JP2006329503A - Internal heat exchanger - Google Patents

Internal heat exchanger Download PDF

Info

Publication number
JP2006329503A
JP2006329503A JP2005152541A JP2005152541A JP2006329503A JP 2006329503 A JP2006329503 A JP 2006329503A JP 2005152541 A JP2005152541 A JP 2005152541A JP 2005152541 A JP2005152541 A JP 2005152541A JP 2006329503 A JP2006329503 A JP 2006329503A
Authority
JP
Japan
Prior art keywords
pressure side
side refrigerant
compressor
refrigerant pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005152541A
Other languages
Japanese (ja)
Other versions
JP4385999B2 (en
Inventor
Kaoru Kura
馨 倉
Yuichi Takahashi
裕一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2005152541A priority Critical patent/JP4385999B2/en
Publication of JP2006329503A publication Critical patent/JP2006329503A/en
Application granted granted Critical
Publication of JP4385999B2 publication Critical patent/JP4385999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration

Abstract

<P>PROBLEM TO BE SOLVED: To positively maintain airtightness of the respective openings of high pressure side refrigerant piping and low pressure side refrigerant piping regarding an internal heat exchanger in which the high pressure side refrigerant piping of a refrigerant cooling circuit is mounted inside the low pressure side refrigerant piping. <P>SOLUTION: The internal heat exchanger comprises a first fastening member 144A inserting the high pressure side refrigerant piping 141 through inside and brazed with airtightness to the end of the low pressure side refrigerant piping 142 and the outer peripheral surface of the high pressure side refrigerant piping 141, and a second fastening member 144B provided divided from the first fastening member 144A to insert the high pressure side refrigerant piping 141 through inside and brazed with airtightness to the end of the high pressure side refrigerant piping 141 and the inner peripheral surface of a port pipe 141c disposed at the end. Brazing is therefore performed divided into the first fastening member 144A side and the second fastening member 144B side. As a result, the influence of mutual heating is prevented in brazing work, and a fastening failure at the respective openings of the high pressure side refrigerant piping 141 and low pressure side refrigerant piping 142 is eliminated to positively maintain airtightness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば断熱筐体の庫内の冷却を行うための冷媒循環経路を形成する冷媒冷却回路に設けてあり、冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器に関するものである。   The present invention is provided, for example, in a refrigerant cooling circuit that forms a refrigerant circulation path for cooling the interior of a heat-insulating housing, and performs internal heat exchange between the high-pressure side and the low-pressure side of the refrigerant circulation path. It relates to an exchanger.

従来、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどの断熱筐体の冷却庫内を冷却するための冷媒冷却回路が知られている。冷媒冷却回路は、主に圧縮機、放熱器、絞り部、蒸発器を経て冷媒を循環する冷媒循環経路を形成してある。そして、冷媒冷却回路を循環する冷媒としては、地球環境に対する影響の少ない冷媒が使用してある。例えば、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ないなどの点で、二酸化炭素を冷媒として使用してある。   2. Description of the Related Art Conventionally, for example, a refrigerant cooling circuit for cooling the inside of a refrigerator of a heat insulating housing such as a vending machine, a refrigerator, a freezer showcase / refrigerated showcase, or a beverage dispenser is known. The refrigerant cooling circuit forms a refrigerant circulation path for circulating the refrigerant mainly through the compressor, the radiator, the throttle unit, and the evaporator. As the refrigerant circulating in the refrigerant cooling circuit, a refrigerant having little influence on the global environment is used. For example, carbon dioxide is used as a refrigerant in that it has nonflammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

上記冷媒冷却回路では、圧縮機の出口側から放熱器を経て絞り部の入口側までの高圧側における放熱器と絞り部との間、絞り部の出口側から蒸発器を経て圧縮機の入口側までの低圧側における蒸発器と圧縮機との間に内部熱交換器を設けてある。この内部熱交換器は、高圧側の冷媒管路と低圧側の冷媒管路とを、互いに熱交換可能な距離を有して非接触向流するように配設してある。これにより、放熱器から得られる冷媒が液化しやすくなる一方、蒸発器から気化した冷媒が圧縮機に供給されることになる(例えば、特許文献1参照)。   In the refrigerant cooling circuit, between the radiator on the high pressure side from the outlet side of the compressor through the radiator to the inlet side of the throttle unit and the throttle unit, from the outlet side of the throttle unit to the inlet side of the compressor through the evaporator An internal heat exchanger is provided between the evaporator and the compressor on the low pressure side. This internal heat exchanger is arranged so that the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe flow in a non-contact counterflow with a distance allowing heat exchange with each other. Thereby, while the refrigerant | coolant obtained from a radiator becomes easy to liquefy, the refrigerant | coolant vaporized from the evaporator is supplied to a compressor (for example, refer patent document 1).

特開2004−54424号公報JP 2004-54424 A

ところで、冷媒冷却回路の冷媒として二酸化炭素を使用すると、当該二酸化炭素の臨界温度が約31℃と低いことから、従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに圧力が高くなる。そして、上述した従来の冷媒冷却回路では、内部熱交換器が高圧側の冷媒管路と低圧側の冷媒管路とを単純に熱交換可能な距離をおいて設けてあるだけである。このため、内部熱交換器での熱交換効率が悪く、蒸発器を通過した二酸化炭素が一部液化したままで圧縮機に供給されるという問題がある。   By the way, when carbon dioxide is used as the refrigerant in the refrigerant cooling circuit, the critical temperature of the carbon dioxide is as low as about 31 ° C., so that it is far more than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. Pressure increases. In the conventional refrigerant cooling circuit described above, the internal heat exchanger is simply provided at a distance that allows heat exchange between the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe. For this reason, the heat exchange efficiency in an internal heat exchanger is bad, and there exists a problem that the carbon dioxide which passed the evaporator is supplied to a compressor with a part liquefied.

また、周囲温度が27℃以上において内部熱交換器の熱交換効率が悪いと、放熱器の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、放熱器において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。二酸化炭素が一部気化したままであると、高圧側の圧力上昇を抑えることができなくなる。   Further, if the heat exchange efficiency of the internal heat exchanger is poor at an ambient temperature of 27 ° C. or higher, the temperature of the radiator may exceed the critical temperature of carbon dioxide (about 31 ° C.). In this case, it becomes a supercritical pressure state in which carbon dioxide does not liquefy while being vaporized in the radiator. If the carbon dioxide is partially vaporized, the pressure increase on the high pressure side cannot be suppressed.

また、圧縮機では、その内部に冷凍機油を完全に封止することが困難であり、冷媒循環経路の循環運転時に圧縮機から冷凍機油が吐出される。内部熱交換器の熱交換効率が悪いと、圧縮機から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機に戻すことが難しくなる。   Further, in the compressor, it is difficult to completely seal the refrigerating machine oil therein, and the refrigerating machine oil is discharged from the compressor during the circulation operation of the refrigerant circulation path. If the heat exchange efficiency of the internal heat exchanger is poor, it is difficult to circulate the refrigeration oil discharged from the compressor through the refrigerant circulation path and return it to the compressor.

そこで、細管とした高圧側冷媒配管を太管とした低圧側冷媒配管の内部に内装した2重管構造として、低圧側冷媒配管と高圧側冷媒配管との間で熱交換を行う内部熱交換器が考えられる。この場合、太管である低圧側冷媒配管の両端口と細管である高圧側冷媒配管の外面との間や、細管である高圧側冷媒配管の両端口と当該両端口に設ける口管の内面との間においてろう付け不良が生じると、気密性が十分でなくなり冷媒漏れが生じてしまうことになる。このため、上記部位における気密性を確実に維持することが望まれる。   Therefore, an internal heat exchanger that performs heat exchange between the low-pressure side refrigerant pipe and the high-pressure side refrigerant pipe as a double-pipe structure that is built inside the low-pressure side refrigerant pipe that is a large-sized high-pressure side refrigerant pipe. Can be considered. In this case, between the both ends of the low-pressure refrigerant pipe that is a large pipe and the outer surface of the high-pressure refrigerant pipe that is a narrow pipe, or both ends of the high-pressure refrigerant pipe that is a thin pipe and the inner surface of the mouth pipe provided at the both ends If a brazing failure occurs between the two, the airtightness is insufficient and refrigerant leakage occurs. For this reason, it is desirable to reliably maintain the airtightness in the above-mentioned part.

本発明は、上記実情に鑑みて、冷媒冷却回路の高圧側冷媒配管を低圧側冷媒配管の内部に内装した2重管構造とした内部熱交換器について、高圧側冷媒配管および低圧側冷媒配管の各口元における気密性を確実に維持することができる内部熱交換器を提供することを目的とする。   In view of the above circumstances, the present invention relates to an internal heat exchanger having a double-pipe structure in which a high-pressure side refrigerant pipe of a refrigerant cooling circuit is housed inside a low-pressure side refrigerant pipe. It aims at providing the internal heat exchanger which can maintain the airtightness in each mouth reliably.

上記の目的を達成するために、本発明の請求項1に係る内部熱交換器は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器とを有する冷媒循環経路を形成した冷媒冷却回路に設けてあり、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器において、高圧側冷媒配管を低圧側冷媒配管の内部に内装してあり、前記高圧側冷媒配管を挿通して前記低圧側冷媒配管の端部と前記高圧側冷媒配管の外周面とに気密性を有して固着した第1固着部材と、前記第1固着部材と分割して設けてあり前記高圧側冷媒配管を挿通して前記高圧側冷媒配管の端部と当該端部に配置した口管の内周面とに気密性を有して固着した第2固着部材とを備えたことを特徴とする。   In order to achieve the above object, an internal heat exchanger according to claim 1 of the present invention includes a compressor that compresses a refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and the radiator. Provided in a refrigerant cooling circuit that forms a refrigerant circulation path having a throttle part for adjusting the flow rate of the supplied refrigerant and an evaporator for evaporating the refrigerant supplied from the throttle part and returning it to the compressor; In the internal heat exchanger for exchanging heat between the high-pressure side and the low-pressure side of the refrigerant circulation path, a high-pressure side refrigerant pipe is built inside the low-pressure side refrigerant pipe, and the high-pressure side refrigerant pipe is inserted through A first fixing member fixed in an airtight manner to an end portion of the low-pressure side refrigerant pipe and an outer peripheral surface of the high-pressure side refrigerant pipe; and the high-pressure side refrigerant pipe provided separately from the first fixing member Through the end of the high-pressure side refrigerant pipe and the end Characterized in that a second fixing member which is fixed to the inner peripheral surface of the placed mouth tube having airtightness.

本発明の請求項2に係る内部熱交換器は、上記請求項1において、前記第1固着部材と前記第2固着部材とを離隔して前記高圧側冷媒配管の外周面を露出したことを特徴とする。   An internal heat exchanger according to a second aspect of the present invention is characterized in that, in the first aspect, the first fixing member and the second fixing member are separated from each other to expose an outer peripheral surface of the high-pressure side refrigerant pipe. And

本発明の請求項3に係る内部熱交換器は、上記請求項1または2において、前記高圧側冷媒配管を前記低圧側冷媒配管の内部に複数内装してあり、前記第1固着部材および前記第2固着部材は前記各高圧側冷媒配管、前記低圧側冷媒配管および前記口管に係り気密性を有して固着してあることを特徴とする。   According to a third aspect of the present invention, the internal heat exchanger according to the first or second aspect, wherein a plurality of the high-pressure side refrigerant pipes are housed inside the low-pressure side refrigerant pipe, and the first fixing member and the first The two fixing members are fixed to each of the high-pressure side refrigerant pipes, the low-pressure side refrigerant pipes, and the mouth pipes so as to be airtight.

本発明の請求項4に係る内部熱交換器は、上記請求項1〜3のいずれか一つにおいて、前記冷媒が二酸化炭素であることを特徴とする。   The internal heat exchanger according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the refrigerant is carbon dioxide.

本発明に係る内部熱交換器は、高圧側冷媒配管を低圧側冷媒配管の内部に内装してあり、高圧側冷媒配管を挿通して低圧側冷媒配管の端部と高圧側冷媒配管の外周面とに気密性を有して固着した第1固着部材と、第1固着部材と分割して設けてあり高圧側冷媒配管を挿通して高圧側冷媒配管の端部と当該端部に配置した口管の内周面とに気密性を有して固着した第2固着部材とを備えた。このため、第1固着部材側と第2固着部材側とに分けて固着される。この結果、固着作業において相互の加熱の影響を防ぐことができるため、高圧側冷媒配管および低圧側冷媒配管の各口元において固着不良を生じることがなく、その気密性を確実に維持することができる。   In the internal heat exchanger according to the present invention, the high-pressure side refrigerant pipe is internally provided in the low-pressure side refrigerant pipe, and the end of the low-pressure side refrigerant pipe and the outer peripheral surface of the high-pressure side refrigerant pipe are inserted through the high-pressure side refrigerant pipe. A first fixing member fixed in an airtight manner and a first fixing member which is provided separately from the first fixing member and is inserted into the end portion of the high-pressure side refrigerant pipe through the high-pressure side refrigerant pipe and the port disposed at the end portion And a second fixing member fixed to the inner peripheral surface of the tube with airtightness. For this reason, the first fixing member side and the second fixing member side are separately fixed. As a result, it is possible to prevent the influence of mutual heating in the fixing operation, so that the fixing failure does not occur at the mouths of the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe, and the airtightness can be reliably maintained. .

第1固着部材と第2固着部材とを離隔して高圧側冷媒配管の外周面を露出したことによって、第1固着部材については低圧側冷媒配管の端部から表出した部位を固着し、第2固着部材については口管の開口端部から表出した部位を固着する。この結果、固着作業において固着部位を目視しながら作業を行うことができるため、固着作業を容易、かつ確実に行うことができる。   By separating the first fixing member and the second fixing member and exposing the outer peripheral surface of the high pressure side refrigerant pipe, the first fixing member is fixed to the portion exposed from the end of the low pressure side refrigerant pipe, About 2 adhering members, the site | part exposed from the opening edge part of the mouth tube is adhering. As a result, since the work can be performed while visually checking the fixed part in the fixing work, the fixing work can be easily and reliably performed.

以下に添付図面を参照して、本発明に係る内部熱交換器の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of an internal heat exchanger according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る内部熱交換器を適用した冷媒冷却回路の一実施例を示す概略図である。図1に示す冷媒冷却回路は、主に、圧縮機1、ガスクーラー(放熱器)2、電子膨張弁(絞り部)3、蒸発器4を接続して、冷媒を循環可能な冷媒循環経路を形成したものである。また、冷媒は、本実施例では、例えば二酸化炭素を使用してある。二酸化炭素は、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ない冷媒である。   FIG. 1 is a schematic view showing an embodiment of a refrigerant cooling circuit to which an internal heat exchanger according to the present invention is applied. 1 mainly includes a compressor 1, a gas cooler (heat radiator) 2, an electronic expansion valve (throttle portion) 3, and an evaporator 4 to connect a refrigerant circulation path through which refrigerant can be circulated. Formed. In the present embodiment, for example, carbon dioxide is used as the refrigerant. Carbon dioxide is a refrigerant that has non-flammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

圧縮機1は、蒸発器4から帰還される二酸化炭素を圧縮して高温高圧の状態とするものである。圧縮機1は、本実施例では、中間熱交換器10を介して2段階の圧縮動作を実行する。具体的に、圧縮機1は、2段階の圧縮動作において、1段階目の圧縮動作を行う第1圧縮機1aと、2段階目の圧縮動作を行う第2圧縮機1bとを有している。そして、第1圧縮機1aと第2圧縮機1bとの間に中間熱交換器10を設けてある。中間熱交換器10は、第1圧縮機1aによる1段階目の圧縮動作の後に、第1圧縮機1aが圧縮した状態の二酸化炭素を冷却して第2圧縮機1bに戻す。このように、圧縮機1は、中間熱交換器10を介して2段階の圧縮動作を実行することで、低消費電力で高圧縮効率を得て二酸化炭素を所望とする高温高圧の状態に圧縮することが可能になる。なお、本実施例では、第1圧縮機1aでの1段階目の圧縮によって二酸化炭素を約6MPaに圧縮し、第2圧縮機1bでの2段階目の圧縮によって二酸化炭素を約9MPaに圧縮する。   The compressor 1 compresses the carbon dioxide returned from the evaporator 4 to bring it into a high temperature and high pressure state. In this embodiment, the compressor 1 performs a two-stage compression operation via the intermediate heat exchanger 10. Specifically, the compressor 1 includes a first compressor 1a that performs a first-stage compression operation and a second compressor 1b that performs a second-stage compression operation in a two-stage compression operation. . And the intermediate heat exchanger 10 is provided between the 1st compressor 1a and the 2nd compressor 1b. After the first stage compression operation by the first compressor 1a, the intermediate heat exchanger 10 cools the carbon dioxide compressed by the first compressor 1a and returns it to the second compressor 1b. In this way, the compressor 1 performs a two-stage compression operation via the intermediate heat exchanger 10, thereby obtaining high compression efficiency with low power consumption and compressing carbon dioxide to a desired high temperature and high pressure state. It becomes possible to do. In this embodiment, carbon dioxide is compressed to about 6 MPa by the first stage compression in the first compressor 1a, and carbon dioxide is compressed to about 9 MPa by the second stage compression in the second compressor 1b. .

