨界電流Icrealを測定する場合、上述のように漏れ磁場による臨界電流の低下分を補正することで、小容量の電源を用いても、臨界電流Icを精度よく測定できると言える。特に、ケーブル長が短い場合では、誘導電流を誘導し難く、図4に示すように漏れ磁場によって臨界電流が低下し易いため、上述のように測定値を補正する本発明を好適に利用できる、と言える。また、キロメートルオーダーといった長尺な線路に対して、上述のように実測した誘導電流Isrealを利用して補正することで、臨界電流Icをより高精度に測定できると言え、上述の数値解析コードを用いると、容易に、かつ簡単に臨界電流Icを測定できると言える。 From the above, when measuring the critical current Ic real for a superconducting cable line, the critical current Ic can be accurately measured even if a small-capacity power supply is used by correcting the decrease in the critical current due to the leakage magnetic field as described above. It can be said that it can be measured well. In particular, when the cable length is short, it is difficult to induce the induced current, and the critical current is likely to be reduced by the leakage magnetic field as shown in FIG. 4, so that the present invention for correcting the measurement value as described above can be preferably used. It can be said. In addition, it can be said that the critical current Ic can be measured with higher accuracy by correcting the long current line such as the kilometer order by using the induction current Is real measured as described above. Can be used to easily and easily measure the critical current Ic.

なお、上記超電導ケーブルの出荷前に、工場にて当該超電導ケーブルの一部を切断して、1本の短尺なサンプルケーブル(例えば2m〜数m程度)を用意し、当該サンプルケーブルの両端を直流電源に接続して超電導導体層の臨界電流Icを測定したところ、設計値(6.1kA)に誤差範囲で一致した。この測定では、リード線などを介して直流電源にサンプルケーブルの両端を接続しており、上述のように別のケーブルコアを併設していないため、漏れ磁場による臨界電流の低下が実質的に生じない。また、サンプルケーブルは長さが短いため、上記リード線も短くて済み、リード線の抵抗を実質的に考慮しなくてもよい。従って、上記サンプルケーブルでは、漏れ磁場による影響を受けず、臨界電流を精度よく測定できる。上述の超電導ケーブル線路を構築する超電導ケーブルは、サンプルケーブルと同等の特性が維持されていることが確認できた。   Before shipping the superconducting cable, cut a part of the superconducting cable at the factory to prepare one short sample cable (for example, about 2m to several meters), and connect both ends of the sample cable to the DC When the critical current Ic of the superconducting conductor layer was measured by connecting to a power source, it agreed with the design value (6.1 kA) within the error range. In this measurement, both ends of the sample cable are connected to a DC power source via lead wires, etc., and a separate cable core is not provided as described above. Absent. Further, since the sample cable is short, the lead wire can be short, and the resistance of the lead wire need not be substantially taken into consideration. Therefore, in the sample cable, the critical current can be accurately measured without being affected by the leakage magnetic field. It was confirmed that the superconducting cable for constructing the above-described superconducting cable line maintained the same characteristics as the sample cable.

[効果]
上述したように、2本のケーブルコアの超電導導体層を往復通電可能とし、一定の変化速度αで超電導導体層に直流電流を通電して測定した臨界電流に対して、超電導導体層への通電電流と超電導シールド層に流れる誘導電流との差に基づく漏れ磁場による臨界電流の低下分を補正することで、小容量の電源を用いても、臨界電流を精度よく測定できる。
[effect]
As described above, the superconducting conductor layer of the two cable cores can be reciprocally energized, and the superconducting conductor layer is energized with respect to the critical current measured by applying a direct current to the superconducting conductor layer at a constant rate of change α. By correcting the decrease in critical current due to the leakage magnetic field based on the difference between the current and the induced current flowing in the superconducting shield layer, the critical current can be accurately measured even with a small-capacity power supply.

特に、補正値を求めるにあたり、誘導電流の実測値を利用することで、短絡接続部の抵抗分を正確に反映できるため、短絡接続部の抵抗を一定値とする場合と比較して、臨界電流をより精度よく測定することができる。   In particular, when calculating the correction value, the resistance value of the short-circuited connection can be accurately reflected by using the measured value of the induced current. Can be measured with higher accuracy.

実施形態1では、同じ断熱管13Aに収納された2本のケーブルコア10a,10bを測定に用いており、各コア10a,10bの磁場が互いに干渉し易い環境であるが、上述のように補正することで、臨界電流を精度よく測定できる。   In the first embodiment, the two cable cores 10a and 10b housed in the same heat insulating tube 13A are used for measurement, and the magnetic fields of the cores 10a and 10b are likely to interfere with each other. By doing so, the critical current can be accurately measured.

