JP2006225760A - Method for producing spheroidal silver powder - Google Patents

Method for producing spheroidal silver powder Download PDF

Info

Publication number
JP2006225760A
JP2006225760A JP2006003402A JP2006003402A JP2006225760A JP 2006225760 A JP2006225760 A JP 2006225760A JP 2006003402 A JP2006003402 A JP 2006003402A JP 2006003402 A JP2006003402 A JP 2006003402A JP 2006225760 A JP2006225760 A JP 2006225760A
Authority
JP
Japan
Prior art keywords
silver powder
silver
solution
powder
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006003402A
Other languages
Japanese (ja)
Other versions
JP4301247B2 (en
Inventor
Nobutsugu Kawasaki
修嗣 川崎
Tomoko Uchida
友子 内田
Hitomi Shiraishi
瞳 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2006003402A priority Critical patent/JP4301247B2/en
Publication of JP2006225760A publication Critical patent/JP2006225760A/en
Application granted granted Critical
Publication of JP4301247B2 publication Critical patent/JP4301247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing spheroidal silver powder having fine and even shape and size. <P>SOLUTION: The method is characterized in that a silver compound solution and a reducing agent solution are reacted in the presence of at least one among the group composed of aliphatic unsaturated dicarboxylic acid and its anhydride and its salt, and a water soluble polymer compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、球状銀粉末の製造方法に関し、特にエレクトロニクス用の導体ペースト、導電性塗料及び導電性接着剤等の導電性フィラーとして有用な高分散性の球状銀粉末の製造方法に関する。   The present invention relates to a method for producing spherical silver powder, and more particularly to a method for producing highly dispersible spherical silver powder useful as a conductive filler for electronic conductor paste, conductive paint, conductive adhesive and the like.

銀粉末は導電性が高く優れた特性を有するため、エレクトロニクス分野において、導体回路、電子部品の電極を形成するための厚膜導体ペースト、導電性塗料、導電性インク又は導電性接着剤等(以下、総称して「導体ペースト」と言う。)の導電性フィラーとして広く用いられている。このような用途においては、主として球状銀粉末、多角形状銀粉末、粒状銀粉末、樹枝状銀粉末又はフレーク状の銀粉末が用途や目的に応じて使用される。   Silver powder is highly conductive and has excellent characteristics, so in the electronics field, thick film conductor paste, conductive paint, conductive ink or conductive adhesive for forming conductive circuits, electrodes of electronic components, etc. , Generically referred to as “conductor paste”). In such applications, mainly spherical silver powder, polygonal silver powder, granular silver powder, dendritic silver powder or flaky silver powder is used depending on the application and purpose.

近年、電子部品の小型化、高性能化に伴い、高精細な導体パターンや非常に薄く緻密な電極層を高い精度で形成することのできる導体ペーストが要望されている。このため、微細で大きさや形状が揃っており、かつ凝集が少なくペースト中での分散性が優れた球状の銀粉末が求められている。例えばPDP(Plasma Display Panel)等の表示装置の電極をフォトリソグラフィ法で精細に形成するのに使用される感光性銀ペーストの場合、ペースト塗布層への光透過性を改善し光硬化性、パターン解像性を向上させるためには、表面ができるだけ平滑で真球状に近い粒子からなり、かつ平均粒径が0.5〜3μm程度の銀粉末が要求される。   In recent years, with the miniaturization and high performance of electronic components, there is a demand for a conductive paste capable of forming a high-definition conductor pattern and a very thin and dense electrode layer with high accuracy. For this reason, there is a need for a spherical silver powder that is fine, has a uniform size and shape, has little agglomeration, and has excellent dispersibility in the paste. For example, in the case of a photosensitive silver paste used to finely form electrodes of a display device such as a plasma display panel (PDP) by photolithography, the light transmittance to the paste coating layer is improved and the photocuring property and pattern are improved. In order to improve the resolution, a silver powder having a surface as smooth and nearly spherical as possible and having an average particle diameter of about 0.5 to 3 μm is required.

しかしながら、従来化学還元法で製造された銀粉末は、多くの場合凝集性が強く、ペースト中に均一に分散させるのが困難であった。そのため、ペースト中に粗大な凝集粒子や異常に大きな一次粒子が存在している場合、微細な配線あるいは非常に薄い電極層を高い精度で印刷することは困難である。   However, silver powders produced by conventional chemical reduction methods are often highly cohesive and difficult to disperse uniformly in the paste. Therefore, when coarse aggregated particles or abnormally large primary particles are present in the paste, it is difficult to print a fine wiring or a very thin electrode layer with high accuracy.

また、例えば銀粉末を低温焼成ガラスセラミック基板等の多層セラミック基板の導体回路形成用、特にビアフィル用の導体ペーストに用いる場合、セラミック基板と同時焼成されるため、焼成収縮率がセラミック基板に比べて大きいと導体剥れやクラックを生ずる。焼成による収縮を抑制するためには、粉末の充填性が良く、粒子間の空隙が小さくなること、また表面積が小さいこと、分散性が良好であることが望ましい。このため、平均粒径が2〜5μm程度で、また表面が平滑で真球状に近く、かつ充填密度の高い高分散性の銀粉末が要求される。   In addition, for example, when silver powder is used for forming a conductor circuit of a multilayer ceramic substrate such as a low-temperature fired glass ceramic substrate, particularly a conductor paste for via fill, since it is fired simultaneously with the ceramic substrate, the firing shrinkage rate is higher than that of the ceramic substrate. If it is large, conductor peeling or cracking will occur. In order to suppress shrinkage due to firing, it is desirable that the powder filling property is good, the gap between particles is small, the surface area is small, and the dispersibility is good. For this reason, a highly dispersible silver powder having an average particle diameter of about 2 to 5 μm, a smooth surface, almost spherical, and a high packing density is required.

そこで、例えば特許文献1には、銀アンミン錯体水溶液とヒドロキノン及び亜硫酸のアルカリ金属塩を含有する還元剤水溶液とを混合することにより、微細で分散性が高い球状銀粉を製造すること、また、この銀粉末を用いて微細な配線あるいは非常に薄い電極層を高い精度で形成することのできる導体ペーストを得ることができる銀粉末の製造方法が開示されている。   Therefore, for example, Patent Document 1 discloses that a silver silver ammine complex aqueous solution and a reducing agent aqueous solution containing an alkali metal salt of hydroquinone and sulfurous acid are mixed to produce a fine and highly dispersible spherical silver powder. A method for producing silver powder is disclosed in which a conductive paste capable of forming a fine wiring or a very thin electrode layer with high accuracy using silver powder is disclosed.

また、特許文献2には、特定条件下で硝酸銀水溶液をL−アスコルビン酸又はその塩類で還元することにより、粒度分布幅が狭くコントロールされた大きさでかつ単分散した銀微粒子を得ることができる銀微粒子の製造方法が開示されている。   Further, in Patent Document 2, monodispersed silver fine particles having a controlled size and a narrow particle size distribution width can be obtained by reducing an aqueous silver nitrate solution with L-ascorbic acid or a salt thereof under specific conditions. A method for producing silver fine particles is disclosed.

特許文献3には、銀アンミン錯体水溶液をL−アスコルビン酸、D−エリソルビン酸又はこれらの塩で還元することにより、球状の銀粒子を得ることができる銀粒子の製造方法が記載されている。   Patent Document 3 describes a method for producing silver particles capable of obtaining spherical silver particles by reducing an aqueous silver ammine complex solution with L-ascorbic acid, D-erythorbic acid or a salt thereof.

さらに、特許文献4には、硝酸銀水溶液をL−アスコルビン酸で還元する際、アクリル酸モノマーを存在させることにより、粒径が2〜4μm程度の大粒の単結晶銀粒子を得ることができる銀粒子の製造方法が記載されている。
特開2001−107101号公報 特開昭63−307206号公報 米国特許4863510号公報 特開2000−1706号公報
Furthermore, in Patent Document 4, when reducing an aqueous silver nitrate solution with L-ascorbic acid, silver particles capable of obtaining large single crystal silver particles having a particle diameter of about 2 to 4 μm by the presence of an acrylic acid monomer. The manufacturing method is described.
JP 2001-107101 A JP-A-63-307206 US Pat. No. 4,863,510 JP 2000-1706 A

しかしながら、特許文献1又は特許文献3の方法では、銀アンミン錯体が未反応物として水溶液中に残留しやすく収率が低くなってしまうという問題がある。また銀イオンとアンモニアが共存する溶液では雷銀(窒化銀)が生成しやすく爆発の危険があるという問題がある。また特許文献1で用いられる、ベンゼン環を有するヒドロキノンやSO2基を有する亜硫酸は、銀粒子上に残留した場合焼結性を損なうおそれがあるという問題がある。 However, the method of Patent Document 1 or Patent Document 3 has a problem that the silver ammine complex tends to remain in the aqueous solution as an unreacted product and the yield is low. Further, a solution in which silver ions and ammonia coexist has a problem that thunder silver (silver nitride) is easily generated and there is a risk of explosion. In addition, hydroquinone having a benzene ring and sulfurous acid having an SO 2 group used in Patent Document 1 have a problem that the sinterability may be impaired when remaining on silver particles.

また、特許文献2又は特許文献3の方法では、球形に近い単分散銀粉末が得られるものの、形状が不均一で真球性が劣ってしまうという問題がある。また粒子表面が平滑でなく花弁状の凹凸が存在するため、例えば導体ペーストを焼成したとき緻密な焼成体が形成されないという問題がある。   Moreover, although the method of patent document 2 or patent document 3 can obtain monodisperse silver powder close | similar to a spherical shape, there exists a problem that a shape is non-uniform | heterogenous and inferior sphericity. Further, since the particle surface is not smooth and there are petal-like irregularities, for example, there is a problem that a dense fired body is not formed when the conductor paste is fired.

さらに、特許文献4の方法で得られる銀粉末は球状ではなく、角張った多角形形状のものであり、薄く高精細の導体パターンを形成するためには適していないという問題がある。   Furthermore, there is a problem that the silver powder obtained by the method of Patent Document 4 is not spherical but has an angular polygonal shape and is not suitable for forming a thin and high-definition conductor pattern.

本発明は、微細で粒子の形状や大きさが揃っており、かつ表面に凹凸が少なく真球に近い導体ペーストの導電性フィラーとして適した球状銀粉末の製造方法を提供することを目的とする。また、銀粉末表面において熱分解しにくい有機物の付着が少なく、かつ粗大な粒子や凝集塊がほとんど存在せず、分散性のよい、平均粒径が0.5〜5μm程度の微細な球状銀粉末を効率よく安定して製造することのできる球状銀粉末の製造方法を提供することを目的とする。また、本発明は粒度や充填密度を任意に調整することが可能な、銀粉末の製造方法を提供することを目的とする。   It is an object of the present invention to provide a method for producing a spherical silver powder that is fine and has a uniform particle shape and size, and that is suitable for use as a conductive filler in a conductive paste that has almost no irregularities on the surface and is close to a true sphere. . In addition, fine spherical silver powder having a small average particle diameter of about 0.5 to 5 μm, which has little dispersibility of organic matter that is hard to be thermally decomposed on the surface of the silver powder, has almost no coarse particles or agglomerates, and has good dispersibility It is an object of the present invention to provide a method for producing spherical silver powder that can be produced efficiently and stably. Moreover, an object of this invention is to provide the manufacturing method of silver powder which can adjust a particle size and a packing density arbitrarily.

前記課題を解決するために、請求項1に記載の発明は、球状銀粉末の製造方法において、
銀化合物溶液と還元剤溶液とを、脂肪族不飽和ジカルボン酸、その無水物及びその塩からなる群のうち少なくとも一つの存在下で反応させることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a method for producing spherical silver powder,
The silver compound solution and the reducing agent solution are reacted in the presence of at least one selected from the group consisting of aliphatic unsaturated dicarboxylic acids, anhydrides and salts thereof.

請求項2に記載の発明は、球状銀粉末の製造方法において、
銀化合物溶液と還元剤溶液とを、脂肪族不飽和ジカルボン酸、その無水物及びその塩からなる群のうち少なくとも一つ並びに水溶性高分子化合物の存在下で反応させることを特徴とする。
Invention of Claim 2 is in the manufacturing method of spherical silver powder,
The silver compound solution and the reducing agent solution are reacted in the presence of at least one of the group consisting of an aliphatic unsaturated dicarboxylic acid, its anhydride and its salt, and a water-soluble polymer compound.

請求項3に記載の発明は、請求項1又は2に記載の球状銀粉末の製造方法において、
前記脂肪族不飽和ジカルボン酸は、マレイン酸であることを特徴とする。
Invention of Claim 3 in the manufacturing method of the spherical silver powder of Claim 1 or 2,
The aliphatic unsaturated dicarboxylic acid is maleic acid.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の球状銀粉末の製造方法において、
前記還元剤溶液中の還元剤は、L−アスコルビン酸、D−エリソルビン酸又はこれらの塩であることを特徴とする。
Invention of Claim 4 is a manufacturing method of the spherical silver powder as described in any one of Claims 1-3,
The reducing agent in the reducing agent solution is L-ascorbic acid, D-erythorbic acid or a salt thereof.

本発明に係る球状銀粉末の製造方法によれば、平均粒径が0.5〜5μm程度の大きさの揃った微細な球状銀粉末を簡単に製造することができる。また粒度調整も容易であり、反応温度や反応溶液のpH等の条件により所望の大きさ、粒度分布、充填密度を有する銀粉末を製造することができる。   According to the method for producing spherical silver powder according to the present invention, it is possible to easily produce fine spherical silver powder having an average particle diameter of about 0.5 to 5 μm. Also, the particle size can be easily adjusted, and silver powder having a desired size, particle size distribution, and packing density can be produced depending on conditions such as reaction temperature and pH of the reaction solution.

本発明に係る球状銀粉末の製造方法により製造される球状銀粉末は、微細でペースト中での分散性が極めて優れているので、導体ペースト等に用いた場合、高精細な導体パターンや薄く緻密な電極を形成することができる。また、表面に凹凸が少ない真球性の高い銀粒子からなるので、特に感光性ペーストの導電性フィラーとして用いたとき、ペースト塗布層への光透過性が優れたものとなる。従って、ペースト塗布層への光照射量を低減させることができ、また塗膜の深部まで容易に露光させることもできるので、光硬化性やパターン解像性を向上させることができる。また特定の条件下で得られる、比較的大きく充填性の高い球状銀粉末は、焼成収縮率が小さくなるので、セラミック基板と同時焼成される導体ペースト、特に多層セラミック基板のビアフィル用の導体ペーストの導電性フィラーとして極めて有用である。   Since the spherical silver powder produced by the method for producing spherical silver powder according to the present invention is fine and extremely excellent in dispersibility in the paste, when used in a conductor paste or the like, a high-definition conductor pattern or a thin dense powder is used. A simple electrode can be formed. Moreover, since it consists of highly spherical silver particles with few irregularities on the surface, the light transmittance to the paste coating layer is particularly excellent when used as a conductive filler of a photosensitive paste. Accordingly, the amount of light applied to the paste coating layer can be reduced, and exposure to the deep part of the coating film can be easily performed, so that photocurability and pattern resolution can be improved. In addition, the relatively large and highly filled spherical silver powder obtained under specific conditions has a low firing shrinkage rate. Therefore, a conductive paste that is simultaneously fired with a ceramic substrate, particularly a conductive paste for via-filling a multilayer ceramic substrate. It is extremely useful as a conductive filler.

本発明に係る球状銀粉末の製造方法において用いられる脂肪族不飽和ジカルボン酸、その無水物及びその塩(以下、「脂肪族不飽和ジカルボン酸類」とする。)は、低分子量で、粉末製造後に洗浄除去しやすいので、粉末表面に残留する有機物を少なくすることができる。ここで、添加剤を完全に除去せず粉末表面に適度に残すことにより、製造された球状銀粉末の凝集を防止することができ、導体ペースト中での分散性をさらに向上させることも可能である。脂肪族不飽和ジカルボン酸類を用いた場合、少量で前記の効果がある上にこれらは熱分解性が高いため、焼成後又は硬化後の導体膜の導電性や緻密性を損なうことがない。   The aliphatic unsaturated dicarboxylic acid, its anhydride and its salt (hereinafter referred to as “aliphatic unsaturated dicarboxylic acids”) used in the method for producing spherical silver powder according to the present invention have a low molecular weight and are produced after the powder is produced. Since it is easy to wash and remove, organic substances remaining on the powder surface can be reduced. Here, it is possible to prevent agglomeration of the produced spherical silver powder by leaving the additive appropriately on the powder surface without completely removing the additive, and it is possible to further improve the dispersibility in the conductor paste. is there. When aliphatic unsaturated dicarboxylic acids are used, they have the above-mentioned effects in a small amount and have high thermal decomposability, so that the conductivity and denseness of the conductor film after firing or after curing are not impaired.

さらに、銀化合物溶液と還元剤溶液とを混合して銀粒子を析出させる際に水溶性高分子分化合物を併用すると、脂肪族不飽和ジカルボン酸類のみを添加する場合に比べて、より分散性が高く、大きさが揃った球状銀粉末を製造することができ好ましい。   Furthermore, when a silver compound solution and a reducing agent solution are mixed to precipitate silver particles, a water-soluble polymer compound is used in combination, so that the dispersibility is higher than when only aliphatic unsaturated dicarboxylic acids are added. High and spherical silver powder having a uniform size can be produced, which is preferable.

以下に、本発明に係る球状銀粉末の製造方法の実施の形態について、詳細に説明する。
まず、本発明にかかる球状銀粉末の製造方法において用いられる化合物についてそれぞれ説明する。
Hereinafter, embodiments of the method for producing spherical silver powder according to the present invention will be described in detail.
First, each compound used in the method for producing spherical silver powder according to the present invention will be described.

(銀化合物溶液)
本発明において用いられる銀化合物としては、後述する還元剤と反応して銀粉末を生成しうるものであれば特に制限はないが、アンミン錯体を用いる場合は前述したような問題があるため、アンミン錯体以外のものを用いることが望ましい。例えば硝酸銀、炭酸銀、酢酸銀等が挙げられ、コスト面からは硝酸銀を用いることが好ましい。
銀化合物を溶解させる溶媒としては、水及び/又はアルコールを用いることが好ましい。
(Silver compound solution)
The silver compound used in the present invention is not particularly limited as long as it can react with a reducing agent, which will be described later, to produce a silver powder. However, when an ammine complex is used, there is a problem as described above. It is desirable to use something other than the complex. For example, silver nitrate, silver carbonate, silver acetate and the like can be mentioned, and silver nitrate is preferably used from the viewpoint of cost.
As a solvent for dissolving the silver compound, it is preferable to use water and / or alcohol.

(還元剤溶液)
本発明において用いられる還元剤としては、前記銀化合物溶液と混合することにより銀化合物を還元して、銀粉末を析出させるものであれば限定されないが、分子中にベンゼン環や、亜硫酸基、硫酸基等の熱分解性が低い官能基を有しないものが望ましい。例えば、L−アスコルビン酸、D−エリソルビン酸、L−アスコルビン酸又はD−エリソルビン酸の塩、ヒドラジン、ヒドラジン化合物、ホルムアルデヒド、蟻酸、グルコース等が挙げられる。特に、L−アスコルビン酸、D−エリソルビン酸又はこれらの塩を用いた場合、大きさの揃った球状銀粉を製造することができるので好ましい。L−アスコルビン酸、D−エリソルビン酸の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などが例示される。
還元剤を溶解させる溶媒としては、水及び/又はアルコールを用いることが好ましい。
(Reducing agent solution)
The reducing agent used in the present invention is not limited as long as the silver compound is reduced by mixing with the silver compound solution to precipitate silver powder, but the benzene ring, sulfite group, sulfuric acid in the molecule is not limited. Those having no functional group having low thermal decomposability such as a group are desirable. For example, L-ascorbic acid, D-erythorbic acid, L-ascorbic acid or a salt of D-erythorbic acid, hydrazine, a hydrazine compound, formaldehyde, formic acid, glucose and the like can be mentioned. In particular, when L-ascorbic acid, D-erythorbic acid or a salt thereof is used, spherical silver powder having a uniform size can be produced, which is preferable. Examples of the salt of L-ascorbic acid and D-erythorbic acid include sodium salt, potassium salt, ammonium salt and the like.
As a solvent for dissolving the reducing agent, it is preferable to use water and / or alcohol.

(脂肪族不飽和ジカルボン酸類)
本発明において用いられる脂肪族不飽和ジカルボン酸類としては、マレイン酸、フマル酸などの脂肪族不飽和ジカルボン酸、その無水物及びその塩が挙げられる。特に、マレイン酸、マレイン酸無水物が好適に使用される。
(Aliphatic unsaturated dicarboxylic acids)
Examples of the aliphatic unsaturated dicarboxylic acids used in the present invention include aliphatic unsaturated dicarboxylic acids such as maleic acid and fumaric acid, anhydrides thereof and salts thereof. In particular, maleic acid and maleic anhydride are preferably used.

本発明において脂肪族不飽和ジカルボン酸類は、銀粉末を真球に近い粒子形状に整え、かつ生成した銀粒子の凝集を防止し、分散性を高める作用があると考えられる。
例えば、硝酸銀水溶液をL−アスコルビン酸溶液で還元する際に脂肪族不飽和ジカルボン酸類が存在しないと、特定の結晶面が成長して表面に花弁状の凹凸を有する粒子となってしまう(図5参照)。しかしながら、銀粒子が還元生成する際に脂肪族不飽和ジカルボン酸類が存在することにより、一次粒子の異方的な結晶成長が抑制されて一次粒子が結晶面の影響を受けずに密に集合し、表面が平滑で真球に近い形状の粒子が生成する(図1参照)。
In the present invention, the aliphatic unsaturated dicarboxylic acids are considered to have an effect of adjusting the silver powder into a particle shape close to a true sphere, preventing aggregation of the generated silver particles, and improving dispersibility.
For example, when an aliphatic unsaturated dicarboxylic acid is not present when a silver nitrate aqueous solution is reduced with an L-ascorbic acid solution, a specific crystal plane grows to form particles having petal-like irregularities on the surface (FIG. 5). reference). However, due to the presence of aliphatic unsaturated dicarboxylic acids when the silver particles are reduced, anisotropic crystal growth of the primary particles is suppressed, and the primary particles are densely assembled without being affected by the crystal plane. Then, particles having a smooth surface and a shape close to a true sphere are generated (see FIG. 1).

脂肪族不飽和ジカルボン酸類の量は、用いる脂肪族不飽和ジカルボン酸類の種類によっても異なるが、硝酸銀溶液に含まれる銀量(金属換算量)100重量部に対して、0.5〜25重量部であることが望ましい。0.5重量部よりも添加量が少ない場合、球状銀粉末が得られにくい。25重量部よりも多い場合、銀粉末に付着する有機物量が多くなるため、導体ペーストの特性に悪影響を及ぼすおそれがあり、かつコストも増加するので好ましくない。   The amount of the aliphatic unsaturated dicarboxylic acid varies depending on the type of the aliphatic unsaturated dicarboxylic acid to be used, but is 0.5 to 25 parts by weight with respect to 100 parts by weight of silver (metal equivalent amount) contained in the silver nitrate solution. It is desirable that When the addition amount is less than 0.5 parts by weight, it is difficult to obtain spherical silver powder. If the amount is more than 25 parts by weight, the amount of organic matter adhering to the silver powder increases, which may adversely affect the properties of the conductor paste and increase the cost.

(水溶性高分子化合物)
本発明において使用される水溶性高分子化合物としては特に限定されず、公知のものを使用することができる。例えば、保護コロイド作用を有するカルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース類、デキストリン、デンプンなどの多糖類、アラビアゴムなどの各種天然ゴム、アルブミン、グロブリン、プロラミンなどの単純タンパク質の他、ゼラチン、アルブモース、ペプトン、核タンパク質、糖タンパク質などの各種タンパク質、又はこれらの誘導体、ポリビニルアルコール、ポリビニルアミン、ポリビニルピロリドンなどのビニル系高分子化合物、水溶性アクリル重合体などが挙げられる。
(Water-soluble polymer compound)
It does not specifically limit as a water-soluble high molecular compound used in this invention, A well-known thing can be used. For example, celluloses such as carboxymethyl cellulose and hydroxyethyl cellulose having a protective colloid action, polysaccharides such as dextrin and starch, various natural rubbers such as gum arabic, simple proteins such as albumin, globulin and prolamin, gelatin, albmose and peptone And various proteins such as nucleoprotein and glycoprotein, or derivatives thereof, vinyl polymer compounds such as polyvinyl alcohol, polyvinylamine, and polyvinylpyrrolidone, water-soluble acrylic polymers, and the like.

本発明においては、銀粉末の析出時に、脂肪族不飽和ジカルボン酸類とともに水溶性高分子化合物を存在させることにより、より分散性が高く、大きさが揃った球状銀粉末を製造することができる。   In the present invention, a spherical silver powder having a higher dispersibility and a uniform size can be produced by allowing the water-soluble polymer compound to be present together with the aliphatic unsaturated dicarboxylic acids when the silver powder is precipitated.

水溶性高分子化合物の量は、化合物の種類によっても異なるが、通常硝酸銀溶液に含まれる銀量(金属換算量)100重量部に対して、0.1〜5重量部であることが望ましい。0.1重量部よりも少ない場合、水溶性高分子を併用する効果が現れにくい。5重量部よりも多い場合、銀粉末表面に残存する有機物量が多くなるために、ペースト特性や硬化物又は焼成体の特性に悪影響を及ぼすおそれがあり、コストも増加するので好ましくない。   The amount of the water-soluble polymer compound is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of silver (metal equivalent amount) usually contained in the silver nitrate solution, although it varies depending on the type of compound. When the amount is less than 0.1 part by weight, the effect of using the water-soluble polymer is difficult to appear. When the amount is more than 5 parts by weight, the amount of the organic matter remaining on the surface of the silver powder increases, which may adversely affect the paste characteristics and the properties of the cured product or the fired body, and increases the cost.

(銀粉末の製造方法)
次に、前記化合物を用いた本発明に係る球状銀粉末の製造方法について説明する。
(Method for producing silver powder)
Next, the manufacturing method of the spherical silver powder based on this invention using the said compound is demonstrated.

まず、脂肪族不飽和ジカルボン酸類と水溶性高分子化合物とを、銀化合物溶液又は還元剤溶液の少なくとも一方に混合する。
ここで、銀化合物溶液又は還元剤溶液の少なくとも一方に、予め多価アルコールを添加するものとしてもよい。多価アルコールは生成する銀粒子の凝集を抑制し、分散性をより改善する作用があると考えられる。多価アルコールとしては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリンなどが使用される。
First, an aliphatic unsaturated dicarboxylic acid and a water-soluble polymer compound are mixed in at least one of a silver compound solution and a reducing agent solution.
Here, polyhydric alcohol may be added in advance to at least one of the silver compound solution and the reducing agent solution. The polyhydric alcohol is considered to have an action of suppressing the aggregation of the generated silver particles and further improving the dispersibility. Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, and glycerin.

その後、銀化合物溶液と還元剤溶液とを混合する。この際の混合方法は特に限定されず、銀化合物溶液と還元剤溶液とを同時に反応容器に添加する方法、銀化合物溶液を母液としこれに還元剤溶液を添加する方法、逆に還元剤溶液に銀化合物溶液を添加する方法のいずれの方法でもよい。
この際、混合前の銀化合物溶液及び還元剤溶液の温度は、60℃以下、特に45℃以下に調整しておくことが好ましい。60℃より温度が高くなると、一次粒子の結晶成長が促進され形状、粒度の揃った球状の銀粉末が得られにくくなると同時に凝集しやすくなってしまう。
また特に、銀化合物溶液と還元剤溶液の温度を10℃以下とし、水溶性高分子化合物の存在下、反応による温度上昇を10℃以下に抑えつつ短時間で反応させることにより、平均粒径2〜5μm程度で充填性が高く、かつ真球性の高い高分散性銀粉末を生成させることができる。
Thereafter, the silver compound solution and the reducing agent solution are mixed. The mixing method in this case is not particularly limited, a method in which a silver compound solution and a reducing agent solution are simultaneously added to a reaction vessel, a method in which a silver compound solution is used as a mother liquor and a reducing agent solution is added thereto, and conversely in a reducing agent solution. Any method of adding a silver compound solution may be used.
At this time, the temperature of the silver compound solution and the reducing agent solution before mixing is preferably adjusted to 60 ° C. or less, particularly 45 ° C. or less. When the temperature is higher than 60 ° C., the crystal growth of primary particles is promoted, and it becomes difficult to obtain spherical silver powder having a uniform shape and particle size, and at the same time, it tends to aggregate.
In particular, the temperature of the silver compound solution and the reducing agent solution is set to 10 ° C. or lower, and in the presence of the water-soluble polymer compound, the temperature rise due to the reaction is suppressed to 10 ° C. or lower so that the average particle size is 2 Highly dispersible silver powder having a high filling property and a high sphericity can be produced at about -5 μm.

ここで、析出する銀粉末の粒径は溶液のpHによっても調整することができる。例えば、硝酸銀水溶液をL−アスコルビン酸、D−エリソルビン酸、又はこれらの塩類で還元して平均粒径が0.5〜5μm程度の粒度の揃った銀粉末を得るためには、pHが1〜7の範囲となるように調整することが望ましい。   Here, the particle size of the silver powder to be precipitated can be adjusted by the pH of the solution. For example, in order to obtain a silver powder having a uniform average particle size of about 0.5 to 5 μm by reducing an aqueous silver nitrate solution with L-ascorbic acid, D-erythorbic acid, or salts thereof, the pH is 1 to It is desirable to adjust so that it may become the range of 7.

析出した球状銀粉末は、ろ過等により反応溶液から容易に分離することができる。分離後は水やアルコール等で洗浄された後、乾燥される。   The precipitated spherical silver powder can be easily separated from the reaction solution by filtration or the like. After separation, it is washed with water, alcohol or the like and then dried.

このようにして得られた球状銀粉末は、平均粒径が0.5〜5μm程度の微細でかつ表面が平滑な球状銀粉末であり、また、ペースト中での分散性が極めて優れているので、導体ペーストのようなエレクトロニクス分野に用いるのに適しているが、その他装飾用材料、抗菌材料、触媒材料としても好適に用いることができる。   The spherical silver powder obtained in this way is a fine and smooth spherical silver powder having an average particle diameter of about 0.5 to 5 μm, and has extremely excellent dispersibility in the paste. It is suitable for use in the field of electronics such as conductor paste, but can also be suitably used as other decorative materials, antibacterial materials, and catalyst materials.

以下に実施例として球状銀粉末の製造及びその評価を示すが、本発明はこれに限定されるものではない。   The production of spherical silver powder and its evaluation will be shown as examples below, but the present invention is not limited to this.

[実施例1]
銀化合物溶液として、硝酸銀25.0gを500mLの純水に溶解し、溶液温度を26℃、pH=4とした。一方、還元剤溶液としてL−アスコルビン酸13.4gを500mLの純水に溶解したものを用意した。この還元剤溶液に、マレイン酸1.0gを加えて溶解し、溶液温度を26℃、pH=2.5とした。そして、前記銀化合物溶液に、前記マレイン酸を溶解した還元剤溶液を添加し、10分間攪拌して反応させた。得られた沈殿をろ過し、洗浄した後、40℃で3時間乾燥して球状銀粉末を得た。
X線回折装置(理学電機株式会社製)を用いて、得られた粉末のX線回折パターンを観察したところ、金属銀と同一のパターンが得られたことから、銀粉末が得られたことを確認した。また走査型電子顕微鏡(SEM、株式会社日立製作所製)を用いて得られた粉末を観察し、粒径が1.5〜3μmの範囲にあり、平均粒径約2.1μm、標準偏差±0.8μmの、大きさが揃った球状粒子からなる銀粉末であることを確認した。SEM像を図1に示す。ここで、平均粒径及び標準偏差は、SEM像から無作為に選んだ20個の銀粒子の粒径から算出したものである。また、粒子表面には凹凸が極めて少なく、真球状に近い銀粉末であった。粉末のタップ密度を測定したところ、3.8g/cmであった。
[Example 1]
As a silver compound solution, 25.0 g of silver nitrate was dissolved in 500 mL of pure water, and the solution temperature was 26 ° C. and pH = 4. On the other hand, a solution obtained by dissolving 13.4 g of L-ascorbic acid in 500 mL of pure water was prepared as a reducing agent solution. To this reducing agent solution, 1.0 g of maleic acid was added and dissolved to adjust the solution temperature to 26 ° C. and pH = 2.5. And the reducing agent solution which melt | dissolved the said maleic acid was added to the said silver compound solution, and it stirred for 10 minutes and made it react. The obtained precipitate was filtered, washed, and dried at 40 ° C. for 3 hours to obtain spherical silver powder.
When the X-ray diffraction pattern of the obtained powder was observed using an X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.), the same pattern as metallic silver was obtained. confirmed. Also, the powder obtained using a scanning electron microscope (SEM, manufactured by Hitachi, Ltd.) was observed, the particle diameter was in the range of 1.5 to 3 μm, the average particle diameter was about 2.1 μm, and the standard deviation was ± 0. It was confirmed that the silver powder was composed of spherical particles having a uniform size of .8 μm. An SEM image is shown in FIG. Here, the average particle diameter and the standard deviation are calculated from the particle diameters of 20 silver particles randomly selected from the SEM image. Further, the surface of the particles was a silver powder having very few irregularities and almost spherical. When the tap density of the powder was measured, it was 3.8 g / cm 3 .

[実施例2]
銀化合物溶液として、硝酸銀25.0gを500mLの純水に溶解した。この銀化合物溶液にマレイン酸を1.0gとヒドロキシエチルセルロース0.2gを加えて溶解し、溶液温度を26℃、pH=4とした。一方、還元剤溶液としてL−アスコルビン酸13.4gを500mLの純水に溶解し、溶液温度を26℃、pH=2.5とした。前記マレイン酸を溶解した銀化合物溶液に還元剤溶液を添加し、10分間攪拌して反応させた。得られた沈殿をろ過し、洗浄した後、40℃で3時間乾燥して球状銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が1〜2μmの範囲にあり、平均粒径約1.5μm、標準偏差±0.3μmの、大きさが非常によく揃った球状粒子からなる銀粉末であることを確認した。SEM像を図2に示す。タップ密度は4.4g/cmであった。
[Example 2]
As a silver compound solution, 25.0 g of silver nitrate was dissolved in 500 mL of pure water. To this silver compound solution, 1.0 g of maleic acid and 0.2 g of hydroxyethyl cellulose were added and dissolved, and the solution temperature was set to 26 ° C. and pH = 4. On the other hand, 13.4 g of L-ascorbic acid as a reducing agent solution was dissolved in 500 mL of pure water, and the solution temperature was set to 26 ° C. and pH = 2.5. A reducing agent solution was added to the silver compound solution in which the maleic acid was dissolved, and the mixture was stirred for 10 minutes to be reacted. The obtained precipitate was filtered, washed, and dried at 40 ° C. for 3 hours to obtain spherical silver powder.
From the X-ray diffraction pattern and scanning electron microscope observation of the obtained powder, the particle size is in the range of 1 to 2 μm, the average particle size is about 1.5 μm, the standard deviation is ± 0.3 μm, and the size is very good. It was confirmed that the silver powder was composed of uniform spherical particles. An SEM image is shown in FIG. The tap density was 4.4 g / cm 3 .

[実施例3]
マレイン酸の添加量を2.0gとし、また水酸化ナトリウムを用いて還元剤溶液のpHを6.5に調整した以外は実施例2と同様にして球状銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が0.5〜2μmの範囲にあり、平均粒径約1.5μm、標準偏差±0.6μmの、大きさの揃った球状粒子からなる銀粉末であることを確認した。タップ密度は4.6g/cmであった。
[Example 3]
A spherical silver powder was obtained in the same manner as in Example 2 except that the amount of maleic acid added was 2.0 g and the pH of the reducing agent solution was adjusted to 6.5 using sodium hydroxide.
From the X-ray diffraction pattern and scanning electron microscope observation of the obtained powder, the particle size is in the range of 0.5-2 μm, the average particle size is about 1.5 μm, and the standard deviation is ± 0.6 μm. It was confirmed that the silver powder was made of spherical particles. The tap density was 4.6 g / cm 3 .

[実施例4]
還元剤溶液としてL−アスコルビン酸に代えてD−エリソルビン酸ナトリウム16.5gを500mLの純水に溶解したものを用意し、この還元剤溶液に、マレイン酸を1.0gとヒドロキシエチルセルロース0.2gを加えて溶解し、溶液温度を26℃、pH=5.5とした以外は実施例1と同様にして球状銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が0.5〜1.5μmの範囲にあり、平均粒径約1.3μm、標準偏差±0.4μmの、大きさの揃った球状粒子からなる銀粉末であることを確認した。タップ密度は4.7g/cmであった。
[Example 4]
A reducing agent solution prepared by dissolving 16.5 g of sodium D-erythorbate in 500 mL of pure water instead of L-ascorbic acid was prepared. In this reducing agent solution, 1.0 g of maleic acid and 0.2 g of hydroxyethyl cellulose were prepared. Was added to dissolve, and spherical silver powder was obtained in the same manner as in Example 1 except that the solution temperature was 26 ° C. and pH = 5.5.
From the X-ray diffraction pattern and the scanning electron microscope observation of the obtained powder, the particle size is in the range of 0.5 to 1.5 μm, the average particle size is about 1.3 μm, and the standard deviation is ± 0.4 μm. It was confirmed that the silver powder was composed of spherical particles having a uniform shape. The tap density was 4.7 g / cm 3 .

[実施例5]
硝酸を用いて還元剤溶液のpHを2.5に調整した以外は実施例4と同様にして球状銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が1.5〜2.5μmの範囲にあり、平均粒径約2.1μm、標準偏差±0.3μmの、大きさの揃った球状粒子からなる銀粉末であることを確認した。タップ密度は4.3g/cmであった。
[Example 5]
A spherical silver powder was obtained in the same manner as in Example 4 except that the pH of the reducing agent solution was adjusted to 2.5 using nitric acid.
From the X-ray diffraction pattern and scanning electron microscope observation of the obtained powder, the particle size is in the range of 1.5 to 2.5 μm, the average particle size is about 2.1 μm, and the standard deviation is ± 0.3 μm. It was confirmed that the silver powder was composed of spherical particles having a uniform shape. The tap density was 4.3 g / cm 3 .

[実施例6]
還元剤溶液にさらにエチレングリコール2.5g及びヒドロキシエチルセルロース0.2gを添加した以外は実施例1と同様にして球状銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が2.8〜3.2μmの範囲にあり、平均粒径約3.1μm、標準偏差±0.2μmの、大きさのほぼ揃った球状粒子からなる銀粉末であることを確認した。SEM像を図3に示す。タップ密度は4.3g/cmであった。
[Example 6]
A spherical silver powder was obtained in the same manner as in Example 1 except that 2.5 g of ethylene glycol and 0.2 g of hydroxyethylcellulose were further added to the reducing agent solution.
From the X-ray diffraction pattern and the scanning electron microscope observation of the obtained powder, the particle size is in the range of 2.8 to 3.2 μm, the average particle size is about 3.1 μm, and the standard deviation is ± 0.2 μm. It was confirmed that the silver powder was composed of almost uniform spherical particles. An SEM image is shown in FIG. The tap density was 4.3 g / cm 3 .

[実施例7]
銀化合物溶液として、硝酸銀30.0gを300mLの純水に溶解し、溶液温度を5℃としたものを用意した。溶液のpHは約4であった。一方、還元剤溶液としてL−アスコルビン酸18.0gを150mLの純水に溶解した。この還元剤溶液に、マレイン酸1.6g、及びヒドロキシエチルセルロース0.8gを加えて溶解し、溶液温度を5℃に調整した。溶液のpHは約2.5であった。前記銀化合物溶液に、前記マレイン酸を溶解した還元剤溶液を添加し、10分間攪拌して反応させた。銀化合物溶液の入った容器を、反応終了時まで5℃の循環水を用いて冷却し、反応溶液の温度が10℃以下になるようにした。得られた沈殿をろ過し、洗浄した後、40℃で3時間乾燥して、粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径がほぼ1.4〜3.1μmの範囲にあり、平均粒径約2.3μm、標準偏差±0.6μmの球状粒子からなる銀粉末であることを確認した。粒子表面には凹凸が極めて少なく、真球状に近いものであった。SEM像を図4に示す。タップ密度は5.6g/cmであった。
[Example 7]
As the silver compound solution, 30.0 g of silver nitrate was dissolved in 300 mL of pure water, and the solution temperature was 5 ° C. The pH of the solution was about 4. On the other hand, 18.0 g of L-ascorbic acid was dissolved in 150 mL of pure water as a reducing agent solution. To this reducing agent solution, 1.6 g maleic acid and 0.8 g hydroxyethyl cellulose were added and dissolved, and the solution temperature was adjusted to 5 ° C. The pH of the solution was about 2.5. The reducing agent solution in which the maleic acid was dissolved was added to the silver compound solution, and the mixture was stirred for 10 minutes to be reacted. The container containing the silver compound solution was cooled with circulating water at 5 ° C. until the end of the reaction so that the temperature of the reaction solution was 10 ° C. or lower. The obtained precipitate was filtered and washed, and then dried at 40 ° C. for 3 hours to obtain a powder.
From the X-ray diffraction pattern of the obtained powder and observation with a scanning electron microscope, spherical particles having a particle size in the range of about 1.4 to 3.1 μm, an average particle size of about 2.3 μm, and a standard deviation of ± 0.6 μm It confirmed that it was a silver powder consisting of. The particle surface had very little unevenness and was nearly spherical. An SEM image is shown in FIG. The tap density was 5.6 g / cm 3 .

[比較例1]
還元剤溶液にマレイン酸を添加しない以外は実施例1と同様にして銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒子形状が花弁状であり、粒径が2〜4μmの範囲にあり、平均粒径約3.2μmの銀粉末であることを確認した。SEM像を図5に示す。タップ密度は2.8g/cmであった。
[Comparative Example 1]
A silver powder was obtained in the same manner as in Example 1 except that maleic acid was not added to the reducing agent solution.
From the X-ray diffraction pattern and scanning electron microscope observation of the obtained powder, it was confirmed that the particle shape was a petal shape, the particle size was in the range of 2 to 4 μm, and the silver powder had an average particle size of about 3.2 μm. confirmed. An SEM image is shown in FIG. The tap density was 2.8 g / cm 3 .

[比較例2]
銀化合物溶液にヒドロキシエチルセルロース0.2gを加えて溶解した以外は比較例1と同様にして銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が0.2〜0.5μmの範囲の凝集性の強い不定形粒状銀粉末であることを確認した。SEM像を図6に示す。タップ密度は3.2g/cmであった。
[Comparative Example 2]
A silver powder was obtained in the same manner as in Comparative Example 1 except that 0.2 g of hydroxyethylcellulose was dissolved in the silver compound solution.
From the X-ray diffraction pattern of the obtained powder and observation with a scanning electron microscope, it was confirmed that the powder was a highly coherent amorphous granular silver powder having a particle size in the range of 0.2 to 0.5 μm. An SEM image is shown in FIG. The tap density was 3.2 g / cm 3 .

[比較例3]
還元剤溶液にマレイン酸の代わりにアクリル酸1.0gを添加した以外は実施例1と同様にして銀粉末を得た。
得られた粉末のX線回折パターンと走査型電子顕微鏡観察から、粒径が1.0〜2.0μmの範囲の凝集性の強い不定形銀粉末であることを確認した。タップ密度は2.4g/cmであった。
[Comparative Example 3]
Silver powder was obtained in the same manner as in Example 1 except that 1.0 g of acrylic acid was added to the reducing agent solution instead of maleic acid.
From the X-ray diffraction pattern of the obtained powder and observation with a scanning electron microscope, it was confirmed that the powder was a highly coherent amorphous silver powder having a particle size in the range of 1.0 to 2.0 μm. The tap density was 2.4 g / cm 3 .

以上の結果から明らかなように、銀粉末製造の際に脂肪族不飽和カルボン酸類を添加することにより、微細で平滑かつ高分散性の銀粉末とすることができる。また、水溶性高分子化合物の添加により、標準偏差の小さい銀粉末とすることもできる。   As is clear from the above results, a fine, smooth and highly dispersible silver powder can be obtained by adding aliphatic unsaturated carboxylic acids during the production of silver powder. Moreover, it can also be set as silver powder with a small standard deviation by addition of a water-soluble polymer compound.

実施例1において得られた球状銀粉末のSEM像である。2 is an SEM image of spherical silver powder obtained in Example 1. 実施例2において得られた球状銀粉末のSEM像である。2 is a SEM image of spherical silver powder obtained in Example 2. 実施例6において得られた球状銀粉末のSEM像である。6 is a SEM image of spherical silver powder obtained in Example 6. 実施例7において得られた球状銀粉末のSEM像である。7 is a SEM image of spherical silver powder obtained in Example 7. 比較例1において得られた銀粉末のSEM像である。2 is a SEM image of silver powder obtained in Comparative Example 1. 比較例2において得られた銀粉末のSEM像である。4 is a SEM image of silver powder obtained in Comparative Example 2.

Claims (4)

銀化合物溶液と還元剤溶液とを、脂肪族不飽和ジカルボン酸、その無水物及びその塩からなる群のうち少なくとも一つの存在下で反応させることを特徴とする球状銀粉末の製造方法。   A method for producing a spherical silver powder, comprising reacting a silver compound solution and a reducing agent solution in the presence of at least one selected from the group consisting of aliphatic unsaturated dicarboxylic acids, anhydrides and salts thereof. 銀化合物溶液と還元剤溶液とを、脂肪族不飽和ジカルボン酸、その無水物及びその塩からなる群のうち少なくとも一つ並びに水溶性高分子化合物の存在下で反応させることを特徴とする球状銀粉末の製造方法。   Spherical silver characterized by reacting a silver compound solution and a reducing agent solution in the presence of at least one of the group consisting of an aliphatic unsaturated dicarboxylic acid, its anhydride and its salt, and a water-soluble polymer compound Powder manufacturing method. 前記脂肪族不飽和ジカルボン酸は、マレイン酸であることを特徴とする請求項1又は2に記載の球状銀粉末の製造方法。   The method for producing spherical silver powder according to claim 1 or 2, wherein the aliphatic unsaturated dicarboxylic acid is maleic acid. 前記還元剤溶液中の還元剤は、L−アスコルビン酸、D−エリソルビン酸又はこれらの塩であることを特徴とする請求項1〜3のいずれか一項に記載の球状銀粉末の製造方法。   The method for producing a spherical silver powder according to any one of claims 1 to 3, wherein the reducing agent in the reducing agent solution is L-ascorbic acid, D-erythorbic acid or a salt thereof.
JP2006003402A 2005-01-21 2006-01-11 Method for producing spherical silver powder Expired - Fee Related JP4301247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003402A JP4301247B2 (en) 2005-01-21 2006-01-11 Method for producing spherical silver powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005014340 2005-01-21
JP2006003402A JP4301247B2 (en) 2005-01-21 2006-01-11 Method for producing spherical silver powder

Publications (2)

Publication Number Publication Date
JP2006225760A true JP2006225760A (en) 2006-08-31
JP4301247B2 JP4301247B2 (en) 2009-07-22

Family

ID=36987375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003402A Expired - Fee Related JP4301247B2 (en) 2005-01-21 2006-01-11 Method for producing spherical silver powder

Country Status (1)

Country Link
JP (1) JP4301247B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090767A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticles, composite silver nanopaste, process and apparatus for producing the composite silver nanopaste, joining method, and method for pattern formation
JP2009191354A (en) * 2007-02-27 2009-08-27 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221600A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221599A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221597A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221598A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
US8231704B2 (en) 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
WO2012122403A1 (en) * 2011-03-08 2012-09-13 E. I. Du Pont De Nemours And Company Process for making silver powder particles with small size crystallites
WO2012122409A3 (en) * 2011-03-08 2012-11-08 E. I. Du Pont De Nemours And Company Process for making silver powder particles with very small size crystallites
JP2013108120A (en) * 2011-11-18 2013-06-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
JP2015045064A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2016148089A (en) * 2015-02-13 2016-08-18 三菱マテリアル株式会社 Silver powder, pasty composition and manufacturing method of silver powder
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
CN114472916A (en) * 2022-01-24 2022-05-13 河南金渠银通金属材料有限公司 Preparation method of high-temperature sintered spherical superfine silver powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947953A (en) * 2019-12-19 2020-04-03 苏州银瑞光电材料科技有限公司 Preparation method of spherical silver powder with high sintering activity for solar front silver paste

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199706A (en) * 2007-02-27 2013-10-03 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009191354A (en) * 2007-02-27 2009-08-27 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
US9580811B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
WO2009090748A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Silver composite nanoparticle and process and apparatus for producing the same
JP2009221600A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221599A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221597A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
JP2009221598A (en) * 2008-01-17 2009-10-01 Mitsubishi Materials Corp Method for synthesizing metal nanoparticle
WO2009090767A1 (en) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation Composite silver nanoparticles, composite silver nanopaste, process and apparatus for producing the composite silver nanopaste, joining method, and method for pattern formation
US8231704B2 (en) 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
WO2012122403A1 (en) * 2011-03-08 2012-09-13 E. I. Du Pont De Nemours And Company Process for making silver powder particles with small size crystallites
US8715387B2 (en) 2011-03-08 2014-05-06 E I Du Pont De Nemours And Company Process for making silver powder particles with small size crystallites
US9067261B2 (en) 2011-03-08 2015-06-30 E I Du Pont De Nemours And Company Process for making silver powder particles with very small size crystallites
WO2012122409A3 (en) * 2011-03-08 2012-11-08 E. I. Du Pont De Nemours And Company Process for making silver powder particles with very small size crystallites
JP2013108120A (en) * 2011-11-18 2013-06-06 Sumitomo Metal Mining Co Ltd Silver powder and method for producing the same
JP2015045064A (en) * 2013-08-28 2015-03-12 住友金属鉱山株式会社 Silver powder and production method thereof
JP2016148089A (en) * 2015-02-13 2016-08-18 三菱マテリアル株式会社 Silver powder, pasty composition and manufacturing method of silver powder
CN114472916A (en) * 2022-01-24 2022-05-13 河南金渠银通金属材料有限公司 Preparation method of high-temperature sintered spherical superfine silver powder

Also Published As

Publication number Publication date
JP4301247B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4301247B2 (en) Method for producing spherical silver powder
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
KR101122373B1 (en) Silver powder and method for producing same
JP5453813B2 (en) Metal nanoparticle dispersion and method for producing the same
KR101927476B1 (en) Silver powder and manufacturing method of the same
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
US20100101637A1 (en) Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP4428085B2 (en) Method for producing copper fine particles
JP2010043350A (en) Alloy nanoparticle, method for production thereof, and ink and paste using the alloy nanoparticle
JP2007016258A (en) High crystal silver powder, and method for producing the high crystal silver powder
JP2007239077A (en) Method for producing particulate silver particle, and particulate silver particle obtained by the method
JPH1088206A (en) Silver powder and manufacture of silver powder
JP2006193795A (en) Spherical silver powder and its production method
JP2009144197A (en) Silver fine particle, method for producing the same, and method for producing conductive film
KR20070089819A (en) Superfine copper powder slurry and process for producing the same
JP2009197323A (en) Dispersion solution of metal nanoparticle, and method for production thereof
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2007131950A (en) Silver powder
JP2006111903A (en) High crystalline flaky silver powder and its producing method
JP5332625B2 (en) Metal nanoparticle dispersion and method for producing the same
JP2005285673A (en) Silver paste
JP2006161145A (en) Silver powder and method for producing the same
JP2000001706A (en) High crystal silver particle, its production and conductor paste consisting of high crystal silver particle
JP2009256776A (en) Method for producing silver fine particle
JPH04235205A (en) Production of copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees