JP2006329145A - エンジン冷却装置 - Google Patents

エンジン冷却装置 Download PDF

Info

Publication number
JP2006329145A
JP2006329145A JP2005156994A JP2005156994A JP2006329145A JP 2006329145 A JP2006329145 A JP 2006329145A JP 2005156994 A JP2005156994 A JP 2005156994A JP 2005156994 A JP2005156994 A JP 2005156994A JP 2006329145 A JP2006329145 A JP 2006329145A
Authority
JP
Japan
Prior art keywords
temperature
flow path
engine
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005156994A
Other languages
English (en)
Inventor
Yukio Kawasaki
幸夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2005156994A priority Critical patent/JP2006329145A/ja
Publication of JP2006329145A publication Critical patent/JP2006329145A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 エンジンに出入りする冷媒の温度を正確に検知することでエンジンの温度制御の精度を高め、エンジンのエミッション悪化を防止するエンジン冷却装置を提供する。
【解決手段】 エンジン冷却装置であって、エンジンとラジエータとの間で冷媒を流通させる第1流路・第2流路2と、これら流路を連通するバイパス路3と、第1流路または第2流路2とバイパス路3との接続部に設けた流路切替手段4と、冷媒温度を検知する温度検知手段5と、流路切替手段4の流路面積を調節する調節手段とを備え、温度検知手段5が、第2流路2に対する取付部5aと冷媒の温度を測定する熱検知素子5bとを有し、第2流路2を構成する部材の熱が取付部5aを介して熱検知素子5bに伝わるのを抑制する熱抵抗手段を備える。
【選択図】 図3

Description

本発明は、ラジエータとエンジンとの間で冷媒を循環させるエンジン冷却装置に関する。
自動車等に用いる水冷式エンジンにおいて、一般にエンジンの冷却は、エンジンとラジエータとの間を接続する第1流路と第2流路とに冷媒(例えば、クーラント)を循環させて行う。ここで、第1流路は、エンジンからラジエータに向かう進行流路であり、第2流路は、ラジエータからエンジンに向かう戻り流路である。また、第1流路と第2流路との間には、エンジンから流出した冷媒をラジエータを通さずにエンジンに戻すバイパス路が設けられている。このバイパス路を通る冷媒の流量は、例えば、バイパス路と第2流路との接続部に設けた制御弁によって調節される。制御弁は、流路の途中に設けた温度センサによって検知される冷媒の温度に基づいて、その開度調節をすることが可能である。
従来のエンジン冷却装置では、上記温度センサが、第1流路内であってエンジンの冷媒出口近傍の位置と、第2流路内であってエンジン近傍の位置とに設けられているものがあった(例えば、特許文献1を参照)。このようにエンジンを挟む二つの位置に温度センサを設けると、エンジンに流入する直前の冷媒の温度およびエンジンから流出した直後の冷媒の温度をそれぞれ計測することができるので、それらの温度に基づいて制御弁の開度調節を行うことが可能となる。
特開2003−262126号公報(第1図)
エンジンの温度制御の精度を高めるためには、温度センサをなるべくエンジンの近くに設けることが好ましい。ところが、特許文献1のエンジン冷却装置では、温度センサとエンジンとの距離が近くなると、温度センサ自身がエンジンからの燃焼熱の影響を受け易くなるという弊害があった。例えば、エンジンにおける燃焼熱は、シリンダブロックから第2流路の壁部を経由し、温度センサの取付部分を伝って温度センサの先端部にまで達することがある。このような場合、温度センサ自身の温度が冷媒温度よりも高くなるため、冷媒温度を正確に検知することができなくなるおそれがある。
また、制御弁が閉状態であるとき、ラジエータから制御弁にかけての流路中に存在する冷媒は滞留することになり、このような滞留冷媒が上記燃焼熱の影響を受けると、局所的に高温の状態となる場合がある。この場合において、制御弁を開いてラジエータからの冷媒がエンジンに流通し始めると、温度センサは、その直後は、実際に流通する冷媒の温度よりも高温の冷媒が流通していると誤認識し、ラジエータからの冷媒流量を過大に設定するおそれがある。この結果、ラジエータに流入する冷媒量が増加して冷媒の温度が下がり過ぎてしまい、エンジンの正常な燃焼が阻害されてエミッション(例えば、CO、HC、NOx濃度)が悪化する原因となり得る。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、エンジンに出入りする冷媒の温度を正確に検知することによってエンジンの温度制御の精度を高め、エンジンのエミッション悪化を防止するエンジン冷却装置を提供する点にある。
本発明に係るエンジン冷却装置の第一の特徴構成は、ラジエータとエンジンとの間で冷媒を循環させるエンジン冷却装置であって、前記エンジンから前記ラジエータに前記冷媒を流通させる第1流路と、前記ラジエータから前記エンジンに前記冷媒を戻す第2流路と、前記第1流路と前記第2流路とを連通するバイパス路と、前記第1流路または前記第2流路と前記バイパス路との接続部に設けた流路切替手段と、前記冷媒の温度を検知する温度検知手段と、当該温度検知手段が検知した温度に基づいて、前記流路切替手段の流路面積を調節する調節手段とを備え、前記温度検知手段が、前記第2流路に対する取付部と、前記冷媒の温度を測定する熱検知素子とを有しており、前記第2流路を構成する部材の熱が、前記取付部を介して前記熱検知素子に伝わるのを抑制する熱抵抗手段を備えている点にある。
本構成のエンジン冷却装置では、温度検知手段が、第2流路に対する取付部と、冷媒の温度を測定する熱検知素子とを有しており、第2流路を構成する部材の熱が、取付部を介して熱検知素子に伝わるのを抑制する熱抵抗手段を備えている。このため、エンジンの燃焼熱は熱検知素子に到達する前に熱抵抗手段によって遮られ、熱検知素子自身が加熱されることがなく、冷媒の温度を正確に検知することができる。これにより、流路切替手段の流路面積の調節をより正確に行うことができ、エンジンの温度制御の精度が高まって、エンジンのエミッション悪化を防止することができる。
本発明のエンジン冷却装置の第二の特徴構成として、前記熱抵抗手段は、前記取付部を前記第2流路の内壁面よりも引退した位置に設けたものとすることが可能である。
本構成のエンジン冷却装置のように、温度検知手段の前記取付部を第2流路の内壁面よりも引退した位置に設けて熱抵抗手段を構成することで、エンジンの燃焼熱がエンジンから第2流路を介して熱検知素子に伝わろうとするとき、その伝達経路が長くなり、熱検知素子に伝達する熱量を低減させたり、熱の伝達を遅らせることができる。従って、熱検知素子は冷媒の温度を正確に検知することができ、エンジンの温度制御の精度が高まって、エンジンのエミッション悪化を防止することができる。
本発明のエンジン冷却装置の第三の特徴構成として、前記熱抵抗手段を、前記取付部から前記熱検知素子までの熱伝達経路を前記第2流路の径外方向に迂回させて構成することも可能である。
本構成のエンジン冷却装置では、温度検知手段の取付部から熱検知素子までの熱伝達経路を第2流路の径外方向に迂回させているので、熱伝達経路を長くすることができる。このため、エンジンの燃焼熱は、第2流路を介して温度検知手段の熱検知素子に伝わり難くなり、熱検知素子は冷媒の温度を正確に検知することができる。従って、エンジンの温度制御の精度が高まり、エンジンのエミッション悪化を防止することができる。
本発明のエンジン冷却装置の第四の特徴構成として、前記第2流路の長手方向に対して前記温度検知手段を傾斜させることも可能である。
本構成のエンジン冷却装置では、温度検知手段を第2流路の長手方向に対して傾斜させることにより、傾斜させずに取付けた場合と比べて取付部から熱検知素子までの熱伝達経路を長く確保することができるので、熱検知素子が受けるエンジン燃焼熱の影響をより確実に排除することができる。
本発明のエンジン冷却装置の第五の特徴構成として、前記熱抵抗手段を、前記取付部と前記第2流路との間に設けた断熱部材とすることも可能である。
本構成のエンジン冷却装置では、取付部と第2流路との間に断熱部材を設けたことにより、温度検知手段の熱検知素子と第2流路とが熱的に隔離されるので、エンジンの燃焼熱が熱検知素子まで伝達し難くなる。これにより、温度検知手段の温度検知精度を高めることができる。
本発明のエンジン冷却装置の第六の特徴構成として、前記熱検知素子を、前記第2流路の断面のうち、鉛直方向下方の領域に配置することも可能である。
本構成のエンジン冷却装置のように、温度検知手段の熱検知素子を、第2流路の断面のうち、鉛直方向下方の領域に配置すると、比較的温度が低い部分の冷媒の温度を検知することができ、冷媒がエンジンの燃焼熱の影響を受け得る場合であっても、それによる温度上昇の誤差を最小限に抑えることができる。
(第1実施形態)
図1は、本発明の第1実施形態によるエンジン冷却装置100の概略構成図である。このエンジン冷却装置100は、ラジエータRとエンジンEとの間で冷媒を循環させることができる。エンジン冷却装置100は、第1流路1と、第2流路2と、バイパス路3と、流路切替手段4と、温度検知手段5と、前記流路切替手段4の流路面積を調節する調節手段6とを備えている。
第1流路1は、エンジンEからラジエータRに向かう冷媒(例えば、クーラント)の流路である。エンジンEには、クランクシャフトの回転駆動力で作動するウォーターポンプ10が連結されており、このウォーターポンプ10が作動することによって、エンジンEにおいて熱を吸収した冷媒は、バイパス路3に、またはバイパス路3およびラジエータRの両方に送られる。
第2流路2は、ラジエータRからエンジンEに向かう冷媒の流路である。ラジエータEで熱が放射された冷媒は、ウォーターポンプ10の作動により、第2流路2を通ってエンジンEに送られる。第2流路2は、流路切替手段4の前後において、ラジエータ側第2流路2aとエンジン側第2流路2bとに分割されている。
バイパス路3は、第1流路1と第2流路2とを連通可能に接続している。エンジンEから流出した冷媒は、その一部または全部が適宜バイパス路3を通って第2流路2に入ることができる。
流路切替手段4は、第1流路1または第2流路2とバイパス路3との接続部に設けられ、流路面積を変更してラジエータEへの冷媒の流入量を調節することができる。図1に示した実施形態では、流路切替手段4は第2流路2とバイパス路3との接続部に設けている。流路切替手段4は、例えば、後述するようなサーモスタットとすることができる。
図2および図3に、本実施形態における流路切替手段4の詳細を示す。ここで、図2は、流路切替手段4の正面断面図であり、図3は、流路切替手段4の側面図である。流路切替手段4は、冷媒の温度に応じて弁開度を変更し、流路面積を調節可能なサーモスタット20を主要部として構成される。サーモスタット20は、熱膨張可能なワックス21が充填された感温部22と、この感温部22を加熱するヒータ23と、ワックス21の熱膨張に応じて動作するピストン24と、このピストン24のうち感温部22と反対側に取り付けられたバルブ25とを備えている。なお、図2では、ラジエータ側第2流路2aは、破線のリング部で示した配管であり、冷媒は、この流路切替手段4に向かって流入する。また、エンジン側第2流路2bは、バルブ25より紙面左側に延びる配管であり、冷媒は、紙面左側にあるエンジンEに向かって流通する。
サーモスタット20の感温部22は、バイパス路3を通る冷媒の温度を感知する部位であり、サーモスタット20の作動状態とは無関係に、常にバイパス路3に存在する冷媒に接触している。また、感温部22は、その端部22aがサーモスタット20内に設けたヒータ23に接触するように、第1付勢バネ26によってヒータ23側に付勢されている。
ピストン24に取り付けられたバルブ25は、第2付勢バネ27によってサーモスタット20のハウジング内壁に設けた段部20aに付勢されている。これにより、通常はラジエータ側第2流路2aとエンジン側第2流路2bとが遮断され、ラジエータRからエンジンEへの冷媒の流動が阻止されている。
温度検知手段5は、第2流路2を流通する冷媒の温度を検知する温度センサである。図3に示すように、温度検知手段5は、第2流路2に対する取付部5aと、冷媒の温度を測定する熱検知素子5bとを有している。さらに、温度検知手段5は、第2流路2を構成する部材の熱が、取付部5aを介して熱検知素子5bに伝わるのを抑制する熱抵抗手段5c(例えば、図4参照)を備えている。また、温度検知手段5は、図3に示されるように、第2流路2上にあるサーモスタット20に近接した位置に設けられ、第2流路2を流動する冷媒の温度に関するデータを調節手段6に送信する。温度検知手段5および熱抵抗手段5cの構造については、後に詳細に説明する。
なお、本実施形態では、第2流路2に取り付けた温度検知手段5の他に、第1流路1であってエンジンEの冷媒出口とバイパス路3との間に第2温度検知手段7を設けている。このような第2温度検知手段7を設けると、温度検知手段5および第2温度検知手段7の双方から得られた温度データに基づいて調節手段6による冷媒の温度管理を行うことができるため、より適切なエンジンEの温度管理が可能となる。第2温度検知手段7の構成は、温度検知手段5の構成と同様とすることができる。
調節手段6は、温度検知手段5または第2温度検知手段7が検知した温度とともに、エンジンEの作動状態(例えば、エンジン回転数)に応じて、流路切替手段4の流路面積を調節することにより、冷媒の温度を制御目標温度に近づける。この調節は、次のように行う。
ヒータ23には、コネクタ23aを介して図示しない外部電源が接続される。調節手段6は、例えば、エンジンEの回転数が高いと判断し、さらに第2温度検知手段7で検知する温度が上昇していると判断すると、ヒータ23を昇温させて感温部22の中のワックス21を膨張させる。これにより、ピストン24が移動してバルブ25は開度を増し、ラジエータへの冷媒の流入量が増加する。このように、調節手段6によるヒータ23の昇温によりワックス21を意図的に熱膨張させると、バルブ25の積極的な開度調節が可能となる。
調節手段6は、必要に応じて、ラジエータRを冷却する冷却ファンFに制御命令を送信するように構成してもよい。バルブ25の開度調節だけで冷媒を十分に冷却できない場合、調節手段6からの制御命令により冷却ファンFを積極的に回転させ、ラジエータRに当たる風量を増加させて、冷媒の冷却効率を向上させる。
本実施形態では、調節手段6は、温度データを演算するCPU等の演算手段とすることができる。なお、調節手段6はエンジン冷却装置100の専用品であってもよいが、エンジン制御用のECUに調節手段6の機能を組み込んで構成することも可能である。
このように、エンジンEの冷却制御を正確に行うためには、制御の判断要因である温度制御を正確に行う必要がある。そのために、本発明に係る温度制御手段5は以下のように構成する。
温度検知手段5は熱抵抗手段5cを備え、この熱抵抗手段5cは、第2流路2(サーモスタット20を含む)を構成する部材の熱が、温度検知手段5の取付部5aを介して温度検知手段5の先端部にある熱検知素子5bに伝わるのを抑制するように機能する。例えば、図3および図5に示すように、温度検知手段5の取付部5aを第2流路2の内壁面よりも引退した位置に設けることで、熱抵抗手段5cを構成することができる。このように構成することで、エンジンEの燃焼熱がエンジンEから第2流路2を介して熱検知素子5bに伝わろうとするとき、その熱の伝達経路dが長くなり、熱検知素子5bに伝達する熱量を低減させたり、熱の伝達を遅らせることができる。この結果、熱検知素子5bは冷媒の温度を正確に検知することができるようになり、調節手段6によるエンジンEの温度制御の精度が高まって、エンジンEのエミッション悪化を防止することができる。
また、図4のように、温度検知手段5を、第2流路2の長手方向に対して傾斜させて取り付けることにより、熱抵抗手段5cとすることもできる。図4(a)は、温度検知手段5を取り付けた第2流路2の内部構成図であり、図4(b)は、第2流路2の長手方向断面図である。図4の温度検知手段5は、図3に示したものと同じものである。このように、温度検知手段5を第2流路2の長手方向に対して傾斜させることで、傾斜をさせずに温度検知手段5を取付けた場合と比べて、取付部5aから熱検知素子5bまでの熱伝達経路dを長く確保することができる。従って、熱検知素子5bが第2流路2(サーモスタット20を含む)を介して受けるエンジン燃焼熱の影響をより確実に排除することができる。
また、図5に示すように、温度検知手段5の取付部5aから熱検知素子5bまでの熱伝達経路を第2流路2の径外方向に迂回させて、熱抵抗手段5cを構成することも可能である。図5の温度検知手段5では、第2流路2(サーモスタット20)の壁部から取付部5aを介して径外方向に中空筒状部材を突出させ、さらに当該中空筒状部材の底部から熱検知素子5bを先端に有する筒状部材を立設させて熱抵抗手段5cを構成している。このため、取付部5aから熱検知素子5bまでの距離が長くなり、エンジンEの燃焼熱がサーモスタット20の壁部を介して熱検知素子5bに伝わり難くなる。その結果、熱検知素子5bは冷媒の温度を正確に検知することができるので、エンジンEの温度制御の精度が高まり、エンジンEのエミッション悪化を防止することができる。なお、上記の中空筒状部材および筒状部材は種々の形状を採用することが可能であり、例えば、中空筒状部材および筒状部材の表面を蛇腹状にすることができる。このような形状とすれば、取付部5aから熱検知素子5bまでの距離がさらに長くなり、エンジンEの燃焼熱は熱検知素子5bに一層伝わり難くなる。また、熱抵抗手段5cの表面積が大きくなるので、放熱効果が向上する。
また、仮に温度検知手段5が円形断面を有している場合、温度検知手段5を第2流路2に対して傾斜させて取り付けると、冷媒の流動方向における断面が当該流動方向に長径を有する楕円形となるので(図4(a))、第2流路2に対して直交する方向に取り付けた場合と比較して、第2流路2の通水抵抗を低減することができ、ウォーターポンプ10のキャビテーション防止や駆動力の低減に有効である。
なお、温度検知手段5の傾斜方向は、冷媒の流動方向の後方側に向けて傾斜させることが好適である。このように配置することにより、温度検知手段5は、冷媒の流動に逆らうことなく温度検知を行うことができるので、第2流路2の通水抵抗をさらに低減することができるとともに、ウォーターポンプ10のキャビテーション防止や駆動力のさらなる低減にも有効である。
傾斜させた温度検知手段5は、その先端部にある熱検知素子5bを、第2流路2の断面のうち、鉛直方向下方の領域に配置することが好適である。これは、図4(b)に示した配置Xや配置Yのようにすることで達成できる。このような配置とすれば、温度検知手段5の熱検知素子5bは、第2流路2の断面のうち、鉛直方向下方の領域(図4(b)の斜線で示した領域)を流れる比較的温度が低い部分の冷媒の温度を検知することになるので、冷媒がエンジンEの燃焼熱の影響を受けて多少温度が上昇し得る場合であっても、その上昇分による温度誤差を最小限に抑えることができる。
次に、上記の熱抵抗手段5cを備えた温度検知手段5および第2温度検知手段7を用いたバルブ25の開度調節と、それに伴う冷媒の温度について説明する。
図6は、温度検知手段5および第2温度検知手段7で計測した冷媒温度の経時変化を示すグラフである。同図において、a1およびa2で示した曲線は、温度検知手段5で計測した冷媒温度の温度プロフィールである。このうち、a1は本発明に係る温度検知手段5によって計測した温度プロフィールを示している。a2は、熱抵抗手段5cを備えていない従来の温度検知手段を用いた場合の温度プロフィールである。また、b1で示した曲線は、第2温度検知手段7で計測した冷媒温度の温度プロフィールであり、a1の温度プロフィールに対応して計測したものである。b2も第2温度検知手段7で計測した冷媒温度の温度プロフィールであるが、a2の温度プロフィールに対応して計測したものである。また、グラフの横軸は経過時間を示している。本実施形態では、エンジンEが始動してから時間がtになるまでは低負荷運転状態にあり、t〜tにおいて高負荷運転状態にあり、t以降は低負荷運転状態にあるものとする。
初めに、熱抵抗手段5cを備えていない温度検知手段5を用いた温度プロフィール(図6のa2およびb2)について説明する。エンジンEが始動すると、ウォーターポンプ10の動作によって冷媒の循環が開始される。このとき、初期の段階では冷媒の温度はまだ低いため、サーモスタット20のバルブ25はラジエータ側第2流路2aに対して閉状態を維持している。従って、冷媒は、エンジンE、第1流路1、バイパス路3、サーモスタット20、およびエンジン側第2流路2bをそれぞれ順に通過し、再びエンジンEに戻る経路を循環する。
エンジンEの駆動時間の経過に伴ってバイパス路3を流動する冷媒温度が上昇すると(時間t〜tにおけるb2の温度上昇に対応)、サーモスタット20の感温部22が冷媒によって温められ、ワックス21が膨張を開始してバルブ25が徐々に開かれる。
一方、第2流路2中に存在する冷媒は、サーモスタット20のバルブ25が閉状態である間は滞留状態であるので、温度検知手段5が検知する冷媒温度は理論上一定温度を維持する。しかし、上記滞留冷媒にはラジエータ側第2流路2aを介してエンジンEの燃焼熱が伝達されることから、実際には若干の温度上昇を示し、さらに、温度検知手段5自身もエンジンEからの熱の影響を受けるので、温度検知手段5が検知した温度は、実際の冷媒温度よりも高い温度として誤認識される(時間t〜tにおけるa2の温度上昇に対応)。
温度検知手段5が検知するバイパス路3を流動する冷媒の温度が、冷媒温度下限値T2を超え、さらにエンジンEの回転数が所定回転数以上になる等エンジンEが高負荷運転状態となると、サーモスタット20のヒータ23に通電が行われ、バルブ25の積極的開放が行われる。これは、高負荷運転状態では、冷媒温度を低温に維持することで異常着火が防止され、それによりノッキングが低減し、エミッション悪化を防止できるからである。この結果、エンジンEから流出した冷媒はラジエータEに大量に流入することとなり、冷媒の冷却が促進されて第2流路2を通過する冷媒の温度は一旦低下する(時間t〜tにおけるa2の温度低下に対応)。しかし、その後はバルブ25の開度調節により、温度検知手段5で検知される冷媒温度は若干のハンチングの後やがて安定する(時間t〜tにおけるa2の温度一定の部分に対応)。
一方、第2温度検知手段7に着目すると、時間t〜tにおいて、エンジンEの高負荷運転状態が継続すると、ヒータ23への通電が続けられるので、ラジエータEへ流入する冷媒の量が増大していく。その結果、冷媒の冷却が促進されて、第2温度検知手段7で検知される冷媒の温度は一時的にT2を下回ることになる。このようなアンダーシュートは、エンジンEのフリクション増大等の原因となる。その後はバルブ25の開度調節によって冷媒の温度は安定し、アンダーシュートは解消する(時間t〜tにおけるb2の温度一定の部分に対応)。
エンジンEが低負荷運転状態に戻ると、エンジンEから流出した冷媒の温度が温度調節下限値T3と温度調節上限値T4との間に入るように温度制御が行われる(時間t以降におけるb2の温度一定の部分)。これは、低負荷運転状態では、冷媒温度を高温に維持することでエンジンEの各部材が僅かに収縮し、フリクションロスを低下させることができるからである。この温度制御は、サーモスタット20の中を流動する冷媒の温度によるバルブ25の自動開度調節によって行われる。第2流路2を流動する冷媒の温度も、第2温度検知手段7で検知された冷媒温度と同様にほぼ一定状態を維持する(時間t以降におけるa2の温度一定の部分)。
次に、熱抵抗手段5cを備えている温度検知手段5を用いたバルブ25の開度調節時の温度プロフィール(図6のa1およびb1)について説明する。エンジンEの低負荷運転状態において、駆動時間の経過に伴ってバイパス路3を流動する冷媒温度は上昇するが(b1における時間t〜tの温度上昇に対応)、第2流路2内において温度検知手段5が検知する温度は略一定を維持している(a1における時間t〜tの温度一定の部分に対応)。これは、第2流路2に取り付けた温度検知手段5は、熱抵抗手段5cによってエンジンEからの熱が遮断されているからである。
エンジンEが高負荷運転状態になると、調節手段6がそれを感知し、サーモスタット20のヒータ23に通電をしてバルブ25の開度を増大させる。この結果、ラジエータRを経て第2流路2を流通する冷媒の量が増加し、温度検知手段5で検知される冷媒温度は徐々に上昇を開始する(時間t〜tにおけるa1の温度上昇に対応)。このとき、温度検知手段5は、熱抵抗手段5cを備えているために正確な冷媒温度を検知することができる。従って、実際よりも高温であると誤認してバルブ25が必要以上に開放されることがない。そのため、第2温度検知手段7で検知される冷媒温度は過度に低下することはない(時間t〜tにおけるb1の温度低下に対応)。その後の冷媒の温度プロフィールは、先に説明した熱抵抗手段5cを備えていないものの温度プロフィールとほぼ同じになる。
(第2実施形態)
図7は、熱抵抗手段5cの他の実施形態であり、温度検知手段5の取付部5aと第2流路2との間に断熱部材30を設けて熱抵抗手段5cとしている。ここで、図7(a)は本実施形態の温度検知手段5の縦断面図であり、図7(b)は(a)における温度検知手段5のB−B断面図である。本実施形態のエンジン冷却装置100では、取付部5aと第2流路2との間に断熱部材30を設けたことにより、温度検知手段5の熱検知素子5bと第2流路2とが断熱部材30によって熱的に隔離されることになる。このため、エンジンEの燃焼熱が熱検知素子まで伝達し難くなる。その結果、温度検知手段5の温度検知精度を高めることができるので、冷媒の温度が適正に管理され、エンジンEのエミッション悪化を防止することができる。
<別実施形態>
(1)図8は、本発明の別実施形態によるエンジン冷却装置200の概略構成図である。上記実施形態では、エンジン冷却装置100の流路切替手段4を、第2流路2とバイパス路3との接続部に設けていたが、本別実施形態のように、流路切替手段4を、第1流路1とバイパス路3との接続部に設けて構成することも可能である。なお、この場合にも温度検知手段5は第2流路2に設ける。図8の場合には、温度検知手段5の位置では冷媒は常に流通することになり、滞留は生じない。よって、温度検知手段5は冷媒の正確な温度を計測することができる。しかし、図8の例でも、ラジエータRからエンジンEへの冷媒の流れが生じ初めた直後には、ラジエータ側第2流路2aに滞留していた暖かい冷媒が流れる。この場合には、温度検知手段5の熱検知素子5bを流路の下方側に位置させておくことで、冷媒の正確な温度を測定することができる。
(2)上記の各実施形態では、冷媒を循環させる動力源として、エンジンEのクランクシャフトの回転駆動力で作動するウォーターポンプ10を用いていたが、エンジンEの駆動とは独立して駆動可能な電動式のウォーターポンプを採用することもできる。電動式ウォーターポンプを用いる場合には、ポンプの回転駆動力を調節手段6によって制御する。この場合にも、第2流路2に本発明の温度検知手段5を設けることで、より綿密な冷媒の流量制御を行うことができる。
(3)本発明のエンジン冷却装置は、自動車等のエンジン冷却の用途以外にも種々の応用が可能である。例えば、産業用エンジンにおいて使用する冷却装置、空調機器の熱交換器等に使用することも可能である。
本発明の第1実施形態によるエンジン冷却装置の概略構成図 流路切替手段の正面断面図 流路切替手段の側面図 傾斜させて取り付けた温度検知手段の構成図 第2流路の内表面から退避させて取り付けた温度検知手段の構成図 温度検知手段で計測した冷媒温度の経時変化を示すグラフ 熱抵抗手段の他の実施形態を示す図 別実施形態によるエンジン冷却装置の概略構成図
符号の説明
1 第1流路
2 第2流路
3 バイパス路
4 流路切替手段
5 温度検知手段
5a 取付部
5b 熱検知素子
5c 熱抵抗手段
6 調節手段
30 断熱部材
100 エンジン冷却手段
R ラジエータ
E エンジン

Claims (6)

  1. ラジエータとエンジンとの間で冷媒を循環させるエンジン冷却装置であって、
    前記エンジンから前記ラジエータに前記冷媒を流通させる第1流路と、
    前記ラジエータから前記エンジンに前記冷媒を戻す第2流路と、
    前記第1流路と前記第2流路とを連通するバイパス路と、
    前記第1流路または前記第2流路と前記バイパス路との接続部に設けた流路切替手段と、
    前記冷媒の温度を検知する温度検知手段と、
    当該温度検知手段が検知した温度に基づいて、前記流路切替手段の流路面積を調節する調節手段とを備え、
    前記温度検知手段が、前記第2流路に対する取付部と、前記冷媒の温度を測定する熱検知素子とを有しており、前記第2流路を構成する部材の熱が、前記取付部を介して前記熱検知素子に伝わるのを抑制する熱抵抗手段を備えているエンジン冷却装置。
  2. 前記熱抵抗手段が、前記取付部を前記第2流路の内壁面よりも引退した位置に設けたものである請求項1に記載のエンジン冷却装置。
  3. 前記熱抵抗手段が、前記取付部から前記熱検知素子までの熱伝達経路を前記第2流路の径外方向に迂回させて構成してある請求項1または2に記載のエンジン冷却装置。
  4. 前記第2流路の長手方向に対して前記温度検知手段を傾斜させてある請求項2または3に記載のエンジン冷却装置。
  5. 前記熱抵抗手段が、前記取付部と前記第2流路との間に設けた断熱部材である請求項1に記載のエンジン冷却装置。
  6. 前記熱検知素子を、前記第2流路の断面のうち、鉛直方向下方の領域に配置してある請求項1〜5の何れか一項に記載のエンジン冷却装置。
JP2005156994A 2005-05-30 2005-05-30 エンジン冷却装置 Withdrawn JP2006329145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156994A JP2006329145A (ja) 2005-05-30 2005-05-30 エンジン冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156994A JP2006329145A (ja) 2005-05-30 2005-05-30 エンジン冷却装置

Publications (1)

Publication Number Publication Date
JP2006329145A true JP2006329145A (ja) 2006-12-07

Family

ID=37551079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156994A Withdrawn JP2006329145A (ja) 2005-05-30 2005-05-30 エンジン冷却装置

Country Status (1)

Country Link
JP (1) JP2006329145A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159766A1 (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 内燃機関冷却システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159766A1 (ja) * 2016-03-16 2017-09-21 本田技研工業株式会社 内燃機関冷却システム
US10731542B2 (en) 2016-03-16 2020-08-04 Honda Motor Co., Ltd. Internal combustion engine cooling system

Similar Documents

Publication Publication Date Title
JP4482901B2 (ja) 排気熱回収器の異常診断装置
JP4682863B2 (ja) エンジンの冷却装置
JP5582022B2 (ja) 排気熱交換装置
JP4561529B2 (ja) 内燃機関冷却装置の故障検出システム
US10018103B2 (en) Cooling water control apparatus
US9903259B2 (en) Cooling apparatus for internal combustion engine
EP3358163B1 (en) Cooling control device
JPWO2010143265A1 (ja) 内燃機関の制御装置
SE535781C2 (sv) Kylsystem för kylning av en förbränningsmotor
BR102015031167B1 (pt) Dispositivo de controle para motor de combustão interna
WO2014192747A1 (ja) エンジンの制御装置及び制御方法
JP2008037302A (ja) 車両冷却システム
JP4975153B2 (ja) 内燃機関の冷却装置
JP2007120380A (ja) エンジン冷却装置
JP2014156849A (ja) 内燃機関の制御装置
JP2006161806A (ja) 液冷式内燃機関の冷却装置
US6929189B2 (en) Thermostat device and temperature control method and system for engine coolant
JP6838485B2 (ja) 冷却水制御弁装置
JP2006329145A (ja) エンジン冷却装置
JP2014025381A (ja) エンジン冷却装置
JP5598369B2 (ja) 内燃機関の冷却装置
JP2012072668A (ja) 内燃機関システム
JP6394476B2 (ja) 内燃機関の冷却装置
US20130048741A1 (en) Thermostatic valve assembly
JP2006258069A (ja) 冷却システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A761 Written withdrawal of application

Effective date: 20090914

Free format text: JAPANESE INTERMEDIATE CODE: A761