なお、実施形態1では、ケーブルコア10a,10bに対して臨界電流を測定する場合を説明したが、ケーブルコア10b,10c、或いはケーブルコア10a,10cの臨界電流も勿論測定できる。   In the first embodiment, the case where the critical current is measured for the cable cores 10a and 10b has been described. Of course, the critical current of the cable cores 10b and 10c or the cable cores 10a and 10c can also be measured.

<実施形態2>
図1(B)に示す3条の単心超電導ケーブルに対して、本発明方法を利用して、超電導導体層11の臨界電流を測定する場合を説明する。
<Embodiment 2>
A case where the critical current of the superconducting conductor layer 11 is measured using the method of the present invention for the three single-core superconducting cables shown in FIG. 1 (B) will be described.

この形態の場合も、超電導ケーブル1B,1C,1Dの断熱管13B,13C,13Dにそれぞれ収納されたケーブルコア10d,10e,10fに具える各超電導シールド層12の両端を短絡接続部120により接続して通電ループを形成し、片端を接地する。そして、例えば、超電導ケーブル1Bに具えるケーブルコア10dの超電導導体層11の一端側と超電導ケーブル1Cに具えるケーブルコア10eの超電導導体層11の一端側同士をリード部材2によって接続し、各コア10d,10eの他端側を直流電源3に接続する。こうすることで、両超電導ケーブル1B,1Cのコア10d,10eの超電導導体層11は、往復通電が可能となる。   Also in this form, both ends of each superconducting shield layer 12 included in the cable cores 10d, 10e, and 10f housed in the heat insulating tubes 13B, 13C, and 13D of the superconducting cables 1B, 1C, and 1D are connected by the short-circuit connecting portion 120. Then, an energization loop is formed and one end is grounded. For example, one end side of the superconducting conductor layer 11 of the cable core 10d included in the superconducting cable 1B and one end side of the superconducting conductor layer 11 of the cable core 10e included in the superconducting cable 1C are connected to each other by the lead member 2. The other ends of 10d and 10e are connected to the DC power source 3. By doing so, the superconducting conductor layer 11 of the cores 10d and 10e of both superconducting cables 1B and 1C can be reciprocally energized.

上述のような往復通電システムを構築したら、実施形態1と同様に、往復通電を行う超電導導体層11に一定の変化速度αで直流電流を通電して臨界電流を測定し、漏れ磁場に起因する低下分を補正する。こうすることで、実施形態2の場合も、小容量の電源を用いて、臨界電流Icを精度よく測定できる。   When the reciprocating current system as described above is constructed, the critical current is measured by applying a direct current to the superconducting conductor layer 11 that performs reciprocating current at a constant change rate α, as in the first embodiment, and is caused by the leakage magnetic field. Correct the decrease. By so doing, also in the second embodiment, the critical current Ic can be accurately measured using a small-capacity power supply.

本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.

本発明超電導ケーブルの臨界電流測定方法は、布設後の超電導ケーブルの竣工試験や、工場で作製した超電導ケーブルに対してサンプル試験を行う場合などで臨界電流を測定する際に好適に利用することができる。特に、本発明臨界電流測定方法は、超電導導体層の臨界電流の設定値が4kA以上、更に5kA以上といった大容量の電力供給用途の超電導ケーブルに対して、臨界電流を測定する際に好適に利用することができる。なお、本発明臨界電流測定方法は、超電導導体層の臨界電流の設定値が4kA未満、例えば、従来の臨界電流の設定値が3kA程度の電力供給用途の超電導ケーブルに対しても利用することができる。   The method for measuring the critical current of the superconducting cable of the present invention can be suitably used when measuring the critical current in the completion test of the superconducting cable after installation or when performing a sample test on a superconducting cable manufactured in a factory. it can. In particular, the critical current measuring method of the present invention is suitably used for measuring a critical current for a superconducting cable for large-capacity power supply applications in which the setting value of the critical current of the superconducting conductor layer is 4 kA or more, and further 5 kA or more. can do. Note that the critical current measurement method of the present invention can be used for a superconducting cable for power supply that has a critical current setting value of less than 4 kA, for example, a conventional critical current setting value of about 3 kA. it can.

1A,1B,1C,1D 超電導ケーブル 2 リード部材 3 直流電源 4 記録装置
5 ロゴスキーコイル 120 短絡接続部
10a,10b,10c,10d,10e,10f ケーブルコア 11 超電導導体層
12 超電導シールド層 13A,13B,13C,13D 断熱管
1A, 1B, 1C, 1D Superconducting cable 2 Lead material 3 DC power supply 4 Recording device
5 Rogowski coil 120 Short-circuit connection
10a, 10b, 10c, 10d, 10e, 10f Cable core 11 Superconducting conductor layer
12 Superconducting shield layer 13A, 13B, 13C, 13D Insulated tube

Claims (5)

少なくとも1本の超電導ケーブルに具える複数のケーブルコアを利用して、当該ケーブルコアに具える超電導導体層の臨界電流を測定する超電導ケーブルの臨界電流測定方法であって、
前記各ケーブルコアは、前記超電導導体層の外周に超電導シールド層を具えており、前記少なくとも1本の超電導ケーブルの断熱管に収納されており、
前記複数のケーブルコアのうち、2本のケーブルコアの一端側同士を電気的に接続し、各ケーブルコアの他端側を直流電源に接続し、各ケーブルコアの超電導導体層に往復通電を行えるようにして、当該超電導導体層に720A/sec以下の一定の変化速度で直流電流を通電して、臨界電流を測定し、
往復通電を行う一方のケーブルコアに具える超電導導体層への通電電流と、前記変化速度に基づいて、このケーブルコアに具える超電導シールド層に流れる誘導電流との差から、当該ケーブルコアの外部に漏れる漏れ磁場によって、往復通電を行う他方のケーブルコアに具える超電導導体層の臨界電流が低下する量を求め、
前記測定した臨界電流を前記低下した量に基づいて補正する超電導ケーブルの臨界電流測定方法。
A method for measuring a critical current of a superconducting cable, which uses a plurality of cable cores included in at least one superconducting cable and measures a critical current of a superconducting conductor layer included in the cable core,
Each of the cable cores includes a superconducting shield layer on the outer periphery of the superconducting conductor layer, and is housed in a heat insulating tube of the at least one superconducting cable,
Among the plurality of cable cores, one end sides of two cable cores are electrically connected to each other, the other end side of each cable core is connected to a DC power source, and the superconducting conductor layer of each cable core can be reciprocated. In this way, a direct current is passed through the superconducting conductor layer at a constant change rate of 720 A / sec or less, and the critical current is measured.
Based on the difference between the conduction current to the superconducting conductor layer provided in one cable core that performs reciprocal energization and the induced current flowing in the superconducting shield layer provided to this cable core based on the change speed, the outside of the cable core The amount by which the critical current of the superconducting conductor layer included in the other cable core that performs reciprocal energization decreases due to the leakage magnetic field leaking into the
Critical current measurement method of the superconducting cable you corrected based on the critical current was the measured amount and the decrease.
前記2本のケーブルコアに具える超電導シールド層は、短絡接続部によって電気的に接続されており、
前記短絡接続部にロゴスキーコイルを取り付けて、前記超電導シールド層に流れる電流を実測し、前記誘導電流には、この実測値を用いる請求項1に記載の超電導ケーブルの臨界電流測定方法。
The superconducting shield layers provided in the two cable cores are electrically connected by a short-circuit connection portion,
Said mounting Rogowski coil short-circuited portion, the superconducting actually measured current flowing in the shield layer, the said induced current, the critical current measurement method of the superconducting cable according to Motomeko 1 Ru using the measured values.
前記2本のケーブルコアに具える超電導シールド層は、短絡接続部によって電気的に接続されており、
前記短絡接続部に取り付けられたシャント抵抗によって、前記超電導シールド層に流れる電流を実測し、前記誘導電流には、この実測値を用いる請求項1に記載の超電導ケーブルの臨界電流測定方法。
The superconducting shield layers provided in the two cable cores are electrically connected by a short-circuit connection portion,
The shunt resistor mounted on the short-circuited portion, the superconducting actually measured current flowing in the shield layer, the said induced current, the critical current measurement method of the superconducting cable according to Motomeko 1 Ru using the measured values.
前記超電導ケーブルは、前記超電導導体層の臨界電流の設定値が4kA以上である請求項1〜請求項3のいずれか1項に記載の超電導ケーブルの臨界電流測定方法。 The superconducting cable, the set value of the critical current of the superconducting conductor layer is Ru der least 4kA Motomeko 1 critical current measurement method of a superconducting cable according to any one of claims 3. 前記超電導ケーブルは、布設されて超電導ケーブル線路を構築している請求項1〜請求項4のいずれか1項に記載の超電導ケーブルの臨界電流測定方法。  5. The method for measuring a critical current of a superconducting cable according to claim 1, wherein the superconducting cable is laid to construct a superconducting cable line.
JP2011180750A 2011-08-22 2011-08-22 Method for measuring critical current of superconducting cable Expired - Fee Related JP5680505B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011180750A JP5680505B2 (en) 2011-08-22 2011-08-22 Method for measuring critical current of superconducting cable
KR1020120091224A KR101895623B1 (en) 2011-08-22 2012-08-21 Method for measuring a critical current of a superconducing cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180750A JP5680505B2 (en) 2011-08-22 2011-08-22 Method for measuring critical current of superconducting cable

Publications (2)

Publication Number Publication Date
JP2013044564A JP2013044564A (en) 2013-03-04
JP5680505B2 true JP5680505B2 (en) 2015-03-04

Family

ID=48008595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180750A Expired - Fee Related JP5680505B2 (en) 2011-08-22 2011-08-22 Method for measuring critical current of superconducting cable

Country Status (2)

Country Link
JP (1) JP5680505B2 (en)
KR (1) KR101895623B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461318B1 (en) * 2013-05-21 2014-11-12 창원대학교 산학협력단 Superconducting Cable Test Apparatus
CN104965113B (en) * 2015-06-10 2017-09-19 上海超导科技股份有限公司 Device and its detection method for high-temperature superconductor band Mechanics Performance Testing
CN106443270B (en) * 2016-10-25 2023-09-01 云南电网有限责任公司电力科学研究院 High-temperature superconducting tape current-carrying capacity testing device and application method thereof
KR102417255B1 (en) * 2020-07-09 2022-07-06 한국전력공사 Current detection and discharge device for power cable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717283C1 (en) * 1997-04-24 1998-04-23 Karlsruhe Forschzent Method of contact free longitudinal and transversal homogeneity examination of critical current density in strip supraconductors
JP4223744B2 (en) * 2002-06-27 2009-02-12 住友電気工業株式会社 Critical current measurement method for high temperature superconducting wire
JP4697530B2 (en) * 2005-05-26 2011-06-08 住友電気工業株式会社 Critical current measuring method and critical current measuring system for superconducting cable
JP5066480B2 (en) * 2008-05-07 2012-11-07 株式会社フジクラ Critical current measuring device
JP5356206B2 (en) * 2009-12-22 2013-12-04 住友電気工業株式会社 Method for measuring critical current of superconducting cable
JP5696941B2 (en) * 2011-08-08 2015-04-08 住友電気工業株式会社 Measuring method of critical current

Also Published As

Publication number Publication date
KR101895623B1 (en) 2018-09-05
KR20130021337A (en) 2013-03-05
JP2013044564A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5680505B2 (en) Method for measuring critical current of superconducting cable
US20100019776A1 (en) Method for analyzing superconducting wire
JP4697530B2 (en) Critical current measuring method and critical current measuring system for superconducting cable
BR112014028930B1 (en) power cable and method for improving the performance of a power cable
JP2004510290A (en) Superconducting cable
JP5356206B2 (en) Method for measuring critical current of superconducting cable
JP5246453B2 (en) Method for measuring critical current of superconducting cable
Yang et al. Effect of partial insulation winding scheme on discharge characteristics of GdBCO coils
Baù et al. Steady state modelling of three-core wire armoured submarine cables: Power losses and ampacity estimation based on FEM and IEC
JP5696941B2 (en) Measuring method of critical current
Maruyama et al. Development of REBCO HTS power cables
JP5604213B2 (en) Superconducting equipment
JP5229482B2 (en) Superconducting cable soundness inspection method
Bruzzone et al. Results of Contact Resistance Distribution in NbTi and Nb $ _ {3} $ Sn ITER Conductor Termination
Li et al. Transport characteristics of the 100 m KEPCO HTS cable system for balanced three-phase currents
Kim et al. Development and performance analysis of a 22.9 kV/50 MVA tri-axial HTS power cable core
JP6358562B2 (en) Degradation position measurement method for superconducting cable lines
Dinh et al. Transient analysis of an HTS DC power cable with an HVDC system
Ohya et al. Critical current measurement in three-in-one high-temperature superconducting cables
Duckworth et al. On the effect of NiW on the inductance and AC loss of HTS cables
JP2015216735A (en) Superconducting cable and superconducting cable line
JP6200354B2 (en) Manufacturing method of superconducting cable for AC
Tompkins et al. Measurement of Resistance and Reactance of Expanded ACSR [includes discussion]
EP3780011B1 (en) Multifunctional electric cable
CN206248727U (en) The short circuit copper bar or copper braid over braid of contact resistance can be surveyed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees