JP2008156720A - Method for producing silver nanoparticle - Google Patents

Method for producing silver nanoparticle Download PDF

Info

Publication number
JP2008156720A
JP2008156720A JP2006348016A JP2006348016A JP2008156720A JP 2008156720 A JP2008156720 A JP 2008156720A JP 2006348016 A JP2006348016 A JP 2006348016A JP 2006348016 A JP2006348016 A JP 2006348016A JP 2008156720 A JP2008156720 A JP 2008156720A
Authority
JP
Japan
Prior art keywords
silver
silver nanoparticles
slurry
nanoparticles
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348016A
Other languages
Japanese (ja)
Other versions
JP4746534B2 (en
Inventor
Takashi Mukono
隆 向野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006348016A priority Critical patent/JP4746534B2/en
Publication of JP2008156720A publication Critical patent/JP2008156720A/en
Application granted granted Critical
Publication of JP4746534B2 publication Critical patent/JP4746534B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing silver nanoparticles having a uniform particle diameter. <P>SOLUTION: The method for producing the silver nanoparticles includes reducing silver ions with formalin under the presence of ethylenediamine tetraacetate and polyethyleneimine. Furthermore, it is preferable to make polyvinylpyrrolidone coexist in the reaction liquid. It is also preferable to add a hydrophobizing agent to the slurry in which the silver ions have been reduced. It is also preferable to add a solid, a water-soluble salt or an ion of a metal having an ionization tendency larger than that of silver such as copper and nickel to the slurry in which the silver ions have been reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、銀ナノ粒子の製造方法に関する。本発明にしたがい製造される銀ナノ粒子は、例えば導電性インクの原料として特に好適に用いられる。   The present invention relates to a method for producing silver nanoparticles. Silver nanoparticles produced according to the present invention are particularly preferably used as a raw material for conductive ink, for example.

本出願人は先に、硝酸銀溶液にEDTA塩を加え、銀とEDTAの錯体スラリーを調製し、このスラリーにホルマリン等の還元剤を加え緩やかに還元反応を起こさせることで微粒銀粉を得る方法を提案した(特許文献1参照)。この方法により得られる微粒銀粉は低凝集性のものである。   The present applicant firstly added a EDTA salt to a silver nitrate solution, prepared a complex slurry of silver and EDTA, and added a reducing agent such as formalin to this slurry to cause a slow reduction reaction to obtain a fine silver powder. Proposed (see Patent Document 1). The fine silver powder obtained by this method has low agglomeration.

特許文献1に記載の方法とは別に、銀微粒子の製造方法として、高分子化合物、還元剤、及び銀塩を溶解してなる溶液を、25℃以上、60℃以下の温度にて撹拌する方法が提案されている(特許文献2参照)。この製造方法においては、高分子化合物としてポリエチレンイミン等が用いられ、還元剤としてアスコルビン酸、アスコルビン酸アルカリ金属塩、ゲンチシン酸、ハイドロキノン、アミノフェノール類、ジハイドロキシナフタレン、アミドール、メトール、フェニドン、没食子酸、プロトカテク酸、ピロガロール、アミノナフタレンが用いられる。この製造方法で得られる銀粒子は板状のものである。   In addition to the method described in Patent Document 1, as a method for producing silver fine particles, a method in which a solution obtained by dissolving a polymer compound, a reducing agent, and a silver salt is stirred at a temperature of 25 ° C. or higher and 60 ° C. or lower. Has been proposed (see Patent Document 2). In this production method, polyethyleneimine or the like is used as the polymer compound, and ascorbic acid, alkali metal ascorbate, gentisic acid, hydroquinone, aminophenols, dihydroxynaphthalene, amidol, methol, phenidone, gallic acid as the reducing agent. , Protocatechuic acid, pyrogallol, and aminonaphthalene are used. Silver particles obtained by this production method are plate-shaped.

特開2004−100013号公報JP 2004-100013 A 特開2005−105376号公報JP-A-2005-105376

本発明の目的は、前述した従来技術の製造方法で得られる銀微粒子よりも更に性能が向上した銀微粒子を製造し得る方法を提供することにある。   An object of the present invention is to provide a method capable of producing silver fine particles having further improved performance as compared with the silver fine particles obtained by the above-described conventional production method.

本発明は、エチレンジアミン四酢酸塩及びポリエチレンイミンの存在下に、銀イオンをホルマリンで還元することを特徴とする銀ナノ粒子の製造方法を提供するものである。   The present invention provides a method for producing silver nanoparticles, wherein silver ions are reduced with formalin in the presence of ethylenediaminetetraacetate and polyethyleneimine.

本発明によれば、粒径がそろった球状の銀ナノ粒子を容易に製造することができる。   According to the present invention, spherical silver nanoparticles having a uniform particle diameter can be easily produced.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の製造方法では、主に水溶液中の銀塩を還元して銀ナノ粒子を製造する。反応は、エチレンジアミン四酢酸塩(以下、EDTA塩ともいう)及びポリエチレンイミン(以下、PEIともいう)の存在下に行う。   Hereinafter, the present invention will be described based on preferred embodiments thereof. In the production method of the present invention, silver nanoparticles are produced mainly by reducing a silver salt in an aqueous solution. The reaction is carried out in the presence of ethylenediaminetetraacetate (hereinafter also referred to as EDTA salt) and polyethyleneimine (hereinafter also referred to as PEI).

EDTA塩としては水溶性塩を用いることができる。例えばそのナトリウム塩などを用いることができる。ポリエチレンイミンとしては、重量平均分子量が400〜100000、特に1000〜10000のものを用いることが、銀ナノ粒子の粒径を均一化し得ると共に、分散性を良好にし得る点から好ましい。   A water-soluble salt can be used as the EDTA salt. For example, a sodium salt thereof can be used. As the polyethyleneimine, it is preferable to use those having a weight average molecular weight of 400 to 100,000, particularly 1,000 to 10,000, from the viewpoint that the particle diameter of the silver nanoparticles can be made uniform and the dispersibility can be improved.

反応液中における銀イオンの濃度は、0.01〜8重量%、特に0.5〜3重量%であることが、得られる銀ナノ粒子の分散性を良好にすることと、工業的生産性を両立できる点から好ましい。なお反応液は銀塩水溶液が好適で、銀イオン源としては水溶性の銀塩を特に制限なく用いることができる。例えば硝酸銀、酢酸銀、硫酸銀、過塩素酸銀、亜硝酸銀などが挙げられる。特に好ましくは硝酸銀が用いられる。   The concentration of silver ions in the reaction solution is 0.01 to 8% by weight, particularly 0.5 to 3% by weight, to improve the dispersibility of the resulting silver nanoparticles and to improve industrial productivity. It is preferable from the viewpoint that both can be achieved. The reaction solution is preferably an aqueous silver salt solution, and a water-soluble silver salt can be used without particular limitation as the silver ion source. Examples thereof include silver nitrate, silver acetate, silver sulfate, silver perchlorate, and silver nitrite. Particularly preferably, silver nitrate is used.

EDTA塩及びPEIの量は、銀イオンとの使用量の関係で決定される。EDTA塩に関しては、反応液中に含まれる銀イオンに対して100〜500重量%、特に150〜300重量%用いられることが、銀ナノ粒子の粒径を小さくし得ると共に、分散性を良好にし得る点から好ましい。同様の理由により、PEIに関しては、反応液中に含まれる銀イオンに対して10〜200重量%、特に20〜100重量%用いられることが好ましい。   The amount of EDTA salt and PEI is determined in relation to the amount used with silver ions. With respect to the EDTA salt, the use of 100 to 500% by weight, particularly 150 to 300% by weight, based on the silver ions contained in the reaction solution can reduce the particle size of the silver nanoparticles and improve the dispersibility. It is preferable from the point of obtaining. For the same reason, PEI is preferably used in an amount of 10 to 200% by weight, particularly 20 to 100% by weight, based on silver ions contained in the reaction solution.

本製造方法においては、EDTA塩及びPEIの存在下に、銀イオンを還元剤としてのホルマリンで還元する。反応温度は、40〜80℃、特に50〜70℃であることが、還元速度を適度に速くしつつ、粒子の凝集を防止し得る点から好ましい。反応時間は、0.5〜3時間、特に1〜2時間であることが好ましい。   In this production method, silver ions are reduced with formalin as a reducing agent in the presence of EDTA salt and PEI. The reaction temperature is preferably 40 to 80 ° C., particularly 50 to 70 ° C., from the viewpoint that aggregation of particles can be prevented while appropriately increasing the reduction rate. The reaction time is preferably 0.5 to 3 hours, particularly 1 to 2 hours.

還元剤であるホルマリンは水に希釈した状態で反応液に添加される。添加は一括添加でもよく、逐次添加でもよい。ホルマリンの希釈液の濃度は、1〜37重量%、特に30〜37重量%であることが、銀ナノ粒子を工業的に効率よく生産し得る点から好ましい。ホルマリンの添加量は、銀イオンの量との関係で決定される。詳細には、反応液中に含まれる銀イオンに対して、ホルマリンを40〜100重量%、特に50〜60重量%添加することが好ましい。   Formalin as a reducing agent is added to the reaction solution in a state diluted with water. The addition may be batch addition or sequential addition. The concentration of the diluted formalin solution is preferably 1 to 37% by weight, more preferably 30 to 37% by weight, from the viewpoint of efficiently producing silver nanoparticles industrially. The amount of formalin added is determined in relation to the amount of silver ions. In detail, it is preferable to add 40-100 weight%, especially 50-60 weight% of formalin with respect to the silver ion contained in a reaction liquid.

ホルマリンの添加によって銀イオンの還元が生じる。この場合、反応液中において、銀イオンはEDTA塩と錯体を形成しているので、銀イオンの還元によって生成する銀ナノ粒子は球状のものとなる。また、ホルマリンは比較的還元性の低い還元剤なので、銀イオンの還元が急速には進行しないので、微粒の銀粒子が生成する。更に、反応系にPEIが共存していることによって、銀イオンは粒径のそろった銀ナノ粒子に還元される。   Addition of formalin causes reduction of silver ions. In this case, since silver ions form a complex with the EDTA salt in the reaction solution, the silver nanoparticles generated by the reduction of silver ions are spherical. Further, since formalin is a reducing agent having a relatively low reducing property, the reduction of silver ions does not proceed rapidly, so that fine silver particles are generated. Furthermore, the presence of PEI in the reaction system reduces silver ions to silver nanoparticles having a uniform particle size.

粒径が一層そろった銀ナノ粒子を首尾良く生成させる観点から、反応液中には、上述したPEIに加えてポリビニルピロリドンも存在させ、PEI及びポリビニルピロリドンの共存下に銀イオンを還元することが好ましい。ポリビニルピロリドンの添加量は、銀イオンの量との関係で決定される。詳細には、反応液中に含まれる銀イオンに対して、ポリビニルピロリドンを10〜100重量%、特に30〜70重量%添加することが好ましい。   From the viewpoint of successfully producing silver nanoparticles having a more uniform particle size, polyvinyl pyrrolidone may also be present in the reaction solution in addition to the PEI described above, and silver ions can be reduced in the presence of PEI and polyvinyl pyrrolidone. preferable. The amount of polyvinyl pyrrolidone added is determined in relation to the amount of silver ions. Specifically, it is preferable to add 10 to 100% by weight, particularly 30 to 70% by weight of polyvinylpyrrolidone with respect to silver ions contained in the reaction solution.

ポリビニルピロリドンとしては、重量平均分子量が10000〜500000、特に30000〜100000のものを用いることが、反応液の粘度上昇に起因する銀ナノ粒子の沈降性の悪化を防ぎ、良好な分散性を維持し得る点から好ましい。   Polyvinylpyrrolidone having a weight average molecular weight of 10,000 to 500,000, particularly 30,000 to 100,000, prevents deterioration of the settling property of silver nanoparticles due to an increase in viscosity of the reaction solution, and maintains good dispersibility. It is preferable from the point of obtaining.

上述の操作によって銀イオンが還元されて銀ナノ粒子が生成したスラリーを、静置又は遠心分離して銀ナノ粒子を沈降させる。この場合、沈降を促進させる観点から、生成した銀ナノ粒子を疎水化処理に付することが好ましい。銀ナノ粒子はその微粒のゆえに、通常の状態では沈降に長時間を要する。これに対して銀ナノ粒子を疎水化処理することで、沈降時間の短縮化が図られる。   The slurry in which silver ions are generated by the reduction of silver ions by the above operation is allowed to stand or be centrifuged to precipitate the silver nanoparticles. In this case, it is preferable to subject the produced silver nanoparticles to a hydrophobization treatment from the viewpoint of promoting sedimentation. Since silver nanoparticles are fine, they usually take a long time to settle. On the other hand, the settling time can be shortened by hydrophobizing the silver nanoparticles.

銀ナノ粒子の疎水化処理には、スラリー中に疎水化剤を添加すればよい。疎水化剤としては、銀ナノ粒子の表面と親和性が良好であり且つ疎水基を有する化合物が用いられる。そのような化合物としては、例えばオレイルアミン、トリオクチルアミン、オクチルアミン等の炭化水素基を有するアミン、オレイン酸、ステアリン酸、デカン酸等の脂肪酸などが挙げられる。これらの疎水化剤のうち、オレイルアミンを用いることが、銀ナノ粒子の分散性を維持したまま、これを凝集沈殿させ得る点から好ましい。   In order to hydrophobize the silver nanoparticles, a hydrophobizing agent may be added to the slurry. As the hydrophobizing agent, a compound having a good affinity with the surface of the silver nanoparticles and having a hydrophobic group is used. Examples of such compounds include amines having a hydrocarbon group such as oleylamine, trioctylamine and octylamine, and fatty acids such as oleic acid, stearic acid and decanoic acid. Among these hydrophobizing agents, it is preferable to use oleylamine because it can be coagulated and precipitated while maintaining the dispersibility of the silver nanoparticles.

疎水化剤によって銀ナノ粒子を疎水化するときには、疎水化剤の相溶化剤をスラリー中に共存させることが好ましい。相溶化剤の作用によって、疎水化剤が銀ナノ粒子の表面に結合しやすくなり、疎水化を一層首尾良く行い得るからである。相溶化剤としては、エタノール等の低級アルコール(炭素数1〜4)、アセトン等のケトン類、酢酸エチル等のエステル類などが挙げられる。相溶化剤の添加量は、疎水化剤に対して100〜10000重量%、特に500〜2000重量%であることが好ましい。   When the silver nanoparticles are hydrophobized with a hydrophobizing agent, it is preferable that a compatibilizer for the hydrophobizing agent coexists in the slurry. This is because the action of the compatibilizing agent makes it easier for the hydrophobizing agent to bind to the surface of the silver nanoparticles, and the hydrophobization can be performed more successfully. Examples of the compatibilizer include lower alcohols (1 to 4 carbon atoms) such as ethanol, ketones such as acetone, esters such as ethyl acetate, and the like. The addition amount of the compatibilizer is preferably 100 to 10,000% by weight, particularly 500 to 2000% by weight, based on the hydrophobizing agent.

疎水化剤によって疎水化されて沈降した銀ナノ粒子は、例えばデカンテーションによってその上澄み液が廃棄される。その後、必要に応じて溶媒置換や濃縮を行う。更に銀ナノ粒子に所定の成分を配合することで、例えば導電性インクや導電性ペーストが得られる。   The silver nanoparticles that have been hydrophobized by the hydrophobizing agent and precipitated are discarded, for example, by decantation. Then, solvent substitution and concentration are performed as necessary. Furthermore, for example, a conductive ink or a conductive paste can be obtained by blending predetermined components into the silver nanoparticles.

銀イオンが還元されて銀ナノ粒子が生成したスラリーに、銀よりもイオン化傾向の大きな他の金属を、固体の形態、水溶性塩の形態又はイオンの形態で添加することもできる。この操作によってスラリー(水性スラリー)中における銀ナノ粒子の分散性を良好にすることができる。この理由は次のとおりである。水性スラリー中に存在する銀ナノ粒子は、その一部が銀イオンとして水中に溶解し、溶解した銀イオンが再び析出する。この再析出によって銀ナノ粒子の凝集が起こり、スラリーの保存中における銀ナノ粒子の分散性が低下する傾向にある。これに対して、銀ナノ粒子の水性スラリー中に、銀よりもイオン化傾向の大きな他の金属を、固体の形態、水溶性塩の形態又はイオンの形態で添加することで、スラリー中に該他の金属の固体及び/又はイオンが共存することになり、それによって銀ナノ粒子の溶解が抑制され、ひいては銀イオンの再析出が抑制される。その結果、スラリーの保存中における銀ナノ粒子の分散性を高めることが可能になる。前記の他の金属は、固体の形態、水溶性塩の形態又はイオンの形態の少なくとも一種の形態で、スラリー中に添加することができる。これらの形態の少なくとも二種の組み合わせを用いてもよい。   Other metals having a higher ionization tendency than silver may be added to the slurry in which silver ions are generated by reducing silver ions in the form of a solid, a water-soluble salt, or an ion. By this operation, the dispersibility of the silver nanoparticles in the slurry (aqueous slurry) can be improved. The reason for this is as follows. A part of the silver nanoparticles present in the aqueous slurry is dissolved in water as silver ions, and the dissolved silver ions are precipitated again. This reprecipitation causes aggregation of silver nanoparticles, and the dispersibility of the silver nanoparticles during storage of the slurry tends to decrease. On the other hand, by adding another metal having a higher ionization tendency than silver in an aqueous slurry of silver nanoparticles in the form of a solid, a water-soluble salt, or an ion, the other metal is added to the slurry. The metal solids and / or ions coexist, whereby the dissolution of the silver nanoparticles is suppressed, and thus the reprecipitation of the silver ions is suppressed. As a result, it is possible to improve the dispersibility of the silver nanoparticles during storage of the slurry. The other metal may be added to the slurry in at least one of a solid form, a water-soluble salt form or an ionic form. A combination of at least two of these forms may be used.

銀よりもイオン化傾向の大きな他の金属としては、例えばニッケル、銅、鉄、スズ、亜鉛などが挙げられる。これらのうちニッケルや銅を用いることが特に好ましい。銀よりもイオン化傾向の大きな他の金属を、固体の形態でスラリー中に配合する場合には、バルク状の形態や、粒子の形態で配合することができる。粒子の形態でスラリー中に配合する場合には、該粒子はナノ粒子でもよく、或いはナノ粒子よりも粒径の大きなものであってもよい。該粒子の粒径は例えば1〜1000μm程度とすることができる。銀ナノ粒子との分離のしやすさを考慮すると、粒子の形態で用いるよりも、水溶性塩の形態及び/又はイオンの形態で用いることが好ましい。   Examples of other metals having a greater ionization tendency than silver include nickel, copper, iron, tin, and zinc. Of these, nickel and copper are particularly preferred. When other metals having a higher ionization tendency than silver are blended in the slurry in a solid form, they can be blended in a bulk form or a particle form. When blended in the slurry in the form of particles, the particles may be nanoparticles or may have a larger particle size than the nanoparticles. The particle size of the particles can be, for example, about 1 to 1000 μm. Considering the ease of separation from silver nanoparticles, it is preferable to use in the form of a water-soluble salt and / or ions rather than in the form of particles.

銀よりもイオン化傾向の大きな他の金属の配合量は、それが固体の形態であるか、水溶性塩の形態であるか、イオンの形態であるかを問わず、銀1当量に対して0.01〜10当量、特に0.5〜2当量であることが、スラリー中での銀の溶解を効果的に防止する観点から好ましい。前記の他の金属として銅を用いる場合には、銀1当量に対して銅1当量とは、銀1モルに対して銅を0.5モル用いることをいう。   The compounding amount of other metals having a higher ionization tendency than silver is 0 with respect to 1 equivalent of silver regardless of whether it is in the form of a solid, a water-soluble salt, or an ion. 0.01 to 10 equivalents, particularly 0.5 to 2 equivalents are preferable from the viewpoint of effectively preventing dissolution of silver in the slurry. When copper is used as the other metal, 1 equivalent of copper per 1 equivalent of silver means that 0.5 mole of copper is used per 1 mole of silver.

銀よりもイオン化傾向の大きな他の金属を銀ナノ粒子と分離するためには、例えば該金属を水溶性塩の形態及び/又はイオンの形態で用いる場合には、他の金属のイオンの濃度が所定の値以下となるまで、純水を用いてデカンテーションを繰り返せばよい。該金属を固体の形態で用いる場合には、製造する銀ナノ粒子の100倍以上の粒径を有する大きな粒子又はインゴットを用い、フィルトレーション等によって分離除去すればよい。   In order to separate other metal having a higher ionization tendency than silver from silver nanoparticles, for example, when the metal is used in the form of a water-soluble salt and / or ion, the concentration of ions of the other metal is What is necessary is just to repeat a decantation using a pure water until it becomes below a predetermined value. When the metal is used in the form of a solid, it may be separated and removed by filtration or the like using large particles or ingots having a particle size 100 times or more that of the silver nanoparticles to be produced.

本発明においては、銀イオンが還元されて銀ナノ粒子が生成したスラリー中の銀ナノ粒子に対して、先に述べた疎水化処理を施し、その後に該スラリーに、銀よりもイオン化傾向の大きな他の金属を、固体の形態、水溶性塩の形態又はイオンの形態で添加することができる。或いは、銀イオンが還元されて銀ナノ粒子が生成したスラリーに、銀よりもイオン化傾向の大きな金属を、固体の形態、水溶性塩の形態又はイオンの形態で添加し、その後に、銀ナノ粒子に対して疎水化処理を施してもよい。   In the present invention, the silver nanoparticles in the slurry in which the silver ions are reduced to form silver nanoparticles are subjected to the hydrophobic treatment described above, and then the slurry has a higher ionization tendency than silver. Other metals can be added in solid form, water-soluble salt form or ionic form. Alternatively, a metal having a higher ionization tendency than silver is added in a solid form, a water-soluble salt form or an ionic form to a slurry in which silver ions are generated by reducing silver ions, and then silver nanoparticles are added. Hydrophobization treatment may be performed on the.

このようにして得られた銀ナノ粒子は、その一次粒子の平均粒径が好ましくは5〜100nm、更に好ましくは10〜50nmという微粒のものになる。一次粒子の平均粒径は、透過型電子顕微鏡(TEM)によって撮影された粒子の写真を用い、個々の粒子のうち最も長い部分の長さを測定し、その平均値を算出することで求められる。   The silver nanoparticles thus obtained have fine particles with an average primary particle diameter of preferably 5 to 100 nm, more preferably 10 to 50 nm. The average particle size of the primary particles can be obtained by measuring the length of the longest part of each particle using a photograph of the particles taken with a transmission electron microscope (TEM) and calculating the average value. .

以上の操作によって得られた銀ナノ粒子は、例えば導電性インクや導電性ペーストの原料として好適に用いられる。かかるインクやペーストを用いてプラズマディスプレイパネルやチップ部品、ガラスセラミックパッケージ、セラミックフィルタ等の電子機器の配線回路や電極等を形成することができる。微細な回路や電極を形成するためには、銀粒子が微粒であることや凝集性が低いことが要求されるところ、本発明にしたがい製造された銀ナノ粒子は上述のとおり粒径のそろった微粒のものであり、また凝集性が低いので、前記の要求にまさに合致したものとなる。   The silver nanoparticles obtained by the above operation are suitably used as a raw material for conductive ink or conductive paste, for example. Wiring circuits and electrodes of electronic devices such as plasma display panels, chip parts, glass ceramic packages, and ceramic filters can be formed using such inks and pastes. In order to form fine circuits and electrodes, it is required that the silver particles are fine or have low agglomeration properties. The silver nanoparticles produced according to the present invention have the same particle size as described above. Since it is fine and has low cohesiveness, it exactly meets the above requirements.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
1リットルのビーカー中に、硝酸銀10.0g、EDTA4Na塩15.0g、重量平均分子量1800のPEI3.0g及び純水300mlを投入し十分に撹拌した。液温を50℃に保った状態下に、37重量%のホルマリン水溶液100.0gを一括投入し銀イオンの還元反応を行った。反応は、液温を50℃に保ち1.5時間行った。このようにして、銀ナノ粒子のスラリーを得た。TEMによる銀ナノ粒子の一次粒子の平均粒径は28nmであった。
[Example 1]
In a 1 liter beaker, 10.0 g of silver nitrate, 15.0 g of EDTA4Na salt, 3.0 g of PEI having a weight average molecular weight of 1800 and 300 ml of pure water were added and sufficiently stirred. While maintaining the liquid temperature at 50 ° C., 100.0 g of a 37 wt% formalin aqueous solution was added all at once to carry out a silver ion reduction reaction. The reaction was carried out for 1.5 hours while maintaining the liquid temperature at 50 ° C. In this way, a slurry of silver nanoparticles was obtained. The average particle diameter of primary particles of silver nanoparticles by TEM was 28 nm.

銀ナノ粒子のスラリーに、硝酸銅三水和物(Cu(NO32・3H2O)10.9gを純水100mlに溶解した水溶液を添加して1分間撹拌した。スラリーの温度は50℃に維持した。なお、銅は銀よりもイオン化傾向の大きな金属である。 An aqueous solution in which 10.9 g of copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) was dissolved in 100 ml of pure water was added to the silver nanoparticle slurry and stirred for 1 minute. The temperature of the slurry was maintained at 50 ° C. Copper is a metal that has a higher ionization tendency than silver.

次いで、エタノール100mlにオレイルアミン0.3gを溶解させた溶液をスラリーに添加して30分間撹拌を行い、銀ナノ粒子の疎水化処理を行った。スラリーの温度は50℃に維持した。   Next, a solution in which 0.3 g of oleylamine was dissolved in 100 ml of ethanol was added to the slurry and stirred for 30 minutes to hydrophobize the silver nanoparticles. The temperature of the slurry was maintained at 50 ° C.

最後に、純水でスラリーのデカンテーションを繰り返し行い、スラリー中の銅イオンを除去した。このようにして得られた銀ナノ粒子のTEM像を図1に示す。図1に示す結果から明らかなように、銀ナノ粒子の粒径は非常に均一であることが判る。また銀ナノ粒子に凝集がほとんど観察されないことも判る。TEM観察とは別に、銀ナノ粒子についてレーザー回折散乱式粒度分布測定を行ったところ、D10=0.192μm、D50=0.256μm、D90=0.357μmとなり、粒度分布がシャープであることが判った。この結果から、TEM観察の結果が裏付けられた。粒度分布の測定に際しては、前分散として濃度1重量%のヘキサメタリン酸ナトリウム水溶液中で5分間超音波分散を行った。 Finally, the decantation of the slurry was repeated with pure water to remove copper ions in the slurry. A TEM image of the silver nanoparticles thus obtained is shown in FIG. As is clear from the results shown in FIG. 1, it can be seen that the silver nanoparticles have a very uniform particle size. It can also be seen that almost no aggregation is observed in the silver nanoparticles. Apart from the TEM observation, was subjected to laser diffraction scattering particle size distribution measurement for silver nanoparticles, D 10 = 0.192μm, D 50 = 0.256μm, D 90 = 0.357μm , and the particle size distribution is sharp I found out. From this result, the result of TEM observation was supported. When measuring the particle size distribution, ultrasonic dispersion was performed for 5 minutes in an aqueous sodium hexametaphosphate solution having a concentration of 1% by weight as pre-dispersion.

〔実施例2〕
実施例1において、硝酸銅の添加及び疎水化処理を行わなかった以外は実施例1と同様にして銀ナノ粒子を得た。TEMによる銀ナノ粒子の一次粒子の平均粒径は36nmであった。得られた銀ナノ粒子のTEM像を図2に示す。TEM観察とは別に、銀ナノ粒子について実施例1と同様にレーザー回折散乱式粒度分布測定を行ったところ、D10=1.284μm、D50=5.597μm、D90=13.68μmとなった。
[Example 2]
In Example 1, silver nanoparticles were obtained in the same manner as in Example 1 except that copper nitrate was not added and the hydrophobic treatment was not performed. The average particle diameter of primary particles of the silver nanoparticles by TEM was 36 nm. A TEM image of the obtained silver nanoparticles is shown in FIG. Apart from the TEM observation, the laser diffraction scattering type particle size distribution measurement was performed on the silver nanoparticles in the same manner as in Example 1. As a result, D 10 = 1.284 μm, D 50 = 5.597 μm, and D 90 = 13.68 μm. It was.

〔実施例3〕
実施例1における疎水化処理において、更にポリビニルピロリドン(重量平均分子量35000)を3.0g添加する以外は実施例1と同様にして銀ナノ粒子を得た。TEMによる銀ナノ粒子の一次粒子の平均粒径は25nmであった。また、銀ナノ粒子について実施例1と同様にレーザー回折散乱式粒度分布測定を行ったところ、D10=0.178μm、D50=0.230μm、D90=0.297μmとなった。
Example 3
In the hydrophobization treatment in Example 1, silver nanoparticles were obtained in the same manner as in Example 1 except that 3.0 g of polyvinyl pyrrolidone (weight average molecular weight 35000) was further added. The average particle diameter of primary particles of silver nanoparticles by TEM was 25 nm. When it was laser diffraction scattering particle size distribution measurement in the same manner as in Example 1 Silver nanoparticles became D 10 = 0.178μm, D 50 = 0.230μm, and D 90 = 0.297μm.

〔比較例1〕
特開2005−105376号公報(上述の特許文献2)の実施例1に準拠し、以下の手順で銀粒子を調製した。水100重量部に、重量平均分子量1800のPEIを0.3重量部溶解させ、得られた水溶液に硝酸銀を0.024重量部添加して溶解させた。液温を60℃に保持し、還元剤としてアルコルビン酸を0.03重量部添加し、2時間撹拌させながら反応を完遂させた。TEMによる銀粒子の一次粒子の平均粒径は120nmであった。粒子の形状は不定形状であった。また、銀粒子について実施例1と同様にレーザー回折散乱式粒度分布測定を行ったところ、D10=0.358μm、D50=0.711μm、D90=1.306μmとなった。
[Comparative Example 1]
Based on Example 1 of Unexamined-Japanese-Patent No. 2005-105376 (above-mentioned patent document 2), the silver particle was prepared in the following procedures. In 100 parts by weight of water, 0.3 part by weight of PEI having a weight average molecular weight of 1800 was dissolved, and 0.024 part by weight of silver nitrate was added and dissolved in the obtained aqueous solution. The liquid temperature was kept at 60 ° C., 0.03 part by weight of ascorbic acid was added as a reducing agent, and the reaction was completed while stirring for 2 hours. The average particle diameter of primary particles of silver particles by TEM was 120 nm. The shape of the particles was indefinite. Moreover, when laser diffraction scattering type particle size distribution measurement was performed on silver particles in the same manner as in Example 1, D 10 = 0.358 μm, D 50 = 0.711 μm, and D 90 = 1.306 μm.

実施例1で得られた銀ナノ粒子のTEM像である。2 is a TEM image of silver nanoparticles obtained in Example 1. FIG. 実施例2で得られた銀ナノ粒子のTEM像である。3 is a TEM image of silver nanoparticles obtained in Example 2. FIG.

Claims (3)

エチレンジアミン四酢酸塩及びポリエチレンイミンの存在下に、銀イオンをホルマリンで還元することを特徴とする銀ナノ粒子の製造方法。   A method for producing silver nanoparticles, wherein silver ions are reduced with formalin in the presence of ethylenediaminetetraacetate and polyethyleneimine. 更にポリビニルピロリドンの存在下に銀イオンを還元する請求項1記載の製造方法。   The method according to claim 1, further comprising reducing silver ions in the presence of polyvinylpyrrolidone. 銀イオンの還元後に、疎水化剤を添加する請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein a hydrophobizing agent is added after the reduction of silver ions.
JP2006348016A 2006-12-25 2006-12-25 Method for producing silver nanoparticles Expired - Fee Related JP4746534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348016A JP4746534B2 (en) 2006-12-25 2006-12-25 Method for producing silver nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348016A JP4746534B2 (en) 2006-12-25 2006-12-25 Method for producing silver nanoparticles

Publications (2)

Publication Number Publication Date
JP2008156720A true JP2008156720A (en) 2008-07-10
JP4746534B2 JP4746534B2 (en) 2011-08-10

Family

ID=39657957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348016A Expired - Fee Related JP4746534B2 (en) 2006-12-25 2006-12-25 Method for producing silver nanoparticles

Country Status (1)

Country Link
JP (1) JP4746534B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
CN101781759A (en) * 2010-03-02 2010-07-21 山东大学 Method for covering silver nano-film on copper material
CN101887767A (en) * 2010-06-11 2010-11-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
US9034214B2 (en) 2008-12-26 2015-05-19 Dowa Electronics Materials Co., Ltd. Fine silver particle powder, method for manufacturing the same, silver paste using the powder, and method of use of the paste
JP2016186130A (en) * 2011-03-28 2016-10-27 Dowaエレクトロニクス株式会社 Manufacturing method of silver powder
CN116077527A (en) * 2023-04-11 2023-05-09 山东大学 Needle-like copper-gallic acid nano enzyme and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302893A (en) * 1998-04-22 1999-11-02 Okuno Chem Ind Co Ltd Non-cyanide silver electroplating liquid
JP2004043892A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Fine particle of noble metal and manufacturing method therefor
JP2005089784A (en) * 2003-09-12 2005-04-07 Sumitomo Electric Ind Ltd Method for manufacturing metallic powder
JP2005105376A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Silver fine particle and its production method
JP2006037145A (en) * 2004-07-23 2006-02-09 Toda Kogyo Corp Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
JP2006328472A (en) * 2005-05-26 2006-12-07 Mitsui Chemicals Inc Production method of silver nanoparticle, silver nanoparticle and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302893A (en) * 1998-04-22 1999-11-02 Okuno Chem Ind Co Ltd Non-cyanide silver electroplating liquid
JP2004043892A (en) * 2002-07-11 2004-02-12 Sumitomo Electric Ind Ltd Fine particle of noble metal and manufacturing method therefor
JP2005089784A (en) * 2003-09-12 2005-04-07 Sumitomo Electric Ind Ltd Method for manufacturing metallic powder
JP2005105376A (en) * 2003-09-30 2005-04-21 Sumitomo Osaka Cement Co Ltd Silver fine particle and its production method
JP2006037145A (en) * 2004-07-23 2006-02-09 Toda Kogyo Corp Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
JP2006328472A (en) * 2005-05-26 2006-12-07 Mitsui Chemicals Inc Production method of silver nanoparticle, silver nanoparticle and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
US9034214B2 (en) 2008-12-26 2015-05-19 Dowa Electronics Materials Co., Ltd. Fine silver particle powder, method for manufacturing the same, silver paste using the powder, and method of use of the paste
US9721694B2 (en) 2008-12-26 2017-08-01 Dowa Electronics Materials Co., Ltd. Fine silver particle powder, method for manufacturing the same, silver paste using the powder and method of use of the paste
CN101781759A (en) * 2010-03-02 2010-07-21 山东大学 Method for covering silver nano-film on copper material
CN101887767A (en) * 2010-06-11 2010-11-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
CN101887767B (en) * 2010-06-11 2011-08-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
JP2016186130A (en) * 2011-03-28 2016-10-27 Dowaエレクトロニクス株式会社 Manufacturing method of silver powder
CN116077527A (en) * 2023-04-11 2023-05-09 山东大学 Needle-like copper-gallic acid nano enzyme and preparation method and application thereof
CN116077527B (en) * 2023-04-11 2023-10-03 山东大学 Needle-like copper-gallic acid nano enzyme and preparation method and application thereof

Also Published As

Publication number Publication date
JP4746534B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4746534B2 (en) Method for producing silver nanoparticles
JP6274444B2 (en) Method for producing copper powder
TWI273936B (en) Slurry of ultrafine copper powder and method for producing the slurry
JP5820556B2 (en) Method for producing copper nanowires
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP3984534B2 (en) Copper powder for conductive paste and method for producing the same
JP6225783B2 (en) Copper fine particles, conductive paste composition, and production method thereof
WO2009087919A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
KR20150092193A (en) Silver powder
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP2008050650A (en) Method for producing copper powder
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP4433743B2 (en) Method for producing copper fine particles
JP2008223101A (en) Method for producing metal grain
TW201704154A (en) Tin(II) oxide powder and method for manufacturing tin(II) oxide powder
JP2008050661A (en) Method for producing copper powder
JP7164391B2 (en) Method for producing copper nanowires
JP2020029611A (en) Production method of copper nanoparticle
JP2006307330A (en) Silver particulate having high dispersibility, method for producing the same, and its use
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP5985216B2 (en) Silver powder
JP7136117B2 (en) Method for producing copper nanoparticles
JP2010275578A (en) Silver powder and production method therefor
JP2009052146A (en) Copper powder and its manufacturing method
JP2016020532A (en) Silver nanoparticle colloid, silver nanoparticle, manufacturing method of silver nanoparticle colloid and manufacturing method of silver nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees