JP2006328472A - Production method of silver nanoparticle, silver nanoparticle and application thereof - Google Patents

Production method of silver nanoparticle, silver nanoparticle and application thereof Download PDF

Info

Publication number
JP2006328472A
JP2006328472A JP2005153212A JP2005153212A JP2006328472A JP 2006328472 A JP2006328472 A JP 2006328472A JP 2005153212 A JP2005153212 A JP 2005153212A JP 2005153212 A JP2005153212 A JP 2005153212A JP 2006328472 A JP2006328472 A JP 2006328472A
Authority
JP
Japan
Prior art keywords
silver
solvent
polymer dispersant
silver nanoparticles
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153212A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujieda
信彦 藤枝
Kunio Nishihara
邦夫 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2005153212A priority Critical patent/JP2006328472A/en
Publication of JP2006328472A publication Critical patent/JP2006328472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing silver nanoparticles (average grain size 1 to 20 mm) for a silver paste having a good specific resistance of a hardening film at a high yield by a chemical reduction process. <P>SOLUTION: More than stoichiometerically excessive ammonia water is added to an aqueous silver nitrate solution to form a silver complex and the silver nanoparticles are produced by reduction with an aqueous formalin solution at ≥0.90 in the ratio of the solvent and water at temperature 20 to 40°C in a methyl ethyl ketone solvent containing ≥2% polymer dispersant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銀コロイド溶液の製造方法及びそれから得られる銀ナノ粒子に関する。   The present invention relates to a method for producing a silver colloid solution and silver nanoparticles obtained therefrom.

従来、金属微粒子の製造方法にはさまざまな方法があるが、その一つとして化学的還元法が挙げられる。得られた銀粒子は電子回路の厚膜形成に適した導電ペ−ストとして使用できる。   Conventionally, there are various methods for producing metal fine particles, one of which is a chemical reduction method. The obtained silver particles can be used as a conductive paste suitable for forming a thick film of an electronic circuit.

しかし、該化学的還元方法は、銀粒子径の制御が難しく合成した銀粒子の平均径が約数ミクロンであることより加熱後の銀の融着が不十分となり電気抵抗が高くなる欠点、また接着性が低いという問題があった。更に、回路用途の場合不純物の存在により信頼性低下を引き起こす。この不純物除去のため限外濾過を使用して不純物を除去する方法があるが該設備が必要となりコスト高となるという問題がある。
特願昭60‐77907号 特開2004-75703号
However, the chemical reduction method is difficult to control the silver particle diameter, and since the average diameter of the synthesized silver particles is about several microns, the fusion of the silver after heating becomes insufficient and the electrical resistance becomes high. There was a problem that adhesiveness was low. Further, in the case of circuit applications, the presence of impurities causes a decrease in reliability. There is a method of removing impurities using ultrafiltration for removing the impurities, but there is a problem that the equipment is required and the cost is increased.
Japanese Patent Application No. 60-77907 JP 2004-75703 A

本発明の課題は、銀の粗大粒子の生成を抑制し、銀ナノ粒子を効率的にかつ安価に環境面の問題無く製造できる方法を提供することにある。   An object of the present invention is to provide a method capable of suppressing the production of coarse silver particles and producing silver nanoparticles efficiently and inexpensively without environmental problems.

本発明者らは、鋭意検討した結果、銀粒子サイズがnmサイズの範囲のものを限外濾過を必要としないで容易に製造できる方法を見出し本発明を完成させた。   As a result of intensive studies, the present inventors have found a method by which silver particles having a size in the nm size range can be easily produced without requiring ultrafiltration, and have completed the present invention.

即ち第一の発明は、 銀ナノ粒子の製造方法であって、硝酸銀水溶液に化学量論量より過剰のアンモニア水を加えて錯体を形成する工程、高分子分散剤及び溶剤を添加する工程、銀イオンをホルマリン水溶液で還元する工程を含み、前記高分子分散剤と前記銀の合計量中に占める銀の含有量が80重量%以下であることを特徴とする平均粒子直径が1〜20nmの銀ナノ粒子の製造方法である。   That is, the first invention is a method for producing silver nanoparticles, the step of adding a ammonia solution in excess of the stoichiometric amount to a silver nitrate aqueous solution to form a complex, the step of adding a polymer dispersant and a solvent, A silver having an average particle diameter of 1 to 20 nm, comprising a step of reducing ions with an aqueous formalin solution, wherein a silver content in the total amount of the polymer dispersant and the silver is 80% by weight or less. This is a method for producing nanoparticles.

溶剤がメチルエチルケトンであり、銀イオンの還元後、メチルエチルケトン溶剤を二以上の官能基を有する溶剤又は/及び高沸点芳香族系溶剤で置換する工程を含むことは、印刷性を向上し粘度の安定性の点で好ましい態様である。
該高分子分散剤と該銀中の銀の占める割合が、80重量%以下であることは、該銀ナノ粒子の収率アップの点で好ましい態様である。
該高分子分散剤が、溶剤相中に2重量%以上含有する状態で還元を開始するこ
とは銀-高分子分散剤の生成あるいは銀ナノ粒子サイズを安定化する点で好まし
い態様である。
The solvent is methyl ethyl ketone, and after the reduction of silver ions, the step of replacing the methyl ethyl ketone solvent with a solvent having two or more functional groups and / or a high boiling point aromatic solvent improves the printability and stabilizes the viscosity. This is a preferred embodiment.
The ratio of the polymer dispersant and silver in the silver is 80% by weight or less is a preferable embodiment in terms of increasing the yield of the silver nanoparticles.
Starting the reduction in a state where the polymer dispersant is contained in an amount of 2% by weight or more in the solvent phase is a preferable embodiment from the viewpoint of stabilizing the formation of the silver-polymer dispersant or the silver nanoparticle size.

該溶剤と水の重量比(溶剤/水)が0.90以上の状態で還元を開始することは、生成する銀-高分子分散剤を溶剤中に溶解させる点で好ましい態様である。
該ホルマリン水溶液で銀イオンを還元する時の温度が、20℃〜40℃であることは、銀ナノ粒子を均一に生成する点で好ましい態様である。
Starting the reduction in a state where the weight ratio of the solvent and water (solvent / water) is 0.90 or more is a preferable embodiment in that the silver-polymer dispersing agent to be produced is dissolved in the solvent.
The temperature at which silver ions are reduced with the formalin aqueous solution is preferably 20 ° C. to 40 ° C. from the viewpoint of uniformly producing silver nanoparticles.

第二の発明は、前記の製造方法により製造された銀ナノ粒子であり、第三の発明は、前記の銀ナノ粒子により回路が形成された回路基板である。     2nd invention is the silver nanoparticle manufactured by the said manufacturing method, 3rd invention is the circuit board by which the circuit was formed with the said silver nanoparticle.

本発明の製造方法により得られた銀ナノ粒子は、平均直径1〜20nmサイズの銀粒子であり、かつ銀収率が高収率で得られる。又、得られた銀粒子を含む銀ペーストを温度250℃で低温焼成することで低い比抵抗値が得られ、回路基板の回路形成用として好適に使用できる。また、化学的還元方法で使用される溶剤等は、再利用可能であり非常に効率的な製造方法である。又、設備が簡単であることより生産効率からも優れた製造方法である。   The silver nanoparticles obtained by the production method of the present invention are silver particles having an average diameter of 1 to 20 nm and a high silver yield. Moreover, a low specific resistance value is obtained by baking the obtained silver paste containing silver particles at a low temperature of 250 ° C., and can be suitably used for forming a circuit on a circuit board. Moreover, the solvent etc. which are used by the chemical reduction method are recyclable and a very efficient manufacturing method. In addition, it is a manufacturing method that is superior in terms of production efficiency due to simple equipment.

本発明は、従来からある化学的還元方法で得られる銀粒子サイズを直径数nmオ−ダ−での製造を可能にした画期的な製造方法である。本発明の製造方法は、反応槽がどのような材質であろうが反応槽の内壁への吸着を押さえる事が可能である。通常ガラス製のフラスコを使用して合成するが、還元中に銀の粒子が反応槽に付着すると同時に時間とともに銀の成長が起こり付着量が徐々に増加していく。また、攪拌中に溶剤相に粗大粒子が発生し、収率の低下とともに回路基板用としての価値を損ねるという問題がある。本発明は、このような問題を解決するために鋭意検討したものである。   The present invention is an epoch-making production method that enables production of a silver particle size obtained by a conventional chemical reduction method in the order of several nanometers in diameter. The production method of the present invention can suppress adsorption to the inner wall of the reaction tank, regardless of the material of the reaction tank. Usually, the synthesis is performed using a glass flask. During the reduction, silver particles adhere to the reaction tank, and at the same time, silver grows with time, and the amount of adhesion gradually increases. In addition, coarse particles are generated in the solvent phase during stirring, and there is a problem that the value for circuit boards is impaired as the yield decreases. The present invention has been intensively studied to solve such problems.

本発明は、硝酸銀水溶液に化学量論量より過剰のアンモニア水を加えて錯体を形成する工程、高分子分散剤及び溶剤を添加する工程、銀イオンをホルマリン水溶液で還元する工程を含み、該高分子分散剤と該銀中の銀の占める割合が80重量%以下であることを特徴とし、溶剤中に平均粒子直径が1〜20nmの銀ナノ粒子を形成させることができる。   The present invention includes a step of forming a complex by adding ammonia water in excess of the stoichiometric amount to an aqueous silver nitrate solution, a step of adding a polymer dispersant and a solvent, and a step of reducing silver ions with an aqueous formalin solution. The proportion of silver in the molecular dispersant and the silver is 80% by weight or less, and silver nanoparticles having an average particle diameter of 1 to 20 nm can be formed in the solvent.

以下、具体的に本発明を説明するが、下記の例示に限定されるものではない。
まず、ガラス製のフラスコを使用し、硝酸銀水溶液(1Mol/l)を出発原料とし、アンモニア水(29重量%)を添加する。溶液は、透明色から黒色の酸化銀へ変化する。さらに添加していくと透明になり銀の錯体が生成する。この時点が化学
量論量でさらに少量を添加する。さらに過剰のアンモニアを添加する場合は、水
洗による不純物除去、たとえばアンモニアの除去に時間がかかる場合がある。
Hereinafter, the present invention will be specifically described, but the present invention is not limited to the following examples.
First, using a glass flask, an aqueous silver nitrate solution (1 mol / l) is used as a starting material, and ammonia water (29% by weight) is added. The solution changes from a clear color to black silver oxide. When further added, it becomes transparent and a silver complex is formed. At this point, a smaller amount is added in a stoichiometric amount. Further, when adding excess ammonia, it may take time to remove impurities by washing with water, for example, to remove ammonia.

次に、溶剤に溶解させた高分子分散剤と溶剤を添加する。
本発明は、添加する高分子分散剤量は、高分子分散剤量と銀中の銀の占める割合が、80重量%以下にする必要があり、より好ましくは75重量%以下であり、65重量%以上である。この範囲にすることにより直径1〜20nmの銀粒子を高収率で得ることができる。80重量%を超える場合は、高分子分散剤-銀ナノ粒子の凝集が起こり銀ナノ粒子の分離が困難となる傾向にある。
Next, a polymer dispersant dissolved in a solvent and a solvent are added.
In the present invention, the amount of the polymer dispersant to be added is such that the amount of the polymer dispersant and the silver occupying ratio is 80% by weight or less, more preferably 75% by weight or less, and 65% by weight. % Or more. By setting it in this range, silver particles having a diameter of 1 to 20 nm can be obtained in high yield. When it exceeds 80% by weight, aggregation of the polymer dispersant-silver nanoparticles tends to occur and separation of the silver nanoparticles tends to be difficult.

本発明で使用する溶剤は、水に一部溶解することのできる溶剤であればよく例えば、メチルエチルケトン、2-ペンタノン、3ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン等々が挙げられる。
本発明で使用する高分子分散剤は、溶剤に2重量%以上可溶であるものが好ましく、例えば、市販品のソルスパ−ス20000、ソルスパ−ス24000、ソルスパ−ス26000、ソルスパ−ス28000、ソルスパ−ス34000、(以上,日本ル−ブリゾ−ル株式会社製)、フロ−レンDOPA-158、フロ−レンDOPA-22、フロ−レンDOPA-17、フロ−レンG-700、フロ−レンTG-720W、フロ−レンTG-730W、フロ−レンTG-740W、フロ−レンTG-745W、(以上、共栄社化学株式会社製)、等が挙げられる。
The solvent used in the present invention may be any solvent that can be partially dissolved in water, for example, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, and the like. Can be mentioned.
The polymer dispersant used in the present invention is preferably one that is soluble in a solvent by 2% by weight or more. For example, commercially available Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 28000, Solsper 34000 (above, manufactured by Nippon Lubrizol Corporation), Fullerene DOPA-158, Fullerene DOPA-22, Fullerene DOPA-17, Fullerene G-700, Fullerene TG-720W, fullerene TG-730W, fullerene TG-740W, fullerene TG-745W, (manufactured by Kyoeisha Chemical Co., Ltd.), and the like.

引き続き、37重量%ホルマリン水溶液を添加し、銀錯体を還元すると同時に高分子分散剤により銀ナノ粒子表面に保護膜を形成し銀ナノ粒子を安定化する。還元温度は、20℃〜40℃の間が好ましい。さらに、粗大粒子の発生を抑えて銀収率を挙げるためには、25℃〜35℃がより好ましい。
20℃以下では、反応速度が遅いために銀の収率が悪い場合がある。40℃以上では、反応速度が速いために、粗大粒子が生成する傾向にある。該ホルマリン水溶液の添加量は、化学量論量以上であれば良い。後述するようにアンモニア除去と同様に過剰のホルマリンを洗浄するのに時間を要する点で多すぎると好ましくない。
Subsequently, a 37 wt% aqueous formalin solution is added to reduce the silver complex, and at the same time, a protective film is formed on the surface of the silver nanoparticles by the polymer dispersant to stabilize the silver nanoparticles. The reduction temperature is preferably between 20 ° C and 40 ° C. Furthermore, in order to suppress generation | occurrence | production of a coarse particle and to raise a silver yield, 25 to 35 degreeC is more preferable.
Below 20 ° C., the yield of silver may be poor due to the slow reaction rate. At 40 ° C. or higher, the reaction rate is high, so that coarse particles tend to be generated. The added amount of the formalin aqueous solution may be a stoichiometric amount or more. As will be described later, it is not preferable that it is too much because it takes time to wash off excess formalin as in the case of ammonia removal.

本発明で使用する溶剤は、親水性のメチルエチルケトンが最も適している。
すなわち、メチルエチルケトンは水に約10重量%溶解するため、水相側の銀錯体が銀に還元された際、水相に溶けている高分子分散剤が銀の廻りを保護し溶剤相に移すことが可能になると考えられる。還元開始時の溶剤と水の重量比は、0.90以上が好ましい。重量比が、0.90未満であると黒色の酸化銀の粗大粒子が発生する場合がある。
As the solvent used in the present invention, hydrophilic methyl ethyl ketone is most suitable.
That is, since methyl ethyl ketone is dissolved in water by about 10% by weight, when the silver complex on the aqueous phase side is reduced to silver, the polymer dispersant dissolved in the aqueous phase protects the surroundings of silver and moves to the solvent phase. Will be possible. The weight ratio of the solvent and water at the start of reduction is preferably 0.90 or more. If the weight ratio is less than 0.90, black silver oxide coarse particles may be generated.

本発明は、高分子分散剤の含有量が溶剤相に2重量%以上含有するように調整するのが好ましい。2重量%以上含むと粒子径は安定になる。高分子分散剤が2重量%未満の場合は、銀の粗大粒子が発生する場合がある。
銀イオンを還元するホルマリンの量は、化学量論量より過剰が好ましい。
ホルマリンは、ホルマリンがアンモニアと反応してウロトロピン生成量が増加し本来必要なホルマリン量が減少するからである。ホルマリンを化学量論量の1.5倍程度使用する場合、銀錯体の還元時に発生するウロトロピンを該錯体が還元された際に生成する蟻酸により分解し、ホルマリンに戻ることにより銀ナノ粒子の収量が増加すると推測できる。粗大銀粒子は、生成するウロトロピンに吸着し、水相に除去される。
本発明は、還元後静置することにより、上層の溶剤相に高分子分散剤で安定化した銀ナノ粒子が生成する。水相には粗大粒子と共に析出したウロトロピンが沈降する。
In the present invention, it is preferable to adjust so that the content of the polymer dispersant is 2% by weight or more in the solvent phase. When the content is 2% by weight or more, the particle diameter becomes stable. When the polymer dispersant is less than 2% by weight, coarse silver particles may be generated.
The amount of formalin that reduces silver ions is preferably more than the stoichiometric amount.
This is because formalin reacts with ammonia to increase the amount of urotropin produced and decrease the amount of formalin originally required. When formalin is used about 1.5 times the stoichiometric amount, the yield of silver nanoparticles is obtained by decomposing urotropin generated during reduction of the silver complex with formic acid generated when the complex is reduced and returning to formalin. Can be estimated to increase. Coarse silver particles are adsorbed on the produced urotropin and removed to the aqueous phase.
In the present invention, silver nanoparticles stabilized with a polymer dispersant are produced in the upper solvent phase by standing after reduction. Urotropin precipitated together with coarse particles settles in the aqueous phase.

次に、反応槽より分液ロ−トに傾斜あるいは吸引により移液する。傾斜させて移液する方法は、生成したウロトロピンが混入する恐れがあるため吸引して移液する方法が好ましい。又、ヌッチェ等の濾過器による濾過によってもかまわない。移液後、メチルエチルケトン/水=1:1の溶液を供給し、振動させ不純物を水相側に移動させる。水の量を多くすると分離時間が長くなるので好ましくない場合がある。さらに、静置後水相を分離し廃棄する。分離した水に塩酸水溶液を添加して白濁の有無を確認することにより、アンモニアと未反応の硝酸銀を除去できたかを判断する。該操作を繰り返し完全にアンモニアを除去する。アンモニアの除去後、減圧濃縮を行う。この際、トルエン、キシレン等の共沸溶剤を使用する事により水を効率よく除去できる。水を除去後、二つ以上の官能基を持つ溶剤、または/及び高沸点芳香族系化合物を添加し、更にトルエンを適宜添加し減圧濃縮を行うことにより、銀ナノペ−ストが得られる。   Next, the liquid is transferred from the reaction tank to the separatory funnel by tilting or suction. The method of transferring the liquid by inclining is preferably a method of transferring the liquid by suction since the generated urotropin may be mixed. Further, it may be filtered by a filter such as Nutsche. After the transfer, a solution of methyl ethyl ketone / water = 1: 1 is supplied and shaken to move the impurities to the water phase side. If the amount of water is increased, the separation time becomes longer, which may not be preferable. Further, after standing, the aqueous phase is separated and discarded. It is judged whether ammonia and unreacted silver nitrate have been removed by adding a hydrochloric acid aqueous solution to the separated water and confirming the presence or absence of cloudiness. The operation is repeated to completely remove ammonia. After removing ammonia, concentration under reduced pressure is performed. At this time, water can be efficiently removed by using an azeotropic solvent such as toluene or xylene. After removing water, a silver nanopaste is obtained by adding a solvent having two or more functional groups or / and a high-boiling aromatic compound, further adding toluene as appropriate, and concentrating under reduced pressure.

二つ以上の官能基を持つ溶剤としては、例えばジエチレングリコ−ルモノブチルエ−テルアセタ−ト、ジエチレングリコ−ルモノエチルエ−テルアセタ−ト、エチレングリコ−ルモノブチルエ−テルアセタ−ト、エチレングリコ−ルモノエチルエ−テルアセタ−ト等が挙げられ、高沸点芳香族系溶剤には、市販のスワゾ−ル1500、ソルベントナフサ、ブチルベンゼン、シクロヘキシルベンゼン、ペンチルベンゼン、テトラリン、等が挙げられる。   Examples of the solvent having two or more functional groups include diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoethyl ether acetate, and the like. Examples of the high-boiling aromatic solvent include commercially available swazole 1500, solvent naphtha, butylbenzene, cyclohexylbenzene, pentylbenzene, and tetralin.

本発明に使用する水は、蒸留水以外としては超純水によってもかまわない。しかし、製造コストの面で高くるため余り好ましくない。 比抵抗値の測定は、ポリイミドフィルムに2mm幅で長さ8mmのラインを間隔をあけて、5本をスクリ―ン印刷により形成し250℃で2時間乾燥後、各1本づつ断面積と抵抗値を測定し、計算により求めた。
本発明の銀ナノ粒子の平均粒子直径は、透過型電子顕微鏡(日本電子株式会社製JEM-2010)により測定した。
本発明で得られた銀収率は、熱分析計(島津製作所製TGA-51)により測定し、計算により求めた。
The water used in the present invention may be ultrapure water other than distilled water. However, it is not preferable because of high manufacturing cost. The specific resistance value was measured by forming a line of 2 mm wide and 8 mm long on a polyimide film, forming 5 lines by screen printing, drying at 250 ° C. for 2 hours, and then cross-sectional area and resistance one by one. The value was measured and calculated.
The average particle diameter of the silver nanoparticles of the present invention was measured with a transmission electron microscope (JEM-2010 manufactured by JEOL Ltd.).
The silver yield obtained in the present invention was measured by a thermal analyzer (TGA-51, manufactured by Shimadzu Corporation) and calculated.

本発明のテープ引き剥がし試験方法は、銀ナノペ−ストをイミドフィルムにスクリ−ン印刷により印刷し、250℃で乾燥後12mmのセロハンテ−プを貼り付け直角に引き剥がすことにより実施した。   The tape peeling test method of the present invention was carried out by printing silver nano paste on an imide film by screen printing, drying at 250 ° C., pasting 12 mm cellophane tape, and peeling off at right angles.

以下、実施例により説明するが、本発明は下記実施例に限定されない。
硝酸銀水溶液1mol/lの125gを1lの丸底フラスコに投入し、攪拌速度を180rpmとし、フラスコ内を窒素50ml/分で通気しながら液温を28℃とし、29重量%アンモニア水14gを40分で滴下し、銀錯体を生成後、メチルエチルケトンに溶解した高分子分散剤(ソルスパ−ス24000)10重量%溶液を49gと希釈用の該メチルエチルケトン120gを添加した。さらに、10重量%ホルマリン水溶液33.04gを1時間で添加した。10分後、攪拌を停止し上層の溶剤相を吸引により分液ロ−トに移液し、分離後水を廃棄した。さらにメチルエチルケトン40mlと蒸留水40mlを添加し振動等で液を混合する。混合後静置し、水相部を廃棄する。さらに、この操作を繰り返して該排水中のアンモニア及び硝酸銀が消失するまで繰り返した。アンモニアの確認は、0.1N-HCLにて行った。該排水中の白濁が消失したら移液し、トルエンを100mlを添加し共沸脱水濃縮によりメチルエチルケトンと水を除去した。除去後ブチルカルビト−ルアセテ−ト2gとトルエン100mlを添加し、減圧蒸留により銀ナノ粒子を得た。
Hereinafter, although an example explains, the present invention is not limited to the following example.
125 g of silver nitrate aqueous solution 1 mol / l was put into a 1 l round bottom flask, the stirring speed was 180 rpm, the temperature of the liquid was adjusted to 28 ° C. while venting with 50 ml / min of nitrogen, and 14 g of 29 wt% aqueous ammonia was added for 40 minutes. After adding a silver complex to form a silver complex, 49 g of a 10 wt% polymer dispersant (Solsperse 24000) dissolved in methyl ethyl ketone and 120 g of the methyl ethyl ketone for dilution were added. Further, 33.04 g of a 10 wt% formalin aqueous solution was added over 1 hour. After 10 minutes, stirring was stopped and the upper solvent phase was transferred to a separatory funnel by suction. After separation, water was discarded. Further, 40 ml of methyl ethyl ketone and 40 ml of distilled water are added and the liquid is mixed by vibration or the like. Allow to stand after mixing and discard the aqueous phase. Further, this operation was repeated until ammonia and silver nitrate in the waste water disappeared. Ammonia was confirmed with 0.1N-HCL. When the white turbidity in the waste water disappeared, the solution was transferred, 100 ml of toluene was added, and methyl ethyl ketone and water were removed by azeotropic dehydration concentration. After removal, 2 g of butyl carbitol acetate and 100 ml of toluene were added, and silver nanoparticles were obtained by distillation under reduced pressure.

結果を、表−1に纏めた。銀ナノ粒子の収率は、硝酸銀ベースで70重量%であり、該銀ナノ粒子を透過型電子顕微鏡により測定した結果、平均粒子直径1〜15nmの銀粒子であった。又、得られた銀ナノ粒子を含む銀ナノペースト(銀ナノ粒子:60重量%、高分子分散剤:25重量%、溶剤:15重量%)をポリイミドフィルムに印刷し250℃、2時間乾燥後した。比抵抗値は、2.5μΩcmであった。又、テ−プ引き剥がし試験で剥がれない事がわかり回路基板として適用できる。   The results are summarized in Table-1. The yield of silver nanoparticles was 70% by weight based on silver nitrate, and the silver nanoparticles were measured with a transmission electron microscope. As a result, the average particle diameter was 1 to 15 nm. Further, the obtained silver nano paste containing silver nanoparticles (silver nanoparticles: 60% by weight, polymer dispersant: 25% by weight, solvent: 15% by weight) is printed on a polyimide film and dried at 250 ° C. for 2 hours. did. The specific resistance value was 2.5 μΩcm. Further, it can be applied as a circuit board because it is found that the tape is not peeled off by the tape peeling test.

(実施例2)
還元温度が32℃で、10重量%ホルマリン水溶液を50gにし、メチルエチルケトンを130gにし、メチルエチルケトンを除去した後スワゾ−ル1500を3g添加した以外は、実施例1と同様に製造した。
結果は、表−1に示すように銀ナノペーストの収率は、90重量%で銀ナノペ−ストを透過型電子顕微鏡により測定した結果、平均粒子直径1〜20nmの銀粒子であった。又、ポリイミドフィルムに実施例1と同様の組成の銀ナノペーストを印刷し250℃、2時間乾燥後の比抵抗値を測定したところ、2.7μΩcmであった。又、テ−プ引き剥がし試験で剥がれない事がわかり回路基板として適用できる。
(Example 2)
This was prepared in the same manner as in Example 1 except that the reduction temperature was 32 ° C., the 10 wt% formalin aqueous solution was 50 g, methyl ethyl ketone was 130 g, methyl ethyl ketone was removed, and 3 g of swazole 1500 was added.
As a result, as shown in Table 1, the yield of the silver nanopaste was 90% by weight. As a result of measuring the silver nanopaste with a transmission electron microscope, the silver nanopaste was a silver particle having an average particle diameter of 1 to 20 nm. Moreover, when the silver nanopaste of the composition similar to Example 1 was printed on the polyimide film and the specific resistance value after drying at 250 degreeC for 2 hours was measured, it was 2.7 microhm-cm. Further, it can be applied as a circuit board because it is found that the tape is not peeled off by the tape peeling test.

(実施例3)
還元温度が23℃である以外は、実施例1と同様に製造した。
結果は、表-1に示すように粒子径が1〜20nmで、銀収率が44重量%で得られた。
(Example 3)
Manufactured in the same manner as in Example 1 except that the reduction temperature was 23 ° C.
As a result, as shown in Table 1, the particle diameter was 1 to 20 nm, and the silver yield was 44% by weight.

(比較例1)
還元時の溶剤中の高分子分散剤濃度を1.3重量%とし、メチルエチルケトンを145g添加した以外は、実施例1と同様に製造した。
結果は、表-1に示すように平均粒子径が0.1〜3μmであることより回路基板には不適であった。
(Comparative Example 1)
The production was performed in the same manner as in Example 1 except that the concentration of the polymer dispersant in the solvent during the reduction was 1.3% by weight and 145 g of methyl ethyl ketone was added.
The results were unsuitable for circuit boards because the average particle size was 0.1 to 3 μm as shown in Table-1.

(比較例2)
10重量%高分子分散剤を19gとし、メチルエチルケトンを90gとし実施例1と同様に製造した。
結果は、表-1に示すように平均粒子径が0.1〜5μmであり、回路基板には不適であった。 以上、結果を表−1に示す。
(Comparative Example 2)
A 10% by weight polymer dispersant was 19 g, and methyl ethyl ketone was 90 g.
As a result, as shown in Table 1, the average particle size was 0.1 to 5 μm, which was unsuitable for circuit boards. The results are shown in Table 1.

本発明により得られた銀ナノ粒子は、電子回路基板の回路用途に適用できる。   The silver nanoparticles obtained by the present invention can be applied to circuit applications of electronic circuit boards.

Figure 2006328472
Figure 2006328472

Claims (7)

銀ナノ粒子の製造方法であって、硝酸銀水溶液に化学量論量より過剰のアンモニア水を加えて錯体を形成する工程、高分子分散剤及び溶剤を添加する工程、銀イオンをホルマリン水溶液で還元する工程を含み、前記高分子分散剤と前記銀の合計量中に占める銀の含有量が80重量%以下であることを特徴とする平均粒子直径が1〜20nmの銀ナノ粒子の製造方法。 A method for producing silver nanoparticles, comprising adding an aqueous ammonia solution in excess of stoichiometric amount to a silver nitrate aqueous solution to form a complex, adding a polymer dispersant and a solvent, and reducing silver ions with a formalin aqueous solution. A method for producing silver nanoparticles having an average particle diameter of 1 to 20 nm, comprising a step, wherein the content of silver in the total amount of the polymer dispersant and silver is 80% by weight or less. 溶剤がメチルエチルケトンであり、銀イオンの還元後、メチルエチルケトン溶剤を二以上の官能基を有する溶剤又は/および高沸点芳香族系溶剤で置換する工程を含むことを特徴する請求項1に記載の銀ナノ粒子の製造方法。 The method according to claim 1, wherein the solvent is methyl ethyl ketone, and includes a step of replacing the methyl ethyl ketone solvent with a solvent having two or more functional groups and / or a high-boiling aromatic solvent after reduction of silver ions. Particle production method. 前記高分子分散剤が、溶剤相中に2重量%以上含有する状態で還元を開始することを特徴とする請求項1または2に記載の銀ナノ粒子の製造方法。 The method for producing silver nanoparticles according to claim 1 or 2, wherein the polymer dispersant starts the reduction in a state of 2% by weight or more in the solvent phase. 前記溶剤と水の重量比(溶剤/水)が0.90以上の状態で還元を開始することを特徴とする請求項1〜3いずれかに記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the reduction is started when the weight ratio of the solvent and water (solvent / water) is 0.90 or more. 還元温度が、20℃〜40℃であることを特徴とする請求項1〜4いずれかに記載の製造方法。 The production method according to claim 1, wherein the reduction temperature is 20 ° C. to 40 ° C. 請求項1〜5のいずれかに記載の製造方法により製造された平均粒子直径が1〜20nmの銀ナノ粒子。 Silver nanoparticles having an average particle diameter of 1 to 20 nm produced by the production method according to claim 1. 請求項6に記載の銀ナノ粒子により回路が形成された回路基板。 A circuit board on which a circuit is formed by the silver nanoparticles according to claim 6.
JP2005153212A 2005-05-26 2005-05-26 Production method of silver nanoparticle, silver nanoparticle and application thereof Pending JP2006328472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153212A JP2006328472A (en) 2005-05-26 2005-05-26 Production method of silver nanoparticle, silver nanoparticle and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153212A JP2006328472A (en) 2005-05-26 2005-05-26 Production method of silver nanoparticle, silver nanoparticle and application thereof

Publications (1)

Publication Number Publication Date
JP2006328472A true JP2006328472A (en) 2006-12-07

Family

ID=37550470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153212A Pending JP2006328472A (en) 2005-05-26 2005-05-26 Production method of silver nanoparticle, silver nanoparticle and application thereof

Country Status (1)

Country Link
JP (1) JP2006328472A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156720A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing silver nanoparticle
JP2008159535A (en) * 2006-12-26 2008-07-10 Osaka Industrial Promotion Organization SILVER PASTE CONTAINING METAL SILVER OBTAINED FROM beta-KETO CARBOXYLIC ACID SILVER AND ITS PRODUCTION METHOD
JP2012092299A (en) * 2010-09-29 2012-05-17 Toppan Forms Co Ltd Silver ink composition
GB2486190A (en) * 2010-12-06 2012-06-13 P V Nano Cell Ltd Concentrated dispersion of nanometric silver particles
CN103203466A (en) * 2013-03-25 2013-07-17 中国人民解放军济南军区第四0一医院 Method for preparing nano silver different in grain diameter
JP2013241643A (en) * 2012-05-18 2013-12-05 Toyo Seikan Group Holdings Ltd Dispersion liquid containing silver ultrafine particle, and method of manufacturing the same
CN103691966A (en) * 2014-01-06 2014-04-02 中南大学 Method for preparing silver nanoparticles based on poly(2-acrylamino-2-methyl propanesulfonic acid)
KR20150034126A (en) 2012-07-24 2015-04-02 디아이씨 가부시끼가이샤 Metal nanoparticle composite body, metal colloidal solution, and method for producing metal colloidal solution
KR20160070797A (en) 2013-12-05 2016-06-20 디아이씨 가부시끼가이샤 Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing same
CN106513705A (en) * 2016-12-01 2017-03-22 上海银波生物科技有限公司 Method and device for preparing spherical silver powder by fractional step method
KR20170040368A (en) 2013-04-24 2017-04-12 디아이씨 가부시끼가이샤 Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing the same
JP2017128809A (en) * 2017-02-15 2017-07-27 東洋製罐グループホールディングス株式会社 Silver ultrafine particle-containing dispersion liquid and method for producing the same
WO2017195491A1 (en) * 2016-05-10 2017-11-16 バンドー化学株式会社 Electroconductive ink
WO2019131435A1 (en) * 2017-12-26 2019-07-04 コニカミノルタ株式会社 Method for producing silver nanoparticle dispersion liquid, silver nanoparticle dispersion liquid, inkjet ink and image forming method using same
KR20210112830A (en) 2020-03-06 2021-09-15 유한회사 대동 Metal nanoparticle dispersion stabilizer, metal colloidal solution and preparation method thereof
CN113607666A (en) * 2021-07-27 2021-11-05 陕西师范大学 Method for measuring ammonia nitrogen content in water by utilizing silver nanoparticles generated by improved silver mirror reaction
JP2022123237A (en) * 2021-02-12 2022-08-24 グローブライド株式会社 Silver skin film covering base material of fishing member or the like and method of forming the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156720A (en) * 2006-12-25 2008-07-10 Mitsui Mining & Smelting Co Ltd Method for producing silver nanoparticle
JP2008159535A (en) * 2006-12-26 2008-07-10 Osaka Industrial Promotion Organization SILVER PASTE CONTAINING METAL SILVER OBTAINED FROM beta-KETO CARBOXYLIC ACID SILVER AND ITS PRODUCTION METHOD
JP2012092299A (en) * 2010-09-29 2012-05-17 Toppan Forms Co Ltd Silver ink composition
GB2486190A (en) * 2010-12-06 2012-06-13 P V Nano Cell Ltd Concentrated dispersion of nanometric silver particles
US11958116B2 (en) 2010-12-06 2024-04-16 P.V. Nanocell Ltd. Stable dispersions of monocrystalline nanometric silver particles
US9556350B2 (en) 2010-12-06 2017-01-31 P.V. Nanocell Ltd. Stable dispersions of monocrystalline nanometric silver particles
US10984920B2 (en) 2010-12-06 2021-04-20 P.V. Nano Cell Ltd. Stable dispersions of monocrystalline nanometric silver particles
JP2013241643A (en) * 2012-05-18 2013-12-05 Toyo Seikan Group Holdings Ltd Dispersion liquid containing silver ultrafine particle, and method of manufacturing the same
US10000651B2 (en) 2012-07-24 2018-06-19 Dic Corporation Metal nanoparticle composite body, metal colloidal solution, and methods for producing these
KR20150034126A (en) 2012-07-24 2015-04-02 디아이씨 가부시끼가이샤 Metal nanoparticle composite body, metal colloidal solution, and method for producing metal colloidal solution
CN103203466A (en) * 2013-03-25 2013-07-17 中国人民解放军济南军区第四0一医院 Method for preparing nano silver different in grain diameter
KR20170040368A (en) 2013-04-24 2017-04-12 디아이씨 가부시끼가이샤 Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing the same
KR20160070797A (en) 2013-12-05 2016-06-20 디아이씨 가부시끼가이샤 Metal nanoparticle-protecting polymer and metal colloidal solution, and method for producing same
CN103691966A (en) * 2014-01-06 2014-04-02 中南大学 Method for preparing silver nanoparticles based on poly(2-acrylamino-2-methyl propanesulfonic acid)
CN103691966B (en) * 2014-01-06 2015-07-29 中南大学 A kind of method preparing nano silver particles based on poly-(2-acrylamide-2-methylpro panesulfonic acid)
WO2017195491A1 (en) * 2016-05-10 2017-11-16 バンドー化学株式会社 Electroconductive ink
JP6262404B1 (en) * 2016-05-10 2018-01-17 バンドー化学株式会社 Conductive ink
CN106513705A (en) * 2016-12-01 2017-03-22 上海银波生物科技有限公司 Method and device for preparing spherical silver powder by fractional step method
JP2017128809A (en) * 2017-02-15 2017-07-27 東洋製罐グループホールディングス株式会社 Silver ultrafine particle-containing dispersion liquid and method for producing the same
WO2019131435A1 (en) * 2017-12-26 2019-07-04 コニカミノルタ株式会社 Method for producing silver nanoparticle dispersion liquid, silver nanoparticle dispersion liquid, inkjet ink and image forming method using same
JPWO2019131435A1 (en) * 2017-12-26 2020-12-10 コニカミノルタ株式会社 Method for producing silver nanoparticle dispersion, silver nanoparticle dispersion, inkjet ink and image formation method using it
KR20210112830A (en) 2020-03-06 2021-09-15 유한회사 대동 Metal nanoparticle dispersion stabilizer, metal colloidal solution and preparation method thereof
JP2022123237A (en) * 2021-02-12 2022-08-24 グローブライド株式会社 Silver skin film covering base material of fishing member or the like and method of forming the same
JP7453925B2 (en) 2021-02-12 2024-03-21 グローブライド株式会社 Silver coating for coating base materials such as fishing parts and method for forming the same
CN113607666A (en) * 2021-07-27 2021-11-05 陕西师范大学 Method for measuring ammonia nitrogen content in water by utilizing silver nanoparticles generated by improved silver mirror reaction
CN113607666B (en) * 2021-07-27 2024-05-17 陕西师范大学 Method for measuring ammonia nitrogen content in water by utilizing silver nanoparticles generated by improved silver mirror reaction

Similar Documents

Publication Publication Date Title
JP2006328472A (en) Production method of silver nanoparticle, silver nanoparticle and application thereof
KR102158290B1 (en) Binding material, binding body, and binding method
JP5003895B2 (en) Silver fine particles and method for producing the same, and method for producing a conductive film
US8673049B2 (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
JP5556176B2 (en) Particles and inks and films using them
WO2011155615A1 (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP5785023B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
JP5239191B2 (en) Silver fine particles and method for producing the same
JP2010077495A (en) Silver-covered copper fine particle, dispersed liquid thereof and method for producing the same
JP2006225760A (en) Method for producing spheroidal silver powder
JPWO2016204105A1 (en) Composition for producing metal nanoparticles
JP5785024B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
TW201631603A (en) Silver-coated copper powder and method for producing same
US20100178420A1 (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
TWI634165B (en) Method for producing metal nano particle
WO2016015382A1 (en) Conductive ink and preparation method therefor
JP7145869B2 (en) Fine silver particle dispersion
JP6922648B2 (en) Composite copper particles, copper ink, and methods for manufacturing composite copper particles
WO2023002884A1 (en) Composite copper nanoparticles, and method for producing composite copper nanoparticles
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP7354829B2 (en) Bonding paste, bonded body using the same, and method for manufacturing the bonded body
JP7453619B2 (en) Fine particles containing copper and copper oxide and their manufacturing method
JP6100563B2 (en) Method for producing nickel nanoparticles
US11945974B2 (en) Composition for provisional fixation and method for producing bonded structure
KR100429851B1 (en) A conductive ink containing an ultrafine particle metal and method for preparing the same