また、圧縮機1には、オイルセパレータ11が接続してある。オイルセパレータ11は、圧縮機1から吐出した冷凍機油を圧縮機1に戻すためのものである。冷凍機油は、圧縮機1の内部における摩擦、冷媒漏れなどを防止するが、この冷凍機油を圧縮機1の内部で完全に封止することが困難である。特に、上記のごとく圧縮機1によって二酸化炭素を高圧に圧縮しており、この圧力が従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに高圧であるので、圧縮機1からの冷凍機油の吐出量は多くなる。そこで、本実施例では、圧縮機1において、第2圧縮機1bの出口側と、第1圧縮機1aの入口側との間にオイルセパレータ11を接続しており、第2圧縮機1bから吐出した冷凍機油を第1圧縮機1aに戻している。   An oil separator 11 is connected to the compressor 1. The oil separator 11 is for returning the refrigeration oil discharged from the compressor 1 to the compressor 1. The refrigerating machine oil prevents friction and refrigerant leakage in the compressor 1, but it is difficult to completely seal the refrigerating machine oil inside the compressor 1. In particular, the compressor 1 compresses carbon dioxide to a high pressure as described above, and this pressure is much higher than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. The amount of refrigeration oil discharged from the machine 1 increases. Therefore, in the present embodiment, in the compressor 1, the oil separator 11 is connected between the outlet side of the second compressor 1b and the inlet side of the first compressor 1a, and discharged from the second compressor 1b. The refrigerating machine oil thus returned is returned to the first compressor 1a.

なお、圧縮機1としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機、或いは、これらの圧縮能力を調整可能なインバータ圧縮機などがある。そして、冷媒冷却回路を配設する対象、環境、あるいは、冷媒冷却回路のコストなどに見合う圧縮機を適宜適用すればよい。   The compressor 1 includes a reciprocating compressor, a rotary compressor, a scroll compressor, or an inverter compressor that can adjust the compression capacity thereof. And what is necessary is just to apply suitably the compressor corresponding to the object which arrange | positions a refrigerant | coolant cooling circuit, an environment, or the cost of a refrigerant | coolant cooling circuit.

ガスクーラー2は、圧縮機1から供給される高温高圧の二酸化炭素を、放熱させて二酸化炭素を液化するためのものである。本実施例におけるガスクーラー2は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。このガスクーラー2には、ファン21が設けてある。ファン21は、ガスクーラー2を送風するためのものであり、ファンモータ22によって駆動される。   The gas cooler 2 is for liquefying carbon dioxide by releasing heat from high-temperature and high-pressure carbon dioxide supplied from the compressor 1. The gas cooler 2 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The gas cooler 2 is provided with a fan 21. The fan 21 is for blowing the gas cooler 2 and is driven by a fan motor 22.

電子膨張弁3は、ガスクーラー2から供給される二酸化炭素を減圧し、蒸発温度および流量を制御するためのものである。   The electronic expansion valve 3 is for reducing the pressure of carbon dioxide supplied from the gas cooler 2 and controlling the evaporation temperature and flow rate.

蒸発器4は、電子膨張弁3から供給される液体の二酸化炭素が蒸発したとき、周囲の熱を吸収することによって周囲温度を冷却するためのものである。本実施例における蒸発器4は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。この蒸発器4には、ファン41が設けてある。ファン41は、蒸発器4を送風するためのものであり、ファンモータ42によって駆動される。   The evaporator 4 is for cooling the ambient temperature by absorbing ambient heat when the liquid carbon dioxide supplied from the electronic expansion valve 3 evaporates. The evaporator 4 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The evaporator 4 is provided with a fan 41. The fan 41 is for blowing the evaporator 4 and is driven by a fan motor 42.

蒸発器4は、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどにおける断熱筐体の冷却庫の内部に配置してある。特に、本実施例では、例えば自動販売機において、複数(実施例では3室)の冷却庫(商品収納庫)をそれぞれ独立して冷却するために、各冷却庫内に蒸発器4(4a,4b,4c)をそれぞれ配置してある。すなわち、蒸発器4a,4b,4cは、電子膨張弁3から3方に分岐したそれぞれの経路に接続してある。また、前記各経路において各蒸発器4a,4b,4cの入口側には、各電磁弁12a,12b,12cがそれぞれ設けてある。そして、各電磁弁12a,12b,12cを選択的に開放することで、各蒸発器4a,4b,4cに電子膨張弁3からの二酸化炭素が供給される。また、各蒸発器4a,4b,4cの出口側の経路は、互いに集合して圧縮機1の第1圧縮機1aに接続してある。なお、本実施例における電磁弁12a,12b,12cは、その入口側と出口側との圧力差(例えば入口側が高圧で出力側が低圧)、およびバネ弾性力を利用することによって弁体を弁座に当接させるよう助勢して閉鎖状態になり、この状態から電磁コイル部に通電されると弁体が弁座から離間されて開放状態になる構成のものが採用してある。   The evaporator 4 is arrange | positioned inside the refrigerator of the heat insulation housing | casing in a vending machine, a refrigerator, a freezer showcase, a refrigerated showcase, or a drink dispenser etc., for example. In particular, in this embodiment, for example, in an automatic vending machine, in order to cool a plurality of (three rooms in the embodiment) refrigerators (product storage units) independently, the evaporators 4 (4a, 4a, 4b, 4c) are arranged respectively. That is, the evaporators 4a, 4b, and 4c are connected to respective paths branched from the electronic expansion valve 3 in three directions. Further, electromagnetic valves 12a, 12b, and 12c are provided on the inlet sides of the evaporators 4a, 4b, and 4c in the respective paths. And carbon dioxide from the electronic expansion valve 3 is supplied to each evaporator 4a, 4b, 4c by selectively open | releasing each solenoid valve 12a, 12b, 12c. Further, the outlet-side paths of the evaporators 4a, 4b, and 4c are gathered together and connected to the first compressor 1a of the compressor 1. The solenoid valves 12a, 12b, and 12c in the present embodiment are configured so that the valve body is seated by utilizing a pressure difference between the inlet side and the outlet side (for example, the inlet side is high pressure and the output side is low pressure) and spring elastic force. A configuration is adopted in which the valve body is separated from the valve seat and opened when the electromagnetic coil portion is energized from this state.

また、電子膨張弁3から各蒸発器4a,4b,4cに至る各経路であって、各電磁弁12a,12b,12cと各蒸発器4a,4b,4cとの間には、それぞれ減圧手段13a,13b,13cが設けてある。減圧手段13a,13b,13cは、電磁弁12a,12b,12cと蒸発器4a,4b,4cとの間の経路中に圧力抵抗を付与する絞りとして作用する。本実施例における減圧手段13a,13b,13cは、前記各経路中に設けたオリフィスとして形成してある。なお、減圧手段13a,13b,13cは、経路中に圧力抵抗を付与する絞りとして作用するものであればオリフィスに限定されない。   The decompression means 13a is connected to each of the evaporators 4a, 4b, and 4c from the electronic expansion valve 3 and between each of the solenoid valves 12a, 12b, and 12c and each of the evaporators 4a, 4b, and 4c. , 13b, 13c are provided. The decompression means 13a, 13b, and 13c act as throttles that provide pressure resistance in the path between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c. The decompression means 13a, 13b, and 13c in the present embodiment are formed as orifices provided in the respective paths. The decompression means 13a, 13b, and 13c are not limited to orifices as long as they function as a throttle that provides pressure resistance in the path.

例えば、二酸化炭素の循環運転において、電磁弁12aのみを開放状態とした場合、閉鎖状態にしてある電磁弁12b,12cを有した経路に設けた蒸発器4b,4cは、上記循環運転が実行されている冷媒循環経路の蒸発器4aと出口側が集合してある。このため、閉塞状態の電磁弁12b,12cの入口側と出口側との圧力差がほぼ等しくなる。このとき、減圧手段13a,13b,13cが設けてあるため、閉鎖状態の電磁弁12b,12cを有した経路では、減圧手段13b,13cが経路中に圧力抵抗を付与する絞りとして作用して、閉鎖状態の電磁弁12b,12cの出口側が低圧になり入口側が高圧になる。これにより、閉鎖状態にある電磁弁12b,12cの入口側と出口側との間に圧力差が生じ、入口側と出口側との圧力差によって電磁弁12b,12cの閉塞状態が助勢されるので、当該電磁弁12b,12cの閉鎖状態が維持される。   For example, in the carbon dioxide circulation operation, when only the solenoid valve 12a is opened, the evaporators 4b and 4c provided in the path having the solenoid valves 12b and 12c in the closed state perform the circulation operation. The evaporator 4a and the outlet side of the refrigerant circulation path are gathered. For this reason, the pressure difference between the inlet side and the outlet side of the electromagnetic valves 12b and 12c in the closed state is substantially equal. At this time, since the decompression means 13a, 13b, and 13c are provided, in the path having the closed electromagnetic valves 12b and 12c, the decompression means 13b and 13c act as a throttle that provides pressure resistance in the path, The outlet side of the solenoid valves 12b and 12c in the closed state becomes low pressure, and the inlet side becomes high pressure. Accordingly, a pressure difference is generated between the inlet side and the outlet side of the electromagnetic valves 12b and 12c in the closed state, and the closed state of the electromagnetic valves 12b and 12c is assisted by the pressure difference between the inlet side and the outlet side. The closed state of the electromagnetic valves 12b and 12c is maintained.

また、断熱筐体の冷却庫の内部に設けた蒸発器4に関し、冷媒循環経路への冷媒の循環運転時に伴って結露水などが排水として発生する。そして、排水は、冷却庫の外部であって圧縮機1およびガスクーラー2などを配した部位にある蒸発手段15に導かれる。この蒸発手段15は、圧縮機1(第2圧縮機1b)とガスクーラー2との間であって、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に設けてある。図には明示しないが、蒸発手段15は、排水を導かれる蒸発皿と、当該蒸発皿の内方に配置した蒸発パイプと、当該蒸発パイプに接触する吸水性の蒸発シートとを有している。蒸発パイプは、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に接続してあって、圧縮機1から吐出した高温高圧の二酸化炭素が通過する。すなわち、蒸発皿に導かれた排水は、蒸発シートに吸収され、高温高圧の二酸化炭素が通過する蒸発パイプによって加熱されて蒸発する。このとき、排水によって蒸発パイプに通過する二酸化炭素を予冷する。   Further, with respect to the evaporator 4 provided inside the cooler of the heat insulating housing, dew condensation water or the like is generated as drainage during the refrigerant circulation operation to the refrigerant circulation path. Then, the waste water is led to the evaporation means 15 located outside the cooler and provided with the compressor 1, the gas cooler 2, and the like. The evaporation means 15 is provided between the compressor 1 (second compressor 1 b) and the gas cooler 2 and in a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2. Although not clearly shown in the figure, the evaporating means 15 includes an evaporating dish into which drainage is guided, an evaporating pipe disposed inside the evaporating dish, and a water-absorbing evaporating sheet that contacts the evaporating pipe. . The evaporation pipe is connected to a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2, and high-temperature and high-pressure carbon dioxide discharged from the compressor 1 passes therethrough. That is, the waste water led to the evaporating dish is absorbed by the evaporating sheet and is heated and evaporated by the evaporating pipe through which the high-temperature and high-pressure carbon dioxide passes. At this time, carbon dioxide passing through the evaporation pipe is pre-cooled by drainage.

ところで、二酸化炭素を冷媒として使用したとき、外気温が高温となる夏場などでは、ガスクーラー2の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、ガスクーラー2において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。一方、蒸発器4を通過した二酸化炭素は、全て気化していることが望ましい。蒸発器4を通過した二酸化炭素が一部液化したままで圧縮機1に供給されると、圧縮機1は液圧縮を起こしてシリンダーを破損してしまうおそれがある。   By the way, when carbon dioxide is used as a refrigerant, the temperature of the gas cooler 2 may exceed the critical temperature of carbon dioxide (about 31 ° C.) in summer when the outside air temperature becomes high. In this case, the gas cooler 2 is in a supercritical pressure state in which carbon dioxide is not vaporized while being vaporized. On the other hand, it is desirable that all the carbon dioxide that has passed through the evaporator 4 is vaporized. If the carbon dioxide that has passed through the evaporator 4 is supplied to the compressor 1 while being partially liquefied, the compressor 1 may cause liquid compression and damage the cylinder.

そこで、ガスクーラー2と電子膨張弁3との間、蒸発器4と圧縮機1(第1圧縮機1a)との間に内部熱交換器14を設けてある。図2は内部熱交換器を示す斜視図、図3は内部熱交換器を示す断面図、図4は内部熱交換器の高圧側冷媒配管を示す斜視図、図5は内部熱交換器の断面図である。   Therefore, an internal heat exchanger 14 is provided between the gas cooler 2 and the electronic expansion valve 3 and between the evaporator 4 and the compressor 1 (first compressor 1a). 2 is a perspective view showing an internal heat exchanger, FIG. 3 is a cross-sectional view showing the internal heat exchanger, FIG. 4 is a perspective view showing a high-pressure side refrigerant pipe of the internal heat exchanger, and FIG. 5 is a cross-section of the internal heat exchanger. FIG.

内部熱交換器14は、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行うためのものである。冷媒循環経路の高圧側とは、圧縮機1の出口側(圧縮後)からガスクーラー2を経て電子膨張弁3の入口側までの間である。また、冷媒循環経路の低圧側とは、電子膨張弁3の出口側から蒸発器4を経て圧縮機1の入口側(圧縮前)までの間である。なお、上述したように圧縮機1を第1圧縮機1aおよび第2圧縮機1bで構成して2段階の圧縮動作を行う場合において、冷媒循環経路の高圧側とは、第2圧縮機1bの出口側(圧縮後)からガスクーラー2を経て電子膨張弁3の入口側までの間であり、冷媒循環経路の低圧側とは、電子膨張弁3の出口側から蒸発器4を経て第2圧縮機1bの入口側(圧縮前)までの間である。すなわち、冷媒循環経路の低圧側は、第1圧縮機1aと第2圧縮機1bとの間であって、第1圧縮機1aから中間熱交換器10を介して第2圧縮機1bに至り中間圧となる経路を含む。   The internal heat exchanger 14 is for exchanging heat between the high pressure side and the low pressure side of the refrigerant circulation path. The high pressure side of the refrigerant circulation path is from the outlet side (after compression) of the compressor 1 through the gas cooler 2 to the inlet side of the electronic expansion valve 3. The low pressure side of the refrigerant circulation path is from the outlet side of the electronic expansion valve 3 to the inlet side (before compression) of the compressor 1 through the evaporator 4. As described above, when the compressor 1 includes the first compressor 1a and the second compressor 1b and performs a two-stage compression operation, the high-pressure side of the refrigerant circulation path refers to the second compressor 1b. From the outlet side (after compression) to the inlet side of the electronic expansion valve 3 through the gas cooler 2, the low pressure side of the refrigerant circulation path is the second compression from the outlet side of the electronic expansion valve 3 through the evaporator 4 Up to the inlet side (before compression) of the machine 1b. That is, the low pressure side of the refrigerant circulation path is between the first compressor 1a and the second compressor 1b, and reaches the second compressor 1b from the first compressor 1a via the intermediate heat exchanger 10 to the middle. Including the path that becomes pressure.

図2〜図5に示すように内部熱交換器14は、高圧側であるガスクーラー2と電子膨張弁3との間に高圧側冷媒配管141を設けてある。また、内部熱交換器14は、低圧側である蒸発器4と圧縮機1(第1圧縮機1a)との間に低圧側冷媒配管142を設けてある。高圧側冷媒配管141は、抵抗管路としてのキャピラリチューブをなし、低圧側冷媒配管142の内部に内装してある。また、高圧側冷媒配管141は、低圧側冷媒配管142の内部に複数(本実施例では3つ)内装してある。このように、内部熱交換器14は、高圧側冷媒配管141を低圧側冷媒配管142の内部に内装した2重管構造としてある。   As shown in FIGS. 2 to 5, the internal heat exchanger 14 is provided with a high-pressure side refrigerant pipe 141 between the high-pressure side gas cooler 2 and the electronic expansion valve 3. The internal heat exchanger 14 is provided with a low-pressure side refrigerant pipe 142 between the evaporator 4 on the low-pressure side and the compressor 1 (first compressor 1a). The high-pressure side refrigerant pipe 141 forms a capillary tube as a resistance pipe, and is housed inside the low-pressure side refrigerant pipe 142. In addition, a plurality of (three in this embodiment) high-pressure side refrigerant pipes 141 are provided inside the low-pressure side refrigerant pipe 142. Thus, the internal heat exchanger 14 has a double-pipe structure in which the high-pressure side refrigerant pipe 141 is housed inside the low-pressure side refrigerant pipe 142.

また、内部熱交換器14は、上述したように複数の高圧側冷媒配管141を低圧側冷媒配管142の内部に内装した形態で上下方向に螺旋状にして形成してある。具体的に、高圧側冷媒配管141は、図2〜図4に示すように、螺旋状とした下端部に高圧側冷媒配管141の入口部141aを設け、螺旋状とした上端部に高圧側冷媒配管141の出口部141bを設けてある。これら入口部141aおよび出口部141bは、高圧側冷媒配管141の複数の抵抗管路を集束した一口の口管をなしている。一方、低圧側冷媒配管142は、図2〜図4に示すように、高圧側冷媒配管141の抵抗管路を覆う態様で設けてあり、高圧側冷媒配管141の入口部141aの後段から出口部141bの前段に至り螺旋状に形成してある。この低圧側冷媒配管142は、螺旋状とした上端部に入口部142aを設け、螺旋状とした下端部に出口部142bを設けてある。このように、内部熱交換器14は、高圧側冷媒配管141が下方から上方に向けて冷媒を送る態様で設けてあり、低圧側冷媒配管142が上方から下方に向けて冷媒を送る態様で設けて高圧側と低圧側との冷媒に対向流を生じさせる。これにより、ガスクーラー2から得られる二酸化炭素は、液化しやすくなる。一方、圧縮機1には、蒸発器4から気化した二酸化炭素が供給される。また、内部熱交換器14は、螺旋状とすることで設置容積を低減している。なお、高圧側冷媒配管141および低圧側冷媒配管142の長さを変えることで、熱交換量を自由に設定することが可能である。   In addition, the internal heat exchanger 14 is formed in a spiral shape in the vertical direction in a form in which a plurality of high-pressure refrigerant pipes 141 are housed inside the low-pressure refrigerant pipe 142 as described above. Specifically, as shown in FIG. 2 to FIG. 4, the high-pressure side refrigerant pipe 141 is provided with an inlet portion 141 a of the high-pressure side refrigerant pipe 141 at a spiral lower end portion, and a high-pressure side refrigerant at the spiral upper end portion. An outlet 141b of the pipe 141 is provided. The inlet portion 141a and the outlet portion 141b form a single mouth tube that converges a plurality of resistance pipes of the high-pressure side refrigerant pipe 141. On the other hand, as shown in FIGS. 2 to 4, the low-pressure side refrigerant pipe 142 is provided so as to cover the resistance pipe of the high-pressure side refrigerant pipe 141, and the outlet portion from the rear stage of the inlet portion 141 a of the high-pressure side refrigerant pipe 141. It reaches the former stage of 141b and is formed in a spiral shape. This low-pressure side refrigerant pipe 142 is provided with an inlet 142a at a spiral upper end and an outlet 142b at a spiral lower end. As described above, the internal heat exchanger 14 is provided in such a manner that the high-pressure side refrigerant pipe 141 sends the refrigerant from below to above, and the low-pressure side refrigerant pipe 142 is provided in a form that sends the refrigerant from above to below. Thus, a counter flow is generated in the refrigerant on the high pressure side and the low pressure side. Thereby, the carbon dioxide obtained from the gas cooler 2 becomes easy to liquefy. On the other hand, the carbon dioxide vaporized from the evaporator 4 is supplied to the compressor 1. Moreover, the internal heat exchanger 14 is reducing the installation volume by making it spiral. Note that the heat exchange amount can be freely set by changing the lengths of the high-pressure side refrigerant pipe 141 and the low-pressure side refrigerant pipe 142.

図3に示すように、高圧側冷媒配管141は、各抵抗管路の相互の外周壁を非接触な形態で設けてあり、かつ、高圧側冷媒配管141をなす各抵抗管路の外周壁と低圧側冷媒配管142の内周壁とは相互に非接触な形態で設けてあることが相互の熱交換の上で望ましい。さらに、低圧側冷媒配管142の外周には、可撓性を有したチューブ状の断熱材143が設けてあり、低圧側と高圧側との間の熱交換が外気の影響を受けないように構成してある。   As shown in FIG. 3, the high-pressure side refrigerant pipe 141 is provided in such a manner that the outer peripheral walls of the respective resistance pipes are in a non-contact form, and the outer peripheral wall of each of the resistance pipes forming the high-pressure side refrigerant pipe 141. It is desirable in terms of mutual heat exchange that the low pressure side refrigerant pipe 142 is provided in a form that is not in contact with the inner peripheral wall. Further, a flexible tube-shaped heat insulating material 143 is provided on the outer periphery of the low-pressure side refrigerant pipe 142 so that heat exchange between the low-pressure side and the high-pressure side is not affected by outside air. It is.

図4および図5に示すように高圧側冷媒配管141および低圧側冷媒配管142の各口元には、二酸化炭素の漏れを防ぐために第1固着部材144Aと第2固着部材144Bとが設けてある。   As shown in FIGS. 4 and 5, a first fixing member 144A and a second fixing member 144B are provided at the respective ends of the high-pressure side refrigerant pipe 141 and the low-pressure side refrigerant pipe 142 to prevent leakage of carbon dioxide.

図5に示すように第1固着部材144Aは、各高圧側冷媒配管141を挿通する挿通穴144Aaを有し、かつ、低圧側冷媒配管142の端部に挿入する態様で柱状に形成してある。ここで、低圧側冷媒配管142の端部は、低圧側冷媒配管142の入口部142a(あるいは出口部142b)をなす三又状の分岐管142cにおける1つの開口端部である。分岐管142cは、相反する方向にそれぞれ開口する本管の側部に入口部142a(あるいは出口部142b)を有している。分岐管142cは、本管に高圧側冷媒配管141を挿通して、当該本管の一方の開口端部を低圧側冷媒配管142に接続し、他方の開口端部から高圧側冷媒配管141を延出してある。この他方の開口端部が低圧側冷媒配管142の端部である。第1固着部材144Aは、挿通穴144Aaに複数の高圧側冷媒配管141を挿通した形態で、低圧側冷媒配管142の端部に挿入してある。そして、第1固着部材144Aは、低圧側冷媒配管142の端部から表出した部位からろう付けされることによって低圧側冷媒配管142の端部と各高圧側冷媒配管141の外周面とに気密性を有して固着してある。   As shown in FIG. 5, the first fixing member 144 </ b> A has an insertion hole 144 </ b> Aa through which each high-pressure side refrigerant pipe 141 is inserted, and is formed in a columnar shape so as to be inserted into the end of the low-pressure side refrigerant pipe 142. . Here, the end of the low-pressure refrigerant pipe 142 is one open end of the trifurcated branch pipe 142c that forms the inlet 142a (or outlet 142b) of the low-pressure refrigerant pipe 142. The branch pipe 142c has an inlet part 142a (or an outlet part 142b) on the side part of the main pipe that opens in opposite directions. The branch pipe 142c is inserted into the main pipe through the high-pressure refrigerant pipe 141, one open end of the main pipe is connected to the low-pressure refrigerant pipe 142, and the high-pressure refrigerant pipe 141 is extended from the other open end. It is out. The other opening end is the end of the low-pressure side refrigerant pipe 142. 144 A of 1st adhering members are inserted in the edge part of the low voltage | pressure side refrigerant | coolant piping 142 in the form which penetrated several high pressure side refrigerant | coolant piping 141 in insertion hole 144Aa. The first fixing member 144A is brazed from a portion exposed from the end portion of the low-pressure side refrigerant pipe 142, so that the end portion of the low-pressure side refrigerant pipe 142 and the outer peripheral surface of each high-pressure side refrigerant pipe 141 are hermetically sealed. It has a property and is fixed.

図5に示すように第2固着部材144Bは、各高圧側冷媒配管141を挿通する挿通穴144Baを有し、かつ、高圧側冷媒配管141の端部に配置した口管141cに挿入する態様で柱状に形成してある。ここで、口管141cは、高圧側冷媒配管141の出口部141b(あるいは入口部142a)をなす筒状管であって、複数の高圧側冷媒配管141の端口を集束して一口にするためのものである。そして、口管141cは、一方の開口端部で複数の高圧側冷媒配管141の端口を集束して、他方の開口端部が高圧側冷媒配管141の出口部141b(あるいは入口部142a)をなす。第2固着部材144Bは、第1固着部材144Aと分割して設けてあり、挿通穴144Baに複数の高圧側冷媒配管141を挿通した形態で、口管141cの一方の開口端部に挿入してある。そして、第2固着部材144Bは、口管141cの一方の開口端部から表出した部位からろう付けされることによって各高圧側冷媒配管141の端部と当該端部に配置した口管の内周面とに気密性を有して固着してある。   As shown in FIG. 5, the second fixing member 144 </ b> B has an insertion hole 144 </ b> Ba through which each high-pressure side refrigerant pipe 141 is inserted, and is inserted into the mouth pipe 141 c disposed at the end of the high-pressure side refrigerant pipe 141. It is formed in a column shape. Here, the mouth tube 141c is a cylindrical tube that forms the outlet portion 141b (or the inlet portion 142a) of the high-pressure side refrigerant pipe 141, and converges the end ports of the plurality of high-pressure side refrigerant pipes 141 into one mouth. Is. The mouth tube 141c converges the end ports of the plurality of high-pressure refrigerant pipes 141 at one opening end portion, and the other opening end portion forms an outlet portion 141b (or an inlet portion 142a) of the high-pressure side refrigerant piping 141. . The second fixing member 144B is provided separately from the first fixing member 144A, and is inserted into one opening end of the mouth tube 141c in a form in which a plurality of high-pressure refrigerant pipes 141 are inserted into the insertion hole 144Ba. is there. And the 2nd adhering member 144B is brazed from the part exposed from one opening end part of the mouth pipe 141c, and the inside of the mouth pipe arranged at the end of each high-pressure side refrigerant pipe 141 and the end It is fixed to the peripheral surface with airtightness.

また、図5に示すように第1固着部材144Aと第2固着部材144Bとは、離隔して配置してあり、高圧側冷媒配管141の外周面を露出して設けてある。   Further, as shown in FIG. 5, the first fixing member 144A and the second fixing member 144B are spaced apart from each other, and the outer peripheral surface of the high-pressure side refrigerant pipe 141 is exposed.

以下、二酸化炭素を冷媒として使用する本発明の冷媒冷却回路の動作について説明する。まず、冷却庫にある蒸発器4a,4b,4cから帰還された二酸化炭素は、内部熱交換器14を介して第1圧縮機1aに吸引されて低圧圧縮(約6MPaに圧縮)される。第1圧縮機1aから吐出された二酸化炭素は、中間熱交換器10を経て冷却された後に第2圧縮機1bに吸引されて高圧圧縮(約9MPaに圧縮)される。このとき、第2圧縮機1bから二酸化炭素と共に吐出された冷凍機油は、オイルセパレータ11によって第1圧縮機1aの入口側に戻される。   Hereinafter, the operation of the refrigerant cooling circuit of the present invention using carbon dioxide as the refrigerant will be described. First, the carbon dioxide returned from the evaporators 4a, 4b, and 4c in the refrigerator is sucked into the first compressor 1a through the internal heat exchanger 14 and compressed at a low pressure (compressed to about 6 MPa). The carbon dioxide discharged from the first compressor 1a is cooled through the intermediate heat exchanger 10, and then sucked into the second compressor 1b and compressed at a high pressure (compressed to about 9 MPa). At this time, the refrigerating machine oil discharged together with carbon dioxide from the second compressor 1b is returned to the inlet side of the first compressor 1a by the oil separator 11.

次いで、第2圧縮機1bから吐出された二酸化炭素は、蒸発手段15で予冷されて、ガスクーラー2に送られる。ガスクーラー2に送られた二酸化炭素は、放熱されて液化して、内部熱交換器14を介して電子膨張弁3に至る。   Next, the carbon dioxide discharged from the second compressor 1 b is pre-cooled by the evaporation means 15 and sent to the gas cooler 2. The carbon dioxide sent to the gas cooler 2 is radiated and liquefied, and reaches the electronic expansion valve 3 via the internal heat exchanger 14.

次いで、電子膨張弁3において、二酸化炭素は、減圧されて蒸発温度および流量を制御される。その後、二酸化炭素は、選択的に開放状態にある電磁弁12a,12b,12cを経て、減圧手段13a,13b,13cを介して蒸発器4a,4b,4cに至る。   Next, in the electronic expansion valve 3, the carbon dioxide is depressurized and the evaporation temperature and flow rate are controlled. Thereafter, carbon dioxide reaches the evaporators 4a, 4b, 4c via the pressure reducing means 13a, 13b, 13c through the electromagnetic valves 12a, 12b, 12c which are selectively opened.

最後に、蒸発器4a,4b,4cに供給された二酸化炭素は、吸熱して加熱蒸気として気化される。二酸化炭素の吸熱によって蒸発器4a,4b,4cを設けた冷却庫の内部が冷却されることになる。そして、二酸化炭素は、蒸発器4a,4b,4cから内部熱交換器14を介して第1圧縮機1aに吸引されて帰還して循環運転が行われる。   Finally, the carbon dioxide supplied to the evaporators 4a, 4b, 4c absorbs heat and is vaporized as heated steam. The inside of the refrigerator provided with the evaporators 4a, 4b, 4c is cooled by the absorption of carbon dioxide. The carbon dioxide is sucked into the first compressor 1a from the evaporators 4a, 4b, and 4c via the internal heat exchanger 14 and returned to be circulated.

上記二酸化炭素の循環運転において、内部熱交換器14は、高圧側冷媒配管141と低圧側冷媒配管142との間で熱交換を行う。上述したように内部熱交換器14は、抵抗管路をなす高圧側冷媒配管141を低圧側冷媒配管142の内部に内装してある。このため、相互の熱交換面積を大きく取れるので熱交換効率が向上する。また、複数の高圧側冷媒配管141を低圧側冷媒配管142の内部に内装することにより、相互の熱交換面積をさらに大きく取れるので熱交換効率がさらに向上する。また、低圧側冷媒配管142を断熱材143で被覆してあるため、熱交換に際して外気の影響、すなわち外部との熱交換を抑えるので、熱交換効率がさらに向上する。このように、熱交換効率が向上することにより、ガスクーラー2において二酸化炭素が液化しやすくなるので、高圧側の圧力上昇を抑えることが可能になる。また、熱交換効率が向上することにより、蒸発器4において二酸化炭素が気化するので、一部液化したままで二酸化炭素が圧縮機1に供給される事態を防ぐことが可能になる。さらに、熱交換効率が向上することにより、圧縮機1から吐出した冷凍機油を冷媒循環経路に循環させて圧縮機1に戻し易くなる。特に、上記内部熱交換器14は、低圧側冷媒配管142が上方から下方に向けて冷媒を送り、高圧側冷媒配管141が下方から上方に向けて冷媒を送る形態で設けてある。このため、低圧側において圧縮機1への冷凍機油の戻りを良くすることが可能になる。   In the carbon dioxide circulation operation, the internal heat exchanger 14 performs heat exchange between the high-pressure side refrigerant pipe 141 and the low-pressure side refrigerant pipe 142. As described above, the internal heat exchanger 14 includes the high-pressure refrigerant pipe 141 that forms a resistance pipe inside the low-pressure refrigerant pipe 142. For this reason, since a mutual heat exchange area can be taken large, heat exchange efficiency improves. Further, by installing a plurality of high-pressure refrigerant pipes 141 inside the low-pressure refrigerant pipe 142, the heat exchange area can be further increased, so that the heat exchange efficiency is further improved. In addition, since the low-pressure side refrigerant pipe 142 is covered with the heat insulating material 143, the influence of outside air at the time of heat exchange, that is, heat exchange with the outside is suppressed, so that the heat exchange efficiency is further improved. As described above, since the heat exchange efficiency is improved, carbon dioxide is easily liquefied in the gas cooler 2, so that it is possible to suppress an increase in pressure on the high pressure side. Further, since the heat exchange efficiency is improved, carbon dioxide is vaporized in the evaporator 4, so that it is possible to prevent the carbon dioxide from being supplied to the compressor 1 while being partially liquefied. Furthermore, by improving the heat exchange efficiency, the refrigeration oil discharged from the compressor 1 is easily circulated through the refrigerant circulation path and returned to the compressor 1. In particular, the internal heat exchanger 14 is provided in such a form that the low-pressure side refrigerant pipe 142 sends the refrigerant from above to below, and the high-pressure side refrigerant pipe 141 sends the refrigerant from below to above. For this reason, it becomes possible to improve the return of the refrigeration oil to the compressor 1 on the low pressure side.

また、内部熱交換器14は、高圧側出口の冷媒温度を所定温度(例えば18℃)以下に冷却して高圧側圧力が仕様限界を超える事態を防ぐ。具体的には、上述したように断熱筐体の冷却庫を3室とした場合、各冷媒循環経路を3室全て、2室あるいは1室のみの循環運転が考えられる。ここで、3室全てを循環運転したときの内部熱交換器14の高圧側圧力は10MPa(基準圧力)であり、本実施例での冷媒冷却回路における仕様限界の高圧側圧力は12MPaであったとする。この場合、高圧側圧力が最も上がる1室のみの循環運転のとき、高圧側圧力が仕様限界を超えないための内部熱交換器14の高圧側出口の冷媒温度は18℃以下である。すなわち、内部熱交換器14によって高圧側出口の冷媒温度を18℃以下に冷却すれば高圧側圧力が仕様限界を超えない。このように内部熱交換器14では、二酸化炭素冷媒を用いて複数の冷媒循環経路を形成した冷媒冷却回路において、例えば1つの蒸発器4aを介して冷媒を循環運転した場合に、循環する冷媒に余剰が発生することになるが、低圧側冷媒配管142および高圧側冷媒配管141によって低圧側と高圧側との間で熱交換させることで液冷媒を気化して圧縮機1に戻す。この結果、圧縮機1における液圧縮を防いで圧縮機1の損傷を防止することが可能になる。また、同時に高圧側を冷却するため、冷媒密度が高くなり高圧側圧力を下げることが可能になる。   Also, the internal heat exchanger 14 cools the refrigerant temperature at the high-pressure side outlet to a predetermined temperature (for example, 18 ° C.) or less to prevent the high-pressure side pressure from exceeding the specification limit. Specifically, as described above, when the number of the coolers of the heat insulating casing is three, the circulation operation of all three chambers in each refrigerant circulation path can be considered. Here, the high-pressure side pressure of the internal heat exchanger 14 when all three chambers are circulated is 10 MPa (reference pressure), and the high-pressure side pressure of the specification limit in the refrigerant cooling circuit in this embodiment is 12 MPa. To do. In this case, at the time of circulation operation of only one chamber where the high pressure side pressure is the highest, the refrigerant temperature at the high pressure side outlet of the internal heat exchanger 14 for the high pressure side pressure not exceeding the specification limit is 18 ° C. or less. That is, if the refrigerant temperature at the high-pressure side outlet is cooled to 18 ° C. or less by the internal heat exchanger 14, the high-pressure side pressure does not exceed the specification limit. As described above, in the internal heat exchanger 14, in the refrigerant cooling circuit in which a plurality of refrigerant circulation paths are formed using carbon dioxide refrigerant, for example, when the refrigerant is circulated through one evaporator 4a, the refrigerant is circulated. Although surplus occurs, the liquid refrigerant is vaporized and returned to the compressor 1 by heat exchange between the low pressure side and the high pressure side by the low pressure side refrigerant pipe 142 and the high pressure side refrigerant pipe 141. As a result, liquid compression in the compressor 1 can be prevented and damage to the compressor 1 can be prevented. Moreover, since the high pressure side is cooled at the same time, the refrigerant density increases and the high pressure side pressure can be lowered.

また、上述した内部熱交換器14は、高圧側冷媒配管141を低圧側冷媒配管142の内部に内装した2重管構造とし、高圧側冷媒配管141を挿通して低圧側冷媒配管142の端部と高圧側冷媒配管141の外周面とに気密性を有してろう付けした第1固着部材144Aと、第1固着部材144Aと分割して設けてあり高圧側冷媒配管141を挿通して高圧側冷媒配管141の端部と当該端部に配置した口管141cの内周面とに気密性を有してろう付けした第2固着部材144Bとを備えている。このため、第1固着部材144A側と第2固着部材144B側とに分けて固着される。この結果、ろう付け作業において相互の加熱の影響を防ぐことができるため、高圧側冷媒配管141および低圧側冷媒配管142の各口元においてろう付け不良を生じることがなく、低圧側冷媒配管142の端部と高圧側冷媒配管141の外周面との間、および高圧側冷媒配管141の端部と当該端部に配置した口管141cの内周面との間の気密性を確実に維持することが可能になる。   The internal heat exchanger 14 described above has a double-pipe structure in which the high-pressure side refrigerant pipe 141 is housed inside the low-pressure side refrigerant pipe 142, and the end of the low-pressure side refrigerant pipe 142 is inserted through the high-pressure side refrigerant pipe 141. And the first fixing member 144A brazed to the outer peripheral surface of the high-pressure side refrigerant pipe 141 and the first fixing member 144A. The first fixing member 144A is provided separately from the high-pressure side refrigerant pipe 141. A second fixing member 144B brazed with airtightness is provided between the end of the refrigerant pipe 141 and the inner peripheral surface of the mouth tube 141c disposed at the end. For this reason, the first fixing member 144A side and the second fixing member 144B side are separately fixed. As a result, the influence of mutual heating can be prevented in the brazing operation, so that no brazing failure occurs at the respective ends of the high-pressure side refrigerant pipe 141 and the low-pressure side refrigerant pipe 142, and the end of the low-pressure side refrigerant pipe 142. The airtightness between the gas pipe and the outer peripheral surface of the high-pressure side refrigerant pipe 141 and between the end of the high-pressure side refrigerant pipe 141 and the inner peripheral surface of the mouth tube 141c disposed at the end can be reliably maintained. It becomes possible.

さらに、第1固着部材144Aと第2固着部材144Bとは、離隔して配置してあり、高圧側冷媒配管141の外周面を露出してある。このため、第1固着部材144Aについては低圧側冷媒配管142の端部から表出した部位をろう付けし、第2固着部材144Bについては口管141cの一方の開口端部から表出した部位をろう付けする。この結果、上記各ろう付け作業において各ろう付け部位を目視しながら作業を行うことができるため、ろう付け作業を容易、かつ確実に行うことが可能になる。   Furthermore, the first fixing member 144A and the second fixing member 144B are arranged separately from each other, and the outer peripheral surface of the high-pressure side refrigerant pipe 141 is exposed. For this reason, the part exposed from the end of the low-pressure refrigerant pipe 142 is brazed for the first fixing member 144A, and the part exposed from one opening end of the mouth pipe 141c is used for the second fixing member 144B. Braze. As a result, in each of the brazing operations, the operation can be performed while visually observing each brazed part, so that the brazing operation can be performed easily and reliably.

ここで、例えば第1固着部材144Aおよび第2固着部材144Bを一体として図6に示すように固着部材144として構成してある場合、ろう付けを行う部位としては、固着部材144の両端と高圧側冷媒配管141との部位、固着部材144の外周面と分岐管142cおよび口管141cとの部位がある。この場合、固着部材144の両端と高圧側冷媒配管141との部位をろう付けし、固着部材144の外周面と分岐管142cおよび口管141cとの部位をろう付けする。このように、各部位を個々にろう付けすると、先にろう付けした部位に対して後にろう付けした部位の加熱の影響を受けることになり、ろう付け不良が生じるおそれがある。また、固着部材144の両端と高圧側冷媒配管141との部位に関しては全てのろう付けが終わった後に目視できないのでろう付け不良があるか否かを確認することが困難である。これに対して本実施例の内部熱交換器14は、上述した構成によって上記のごとく、ろう付け作業において相互の加熱の影響を防ぐことができ、さらにろう付け部位を目視しながら作業を行うことができる。   Here, for example, when the first fixing member 144A and the second fixing member 144B are integrally formed as the fixing member 144 as shown in FIG. 6, the parts to be brazed are both ends of the fixing member 144 and the high-pressure side. There are a portion with the refrigerant pipe 141, a portion with the outer peripheral surface of the fixing member 144 and the branch pipe 142c and the mouth pipe 141c. In this case, the both ends of the fixing member 144 and the portion of the high-pressure side refrigerant pipe 141 are brazed, and the outer peripheral surface of the fixing member 144 and the portions of the branch pipe 142c and the mouth pipe 141c are brazed. Thus, if each part is brazed individually, it will receive to the influence of the heating of the part brazed later with respect to the part brazed previously, and there exists a possibility that a brazing defect may arise. In addition, it is difficult to confirm whether or not there is a brazing defect because the portions of both ends of the fixing member 144 and the high-pressure side refrigerant pipe 141 cannot be visually observed after all the brazing is finished. On the other hand, the internal heat exchanger 14 of the present embodiment can prevent the influence of mutual heating in the brazing operation as described above by the above-described configuration, and further perform the operation while visually observing the brazed part. Can do.

本発明に係る内部熱交換器を適用した冷媒冷却回路の一実施例を示す概略図である。It is the schematic which shows one Example of the refrigerant cooling circuit to which the internal heat exchanger which concerns on this invention is applied. 内部熱交換器を示す斜視図である。It is a perspective view which shows an internal heat exchanger. 内部熱交換器を示す断面図である。It is sectional drawing which shows an internal heat exchanger. 内部熱交換器の高圧側冷媒配管を示す斜視図である。It is a perspective view which shows the high voltage | pressure side refrigerant | coolant piping of an internal heat exchanger. 固着部材を示す断面図である。It is sectional drawing which shows a fixing member. 従前の固着部材を示す断面図である。It is sectional drawing which shows the conventional fixing member.

符号の説明Explanation of symbols

1 圧縮機
1a 第1圧縮機
1b 第2圧縮機
2 ガスクーラー(放熱器)
21 ファン
22 ファンモータ
3 電子膨張弁(絞り部)
4(4a,4b,4c) 蒸発器
41 ファン
42 ファンモータ
10 中間熱交換器
11 オイルセパレータ
12a,12b,12c 電磁弁
13a,13b,13c 減圧手段
14 内部熱交換器
141 高圧側冷媒配管
141a 入口部
141b 出口部
141c 口管
142 低圧側冷媒配管
142a 入口部
142b 出口部
142c 分岐管
143 断熱材
144A 第1固着部材
144Aa 挿通穴
144B 第2固着部材
144Ba 挿通穴
15 蒸発手段
DESCRIPTION OF SYMBOLS 1 Compressor 1a 1st compressor 1b 2nd compressor 2 Gas cooler (heat radiator)
21 Fan 22 Fan motor 3 Electronic expansion valve (throttle part)
4 (4a, 4b, 4c) Evaporator 41 Fan 42 Fan motor 10 Intermediate heat exchanger 11 Oil separator 12a, 12b, 12c Solenoid valve 13a, 13b, 13c Pressure reducing means 14 Internal heat exchanger 141 High-pressure side refrigerant piping 141a Inlet part 141b outlet part 141c port pipe 142 low-pressure side refrigerant pipe 142a inlet part 142b outlet part 142c branch pipe 143 heat insulating material 144A first fixing member 144Aa insertion hole 144B second fixing member 144Ba insertion hole 15 evaporation means

Claims (4)

冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器とを有する冷媒循環経路を形成した冷媒冷却回路に設けてあり、前記冷媒循環経路の高圧側と低圧側との間で熱交換を行う内部熱交換器において、
高圧側冷媒配管を低圧側冷媒配管の内部に内装してあり、
前記高圧側冷媒配管を挿通して前記低圧側冷媒配管の端部と前記高圧側冷媒配管の外周面とに気密性を有して固着した第1固着部材と、
前記第1固着部材と分割して設けてあり前記高圧側冷媒配管を挿通して前記高圧側冷媒配管の端部と当該端部に配置した口管の内周面とに気密性を有して固着した第2固着部材と
を備えたことを特徴とする内部熱交換器。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle In an internal heat exchanger that is provided in a refrigerant cooling circuit that forms a refrigerant circulation path having an evaporator that is fed back to the compressor and performs heat exchange between a high-pressure side and a low-pressure side of the refrigerant circulation path ,
The high-pressure side refrigerant piping is built inside the low-pressure side refrigerant piping,
A first fixing member that is inserted through the high-pressure side refrigerant pipe and has airtightness and fixed to an end portion of the low-pressure side refrigerant pipe and an outer peripheral surface of the high-pressure side refrigerant pipe;
It is provided separately from the first fixing member, and has an airtightness in an end portion of the high-pressure side refrigerant pipe passing through the high-pressure side refrigerant pipe and an inner peripheral surface of the mouth pipe disposed at the end portion. An internal heat exchanger comprising: a fixed second fixing member.
前記第1固着部材と前記第2固着部材とを離隔して前記高圧側冷媒配管の外周面を露出したことを特徴とする請求項1に記載の内部熱交換器。   2. The internal heat exchanger according to claim 1, wherein an outer peripheral surface of the high-pressure side refrigerant pipe is exposed by separating the first fixing member and the second fixing member. 前記高圧側冷媒配管を前記低圧側冷媒配管の内部に複数内装してあり、前記第1固着部材および前記第2固着部材は前記各高圧側冷媒配管、前記低圧側冷媒配管および前記口管に係り気密性を有して固着してあることを特徴とする請求項1または2に記載の内部熱交換器。   A plurality of the high-pressure side refrigerant pipes are built in the low-pressure side refrigerant pipe, and the first fixing member and the second fixing member are related to the high-pressure side refrigerant pipe, the low-pressure side refrigerant pipe, and the mouth pipe. The internal heat exchanger according to claim 1 or 2, wherein the internal heat exchanger is fixed with airtightness. 前記冷媒が二酸化炭素であることを特徴とする請求項1〜3のいずれか一つに記載の内部熱交換器。   The internal heat exchanger according to any one of claims 1 to 3, wherein the refrigerant is carbon dioxide.
JP2005152541A 2005-05-25 2005-05-25 Internal heat exchanger Active JP4385999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152541A JP4385999B2 (en) 2005-05-25 2005-05-25 Internal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152541A JP4385999B2 (en) 2005-05-25 2005-05-25 Internal heat exchanger

Publications (2)

Publication Number Publication Date
JP2006329503A true JP2006329503A (en) 2006-12-07
JP4385999B2 JP4385999B2 (en) 2009-12-16

Family

ID=37551371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152541A Active JP4385999B2 (en) 2005-05-25 2005-05-25 Internal heat exchanger

Country Status (1)

Country Link
JP (1) JP4385999B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112556A (en) * 2010-11-22 2012-06-14 Nippon Itomic Co Ltd Heat exchanger and method of connecting the same
JP2016509192A (en) * 2013-01-30 2016-03-24 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Tube heat treatment apparatus with improved energy efficiency
JP2019184227A (en) * 2018-03-30 2019-10-24 満夫 山田 Cooling device with power generation function
WO2021179731A1 (en) * 2020-03-12 2021-09-16 浙江盾安人工环境股份有限公司 Three-way pipe, heat exchanger, heat exchanger assembly and refrigeration apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112556A (en) * 2010-11-22 2012-06-14 Nippon Itomic Co Ltd Heat exchanger and method of connecting the same
JP2016509192A (en) * 2013-01-30 2016-03-24 テトラ・ラヴァル・ホールディングス・アンド・ファイナンス・ソシエテ・アノニムTetra Laval Holdings & Finance S.A. Tube heat treatment apparatus with improved energy efficiency
JP2019184227A (en) * 2018-03-30 2019-10-24 満夫 山田 Cooling device with power generation function
JP7114079B2 (en) 2018-03-30 2022-08-08 満夫 山田 Cooling device with power generation function
WO2021179731A1 (en) * 2020-03-12 2021-09-16 浙江盾安人工环境股份有限公司 Three-way pipe, heat exchanger, heat exchanger assembly and refrigeration apparatus

Also Published As

Publication number Publication date
JP4385999B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP2005337700A (en) Refrigerant cooling circuit
WO2010119591A1 (en) Freezer-refrigerator and cooling storage unit
JP2007218459A (en) Refrigerating cycle device and cool box
JP2005326138A (en) Cooling device and vending machine with it
KR101660042B1 (en) Refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP4385999B2 (en) Internal heat exchanger
JP2009133593A (en) Cooling apparatus
JP4651452B2 (en) Refrigeration air conditioner
JP2005257149A (en) Refrigerator
KR100756880B1 (en) Apparatus for cooling of refrigerator
JP4720510B2 (en) Refrigerant cycle equipment
JP2005331232A (en) Refrigerant cooling circuit
JP2010060146A (en) Refrigerator-freezer and cooling storage
JP2005308346A (en) Refrigerant cooling circuit
JP5068340B2 (en) Freezer refrigerator
JP2017146080A (en) refrigerator
JP4245534B2 (en) refrigerator
JP2010249444A (en) Freezer-refrigerator
JP2007187370A (en) Refrigerant cycle device
KR100550581B1 (en) Refrigerator with a deep freezer
JP2010210133A (en) Refrigerating cycle device
WO2009157318A1 (en) Cooling device
JP4341492B2 (en) Refrigerant cooling circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250